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Since December 2019, the world has been intensely affected by the COVID-19 pandemic, caused by the
SARS-CoV-2. In the case of a novel virus identification, the early elucidation of taxonomic classification
and origin of the virus genomic sequence is essential for strategic planning, containment, and treatments.
Deep learning techniques have been successfully used in many viral classification problems associated
with viral infection diagnosis, metagenomics, phylogenetics, and analysis. Considering that motivation,
the authors proposed an efficient viral genome classifier for the SARS-CoV-2 using the deep neural net-
work based on the stacked sparse autoencoder (SSAE). For the best performance of the model, we
explored the utilization of image representations of the complete genome sequences as the SSAE input
to provide a classification of the SARS-CoV-2. For that, a dataset based on k-mers image representation
was applied. We performed four experiments to provide different levels of taxonomic classification of
the SARS-CoV-2. The SSAE technique provided great performance results in all experiments, achieving
classification accuracy between 92% and 100% for the validation set and between 98.9% and 100% when
the SARS-CoV-2 samples were applied for the test set. In this work, samples of the SARS-CoV-2 were not
used during the training process, only during subsequent tests, in which the model was able to infer the
correct classification of the samples in the vast majority of cases. This indicates that our model can be
adapted to classify other emerging viruses. Finally, the results indicated the applicability of this deep
learning technique in genome classification problems.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Since the emergence of the SARS-CoV-2 virus at the end of 2019,
many works are been developed aiming to provide more compre-
hension about this novel virus. In March 2020, the World Health
Organization (WHO) raised the level of contamination to the
COVID-19 pandemic, due to its geographical spread across several
countries. On July 9, 2021, the disease had registered more than
185 million confirmed cases, and more than 4 million confirmed
deaths. In the case of a novel virus identification, the early elucida-
tion of taxonomic classification and origin of the virus genomic
sequence is essential for strategic planning, containment, and
treatments of the disease [1–3].
One of the research field in the bioinformatics area is the anal-
ysis of genomic sequences. In the last years, many strategies based
on alignment-free methods have been explored as an alternative
for the alignment-based methods, considering the limitations of
the second approach. Alignment-based programs assume that
homologous sequences comprise a series of linearly arranged and
more or less conserved sequence stretches, which is not always
the case in the real world [4].

Among the alignment-free methodologies, there are some mod-
els based on deep learning (DL) techniques, that can provide signif-
icant performance in applications of genome analysis [5–7]. Deep
neural networks (DNN) can improve prediction accuracy by dis-
covering relevant features of high complexity [7].

Fig. 1 presents the genome analysis stages and how deep learn-
ing integrates this process. The genome analysis stages include the
primary analysis, the secondary analysis, and the tertiary analysis.
The primary and secondary analysis compose the genome
sequencing. The primary analysis receives the biological sample
and generates genomic data information, called ‘‘reads”, after the
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Fig. 1. Genome analysis stages with deep learning.
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processing by the sequencer machine. Then, the secondary analysis
processes the reads and produces the complete genome sequence.
Lastly, the tertiary analysis provides the genome interpretation,
which can be performed for many algorithms and techniques [8–
10], as machine learning algorithms [11] and deep learning tech-
niques [7]. The deep learning techniques have been successful used
for the tertiary analysis in many viral classification problems asso-
ciated with the diagnosis of viral infections, metagenomics, phar-
macogenomics, and others [12–16].

Fig. 2 shows the steps of the tertiary analysis using DL, that are
the mapping and processing stages. The mapping stage receives
the DNA sequence information, that can be the reads, contigs, or
Fig. 2. Stages of viral genome analysis using deep learning.
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the whole genome sequence, and maps this data into a feature
space. Various mapping strategies have been present in the works
from state of the art, such as one-hot encoding [17–19,14], number
representation [12,13], digital signal processing [20], and other
strategies, including multiple mapping strategies applied sequen-
tially [21,22]. The processing stage consists of the utilization of a
DNN to perform classification, prediction, and other assumptions
about the genome information.

The mapping stage is crucial for the performance of the process-
ing stage. The genome sequence length varies by the type of virus.
Since the DNN only receive a fixed-size input, some researchers
have not been using the whole or long sequence length. Neverthe-
less, longer sequences contain more information and thus are more
convenient to make predictions [18].

The main contributions of this work are:

� To provide an efficient viral genome classifier for the SARS-CoV-
2 virus, based on the stacked sparse autoencoder (SSAE)
technique.

� To explore the utilization of a dataset based on k-mers image
representation of the complete genome sequences as the SSAE
input.

� To provide different levels of taxonomic classification.
� To deliver an approach that can be adapted to classify other
emerging viruses.

The present paper is organized as follows: This first section pre-
sents a general introduction, exposing the motivations and contri-
butions of the work. Section 2 discusses some related works from
state of the art. Section 3 presents the materials and methods used
to perform the experiments. Section 4 will present the results of
each experiment, a discussion of the results, and a comparison
with a work from the state of the art. Finally, Section 5 will present
the final considerations regarding the obtained results, the impli-
cations of the work and our plans for the future.
2. Related works

Many works from the state of the art are using deep learning to
solve biomedical problems [23–27]. Recently works in literature
have been applying deep learning as tertiary analysis such as viral
prediction, viral host prediction, and viral segments prediction
[17,12,18,20,13,28,19,29,14,30–32,15,16,33–36].

The work from [37] uses a deep learning approach combining a
CNN with a Bi-directional LSTM (BLSTM) to classify the SARS-CoV-
2 among Coronavirus and detect sequences with regulatory or
transcription motifs. For the DNN input, they used the one-hot vec-
tors to represent DNA sequences as 2D matrices.



Table 1
State of the art references – Part 1.

Biology name Group Aim Ref. COVID-
19

DNN

Genome prediction or
sequence classification

Genome classification
(taxonomic classification)

Viral classification Viral Subtyping [12] – CNN

Primer design [13] Yes CNN
Identified virus sequence

[14]
Yes LSTM

CNN + FC
Taxonomic classification [15] – BLSTM

[16] – CNN
Genome prediction Viral prediction Identified virus sequence [18] – CNN

[17] – CNN
Identified phage,

chromossomes, plasmid
[29] – CNN

Host prediction Host classification Viral host
classification

Predicting viruses among
several hosts

[19] – BLSTM + CNN
CNN

Host prediction Viral host
prediction

[28] Yes CNN

Genome segments prediction Genome segments classification Viral segments
classification

Prediction specific regions
in the genome

[20] – CNN + FC

[30] – CNN + BLSTM
[31] – CNN + BLSTM
[32] – CNN + BLSTM

Table 2
State of the art references – Part 2.

Input Output Ref. Biology fields Bioinformatics

The DNA or cDNA (RNA virus) of the virus. The whole
or part of the genome is used.

Number of
the classes

[12] Metagenomics Diagnosis of viral
infections Pharmacogenomics

Free alignments
techniques

[13]
[14]
[15]
[16]

Score [18] Metagenomics Phylogenetic analysis
Binary
output

[17] Score [29]

Number of
the classes

[19] Metagenomics Phylogenetic analysis

Score [28] Metagenomics
Number of
the classes

[20] Transcriptome Analysis

[30]
[31] Gene expression analysis
[32]
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Tables 1 and 2 present some works from the state of the art that
applied DNNs in order to analyse viral genome sequences. Table 1
details the focus of each work as the biology name, the group, the
aim, indicates if the proposal was or was not applied for the
COVID-19 and present the DNN used. The DNNs applied in those
references are divide into 5 groups (CNN + FC, LSTM + FC,
BLSTM + FC, BLSTM + CNN + FC, CNN + BLSTM + FC), as we show
in the last column of Table 1. Table 2 shows the details about the
input and the output of the DNN, besides the biology fields and
the bioinformatics area.

In the work presented in [12] was proposed a viral genome deep
classifier (VGDC), the first viral genome subtyping based on deep
learning techniques found in the literature. Their approach uses a
Convolutional Neural Network (CNN) with 25 layers to classify sev-
eral groups of viruses in subtypes. For the tests, were used five dif-
ferent datasets, each one containing genomes sequences of a
specific type of virus. The whole virus genome sequence was used
as the input to the network, where the corresponding ASCII code
represented each nucleotide. The results indicated that the VGDC
was able to achieve better results in comparison with previous
works from the state of the art.

In [13] was proposed an approach to assist the tests in the
detection of SARS-CoV-2, based on the use of DL techniques. For
this, a CNN architecture with 4 layers was used to extract charac-
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teristics of the virus genomes, as well as to classify SARS-CoV-2
among Coronavirus type viruses. As presented in [12], the CNN
received as input the whole virus genome sequences. The nucleo-
tides were mapped in numerical values (C = 0.25, T = 0.50, G
= 0.75, A = 1.0). Missing entries received a value of 0.0. The exper-
iments showed that the CNN was able to correctly identify the
sequences even in cases where the noise was added to the genome,
reaching accuracies between 0.9674 (with noise) and 0.9875
(without noise). Through the results, the authors also identified a
sequence as exclusive for the SARS-CoV-2 virus. They proposed
the use of this sequence as a primer for PCR tests.

In [14], was proposed an approach to provide viral classification
using the contigs (fragments of the genome sequence) and two dif-
ferent reverse-complement (RC) neural networks architectures: a
RC-CNN and a RC-LSTM. These models were also applied to the
SARS-CoV-2 virus.

In works presented in [15,16], a taxonomic classification for
metagenomics applications is proposed. Both works used segments
of genome (reads) with DL input (see Fig. 1), and the output is the
number of the classes. In [15], it was proposed two DL models, one
to classify species, and another to classify genus. In [16], a hierar-
chical taxonomic classification for viral metagenomic data via DL,
called CHEER, was proposed. Similar to the work proposed in
[15], the CHEER framework classifies the order, family, and genus.
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Proposals presented in [17,18,29] used the contigs with DL
input for viral prediction, and classification. In [17,18] a DL virus
identification framework was proposed and both cases try to rec-
ognize if the input is a virus or not.

In work from [17], called ViraMiner, was proposed and
approach to detect the presence of viruses on raw metagenomic
contigs from different human samples. They used a CNN architec-
ture with two different convolutional branches (pattern and fre-
quency branch) in order to extract relevant features. The outputs
of these branches are concatenated and inserted into the fully con-
nected (FC) layer. The ViraMiner output produces a single value
that indicates the likelihood of the sequence belonging to the virus
class.

In the proposal presented in [18], called DeepVirFinder, the out-
put is a score between 0 and 1 for a binary classification between
virus and prokaryote. They fragmented the genomes into non-
overlapping sequences of different sizes (150;300;500;1000, and
3000 bp). The sequences were mapped for the network input using
the one-hot encoding method. Since they increase the length of the
input, i.e. the sequence fragment, they achieve better performance
results, which was measured by the area under the receiver oper-
ating characteristic curve (AUROC). The maximum AUROC
achieved was 0:98 for the 3000 bp fragment.

The work presented in [29] identifies metagenomic fragments
as phages, chromosomes or plasmids using the CNN technique.
The experiments were performed using artificial contigs and real
metagenomic data. The network output, provided by a softmax
layer, consists of 3 scores that indicate the probability that each
fragment belongs to a specific class.

In the works from [28,19] are present DL architectures for host
prediction and classification. [28] used a CNN to provide host and
infectivity prediction of SARS-CoV-2 virus. In [19] was proposed an
approach to predict viral host from three different virus species
(influenza A virus, rabies lyssavirus and rotavirus A) from the
whole or only fractions of a given viral genome.

In the works from [20,30–32] were proposed methodologies to
predict or classify specific regions in the genome sequence. [20]
presented a methodology for the classification of three different
functional genome types: coding regions, long noncoding regions,
and pseudogenes in genomic data. They used a digital signal pro-
cessing (DSP) methods, called Genomic signal processing (GSP),
that converts the nucleotide sequence into a graphical representa-
tion of the information contained in the sequence. A CNN with 19
layers was used to perform the classification results.

The authors in [30] proposed a DL framework to identify similar
patterns in DNA N6-methyladenine (6 mA) sites prediction. This
framework, called Deep6mA, is composed of a CNN to extract
high-level features in the sequence and a Bi-directional LSTM
(BLSTM) to learn dependence structure along the sequence, besides
a fully connected layer that determines whether the site is a 6 mA
site.

In [31] was provided a method based on CNN and BLSTM for
exploring the RNA recognition patterns of the CCCTC-binding fac-
tor (CTCF) and identify candidate IncRNAs binding. The experi-
ments conducted with two different datasets (human U2OS and
mouse ESC) were able to predict CTCF-binding RNA sites from
nucleotide sequences. Moreover, [32] propose a computational
prediction approach for DNA–protein binding based on CNN and
BLSTM.

Considering the importance of providing viral classification and
the advantages of the use of DL techniques in several applications,
especially for many viral classification problems, as presented pre-
viously, the main objective of this work is to generate an efficient
viral genome classifier for the SARS-CoV-2 virus using the DNN
based on the stacked sparse autoencoder (SSAE) technique. The
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SSAE has been successfully applied in many biomedical works from
the state of the art [38–40,6].

Unlikemost of the relatedworks presented previously, this work
intends to provide viral classification using the whole genome
sequences, as presented in [12,13]. However, in [12,13] were used
the lengthof the longest genomesequenceof thedataset as the input
of theDNN. So, it was necessary to add somepadding for themissing
entries. In this work, wewill explore the utilization of k-mers image
representation of the complete genome sequences as theDNN input,
which will feasibly the use of genome sequences of any length and
enable the use of smaller network inputs. The k-mers representation
was used in many works that provide genome sequence classifica-
tion, as presented in [41], which explores the spectral sequence rep-
resentation based on k-mers occurrences. However, that work
doesn’t explore thek-mers image representation. So, ourwork’snov-
elty consists in exploring the utilization of image representations of
the complete genome sequences for the processing in the SSAE to
provide an accurate viral classification of the SARS-CoV-2.

We performed some experiments to provide various levels of
taxonomic classification of the SARS-CoV-2 virus, similar to the
proposed experiments in [11], using the SSAE technique with a
dataset of k-mers images representations, available on [42].

3. Materials and methods

This section will explain the dataset used in this work, describe
the equations and other details about the k-mers image represen-
tation applied, and explain how the data were partitioned for the
experiments. Besides, the DNN Architecture will be presented,
detailing the number of layers and neurons applied and the plat-
form used to implement the technique.

3.1. Dataset

For the experiments, we used a k-mers representation dataset
of SARS-CoV-2 genome, available on [42]. This dataset is composed
of 1;557 virus instances of SARS-CoV-2, as also, a data stream of
11;540 viruses from the Virus-Host DB dataset and the other three
Riboviria viruses from NCBI (Betacoronavirus RaTG13, bat-SL-
CoVZC45, and bat-SL-CoVZXC21). It also provides k-mers image
representation of all data. The k-mers images were used to perform
the experiments for this work. Assuming the dataset with D
sequences (in this work D ¼ 1;557þ 11;540þ 3 ¼ 13;100
sequemces), each d-th sequence, stored in dataset, is expressed by

sd ¼ sd;1; . . . ; sd;n; . . . ; sd;Nd

� � ð1Þ
where Nd is the length of d-th sequence and sd;n is the n-th nucleo-
tide of the d-th sequence. Each n-th sd;n can be characterized as a
symbol belonging to an alphabet of 4 possible symbols expressed
by set A;T;C;Gf g for DNA or by set A;U;C;Gf g for RNA, that is,

sd;n 2 A; T;C;Gf g _ A;U;C;Gf gð Þ: ð2Þ
In k-mers representation, each d-th nucleotide sequence, sd, is
grouped in k-mers sub-sequences [43,44] that can be expressed as

Hd ¼

hd;1

hd;2

..

.

hd;i

..

.

hd;Nd�k

hd;Nd�kþ1

2
66666666666664

3
77777777777775
¼

sd;1 � � � sd;k
sd;2 � � � sd;kþ1

..

. . .
. ..

.

sd;i � � � sd;iþk

..

. . .
. ..

.

sd;Nd�k � � � sd;Nd�1

sd;Nd�kþ1 � � � sd;Nd

2
66666666666664

3
77777777777775

ð3Þ
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where the matrix Hd stores the k-mers associated with each d-th
sequence sd. The k-mers representations are based in each d-th
matrix Hd and the matrix C, call here as symbol matrix. The symbol
matrix is expressed as

C ¼

c1

..

.

ci

..

.

cM

2
666666664

3
777777775
¼

c1;1 � � � c1;k
..
. . .

. ..
.

ci;1 � � � ci;k
..
. . .

. ..
.

cM;1 � � � cM;k

2
6666666664

3
7777777775

ð4Þ

where each element ci;j 2 A;T;C;Gf g _ A;U;C;Gf gð Þ. The symbol
matrix, C, stores all M possibilities of the k-mers, where

M ¼ 4k: ð5Þ
The k-mers count 1D representation can be expressed as

cd ¼ cd;1; . . . ; cd;i; . . . ; cd;M
� � ð6Þ

where

cd;i ¼
XNd�kþ1

v¼1

Bd;i;v ð7Þ

and

Bd;i;v ¼ 0 forci – hd;vð9u ¼ 1; . . . ; k : ci;u – sd;vþu�1Þ
1 forci ¼ hd;vð8u ¼ 1; . . . ; k : ci;u ¼ sd;vþu�1Þ

(
ð8Þ

So, the i-th cd;i indicates the number of occurrences of each d-th
sub-sequence stored on the C matrix.

Table 3 shows a example of the k-mers count 1D representation
values (with k ¼ 2) for SARS-CoV-2 from China-Wuhan (ID:
LR757995), USA-MA (ID: MT039888), Brazil (ID: MT126808), and
Italy (ID: MT066156). The dataset provide in [42] has k-mers count
1D representation for k ¼ 2; . . . ;6.4.

The k-mers count 2D representation for each d-th sequence, sd,
is described by

Kd ¼

kd;1;1 � � � kd;1;L

..

. . .
. ..

.

kd;i;1 � � � kd;i;L

..

. . .
. ..

.

kd;L;1 � � � kd;L;L

2
666666664

3
777777775
¼

cd;1 � � � cd;L

..

. . .
. ..

.

cd;ði�1Þ�Lþ1 � � � cd;i�L

..

. . .
. ..

.

cd;M�Lþ1 � � � cd;M

2
666666664

3
777777775

ð9Þ
Table 3
Examples of k-mers count 1D representation values (with k ¼ 2) for SARS-CoV-2.

k-mers (k ¼ 2) China-Wuhan USA-MA
(ID: LR757995) (ID: MT039

AA 2862 2859
AC 2022 2022
AG 1741 1741
AT 2306 2309
CA 2085 2082
CC 886 888
CG 439 439
CT 2080 2081
GA 1612 1612
GC 1167 1167
GG 1092 1093
GT 1990 1990
TA 2373 2378
TC 1415 1412
TG 2589 2589
TT 3212 3217
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where

L ¼
ffiffiffiffiffi
M

p
¼ 2k: ð10Þ

Finally, the k-mers image representation, for each d-th sequence,
can be represented as

Ud ¼

/d;1;1 � � � /d;1;L

..

. . .
. ..

.

/d;i;1 � � � /d;i;L

..

. . .
. ..

.

/d;L;1 � � � /d;L;L

2
666666664

3
777777775

ð11Þ

where /d;i;j represents each pixel associated with d-th image Ud.
Each pixel, /d;i;j, is be expressed as

/d;i;j ¼
2b � 1

max Kdf g � kd;i;j

$ %
ð12Þ

where maxf�g is the maximum value in d-th matrix Kd; �b c is the
greatest integer less than or equal, and b is number of bits associ-
ated with the image pixels. Fig. 3 show the k-mers image represen-
tation, matrix U, (with k ¼ 6 and b ¼ 8) for Geminiviridae (ID:
HE616777), Alphacoronavirus (ID: JQ410000), and SARS-CoV-2
(Betacoronavirus) from China-Wuhan (ID: LR757995) and Brazil
(ID: MT126808).

In this work, we used k-mers image representation with k ¼ 6.
That choice of k value was based on the fact that when k is a small
value, the existing property vectors for the k-mer may not contain
enough genome information [45], however, when large k values
are used, many k-mers do not appear in the sequence, which gen-
erates sparse feature vectors and causes the overfitting problem
[46]. Besides, in the work presented in [17], the 6-mers reached
the best performance in comparisons with other values of k
(3;4;5 and 7).

The data of each experiment was partitioned using the holdout
method, which splits the data into a training set and a validation
set at random. We used the proportion of 80% for the training
set and 20% for the validation set. Each class data was split
respecting these percentages. The SARS-CoV-2 k-mers images were
used only for the test set.

3.2. DNN architecture

All experiments were performed using the SSAE technique. In
these models each hidden layer is composed of an individually
Brazil Italy
888) (ID: MT126808) (ID: MT066156)

2853 2847
2022 2022
1742 1742
2309 2308
2084 2082
888 888
440 439
2080 2082
1612 1611
1169 1168
1092 1092
1988 1989
2377 2378
1413 1413
2587 2587
3219 3216



Table 4
Examples of k-mers count 2D representation values (with k ¼ 2) for SARS-CoV-2.

China-Wuhan (ID: LR757995) USA-MA (ID: MT039888)

K17= 2862 2022 1741 2306
2085 886 439 2080
1612 1167 1092 1990
2373 1415 2589 3212

2
664

3
775

K32= 2859 2022 1741 2309
2082 888 439 2081
1612 1167 1093 1990
2378 1412 2589 3217

2
664

3
775

Brazil (ID: MT126808) Italy (ID: MT066156)

K52= 2853 2022 1742 2309
2084 888 440 2080
1612 1169 1092 1988
2377 1413 2587 3219

2
664

3
775

K79= 2853 2022 1742 2308
2084 888 439 2082
1612 1169 1092 1989
2377 1413 2587 3216

2
664

3
775

Fig. 3. Examples of k-mers images representation with k ¼ 6. Based on Eq. 10,
L ¼ 64 and each image, matrix U (see Eq. 11), is composed by 64� 64 pixels with
b ¼ 8 (see Eq. 12).

Fig. 3 (continued)

Fig. 3 (continued)

Fig. 3 (continued)
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trained sparse autoencoder in an unsupervised way. A sparse
autoencoder is an autoencoder whose training involves a sparse
penalty, which functions as a regularizing term added to the loss
function [47]. The autoencoder (AE) is a DL technique specialized
in dimensionality reduction and feature extraction. The AE output
can provide the reconstruction of the input information. These net-
works are composed of three layers: an input, a hidden and an out-
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put. The encoder is formed by the input and hidden layers, and the
decoder is formed by the hidden and output layers [47]. For the
output layer, we used a softmax layer, where the number of neu-
rons consists of the number of classes of the experiment. Fig. 4
illustrates the DL SSAE with P inputs, K hidden layers, and a output
layer. Each i-th hidden layer has Qi neurons and the output layer
has U neurons. Functions uð�Þ and f ð�Þ are the action functions in
each p-th neuron (in each i-th hidden layer) and each u-th neuron
in output layer, respectively.
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For all experiments, the network architecture used three hidden
layers (K ¼ 3), containing 3000 neurons in the first hidden layer,
Q1;1000 in the second hidden layer, Q2, and 500 in the third hid-
den layer Q3. For the softmax layer, the number of neurons corre-
sponds to the number of classes of each experiment. So, the same
model was used for all experiments, varying only the number of
neurons of the output layer. For input of the SSAE, it was used k-
mers images, with k ¼ 6, generating images, matrix U, with

64� 64 pixels (based on Eq. 10, L ¼
ffiffiffiffiffi
46

p
¼ 64). Each d-th image,

Ud, associated with a d-th viral genome sequence is reshaped into
a vector expressed by

yd ¼

y0d;1
y0d;2

..

.

y0d;i�1

y0d;i
y0d;iþ1

..

.

y0d;P�1

y0d;P
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666666666666666666664

3
777777777777777777775

¼

/d;1;1
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.
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..

.
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..

.

/d;1;L

..

.

/d;L;L

2
6666666666666666666666664

3
7777777777777777777777775

ð13Þ

with P ¼ 64� 64 ¼ 4096 values and applied to the SSAE. The num-
ber of neurons in output layer, U, is defined by the number of differ-
ent viruses in a specific taxonomic level such as family, genus, realm
and other. The output can be expressed by

o ¼

o1

..

.

ou

..

.

oU

2
66666664

3
77777775

ð14Þ

where each u-th output, ou, represents a specific virus in a taxo-
nomic level classification and is defined by

ou ¼ 1 ifydistheu� thvirus
0 otherwise

�
: ð15Þ

Fig. 5 illustrates how the sequence information is passed
through the DL-SSAE to perform the viral classification. The DL-
SSAE input was normalized in the range of 0 to 1. First, the SSAE
receives the training set as input to perform the training phase.
Then, the validation set, which only contains samples that were
not applied in the training phase, is used to identify the capacity
of generalization of the DNN. After the network validation, the
SSAE was applied for the test set, which only contains SARS-CoV-
2 sequences. The SARS-CoV-2 k-mers images were not used for
the training phase of the SSAE.

The SSAE was implemented in the Matlab platform (License
596681), adopting the deep learning toolbox. All network was
trained with the Scaled Conjugate Gradient (SCG) algorithm. The
loss function used for the training in each AE was the Mean
Squared Error with L2 and Sparsity Regularizers, that can be
expressed as

E ¼ 1
I

XI

i¼1

XU
u¼1

ðorefui � ouiÞ
2 þ k�Xweights þ b�Xsparsity; ð16Þ

where I is the number of training examples, U is the number of
classes, Xweights is the L2 regularization term, k is the coefficient
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for the L2 regularization term, Xsparsity is the sparsity regularization
term, and b is the coefficient for the sparsity regularization term.

The loss function applied for the softmax layer was the Cross-
Entropy. After the training in each layer, the results for the SSAE
can be improved with the fine-tuning process, which perform the
backpropagation on the whole network, as a multilayer network.
In that process, we fine tune the network, which adjust the
weights, by retraining the network with the training data in a
supervised way [48]. In this work, we applied that retrained pro-
cess to improve the classification results. The fine-tuning process
also used the Cross-Entropy as the loss function, as in the softmax
layer.
4. Results and discussion

We performed four different experiments to provide different
levels of taxonomic classification of the SARS-CoV-2 virus, similar
to the experimental methodology present in [11]. The details about
the data and the network architecture used in each experiment are
shown in Table 5. The data of each experiment was split into 80%
for the training set and 20% for the validation set. The SSAE archi-
tecture was chosen by the observation of the MSE obtained with
the reconstruction of the validation set in each AE. In order to val-
idate the proposed idea of this work, the results are present by the
confusionmatrix for the validation and test sets. We also measured
the performance of the viral classifier proposed with some popular
classification metrics, as precision, recall, F1-score, and specificity.
The precision value measure the percentages of all the examples
predicted to belong to each class that are correctly classified, which
corresponds to the positive predictive value. The recall, also called
sensibility, corresponds to the percentages of all the examples
belonging to each class that are correctly classified, which is the
true positive rate. The F1-score can be interpreted as a weighted
average of the precision and recall, and the specificity indicates
the true negative rate. The column on the far right of each confu-
sion matrix shows the percentages of precision per class, and the
row at the bottom of each confusion matrix shows the percentages
of recall per class. The cell in the bottom right of the plot of each
confusion matrix shows the overall accuracy. Besides, for the vali-
dation set we also present the receiver operating characteristic
(ROC) curve. The ROC curve measures the classification perfor-
mance, that is the true positive rate and the false positive rate of
each class, at various thresholds settings.

In Experiment 1, we intended to classify the viruses in 14 differ-
ent classes, as presented in Table 5, which consists of 10 families
(Adenoviridae, Anelloviridae, Circoviridae, Geminiviridae,
Genomoviridae, Microviridae, Papillomaviridae, Parvoviridae, Poly-
omaviridae and Tolecusatellitidae), three orders (Caudovirales,
Herpesvirales and Ortervirales) and Riboviria realm. The Riboviria
class contains various families that belong to the realm Riboviria,
including the Coronaviridae family. To ensure data balance, only
the classes with at least 100 sequences from the original dataset
were considered. For the classes with more than 500 sequences,
only 500 sequences were selected at random, except for the Ribo-
viria class, which was prioritized the Coronaviridade family
sequences, to guarantee the correct classification of the test data
(SARS-CoV-2 sequences), which is the focus of this work. In this
particular case, were selected all Coronaviridade family sequences
available in the dataset (206 samples), and the other 294
sequences were select from the rest of the Riboviria data at ran-
dom. After this balancing, Experiment 1 comprised 3;433 samples
of virus sequences.

The SSAE architecture used in Experiment 1 was the
4096� 3000� 1000� 500� 14 architecture. The three AEs were
trained for 400 epochs. The softmax layer was trained for 3000



Fig. 4. Deep learning stacked sparse autoencoder architecture (DL-SSAE).

Fig. 5. Viral classification process using k-mers images representation with the DL-SSAE.

Table 5
Experiments data.

Experiments Classes Number of sequences SSAE architecture P � Q1 � Q2 � Q3 � U

Experiment 1 Adenoviridae 195 4096� 3000� 1000� 500� 14
Anelloviridae 114
Caudovirales 500
Circoviridae 243

Geminiviridae 500
Genomoviridae 115
Herpesvirales 136
Microviridae 102
Ortervirales 214

Papillomaviridae 354
Parvoviridae 168

Polyomaviridae 142
Riboviria 500

Tolecusatellitidae 150

Experiment 2 Picornaviridae 423 4096� 3000� 1000� 500� 8
Caliciviridae 392
Coronaviridae 206
Potyviridae 232
Flaviviridae 217

Rhabdoviridae 186
Betaflexiviridae 129

Reoviridae 111

Experiment 3 Alphacoronavirus 52 4096� 3000� 1000� 500� 4
Betacoronavirus 123
Deltacoronavirus 20

Gammacoronavirus 9

Experiment 4 Embecovirus 47 4096� 3000� 1000� 500� 4
Merbecovirus 17
Nobecovirus 9
Sarbecovirus 46
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epochs or until reach the minimum gradient (< 1� 10�6). Lastly,
the fine-tuning was performed. For each experiment, the fine-
tuning phase uses the same stopping condition as the softmax
layer.

The confusion matrix and the ROC curve from the validation set
of Experiment 1 are present in Figs. 6 and 7, respectively. In Exper-
iment 1, the classification accuracy from the validation set reached
291
92%. This result is promising, especially considering the challenges
of the classification in high-level taxonomies because of the high
diversity of the viruses sequences. It is essential to mention that
the balancing process may have caused the classification more
complicated because some crucial sequences may have been
excluded from the dataset. However, this result can be improved
in many ways that will be discussed following.



Fig. 7. ROC curve of the validation set from the Experiment 1.
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Regarded to the classification performance per class, the preci-
sion value presented in the last column shows that the worse
result was obtained from an order class (71.4% from the Herpesvi-
rales). Among the five worst classification results, two are from
order classes (71.4% and 83.3% from Herpesvirales and Ortervirales,
respectively). Since these classes can contain viruses from many
different realms and families, they can difficult the training pro-
cess. The Riboviria realm, which is the focus of this work, reached
a classification accuracy of 93%. Analyse the results per classes can
give more understanding about the dataset used and the implica-
tions of this dataset for the results, which is important to make
decisions for the next experiments.

The confusion matrix from the test set of Experiment 1 is pre-
sent in Fig. 8. In the test phase of this experiment, all the 1557
sequences of SARS-CoV-2 was correctly classified as belonging to
the Riboviria realm, so the classification accuracy reached 100%.
For the test set, we only used samples of SARS-CoV-2. For that rea-
son, the columns and rows corresponding to the classes that were
not inferred in the test phase received the terminology NaN (Not a
Number) in the confusion matrix plot.

Experiment 2 performs the classification of Riboviria families.
As in Experiment 1, only classes with at least 100 sequences were
considered. This experiment includes 1896 sequences separated
into eight families (Picornaviridae, Caliciviridae, Coronaviridae,
Potyviridae, Flaviviridae, Rhabdoviridae, Betaflexiviridae and
Reoviridae). We used the 4096� 3000� 1000� 500� 8 SSAE
architecture. The three AEs were trained for 400 epochs each and
the softmax layer was trained for 1000 epochs or until reaching
the minimum gradient, as well as the fine-tuning phase.

The confusion matrix and the ROC curve from the validation set
of Experiment 2 are present in Figs. 9 and 10, respectively. The
Fig. 6. Confusion matrix of the valida
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classification accuracy from Experiment 2 reached 96:3%. From
the 379 sequences applied in this validation, only 11 were not cor-
rectly classified. Besides, the SSAE classified all sequences that
belong to the Coronaviridade family correctly. The ROC curve from
Experiment 2 also provides excellent results.
tion set from the Experiment 1.



Fig. 8. Confusion matrix of the test set from the Experiment 1. NaN, which means
Not a Number, appears in the columns and rows corresponding to the classes that
were not inferred in the test phase.

Fig. 10. ROC curve of the validation set from the Experiment 2.
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The confusion matrix from the test set of Experiment 2 is pre-
sent in Fig. 11. The SSAE achieve 100% of classification accuracy,
i.e., all SARS-CoV-2 sequences applied in this experiment were per-
fectly classified as Coronaviridae family sequences.

In Experiment 3 we aim to provide the classification among the
Coronaviridae genera. For this experiment, 204 sequences divided
into four genera (Alphacoronavirus, Betacoronavirus, Deltacoron-
avirus and Gammacoronavirus) were used. The SSAE architecture
used in this experiment was the 4096� 3000� 1000� 500� 4
architecture. The three AEs were trained for 400 epochs each,
Fig. 9. Confusion matrix of the validation set from the Experiment 2.
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and the softmax layer was trained for 2000 epochs or until reach-
ing the minimum gradient.

Figs. 12 and 13 show the resulting confusion matrix and ROC
curve from the Experiment 3, respectively. This experiment
achieved 95% of classification accuracy of the validation set. The
classification performance of the model obtained for the Betacoro-
navirus genus was 95:8%. Also, the ROC curve plotted for all classes
of Experiment 3 provides satisfactory results.

Regarding the test set of Experiment 3, the confusion matrix is
present in Fig. 14. The test phase of Experiment 3 achieved 98:9%
Fig. 11. Confusion matrix of the test set from the Experiment 2. NaN, which means
Not a Number, appears in the columns and rows corresponding to the classes that
were not inferred in the test phase.



Fig. 12. Confusion matrix of the validation set from the Experiment 3.

Fig. 13. ROC curve of the validation set from the Experiment 3.

Fig. 14. Confusion matrix of the test set from the Experiment 3. NaN, which means
Not a Number, appears in the columns and rows corresponding to the classes that
were not inferred in the test phase.

Fig. 15. Confusion matrix of the validation set from the Experiment 4.
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of classification accuracy. In the validation phase of Experiment 3,
the Betacoronavirus genus did not reach the highest performance,
which probably explains these result in the test phase.

In Experiment 4, we provide the Betacoronaviridae subgenera
classification. This test includes 119 genome sequences divided
into four classes (Embecovirus, Marbecovirus, Nobecovirus and
Sarbecovirus). The SSAE architecture was the same as the architec-
ture used in Experiment 3 (4096� 3000� 1000� 500� 4), as well
as the training parameters.

The confusion matrix and the ROC curve from the validation set
of Experiment 4 are present in Figs. 15 and 16, respectively. In this
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experiment, the SSAE achieved the highest classification accuracy
(100%), which is reaffirmed for the ROC curve plot. 17.

Fig. 15 exposes the confusion matrix from the test set of Exper-
iment 4. In this case, the SSAE achieved 99:9% of classification
accuracy, that is equivalent to only one sequence wrong classified.

Table 6 presents the results regarding some popular classifica-
tion performance metrics obtained from the validation set. The
first column of the table indicates the experiment proposed. The
second column shows the overall accuracy for each experiment.
The precision, recall, F1-score, and specificity are present in the
others columns, which were obtained by the average of the values
obtained for each class.



Fig. 16. ROC curve of the validation set from the Experiment 4.

Fig. 17. Confusion matrix of the test set from the Experiment 4. NaN, which means
Not a Number, appears in the columns and rows corresponding to the classes that
were not inferred in the test phase.

Table 7
Classification performance metrics results obtained from the test set.

Experiment Accuracy Recall

1 1 (100%) 1 (100%)
2 1 (100%) 1 (100%)
3 0.989 (98.9%) 0.989 (98.9%)
4 0.999 (99.9%) 0.999 (99.9%)

Table 8
Mean Square Error obtained for the training, validation and test sets of each
experiment.

Experiment Training set Validation set Test set

1 5:8� 10�13 1:1� 10�2 3:4� 10�103

2 4:1� 10�13 9:4� 10�3 2:9� 10�24

3 5:8� 10�13 2:2� 10�2 5:3� 10�2

4 1:6� 10�12 1:1� 10�12 3:8� 10�4
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All the metrics presented in Table 6 indicate that the viral
classifier proposed performs great for all experiments. The highest
Table 6
Classification performance metrics results obtained from the validation set.

Experiment Accuracy Precision

1 0.920 (92.0%) 0.924 (92.4%)
2 0.963 (96.3%) 0.968 (96.8%)
3 0.950 (95.0%) 0.979 (97.9%)
4 1 (100%) 1 (100%)
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performance was obtained for the Experiment 4. Besides, Experi-
ments 2 and 3, reached values more than 0:95 for all the metrics
evaluated. The classification performance slightly decreased in
the Experiment 1, which is acceptable because of the high diversity
of the viruses sequences applied. However, considering all the
experiments, the specificity (true negative rate) reached values
between 0:983 and 1.

Table 7 presents the results regarding some popular classifica-
tion performance metrics obtained from the test set. The first col-
umn of the table indicates the experiment proposed. The second
column shows the overall accuracy for each experiment. And the
last column shows the recall, or true positive rate, which were
obtained only for the class that corresponds to the SARS-CoV-2
samples. The other metrics (precision, F1-score, and specificity)
are not presented because in the tests we do not have false posi-
tives samples.

When the SARS-CoV-2 samples were applied, all the experi-
ments perform excellently. The accuracy reached values between
98:9% and 100%, as well as the recall (true positive rate). The
results presented in Table 7 are very significant since the classifica-
tion of the SARS-CoV-2 virus was the main objective of this study.

We perform the error calculation of the classification analysis
by the mean square error (MSE) between the target output and
the SSAE output of each experiment. Table 8 shows the MSE
obtained for the training, validation and test sets.

Table 8 indicates that for all experiments, the MSE of the train-
ing set was very acceptable, as well as the MSE of the validation
and test sets. As expected, for most experiments, the MSE of the
training was lower than the MSE of the validation.

In order to provide results about the temporal complexity of our
experiments, Table 9 shows the training time of each experiment,
describing the training time of each layer (AEs and softmax), the
fine-tuning phase, and the total training time. The training in each
autoencoder was performed with an NVIDIA GeForce GTX GPU
(Intel Core i5-9300H host CPU), and for the softmax layer and
the fine-tuning phase, a CPU (Intel Core i5-9300H 2.4 GHz) was
used.
Recall F1 score Specificity

0.920 (92.0%) 0.931 (93.1%) 0.993 (99.3%)
0.971 (97.1%) 0.962 (96.2%) 0.997 (99.7%)
0.979 (97.9%) 0.955 (95.5%) 0.983 (98.3%)

1 (100%) 1 (100%) 1 (100%)



Table 9
Final SSAE training time of each experiment.

Experiment First Second Third Softmax Fine-tuning Total Training
AE AE AE Layer Time

1 7h29m00s 19m12s 4m49s 44s 36m50s � 8h30m
2 1h39m11s 11m56s 3m16s 10 s 5m24s � 2h
3 32m24s 5m50s 2m22s 0s 27s � 41m
4 19m15s 4m54s 1m16s 0s 11s � 25m

Table 10
State of the art comparison associated with the classification accuracy of the validation set.

Reference Algorithm Exp. 1 Exp. 2 Exp. 3 Exp. 4

This work SSAE 92% 96.3% 95% 100%
[11] Linear Discriminant 91.7% 91.2% 98.1% 97.6%
[11] Linear SVM 90.8% 89.2% 94.2% 98.4%
[11] Quadratic SVM 95% 93.1% 95.2% 98.4%
[11] Fine KNN 93.4% 90.3% 95.7% 97.6%
[11] Subspace Discriminat 87.6% 89% 97.6% 98.4%
[11] Subspace KNN 93.2% 90.4% 96.2% 97.2%
[11] Average Accuracy 92% 90.5% 96.2% 97.6%

Table 11
State of the art comparison associated with the mapping pipeline.

Reference Mapping pipeline Number of inputs

This work k-mers 4k

[11] k-mers + CGR + FFT + PCC D
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As shown in Table 9, most of the experiments finished the train-
ing in the softmax layer and the fine-tuning in seconds or a few
minutes, That occurred because they reached the minimum gradi-
ent after some training epochs, indicating that the three AEs
trained before extracted relevant information about the dataset
used.

In Table 10, we compare the results obtained from each exper-
iment and the results of another work from the state of the art,
which performed taxonomy classification of the SARS-CoV-2 virus
using different machine learning techniques.11.

Table 10 shows that for experiments 1 and 3, the techniques
used in [11] achieve lower, equivalent or superior accuracy than
the SSAE technique applied in our work. However, considering
experiments 2 and 4, the SSAE technique provides superior classi-
fication accuracy results than all the techniques applied in [11]. For
experiment 1, the DL-SSAE had a slightly lower accuracy compared
to Quadratic SVM (difference was 3%), Fine KNN (difference was
1:4%), and Subspace KNN (difference was 1:2%). For experiment
3, the DL-SSAE had a slightly lower accuracy compared to Linear
Discriminant (difference was 3:1%), Quadratic SVM (difference
was 0:2%), Fine KNN (difference was 0:7%), Subspace Discriminat
(difference was 2:6%), Subspace KNN (difference was 1:2%), and
Average Accuracy (difference was 1:2%). However, it is essential
to understand that the proposal presented in [11] uses a high-
complexity mapping pipeline. This pipeline is composed of the k-
mers followed by chaos game representation (CGR), Fast Fourier
transform (FFT) and Pearson correlation coefficient calculation
(PPC) for each d-th sequence. In the final, each d-th sequence is
converted into a D dimension vector, where D is the number of
sequences in the dataset (see SubSection 3.1). In other words, the
ML input size used in the proposal presented in [11] is a function
of the number of sequences of the dataset. This characteristic can
be prohibitive for several viral classification applications with a
large dataset. In the work way, the work proposal in this manu-
script, each d-th sequence is converted into a 4096 elements vector
(or bi-dimensional matrix of 64� 64) for k ¼ 6. In other words, the
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ML input is not dependent on the number of sequences in the
dataset.

In all experiments of this work, the SSAE technique provided
great performance results, especially for the test set. However,
some strategies can be applied in future experiments to improve
classification accuracy results. One of them consists in the use of
the k-fold cross-validation scheme. We also intend to study data
balancing alternatives based on the analysis of the results pre-
sented here. Besides, we plan to extend this work by applying
the SSAE technique to classify the SARS-CoV-2 variants.
5. Conclusions

This work presented an efficient viral genome classifier for the
SARS-CoV-2 virus using the DNN based on the stacked sparse
autoencoder technique. Our model is able to classify genome
sequences of the SARS-CoV-2 virus in various levels of taxonomy.
We perform four experiments in order to classify realm, family,
genus and subgenus. We explored the utilization of k-mers image
representation of the whole genome sequence as the DNN input,
which feasibility the use of genome sequences of any length and
enable the use of smaller network inputs. We measured the effec-
tiveness of the model by some popular classification performance
metrics (accuracy, precision, recall, F1 score, and specificity), which
are metrics used in many works in the literature, as presented in
[12,14,15]. Besides, for each experiment, we plot the ROC curve
for the validation set and the confusion matrix for the validation
and test sets. All experiments provided great performance results,
reaching accuracies between 92% and 100% for the validation set
and between 98:9% and 100% for the test set, which contains only
SARS-CoV-2 samples. These results indicated the applicability of
using our model, based on the stacked sparse autoencoder tech-
nique, in genome classification problems. Our approach can be
adapted to classify other emerging viruses. However, the model
may require to be retrained to include new data and satisfy some
conditions. It is essential to consider some implications of that
training process since it is necessary to previously define the
classes that will be used for training the SSAE. One of the require-
ments for the correct classification of a new virus by our model is
that the training process includes samples that belong to the same
class, which could be the family, genus or another taxonomic level
of the new virus being classified. In the future, we plan to extend
this work by performing experiments with another image repre-
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sentation of the genome sequences and applying the SSAE tech-
nique to classify the SARS-CoV-2 variants.
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