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Abstract An epidemiological study is carried out
in several countries analyzing the first wave of the
COVID-19 pandemic using the SIRmodel andGumbel
distribution. The equations of the SIRmodel are solved
exactly using the proper time as a parameter. The phys-
ical time is obtained by integration of the inverse of the
infected function over proper time. Some properties of
the solutions of the SIR model are studied such as time
scaling and the asymmetry, which allows to obtain the
basic reproduction number from the data. Approxima-
tions to the solutions of the SIRmodel are studied using
Gumbel distributions by least squares fit or by adjust-
ing the maximum of the infected function. Finally, the
parameters of the SIR model and the Gumbel function
are extracted from the death data and compared for the
different countries. It is found that ten of the selected
countries are verywell described by the solutions of the
SIR model, with a basic reproduction number between
3 and 8.
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1 Introduction

Since the declaration of the COVID-19 pandemic by
the World Health Organization in March 2020, stud-
ies by the mathematical epidemiologist community
have intensified and models of various kinds have been
developed in order to provide insights and make pre-
dictions about the spread of the disease [1–4]. Epidemi-
ological models have been used as basic tools in epi-
demiology for over a century [5–13] and have been
extensively used prior to the COVID-19 pandemic [14–
17].

A wide range of models have been proposed and
tested in an attempt to describe the COVID-19 data
and forecast the future evolution of the pandemic
in different regions of the planet. From very sim-
ple models [18,19] to numerous variants of compart-
mental models based on the SIR model (susceptible,
infected, removed) have been proposed [20–23]. Addi-
tional models have been employed such as the SEIR
model [24], which adds the exposed compartment of
individuals, the uncertain SIR model [25], and oth-
ers that include different parameters that statistically
describe the many factors that may influence the pan-
demic dynamics.

It is worth mentioning the SITR model [26], which
also includes the treatment process T, and the SITRS
model [27], which includes the possibility that recov-
ered people can lose their temporary immunity against
the virus and subsequently join the susceptible com-
partment again. These models may also include two or
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more susceptible groups of individuals S1, S2,... to take
into account the different susceptibilities due to age or
other factors. Disease simulations are obtained by solv-
ing a system of nonlinear differential equations, or by
means of discretizationmethods of different types, such
as the discrete fractional model [27].

More sophisticated approaches also take into account
the spatial spread of the disease, not just the tempo-
ral one. Models may involve partial differential equa-
tions in space and time coordinates, or, alternatively,
stochastic methods [28–31]. Nonetheless, it has been
argued that complexmodelswith numerous parameters
may not necessarily be advantageous without having
enough data for a meaningful validation [32]. More
recent studies on the mathematical modeling of the
COVID-19 pandemic can be found in the Refs. [33–
39].

After going through the sixth wave in many coun-
tries, the world data [40] show that a comprehen-
sive description of the entire time series appears to
be an impossible task, since each country presents its
own characteristics (e.g., diverse lock-down and social-
economic measures). Therefore, in this work we pro-
ceed by studying the first wave for those countries that
present data with a similar structure and that can unam-
biguously be described mathematically using an epi-
demiological model of the SIR type.

The reason for using the SIR model specifically in
this work is because it is the simplest possible model
to describe the evolution of an infectious disease. In
our case we intend to describe mortality regardless of
the detailed description of the intermediate compart-
ments through which individuals may pass. One of the
objectives is to determine which countries, if any, can
be described with the SIR model, to obtain its param-
eters and, finally, to compare between the countries to
see if some kind of universality of the model can be
observed.

By inspection, from the recorded worldometer data
[40] we found that there are only nine or ten such
countries (we leave aside the case of China that has
been exhaustively studied and where the pandemic
apparently died out without the need for vaccines).
Among those countries there are eight Europeans—
Spain, France, Italy, UK, Germany, Belgium, Switzer-
land and Sweden—together with Canada and USA.
Moreover, we have also added the cases of India and
Brazil. In this workwewill carry out a systematic study
of the pandemic in each of them by studying the series

of cumulative deaths and daily deaths. Our hypothesis
is that deaths, D(t), can be considered a fraction of
removals, R(t), both cumulative and daily, and there-
fore, both functions follow an epidemiological curve
that will differ essentially in a normalization constant
and a shift in time.

Our purpose is to investigate if data can be described
with simple epidemiological curves using the SIR
model and the even simpler Gumbel function [41]. A
fundamental question about the first wave of COVID-
19 is whether the lockdown limitations had an effect
in reducing the number of deaths. Non-pharmaceutical
interventions (NPI) are still under debate. A recent
meta-analysis review [42] fails to confirm that lock-
downs have had a large, significant effect on mortality
rates. If the daily mortality curves fit well with a basic
SIR model, it would be interesting to conclude affir-
matively or negatively regarding the effect of NPI on
them.

The structure of the paper is as follows. In Sect. 2
we review the solutions of the SIR model that will be
considered here. We describe in detail how to obtain
numerical solutions as a function of the proper time,
depending on the parameters β and the basic reproduc-
tion number ρ = R0 = λ/β. In Sect. 3 We examine
how well the Gumbel function fits exact SIR solutions
with only one parameter, barring normalization and a
temporal shift. In Sect. 4 we will discuss the time scal-
ing of SIR solutions and define an asymmetry param-
eter that depends linearly on ρ and therefore can be
used to characterize the value of the basic reproduction
number from a set of data. In Sect. 5 we present our
results of fits of death datawith the exact SIRmodel and
Gumbel functions. In Sect. 6 we draw our conclusions.

2 Solutions of the SIR model and the proper time

In this section we briefly describe the SIR model and
discuss its analytical solution in terms of, what we will
call here, proper time, τ , which is a natural variable
to measure time through the proportion of removals,
where the SIR equations have a trivial and easily inter-
preted solution. The real time is then obtained by inte-
grating the exact solution.

In the SIR model the individuals of a closed popula-
tion N affected by a contagious disease are divided into
three types: susceptible, S, infected, I , and removed
(recovered or dead), R. As functions of time, the num-
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ber of individuals in each compartment is assumed to
verify the following equations

dS

dt
= − λ

N
I S, (1)

dR

dt
= β I , (2)

I = N − R − S. (3)

In this transmission-dynamics system the first equa-
tion means that the variation of susceptible individu-
als decreases by infection and is proportional to the
number of susceptible and the number of infected indi-
viduals. The constant λ measures the rate of infection.
The second equation describes the removal variation
as proportional to the number of infected individuals,
the removal rate being β. By the third equation, the
difference between the total number minus the suscep-
tible individuals minus the removed ones must be the
number of infected at each instant t .

We will consider the initial values S(0) = S0 < N
and R(0) = 0. Therefore, I (0) = N − S0 > 0. There
must be a number, albeit small, of infected in the sys-
tem initially for the epidemic to begin. For convenience
belowwewillworkwith the percentages of susceptible,
infected and recovered individuals, over the total num-
ber of the population, which are obtained by dividing
by N :

s(t) = S

N
, i(t) = I

N
, r(t) = R

N
, (4)

with s(0) = s0 , i(0) = 1 − s0 , and r(0) = 0.
The proper time, τ , is defined as the temporal vari-

able that describes naturally the evolution of the epi-
demic, by counting the evolution of the recovered indi-
viduals, r(t), which is always an increasing function
with time. From the second SIR equation in differen-
tial form, it is defined by

dR = β Idt ≡ Ndτ, (5)

So, the definition of proper time is dτ = dr and the
interpretation of this variable is that we measure the
change in time using the change in recoveries as the
biological clock instead of using the physical clock. If
we demand that τ = 0 for t = 0, we trivially have

τ = r(t). (6)

The idea of proper time is based on other equiva-
lent approaches described, e.g., in [43,44], where the
susceptible function s is used as variable instead of r .
The proper time is nothing more than a change of the

time variable into a more convenient one. In our case,
time is measured by counting the number of recov-
ered (in percent), since r(t) is an increasing function,
although it does not depend linearly on time. Note that
the recovered function verify 0 ≤ R ≤ N and therefore
0 ≤ r(t) ≤ 1. Thus, by definition the proper time has
a range limited by

0 ≤ τ ≤ 1. (7)

From Eq. (5) we have

I = N

β

dτ

dt
, i = 1

β

dτ

dt
. (8)

Thus, the change of the physical time is given by

dt = 1

β

dτ

i(τ )
, (9)

where i(τ ) are the infected percent expressed as a func-
tion of proper time.

To obtain the susceptible function note that we can
write, inserting Eq. (5) into Eq. (1)

dS = − λ

N
I Sdt = −λ

β
Sdτ = −ρSdτ, (10)

where ρ is the so-called basic reproduction number

ρ ≡ R0 ≡ λ

β
. (11)

The parameter ρ has here the meaning of being the
decay constant of the susceptible population in units of
proper time. Equation (10) is readily integrated giving

S = S0e
−ρτ , (12)

Thus, S follows an exponential decay law as a function
of proper time. The constant

τ1/2 = ln 2

ρ
= β ln 2

λ
(13)

represents the half-life in proper time units, i.e., the
length of proper time after which the susceptible pop-
ulation is reduced to half.

Finally, the third SIR equation (3) gives directly the
infected population as a function of proper time

I = N − Nτ − S0e
−ρτ (14)

i(τ ) = 1 − τ − s0e
−ρτ , (15)

with the condition 0 ≤ i ≤ 1. For τ = 0 we obtain
the initial number of infected population i0 = 1 − s0 .
The end of the epidemic is reached when i = 0. This
happens for a value of the proper time τ = τ f > 0 that
is the solution of the transcendental equation

i(τ f ) = 0 �⇒ τ f + s0e
−ρτ f = 1 (16)
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Fig. 1 Solution of the SIR equations as a function of proper time
τ for initial susceptible s0 = 0.99 and for several values of the
basic reproduction number ρ = R0

Fig. 2 The peak values of i , τ as a function of the basic repro-
duction number ρ. For s0 = 0.99 the peak values are almost
independent of s0

In Fig. 1 we show some numerical examples. The
analytical solutions of the SIR equations are plotted as
a function of proper time for various values of the basic
reproduction number ρ = 1.5, 2, 3 and 5. In all cases
we assume that s0 = 0.99; i.e., that one percent of the
population is initially infected.

In Fig. 1 we see that the number of infected indi-
viduals as a function of τ first grows to a maximum
and then decreases to zero. The maximum of i(τ ) is

the peak of the epidemic. It is reached for di/dτ = 0.
Then

− 1 + ρs0e
−ρτ = 0, (17)

and therefore

s0e
−ρτ = 1

ρ
. (18)

From here the peak of the epidemic verifies

τpeak = ln s0ρ

ρ
(19)

speak = s(τpeak) = 1

ρ
(20)

ipeak = i(τpeak) = 1 − 1 + ln s0ρ

ρ
. (21)

A condition for the existence of this maximum for
τpeak > 0, from Eq. (19), is that s0ρ > 1. If we assume
that, at the very beginning of the epidemic, s0 is very
close to 1, then it is enough that ρ > 1 for the epidemic
to begin to grow [45]. In that case, i(τ ) starts growing
up to a maximum reached at τpeak, where it starts to
decrease to zero.

In Fig. 2 we show the peak values of the infected
rate ipeak(ρ) in the epidemic as a function of the basic
reproduction number ρ, for s0 = 0.99. Since s0 is very
close to one and the dependence on s0 is logarithmic,
these peak values are almost independent on the precise
value of s0 � 1. The peak value of infected individuals
grows with the basic reproduction number ρ. When ρ

is very large, above 10, the logarithmic dependence on
the numerator makes the peak to grow more slowly.
For ρ = 10 we have ipeak = 0.67, that is, at the peak
of the epidemic two thirds of the population will be
infected simultaneously. For ρ = 50, more than 90%
of the population will be infected simultaneously at the
peak.

In Fig. 2 we also show the value of the proper time
at the epidemic peak, τpeak(ρ). It presents a maximum
for
dτpeak
dρ

= 1 − ln s0ρ

ρ2 = 0 (22)

ln s0ρ = 1 �⇒ ρ = e

s0
� 2.72, (23)

for s0 � 1. The maximum value of τpeak is then

(τpeak)max = s0
e

� 0.367 (24)

for ρ = e = 2.72.
Finally, starting from the analytical solution of the

SIR equations as a function of the proper time, i(τ ),
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Fig. 3 Solution of the SIR equations as a function of physical
time, t , for initial susceptible s0 = 0.99, for β = 0.3 d−1, and
for several values of the reproduction number ρ = R0

we will proceed to obtain the solution as a function
of the physical time, t . It is obtained from Eq. (9) by
integrating between 0 and τ . Assuming that t = 0 for
τ = 0, we obtain

t (τ ) = 1

β

∫ τ

0

dτ

i(τ )
= 1

β

∫ τ

0

dτ

1 − τ − s0e−ρτ
(25)

This integral is not analytical, but it can be calculated
numerically with precision using any numerical algo-
rithm, such as Simpson’s rule or Gaussian integration,
since the function inside the integral is quite smooth.

The final SIR solution is then obtained in parametric
form by tabulating t (τ ), i(τ ), τ and s(τ ). By plotting
i(τ ), τ and s(τ ) as a function of t (τ ) we obtain the
results of Fig. 3, corresponding to the exact (numerical)
solution of the SIR equations as a function of physical
time, for the same parameters of Fig. 1 and for β = 0.3
d−1.

Note in Fig. 3, firstly, that the height of themaximum
of i(t) coincides with that of the maximum of the ana-
lytical solution i(τ ) of Fig. 1, as it should be, since we
have only made a change of variable—from the proper
time to the physical time. Of course, the dependence on
physical time has drastically changed. For a constant
recovery rate β = 0.3 d−1, by increasing the value of
the basic reproduction number, ρ, the epidemic passes
more quickly and lasts less time, almost explosively for

ρ = 5—for which it lasts only 20 days—compared to
ρ = 1.5—where it lasts almost two months.

Note that the time in Eq. (25) is inversely propor-
tional to β. Making β smaller, time becomes larger
and with it the duration of the epidemic. This will be
seen in more detail in Sect. 3.1 when we discuss the
time scaling property.

Therefore, assuming that the recovery rate, β, in an
epidemic is somewhat constant, the basic reproduction
number ρ largely determines the evolution of the pan-
demic. The analytical solution allows estimating the
maximum number of simultaneous infections at the
peak, ipeak, from this number. This does not depend
much on s0 , as long as this number is close to one, due
to its dependence on the logarithm of soρ.

Finally, note that the exact solution i(τ ) of the
SIR model is asymmetric. It rises very fast at first—
exponentially actually—and then falls more slowly.
The most explosive, severe outbreaks occur for ρ ≥ 5,
where the end of the epidemic is reached for τ f � 1
(see Eq. (16)); thus, most of the initial susceptible
individuals have been infected. For lower reproduction
number the epidemic curve becomesmore symmetrical
and it is less explosive. Note that in the first wave of the
COVID-19pandemic daily deaths rose very rapidly and
fell more slowly, indicating a high reproduction num-
ber, so that the data could not be fittedwith logistic-type
functions, which are symmetric, and a linear combina-
tion of two logistic functions was required to fit the data
[18,19,28]. In the next section we will see that some
more appropriate functions to describe this situation are
the Gumbel functions, because they have the adequate
asymmetry to fit almost correctly the solutions of SIR
equations.

3 Approximation to the SIR solutions with
Gumbel functions

In Ref. [41] a Gumbel distribution was used to forecast
the series of daily deaths with COVID-19 positives.
The Gumbel distribution describes the probability of
maximum (or minimum) values from the data of many
observations [46–48]. It is not theoretically clear why
the distribution of deaths or infections roughly recre-
ates the distribution of maxima. In this section we will
compare the Gumbel distribution to the exact solutions
of the epidemiological SIR model. Both functions of
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Fig. 4 Gumbel distribution
compared to the exact
Solution of the SIR
equations for s0 = 0.99,
β = 0.3 d−1, and for several
values of the reproduction
number ρ

time presents similar asymmetry and their parameters
can be related numerically.

Although a Gumbel distribution does not exactly
verify the SIR equation, the exact solution can be
approximated quite well by the Gumbel distribution by
choosing the parameters appropriately. In this section
we will provide formulas that relate the parameters of
SIRmodel with the parameters of an appropriate Gum-
bel function. For this end we will use the proper time
method introduced in the previous section.

The Gumbel function is defined here as a time-
dependent function with three parameters

G(t) = ae−e−(t−t0)/b
(26)

and the derivative gives the Gumbel distribution

g(t) = dG

dt
= 1

b
e−(t−t0)/bG(t). (27)

First, we will see how well the Gumbel distribution
approximates the infected function of the SIR model,
g(t) � i(t).

In Fig. 4 we compare the Gumbel distribution g(t)
with the exact SIR solution i(t). The parameters of
the Gumbel distribution have been fitted with least-
squares method to obtain the optimal distribution that
best describes the exact solution. The parameters of the
SIR model are s0 = 0.99, β = 0.3, and we use four
values of ρ = 1.5, 2, 3 and 5—the same as in Fig. 3.
The fitted parameters of the Gumbel distribution are
given in Table 1.

The fits of Fig. 4 provide fairly good approximations
to the exact SIR solutionswith theGumbel distribution.
The results in Fig. 4 provide a validation of the Gumbel
distribution to describe the evolution of an epidemic.
Later, in Sect. 5 of results, we will see that this assess-
ment is corroborated in the case of the description of
the COVID-19 data. Although the fit is not perfect, the
Gumbel distribution clearly shows similar asymmetry
as the SIR model. The similarity is greater when the
epidemic is explosive, with a high reproduction num-
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Table 1 Parameters of the
Gumbel distribution
obtained by least squares fit
to the exact solution of the
SIR model, for four
different values of the basic
reproduction number ρ (see
Fig. 4)

s0 ρ β a t0 b

0.99 1.5 0.3 2.04 20.5 10.9

2 2.67 14.9 6.29

3 3.06 8.81 3.75

5 3.12 5.30 2.44

ber ρ ∼ 3–5. Where Gumbel fails most in these fits is
in the initial and final stages of the Pandemic.

To investigate the connection between the Gumbel
distribution and the solution of the SIR equations, it
is convenient to express them as functions of proper
time. First, we substitute i(t) by g(t) in the definition
of proper time

dτ = βidt = βgdt = β
dG

dt
dt (28)

Thus integrating between 0 and t we have

τ =
∫ t

0
β
dG

dt
dt = β[G(t) − G0] (29)

where G0 = G(0). Hence

G(t) = G0 + τ

β
= ae−e−(t−t0)/b

(30)

Taking the logarithm on both sides, we obtain

e−(t−t0)/b = ln
a

G0 + τ/β
(31)

from where we obtain the following approximate rela-
tion between t and τ

t = t0 − b ln

(
ln

a

G0 + τ/β

)
, (32)

and we can write the Gumbel distribution as a function
of τ

g = 1

b
e−(t−t0)/bG = 1

b

(
G0 + τ

β

)
ln

a

G0 + τ/β

(33)

Starting with this expression as a function of proper
time, we can consider several alternative ways of
adjusting the Gumbel parameters from the parameters
of the SIR model, assuming that the proper time is the
same in both models.

3.1 Proper time fit 1

The idea of the proper time fit consists in imposing that
the maximum of g(τ ) coincides with the maximum of

i(τ ). In fit 1, we will also assume that G0 is very small
can be neglected,G0 � 0, i.e., wewill not try to impose
any additional condition on the initial value. This allow
us to estimate the parameters a and b easily, but we will
not be able to obtain the value of t0, which will later be
adjusted to fit the temporal peak of the SIR solution.

We start by writing Eq. (33) for G0 = 0

g(τ ) = τ

bβ
ln

aβ

τ
. (34)

To find the maximum of this function, we compute the
derivative

g′(τ ) = 1

bβ
ln

aβ

τ
− 1

bβ
(35)

from where we find the maximum condition

ln
aβ

τ
= 1. (36)

Thus, the value of the peak position, τpeak, is

τpeak = aβ

e
(37)

and the height of the peak (maximum of g) is

g(τpeak) = 1

e

a

b
(38)

Comparing to the peak values of the SIR solution, Eqs.
(19, 21), and equating the values we obtain

aβ

e
= ln s0ρ

ρ
(39)

1

e

a

b
= 1 − 1 + ln s0ρ

ρ
. (40)

From here we obtain the values of the parameters a and
b of the Gumbel distribution in terms of the parameters
of the SIR model

a = e ln s0ρ

λ
(41)

a

b
= e

(
1 − 1 + ln s0ρ

ρ

)
(42)

We see that the values of a and b can be calculated
directly from the parameters and initial conditions of
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the SIR model. The value of t0 would be fitted later to
the position of the peak as a function of time.

Note that if the initial number of infected individual
is very small, then s0 can be approximated by one in
the logarithm ln s0ρ � ln ρ. Then the parameters a and
b do not depend appreciably on the precise value of s0 ,
but only on ρ and λ by the simple relations

a = e ln ρ

λ
(43)

a

b
= e

(
1 − 1 + ln ρ

ρ

)
(44)

Note also that Eq. (44) can be solved numerically to
obtain the reproduction number ρ as a function of a/b,
and then Eq. (43) gives λ. So, the constants λ and ρ of
the SIR system can also be computed from the values
of the constants a and b of the Gumbel distribution.

3.2 Proper time fit 2

A second fit can be done by fixing also the number of
initial infected i(0), in which case a value for t0 can
be theoretically obtained. We proceed as in previous
section, by computing the maximum of the Gumbel
distribution, as a function of proper time, but in this case
we use the exact expression, Eq. (33). The maximum
of g(τ ) is now obtained for

ln
a

G0 + τ/β
= 1 (45)

from where the peak (maximum of g) is reached at the
proper time

τpeak = aβ

e
G0β (46)

and the value of the maximum is

g(τpeak) = 1

e

a

b
(47)

this is the same value for the peak obtained in Eq. (38).
Comparing to the peak values of the SIR solution,

Eqs. (19, 21), and equating the values we obtain

aβ

e
− G0β = ln s0ρ

ρ
(48)

1

e

a

b
= 1 − 1 + ln s0ρ

ρ
(49)

Equation (49) gives the same value for a/b obtained in
fit 1. For s0 � 1, this value only depends on the basic
reproduction number ρ.

A third condition is obtained if we demand g(0) =
i(0) = 1− s0 . Using Eq. (33) for the Gumbel distribu-
tion as a function of proper time, we have

g(0) = 1

b
ln

a

G0
G0 = 1 − s0 (50)

where

G0 = ae−et0/b = ae−x (51)

where we have defined the parameter

x = et0/b. (52)

In terms of the x-parameter, the initial value condition
can be written as

g(0) = a

b
xe−x . (53)

The procedure of fit 2 follows the following steps:

1. Compute a/b from Eq. (49)

a

b
= e

(
1 − 1 + ln s0ρ

ρ

)
. (54)

2. Write the initial condition g(0) = i(0) as

xe−x = b

a
(1 − s0) ≡ ε0 (55)

and solve this equation numerically for x > 0
3. Once we know the values of x and a/b. compute

the value of a using Eq. (48)

a = ln s0ρ

λ(e−1 − e−x )
(56)

4. Compute b = (b/a)a, and finally
5. Compute t0 as

t0 = b ln x . (57)

In Figs. 5 and 6 the solution of the SIR model is
comparedwith theGumbel distributions corresponding
to the three fits considered in this work: the least square
fit, and the proper time fits 1 and 2.

The least square fit, with the parameters of Table 1,
is represented with dotted lines as a function of proper
time in Fig. 5 and is very close to i(τ ). We see in Fig. 5
that the proper time fit 1 and fit 2 are essentially the
same and that their maximum coincides (by construc-
tion) with the maximum of the SIR solution i(τ ). The
parameter t0 in the case of fit 1 is taken from Table 1,
because it cannot be obtained theoretically. The param-
eter t0 in fit 2 is computed from Eq. (57) in terms of the
computed values of b and x .

We see that fit 1 and 2 in general do not give the
end time τ f of the epidemic correctly. This is because
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Fig. 5 Three Gumbel
distributions as a function of
the proper time, compared
to the exact Solution of the
SIR equations for s0 = 0.99,
β = 0.3 d−1, and for several
values of the reproduction
number ρ. The parameters
of the Gumbel distributions
correspond to the
mean-square fit, proper-time
fit 1 and proper-time fit 2. In
proper-time fit 1, the value
of t0 is taken from Table 1

Fig. 6 Three Gumbel
distributions compared to
the exact Solution of the
SIR equations for
s0 = 0.99, β = 0.3 d−1, and
for several values of the
basic reproduction number
ρ. The parameters of the
Gumbel distributions
correspond to the
mean-square fit, proper-time
fit 1 and proper-time fit 2. In
proper-time fit 1, the value
of t0 is taken from Table 1
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in these fits only the position of the maximum and the
maximum value of i(τ ) are adjusted, in addition to the
initial value i(0) in fit 2, but they have not been adjusted
to give the final point τ f of the epidemic.

For low values of the basic reproduction number,
ρ = 1.5−3, both fit 1 and fit 2 are wider than i(τ ) in
Fig. 5, and they extend at the end of the epidemic up to
a proper time larger than the exact solution. When ρ is
larger the width of the Gumbel functions of fits 1 and
2 begin to decrease in relation to the SIR result, until
their widths become smaller than the width of the SIR
solution, for ρ = 5.

The results of Fig. 5 are translated into the distri-
butions as a function of physical time in Fig. 6. The
Gumbel fits 1 and 2 differ mainly in the value of t0. The
maximum of fit 2 is shifted to the left with respect to the
maximum of fit 1. This happens because in fit 2 we are
demand that the initial value of the Gumbel distribution
be equal to i(0). As a result g(t) is shifted to the left of
i(t), because theGumbel distribution increases slightly
faster than the SIR solution as a function of time. By
construction, The maximum number of infected coin-
cides in fits 1 and 2 with the maximum of i(t), but it
occurs slightly earlier in fit 2.

With appropriate parameters we have seen that the
Gumbel distribution approximately describes the exact
solution of the SIR model. Although the description
is not perfect, the Gumbel distribution has a width
and asymmetry similar to those of the epidemiological
curve i(t), which allows fitting data of an epidemic.
Subsequently, once the Gumbel distribution has been
fitted to data, the parameters of the SIR model can be
obtained as a first approximation using the formulas in
this section. The fact that the Gumbel distribution is
analytical as a function of time allows its parameters to
be easily fitted, unlike the SIR model, which, although
simple, must be solved numerically.

4 Asymmetry of the SIR solutions

An essential characteristic of the solution i(t) of the
SIR equations is the evident asymmetry that this func-
tion presents with respect to its maximum value.
The asymmetry is more pronounced as the reproduc-
tion number ρ increases. Indeed, in this section we
will define a parameter that uniquely characterizes
the asymmetry and we will see that said asymmetry

Fig. 7 Solutions of the SIR equations for values of the basic
reproduction number ρ from 1.5 to 500. The functions i(t) and
τ(t) = r(t) are Plotted as a function of the normalized time βt

increases linearly with the basic reproduction number
ρ

We begin by mentioning an important property of
the i(t) solution concerning the scaling property with
respect to time. It is clearly seen in Eq. (25) that the
physical time as a function of proper time, t (τ ), is
inversely proportional to β. Therefore any change in
β translates into a change in the time scale. The natu-
ral scale of time is thus βt , that is, measuring time in
units of 1/β. Thus, from the solutions of the SIR equa-
tions for β = 1, all the others are obtained simply by
re-scaling the time with a factor 1/β.

Therefore in Fig. 7, wherewe represent the solutions
of the SIR equations for a range of ρ values from 1.5
to 500, and for β = 1, all the solutions are included if
they are represented as a function of βt . Note that here
we use the initial condition s0 = 0.99. But this does not
detract from the generality of our affirmations, because
a change in the initial condition ultimately translates
into a shift of the time origin such that i(0) = 0.01.

Figure 7 shows that as ρ increases, the epidemic
progresses faster, that is, it ends earlier. As a function
of natural time (or for β = 1 day−1), it lasts from about
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Fig. 8 Solutions of the SIR
equations for several values
of the basic reproduction
number ρ, and for
s0 = 0.99. The functions
i(t) and τ(t) = r(t) are
plotted as a function of the
normalized time βt . These
are compared to the
approximate solution
obtained with a Gumbel
function G(t) fitted to τ(t),
and with the corresponding
infected function iG(t) =
1 − G(t) − s0 exp(−ρG(t))
of the extended SIR model

20 days for ρ = 1.5, to less than a week for ρ > 10,
and only a few days if ρ > 20.Moreover, for very large
values of ρ > 10, the epidemic grows very quickly in
a short time interval and then decreases exponentially-
like regardless of the value of ρ, with i(t) � e−βt . In
Fig. 7 (top panel) it is also evident that the asymmetry
of i(t) increases with ρ.

The recovered function, or proper time, τ(t) = r(t),
is displayed in the bottom panel of Fig. 7. For small
values of ρ, it quite resembles a Gumbel function, but
for very large values of the basic reproduction number,
ρ > 10, it departs from the family of Gumbel functions
and approaches the function r(t) = 1 − exp(−βt), as
the limit for ρ → ∞.

The behavior of the SIR solution and the Gumbel
functions can be seen more clearly in Fig. 8. There we
plot the infected and recovered functions as a function
of βt , for the SIR model and fitting a Gumbel func-
tion, for ρ = 1.5, 2, 3 . . . , 9. In Fig. 8, the fit is an
alternative to the one made in Sect. 2. There, the Gum-

bel distribution g(t) was fitted directly to the infected
function i(t). In Fig. 8 we first fit the Gumbel function
G(t) to the recovered function τ(t) = r(t) by least
squares method, and then we calculate the Gumbel-
infected function using the SIR Eq. (15)

iG(t) = 1 − G(t) − so exp(−G(t)) (58)

for β = 1. The results of fitting G(t) are not exactly
the same as fitting g(t), because a different function if
being fitted in each case, but they are very similar.

Wenotice that forρ = 5, the resulting function iG(t)
does not converges to zero for large t . This happens
because the least-squares fit of the Gumbel function
does not exactly approach the maximum value of τ(t).
To remedy this, starting ρ = 6, we set the value of the
a parameter of G(t) so that G(t) = τ(t) for large t ,
and then fit the two parameters b and t0.

Figure 8 shows that the Gumbel distribution is very
similar to the SIR solution, but starting from ρ = 7,
small differences begin to be seen because the asym-
metry ofGumbel and the SIR solution begins to diverge

123



1958 J. E. Amaro

Fig. 9 Parameters of the Gumbel function G(t) fitted to τ(t) in
Fig. 8. These are compared to the functions a(ρ) and b(ρ) from
Eqs. (39, 40)

from each other. For ρ = 9 such a difference is already
quite appreciable, and it increases for larger values of
ρ.

In Fig. 9 we show the values of the Gumbel parame-
ters, a, b, t0, fitted in Fig. 8, as a function of the repro-
duction number ρ.We also show the values of a(ρ) and
b(ρ) calculated with Eqs. (39) and (40), which give an
analytical approximation between theGumbel function
and the SIR solution. We see that the values of a and b
are very close to their analytic approximations for small
ρ, and that they start to differ from ρ ∼ 5−6 this indi-
cates that the approximation of Eqs. (39, 40) worsens
for very high values of ρ. This difference is due in part
to the fact that in Eqs. (39) and (40) they were obtained
by requiring that the maxima of i(t) and g(t) coincide.
But in Fig. 8 we have adjusted the parameter a so that
the maximum of r(t) coincides with the maximum of
G(t) and that alters Eqs. (39) and (40).

Next we propose a definition of the asymmetry of
the SIR solution in terms of the half-widths of the dis-
tribution i(t) to the left and to the right of themaximum
ipeak = i(τpeak). First we define τ1 and τ2 as the values
of the proper time such that i(τ1) = i(τ2) = ipeak/2
and τ1 < τpeak < τ2. Specifically, τ1 and τ2 are the two
solutions of the equation

1 − τ − s0e
−ρτ = ipeak

2
(59)

where τpeak and ipeak corresponds to the position and
value of the maximum of i(τ ), given by Eqs. (19,
20). Therefore, τ1 and τ2 are the proper-time values

Fig. 10 Asymmetry of the SIR solutions as a function of ρ. The
points are the values of the asymmetry computed numerically for
discrete values of ρ = 1.5, 2, 3, . . . , 9. The solid line is a fitted
right line A + Bρ. The dashed line is the Jacobian |dτ ′/dτ |i0
evaluated for i0 = 0.84ipeak

at which i(τ ) reaches half of its maximum value. Two
half-widths are defined in term of the physical time as

�1 = β(t (τpeak) − t (τ1)) (60)

�2 = β(t (τ2) − t (τpeak)) (61)

In view of the previous numerical results, we see that
�2 > �1 for ρ > 1, that is, the SIR solution is wider
to the right than to the left of the maximum. The asym-
metry is then defined as the quotient

A(ρ) = �2

�1
≥ 1. (62)

This function increases with ρ. This asymmetry is
defined as a ratio that does not depend on β nor on the
global normalization of i(t). Therefore, it is a suitable
parameter to express the asymmetry of the theoretical
distribution, as well as that of the experimental data of
deaths described in the next section.

To compute the asymmetry of the SIR solution, for a
ρ value, we fist solve the transcendental equation (59)
numerically, and obtain the two solutions τ1 < τ2. The
half widths are then computed as the integrals

�1 =
∫ τpeak

τ1

dτ

1 − τ − s0e−ρτ
(63)

�2 =
∫ τ2

τpeak

dτ

1 − τ − s0e−ρτ
(64)

These integrals are computed numerically and the cor-
responding asymmetry is plotted in Fig. 10 for ρ =
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1.5, 2, 3, . . . , 9, and for so = 0.99. We see that, as a
function of ρ, the asymmetry of the SIR solutions is
quite approximately a linear function of ρ, which is
very well fitted by the parametrization A = A + Bρ,
with A = 0.868 and B = 0.176, as seen in Fig. 10.

To better understand why this quasi-linear depen-
dence on asymmetry occurs, we proceed as follows.
A rigorous proof is not possible to our understand-
ing because transcendental equations are involved, and
because the linearity is only approximate, but its origin
can be roughly understood.

First, in the interval [τ1, τpeak] the function i(τ ) =
1−τ − s0e

−ρτ is increasing and the change of variable
τ → i canbemade inside the integral�1,with Jacobian
di/dτ = ρs0e

−ρτ − 1 > 0. We obtain

�1 =
∫ ipeak

ipeak/2

dτ

di

di

i
(65)

Second, in the interval [τpeak, τ2] the function i(τ ′) =
1 − τ ′ − s0e

−ρτ ′
is decreasing and the change of vari-

able i → τ ′ can be made inside the integral (65), with
Jacobian di/dτ ′ = ρs0e

−ρτ ′ − 1 < 0. We obtain

�1 =
∫ τpeak

τ2

dτ

di

di

dτ ′
dτ ′

i(τ ′)
=

∫ τpeak

τ2

dτ

dτ ′
dτ ′

i(τ ′)
(66)

with

dτ

dτ ′ = dτ

di

di

dτ ′ = ρs0e
−ρτ ′ − 1

ρs0e−ρτ − 1
< 0 . (67)

This Jacobian corresponds to the change of variable
τ → τ ′, inside �1, where τ < τ ′ are the two solutions
of the transcendental equation i = 1 − τ − s0e

−ρτ ,
for a fixed value of i ∈ [ipeak/2, ipeak]. Note that this
is the interval of integration in Eq. (65) where we are
changing the variable i → τ ′.

Now, using the mean value theorem, we can factor
the Jacobian out of the second integral of Eq. (66),
evaluated at some intermediate value of i = i0 between
ipeak/2 and ipeak, obtaining

�1 =
∣∣∣∣ dτdτ ′

∣∣∣∣
i0

∫ τ2

τpeak

dτ ′

i(τ ′)
=

∣∣∣∣ dτdτ ′

∣∣∣∣
i0

�2 (68)

We have numerically calculated the Jacobian |dτ ′/dτ |
for different values of i0 and we have compared it with
the asymmetry �2/�1. Both coincide approximately
for i0 = 0.84ipeak regardless of the value of ρ. This
can be seen in Fig. 10 where we represent the Jacobian
as a function of ρ, for i0 = 0.84ipeak. We see that
quite a straight line is obtained that coincides with the
calculated value of the asymmetry.

Fig. 11 The function i(t) obtained for ρ = 3, and computed for
different initial values of i(0)

The quasi-linear behavior of the asymmetry of the
SIR solutions as a function of ρ allows us to obtain the
value of ρ from experimental data, after estimating the
asymmetry empirically.

To finish, note that in the theoretical development
of this and the previous sections we have assumed that
r(0) = 0 for t = 0, and for this reason the initial
value of τ is zero also for t = 0. This technique is then
applicable for the early stages of the epidemic when
the number of recoveries is not yet significant. It is also
expected that the initial value of those infected is not
very high in the first days of the epidemic, and in the
previous mathematical developments we have studied
the particular case i(0) = 1 − s0 = 0.01, that is, 1%
of the population is initially infected. For other initial
values of i(0) the results are equally valid, as long as the
condition r(0) = 0 holds. The effect of a change in the
value of i(0) is to produce a shift with respect to time
of the SIR model solutions. This can be verified in the
results of Fig. 11. There we show the solutions of the
function i(t) for ρ = 3 and for different values of the
initial value of infected i(0) = 0.02, 0.01, 0.005, 0.001,
0.0005, 0.0001. Indeed we see that by changing the
initial condition i(0) the function i(t) is basically the
same shifted in time. Therefore, the theoretical results
about the properties of the SIR model solutions, and
in particular the asymmetry properties of i(t), do not
depend on i(0).

5 Results

In this section we present results comparing with the
data of total deaths D(t) and daily deaths �D(t) as
a function of time for the first wave of the COVID-
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Table 2 Parameters of the Gumbel and SIR models fitted for the different countries considered in this work

Country G(t) g(t) SIR g(t) fit to SIR
b [d] b [d] ρ β [d1] β−1 [d] b [d]

Spain 13.4 12.6 7 0.05 20 12

UK 17.7 16.15 7 0.038 26 16.2

France 13.35 11.6 6 0.06 16.7 10.8

Italy 18.4 17.1 5.5 0.045 22.2 15.2

Germany 15.4 14.6 5.5 0.05 20 13.6

Canada 18.01 18.1 5.1 0.041 24.4 16.9

Belgium 12.8 11.65 3 0.1 10 11.27

Switzerland 11.7 11.79 4 0.085 11.8 10.16

Sweden 26.7 25.66 7 0.03 33 18.8

USA 21.1 [0:150] 19.6 8 0.028 35.7 17.7

47.4 (2nd wave)

Brazil 60.6 [0:250] 35.3

37 (2nd wave)

India 60 66.4

32 (2nd wave)

19 pandemic. These data are supplied by government
ministries in different countries and are available from
various sources. The data can vary in different sources,
as it can often be found averaged or smoothed, or in
many cases the data can be later revised and updated
differently at different sites.

To study the daily deaths, we are assuming that a cer-
tain constant portion of removals ends in death, that is,
the death rate verifies an equation similar to the removal
rate with a different constant
dG

dt
= α I. (69)

this means that the daily deaths, �D(t) � dD
d , are

described, except normalization constant, by the solu-
tion i(t) of the SIR equations and we can use the for-
malism of the previous sections.

This study could also be carried out including
infected cases, but we have chosen to study deaths
because the real number of infected is not known, since
only detected cases are reported. On the other hand, the
number of deaths also has that uncertainty. In any case,
we work with the hypothesis that the number of real
deaths is statistically proportional to that reported and
that proportionality is somehow included in the α con-
stant of Eq. (69).

One of our purposes of this work is to check if the
SIR model is capable of describing the data, in which

case it can be assumed that the hypotheses of this very
simplemodel are justified; in particular if averaged val-
ues can be adopted for the two basic constants of the
model: the reproduction number ρ and the recovery
rate β. This would indicate the universal validity of the
SIR model. Comparing the parameters of the model
between different countries will tell us the degree of
universality of these parameterswhen passing fromone
country to another.

For the present study we have selected the coun-
tries where the first wave of the COVID-19 pandemic
is visually similar to the solution of the SIR equations.
The data that we have studied come from Ref. [49].
But they can also be found in other sources, such as the
worldometer website [40]. We have opted not to use
theWHOdata [50] because often show very large daily
fluctuations. The data fromRef. [49] are smoother, hav-
ing been updated or averaged, and are more suitable for
this study.

After inspecting the data for each country, we have
selected ten countries where the series of daily deaths
resemble the solutions of the SIR equations or equiv-
alently to the Gumbel distribution, with a more or less
asymmetric bell shape. The rest of the countries have a
more irregular shape (probably due to a deficient count-
ing system) or else there are not enough data to be able
to be statistically described with the equations of the
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Fig. 12 Total deaths D(t)
during the first wave of the
COVID-19 pandemic for
several countries, compared
to the Gumbel function
G(t). The parameter b of the
Gumbel function fitted to
the data is given in Table 2.
Data are from Ref. [49]

SIR model. The selected countries are: Spain, France,
Italy, UK, Germany, Canada, Belgium, Switzerland,
Sweden and USA (we left aside the curious case of
China where the epidemic endedmysteriously and pre-
maturely). Here we only consider the first wave of the
pandemic, because the subsequent ones are muchmore
irregular and require a separate study.Note that we only
analyze the data on daily deaths and cumulative deaths.
The homogeneity of the reported number of infected
individuals is questioned because it is proportional to
the number of tests performed, and the experimental
error of the tests is not given.

To begin with, in Figs. 12 and 13 we show the accu-
mulated deaths as a function of time in the ten coun-
tries mentioned with the addition of Brazil and India,
as they are the top countries in number of infections
and perhaps also in number of deaths. Time is mea-
sured in days. Data are from Ref. [49] and day one is
2020 February 1. AGumbel function has been fitted for
each country. The only tabulated parameter in the sec-
ond column of Table 2 is the value of the b parameter
in days. Note that the value of a in the Gumbel func-
tion is simply a normalization constant, and the value
of t0 is a shift in time. Thus what really characterizes
the dynamics is the value of the parameter b, which is
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Fig. 13 Total deaths D(t)
during the first wave of the
COVID-19 pandemic for
several countries, compared
to the Gumbel function
G(t). The parameter b of the
Gumbel function fitted to
the data is given in Table 2.
Data are from Ref. [49]

related to the duration of the epidemic. The USA data
have been fitted until day 150, when the second wave
starts to appear. In the case of Brazil and India the fit is
performed until day 250. Note that Spain, France and
Belgium and Switzerland have similar b-values in the
range b ∼ 12−13 days. Italy, UK and Canada are well
fitted with b ∼ 18 days. Germany is in between with
b ∼ 15, and Sweden is the European country with the
highest value of b ∼ 27 days.

Cumulative deaths, D(t), are fairly smooth distri-
butions and very similar among different countries
because we are dealing with sums—or integrals on the
continuous limit.More detailed information is obtained

by describing the daily death data �D(t), shown in
Figs. 14 and 15. Although these data show more fluc-
tuations, they can be fitted well with the Gumbel g(t)
distribution, although the fit parameters differ some-
what from those obtained by fitting the Gumbel func-
tion G(t), since different functions and data are being
involved. the fitted parameter b is in the third column
of Table 2. Again we only tabulate the parameter b,
because a and t0 give simply the relative height and the
position of the peaks. in the case of the USA, Brazil
and India, we fit two Gumbel distributions, since it is
apparent that there are at least two overlapping waves.
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Fig. 14 Daily deaths
�D(t) during the first wave
of the COVID-19 pandemic
for several countries
compared to the Gumbel
function G(t). The
parameter b of the Gumbel
function fitted to the data is
given in Table 2. Data are
from Ref. [49]

In these cases, in Table 2 we tabulate the two values b1
and b2 of the two fitted waves.

We see that all countries are well fitted with one or
two Gumbel distributions, so this function is an opti-
mal candidate to quantitatively describe an epidemic of
these characteristics with only one parameter, b, plus
the normalization and position of the peak. The fact
that the nine countries considered with an isolated first
wave (Spain, France, Italy, UK,Germany, Canada, Bel-
gium, Switzerland and Sweden) only require a time-
independent parameter is remarkable. This does not
happen in the following waves or in other countries,
where the data show different behavior with large over-
laps and stochastic fluctuations.

Since Gumbel provides a good analytical approxi-
mation to the SIR model solution, it is natural to won-
der if the exact SIR solution would give an even better

description of the data. So in Figs. 16 and 17 we com-
pare data with exact SIR solutions given by the equa-
tions of the previous sections. We know from the last
section that there is a linear relationship between the
asymmetry of data and the basic reproduction number,
ρ. This has allowed us to obtain an approximate value
of ρ and then we have fitted the value of β and a nor-
malization factor to the width and height of the data,
respectively, and we have added a shift in time to get
the position of the peak. The parameters ρ and β are
given in Table 2. In Fig. 17 we have fitted the US data
only to where the first peak is clearly seen. For this rea-
son the other two countries, Brazil and India have not
been fitted.

In Figs. 16 and 17, we also plot the results of the
Gumbel distribution, but this time the parameters have
not been fitted to the data, but to the respective SIR
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Fig. 15 Daily deaths
�D(t) during the first wave
of the COVID-19 pandemic
for several countries
compared to the Gumbel
function G(t). The
parameter b of the Gumbel
function fitted to the data is
given in Table 2. Data are
from Ref. [49]

solution. Note that, from Eqs. (43) and (44) that

βb = ln ρ

ρ − 1 − ln ρ
(70)

From inspections of the numbers given Table 2,
columns 4, 5 and 7, we see that this equation is approx-
imately verified. For instance, for ρ = 7 (Spain and
UK), the right-hand side of Eq. (70) gives 0.48, and
1/β � 2b is roughly verified from Table 2. For ρ = 3
the equation gives 1/β � b/1.2 and this is also verified
from Table 2 for the case of Belgium.

We see that in general the fit of the Gumbel distri-
bution to the SIR solutions in these countries is good,
although it begins to fail, for high values of ρ, in the tail
part, as we have already seen in the previous section.

Note in Fig. 17 that the USA data are described with
the SIR model up to day 150 and cannot be described

further because the second wave begins almost imme-
diately. The Gumbel distribution, as we have already
mentioned, fails to describe the tail of the SIR solution
as a result of the least squares fit, which tends to fit best
in the region around the maximum.

FromFigs. 16 and 17we conclude that the data of the
countries considered are globally well described with
an exact SIR solution, without the need for any time
dependence of the parameters. Again we underline that
this only happens in the first wave of the countries that
we have considered here and not in the other countries
or in the remaining waves. The cause of this requires
a detailed study of the epidemiological causes that is
beyond the scope of this paper.

Finally, in Fig. 18 we plot the values of the parame-
ters of the SIR solution in the (ρ, 1/β) plane. If we fit
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Fig. 16 Daily deaths
�D(t) during the first wave
of the COVID-19 pandemic
for several countries
compared to the Gumbel
function G(t). The
parameter b of the Gumbel
function fitted to the data is
given in Table 2. Data are
from Ref. [49]

a right line to these data, we see that the general trend
seems to be for 1/β to increasewithρ. Ifwe exclude the
’outsider’ countries, Belgium and Switzerland (which
have small values of ρ = 3 or 4) and Sweden and USA
(with large values of ρ = 7, 8), we are left with six
countries with similar parameters, in the central zone,
around ρ = 6 and 1/β = 20 d —Spain, France, Italy,
UK, Canada and Germany. In these countries a rela-
tionship between β and ρ is not found. On the other
hand, the fact that β is similar in these six countries
indicates that the probability of recovery is similar in
all of them. The recovery probability β for an indi-
vidual should in principle be independent of location.
But if we consider that there could be important effects
due to medical treatments and hospital capacity to treat
severe cases in different countries, this could explain
the differences between the β values.

Note that in most countries the value of ρ exceeds
five, indicating an explosive increase in the first stage
of the epidemic in each country. An important conse-
quence of the SIR equations for these high values of ρ

is that the total number of people infected during the
epidemic reaches almost 100%. Indeed, this is mathe-
matically given by the value of the proper time τ at the
end of the epidemic, which is the solution of Eq. (16).
Numerically it is easy to verify that this end value is
practically one, for ρ > 5. This can also be seen in the
lower panel of Fig. 7, where the value of τ(t) = r(t) for
large t is practically one. As a consequence, our results
indicate that the data from these countries where ρ > 5
are compatible with an epidemic where practically all
initially susceptible individuals were infected, accord-
ing to the SIR model.
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Fig. 17 Daily deaths
�D(t) in the first wave of
coronavirus pandemic for
several countries, compared
to the Gumbel function
G(t). The parameter b of the
Gumbel function fitted to
the data is given in Table 2.
Data are from Ref. [49]

Fig. 18 Locations of the different countries studied in the plane
of SIR parameters (ρ, 1/β)

At this point we can already link with the question
raised in the introduction of thiswork,which iswhether
the lock-downs and other restrictions over the popula-
tion had any effect in reducing mortality. According to
themeta-data study ofRef. [42], theNPI had practically
no effect on mortality. This seems to be corroborated in
our study for three reasons: (i) that the data are compat-
ible with SIR solutions with high value (R0 = ρ � 6)
of the basic reproduction number, which implies that

all the susceptible individuals were infected; (ii) that
the SIR parameters do not depend on time, but if there
were some NPI effects the parameters should be time
dependent and the epidemiological curves should dif-
fer from the SIR solutions; (iii) there does not seem
to be a relationship between the intensity of the lock-
downmeasures and the basic reproduction number. For
example, Spain, which had very harsh restrictions, is
fitted with the same reproduction number as Sweden,
which practically did not have, and is greater than Italy,
where the measures were introduced a week earlier.

6 Conclusions

In this work we have systematically studied the data
from the COVID-19 pandemic using the simplest epi-
demiologicalmodel, the SIRmodel.With the data from
the first wave already consolidated and with a perspec-
tive of more than two years, we are in a position to
analyze the time series of daily mortality data, verify
the validity of the SIR model in this pandemic and
extract the parameters of the different countries. The
SIRmodel describes the evolution of an epidemic based
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solely on statistical laws of proportionality in a sample,
and with sufficient data the curve of infected follows
a precise and characteristic mathematical law—in fact,
in the countries studied we have seen that it describes
the data quite accurately.

In the first part of this work we have reviewed the
mathematical formalism of the SIR model. First we
have solved the differential equations of the SIR model
in a parametric way using the proper time as a param-
eter, defined as the relative number of recovered indi-
viduals τ = r(t). As a function of τ , the SIR solution
is analytical, which allows us to study some of its prop-
erties, such as, for example, calculating the maximum
number of infected ipeak and the asymptotic number of
recovered at the end of the epidemic r(∞).

Secondly, we have studied the possibility of approx-
imating the SIR solutions using Gumbel distributions
g(t), because this family of functions presents a similar
asymmetry as the SIR solutions, and only depends on
one parameter, plus the normalization and the position.
We have proposed various methods of fitting Gumbel
distributions to exact SIR solutions. In particular, using
the proper time, we have found simple relationships
between the Gumbel parameters and the SIR model
parameters.

Third, we have discussed the scaling properties of
the exact SIR solutions when plotted as a function of
βt , where β is the probability of removal per unit of
time.Nextwe have defined an asymmetry parameter, as
the ratio between the right and left half-widths at half-
height, of the SIR solutions. We have shown numeri-
cally that the asymmetry A(ρ) grows almost linearly
with the reproduction number ρ and that it is indepen-
dent of β. The asymmetry uniquely characterizes the
value of ρ and vice versa. Therefore, a measure of the
asymmetry of some data of i(t) at the middle of the
height allows to extract the value of ρ.

In the results section we have applied the SIRmodel
and the Gumbel distribution to study the daily death-
data in the first wave of the COVID-19 pandemic in
a dozen countries. The countries have been selected
because they are the only ones that present a peak
that closely resembles a SIR solution. The data from
Spain, France, Italy, UK, Canada, Germany, Belgium,
Switzerland and Sweden can be fitted quite well with a
SIR solution and also with a Gumbel function. Except
for Belgium and Switzerland, data in the rest of the
countries are compatible a reproduction number ρ > 5.
This seem to indicate that in practically all suscepti-

ble individuals were infected and eventually recovered.
This raises questions about the effectiveness of non-
pharmaceutical interventions, such as lock-downs, in
many countries.

In short, the success of the SIR model to describe
the first wave of the COVID-19 pandemic in the coun-
tries analyzed has not only allowed us to extract the
two parameters that govern the temporal evolution, the
basic reproduction number and the constant removal
rate, β. It has also made it possible to carry out a com-
parative study between the different affected countries.
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