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The Ossa-Morena Zone constitutes a fringe Gondwana-related terrane all along the Paleozoic. This continental block has been
classically interpreted as being attached to a portion of the northern Gondwanan margin located close to the West African
Craton. We report here the results of U-Pb dating on detrital zircon grains from 15 metasedimentary rocks collected in two
well-exposed and well-dated Cambrian sections (Córdoba and Zafra) of the Ossa-Morena Zone. The studied samples show a
dominant late Tonian-Ediacaran population peaked at c. 600Ma. Secondary populations are Rhyacian-early Orosirian and late
Orosirian-Statherian in age, with maxima at c. 2.1 and 1.9Ga. Minor detrital zircon populations are Mesoarchean-early
Siderian in age, with peaks between c. 3.05 and 2.45Ga. Most of the studied samples lack a Stenian-early Tonian population,
except for two of them with a minor peak at c. 1 Ga. Our results corroborate previous studies that locate the Ossa-Morena
Zone close to the West African Craton and/or the Tuareg Shield (i.e., in a western position with respect to other Variscan
zones of the Iberian Massif) at the onset of the rifting stage that opened the Rheic Ocean. Nevertheless, the absence of a
significant Stenian-early Tonian population in the Cambrian Ossa-Morena rocks contrasts with the reported results on middle
Ordovician-Lower Devonian rocks of this zone, which systematically contain an important population with a peak at c. 1Ga.
We relate this change to the latest Ediacaran-early Ordovician paleogeographic/paleotectonic evolution of the Ossa-Morena
Zone, which might have recorded a significant eastward displacement, together with a reorganization of the drainage systems.
Thus, the vanishing stages of the Cadomian orogeny could have translated eastward the Ossa-Morena Zone terrane at latest
Ediacaran-earliest Cambrian time due to change in plate kinematics from subduction to right-lateral shearing. This translation
would have shifted the Ossa-Morena Zone from an Ediacaran location close to the West African Craton to a Cambrian
position close to the Tuareg Shield. Finally, the rift-to-drift transition occurred at late Cambrian-early Ordovician time along
the northern Gondwanan margin would have reorganized the drainage systems, facilitating sediment supply from an eastern
source with abundant Stenian-early Tonian detrital zircon grains, probably the Saharan Metacraton.

1. Introduction

Orogens often result from the amalgamation of a number of
far-traveled continental pieces with different origin and age
(e.g., [1]). Identifying and unraveling the evolution of each
one of these pieces are usually difficult because a combina-
tion of diverse geological, geochronological, and paleomag-
netic data is required. Nevertheless, a good characterization

of the various terranes accreted in mountain belts is the key
to elaborate reliable paleotectonic and paleogeographic recon-
structions. In this regard, the number and width of oceanic
domains opened at preorogenic times are on many occasions
a matter of debate, which leads to contradictory plate recon-
structions, especially for pre-Mesozoic times (e.g., [2–5]).

The multidisciplinary approach required to address paleo-
geographic/paleotectonic reconstructions has incorporated
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the systematic study of detrital zircon populations as a valu-
able tool to establish sediment provenance from different pri-
mary and/or recycled sources (e.g., [6, 7]). Despite a good
number of limitations (e.g., [8–14]), detrital zircon studies
have contributed to a better understanding of the preorogenic
architecture of Paleozoic orogens (e.g., [15–18]). This is the
case of the Late Paleozoic Variscan orogen in Western and
Central Europe, in which the paleogeographic attribution of
the different zones is mostly based on the comparison of detri-
tal zircon spectra with the putative cratonic source areas (e.g.,
[19–23]). All the studies on the Variscan orogen support the
presence of Gondwana-derived and Avalonia-derived ter-
ranes, which would have been separated by a large ocean,
namely, the Rheic Ocean, opened at late Cambrian-early
Ordovician time (e.g., [24–27]). The intervention of other
lesser-scale oceans separating any Gondwanan-derived ribbon
continental pieces is still under discussion (e.g., [2, 5]).With or
without the intervention of narrow oceanic realms, there are
marked differences in the detrital zircon record between
Gondwanan-derived zones; some of them systematically con-
tain a 1Ga population interpreted to be sourced from the
Arabian-Nubian Shield and/or the Saharan Metacraton, while
others lack this 1Ga population and have been interpreted as
attached to the West African Craton (WAC) during the pre-
orogenic evolution (e.g., [19, 21, 26, 28–31]).

Among the Variscan zones in the Iberian Massif
(Figure 1(a)), most of them (Cantabrian Zone, West
Asturian-Leonese Zone, and Central Iberian Zone) show
detrital zircon spectra akin to Paleozoic rocks directly over-
lying the Saharan Metacraton [15, 16, 32]. In the southern
sector of the Iberian Massif, some of the formations of the
South Portuguese Zone (SPZ) show Avalonian affinity [17,
33], thus favoring the location of the Rheic suture along
the contact between this zone and the Ossa-Morena Zone
(OMZ) [34]. The latter is generally considered as a
Gondwana-related continental piece, with or without a nar-
row Paleozoic oceanic realm in between it and the Central
Iberian Zone (CIZ) (e.g., [35, 36]). Furthermore, the OMZ
would have been located close to the WAC all along the
pre-Variscan evolution, based on the lack of a 1Ga detrital
zircon population [26, 28, 30, 37]. Nevertheless, we recently
reported the presence of a noticeable (c. 20%) 1Ga detrital
zircon population in Ordovician and Devonian rocks of
the OMZ, thus proposing an eastward displacement of the
OMZ (and counterparts through the Cantabrian Arc) related
to the vanishing stages of the Cadomian orogeny [23]. In this
paper, we present a wealth of U-Pb detrital zircon ages from
the complete and very well-dated Cambrian sequence of the
OMZ. The results serve to elaborate on the paleogeographic
reorganization of northern peri-Gondwanan terranes during
the Cambrian-Ordovician transition.

2. Geological Setting

The Variscan belt constitutes a curved orogen that extends
from Central and Western Europe to Northwestern Africa.
This orogen resulted from the Devonian-Permian collision
between Gondwana and Laurussia, with a number of peri-
Gondwanan terranes also amalgamated in-between the two

main plates (e.g., [5, 38–40]). Among the different transects
of the Variscan belt, the Iberian Massif (central and western
part of the Iberian Peninsula) is the most complete one and
has been traditionally divided into two sectors: (i) a north-
ern one with east vergence towards the Gondwanan fore-
land and (ii) a southern one with dominant SW vergence
towards the Laurussian foreland. The northern sector is
made up of three zones: Cantabrian, West Asturian-Leonese,
and part of the CIZ [36], which appear overthrusted by the
allochthonous ophiolite-bearing Galicia-Tras-os-Montes
Zone (GTMZ), interpreted as an unrooted orogenic suture
(Figure 1(a)) (e.g., [40]). The southern sector includes part
of the CIZ, the OMZ, and the SPZ, with the contacts between
the three zones representing orogenic sutures (Figure 1(a))
(e.g., [36, 41]).

The SPZ is considered to be part of the deformed
Avalonian foreland, together with other terranes exposed
in Southern England, Belgium, and Germany, in the so-
called Rheno-Hercynian Zone (e.g., [39, 42–44]). As for the
OMZ, it is usually correlated with the Saxo-Thuringian Zone
(STZ) cropping out in northernmost Brittany, Belgium,
Germany, and Czech Republic (e.g., [40] and references
therein).

The OMZ-SPZ contact is usually considered to represent
the Rheic Ocean suture [36, 45–49], although it rather
appears as a cryptic suture [34] since the MORB-featured
amphibolitic unit exposed along this boundary yielded Car-
boniferous ages [50]. To the north, the OMZ is separated
from the CIZ by the Badajoz-Córdoba Shear Zone (BCSZ;
Figure 1(b)) [36, 41, 51–55]. The interpretation of this tec-
tonic boundary is controversial, with some authors consider-
ing it as a Variscan intracontinental shear zone (e.g., [35,
56–58]), others interpreting it as the root zone of the alloch-
thonous units exposed in NW Iberia (e.g., [42, 59]), and
others still interpreting it as being unrooted and part of the
ophiolitic units of the GTMZ [60, 61].

2.1. Stratigraphy of the Ossa-Morena Zone. The OMZ has
specific stratigraphic and magmatic features that have been
the base with which to decipher its paleogeographic and
paleotectonic meaning. In this regard, the Ediacaran and
Lower Paleozoic sequences in the OMZ are distinctive with
respect to other Variscan zones in the Iberian Massif (e.g.,
[62, 63]). Furthermore, the OMZ is also characterized by
prominent late Ediacaran and early-middle Cambrian to
Ordovician magmatism (Figure 1(b)) (e.g., [64–66]).

The oldest rocks exposed in the OMZ are the slates,
schists, and greywackes with minor amphibolite and black
quartzite intercalations of the so-called Serie Negra Group
(Figures 2 and 3) (e.g., [63]). These rocks were dated at late
Ediacaran, based on its stratigraphic position underlying the
Cambrian sequence, detrital zircon geochronological data
[26, 28, 30, 67, 68], amphibolitic protolith radiometric dat-
ing [69], and cross-cutting relationships with Cambrian
magmatic rocks [68, 70]. The Serie Negra Group is uncon-
formably overlaid by the uppermost Ediacaran-lowermost
Cambrian volcano-sedimentary sequence of the Malcocinado
Formation, which is roughly coeval with the emplacement of
a number of plutonic bodies [71, 72].
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Figure 1: (a) Reconstruction of the Variscan/Alleghanian and Caledonian belts at the end of the Paleozoic (modified from [40, 126, 127]).
(b) Geological map of the Ossa-Morena Zone with location of the two studied sections; BCSZ: Badajoz-Córdoba Shear Zone; CIZ: Central
Iberian Zone; CZ: Cantabrian Zone; GTMZ: Galicia-Tras-os-Montes Zone; OMZ: Ossa-Morena Zone; SPZ: South Portuguese Zone; WALZ:
West Asturian-Leonese Zone.
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Figure 2: Schematic geological maps of the studied areas with location of the samples: (a) Córdoba area; (b) Zafra area (modified from [90]).
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The Lower-middle Cambrian sequence rests unconform-
ably on the Serie Negra Group and the Malcocinado Forma-
tion (Figures 2(a) and 3). A more detailed description of the
Cambrian sequence is given below.

The Ordovician-Devonian succession is interpreted as a
passive margin sequence deposited on the Gondwanan margin
(e.g., [73]), coevally with the Rheic and other minor ocean
expansion. The Ordovician sequence is made up of slates, silt-
stones, and sandstones, at times with Katian limestone interca-
lations (e.g., [62, 74, 75]). The Silurian corresponds to dominant
graptolite-bearing black slates, with some chert, sandstone, and
limestone intercalations. The Devonian succession consists of
slates with siltstone intercalations (e.g., [74, 75]).

The synorogenic deposits are Upper Devonian-Lower
Carboniferous greywackes, conglomerates, shales, and lime-
stones, with volcanic intercalations [76–78], although locally
Lower Devonian greywackes constitute the very first syncol-
lisional sediments [79–81].

In this study, we have sampled detrital Cambrian rocks
from two classical sections with abundant fossiliferous con-
tent, namely, the Córdoba and the Zafra sections, whose
stratigraphic sequences are described in detail below.

The sedimentary successions in the Córdoba and Zafra
areas are equivalent regarding the lower Cambrian but differ
in the abundance of volcano-sedimentary rocks of middle
Cambrian age.

In the Córdoba area, the Cambrian sedimentary
sequence is deformed by an open upright syncline and
unconformably overlies metamorphic rocks assigned to the
Serie Negra Group (to the north) and vulcanites of the
Malcocinado Formation (to the south; Figure 2(a)). The
lower Cambrian is composed of conglomerates, sandstones,
and shales of the Torreárboles Formation [82], followed by
carbonate and siliciclastic alternations of the Pedroche For-
mation [83, 84] and purple slates (metatuffs?) with minor
sandstone and limestone intercalations of the Santo
Domingo Formation [85]. The Pedroche formation was
dated at series 2 based on its fossiliferous content [86, 87].
Over the Santo Domingo Formation, decametric-thick quar-
zitic sandstone levels (Castellar Quartzite) grade upwards to
an alternation of shales and sandstones (Los Villares Forma-
tion) [88], which constitutes the topmost outcropping Cam-
brian rocks in the Córdoba area (Figures 2(a) and 3(b)).

In the Zafra area, the Cambrian sequence also begins
with the Torreárboles Formation, overlaid by the carbonate
deposits of the Pedroche Formation (locally known as
Alconera Formation) [89], the siliciclastic sediments of the
Vallehondo Formation and the Castellar Quartzite. The
sequence ends with the slates, sandstones, and metabasalts
of the Playón Formation (Figures 2(b) and 3(a)). The
Vallehondo Formation [90] includes a lower member
mainly made up of slates (equivalent to the Santo Domingo
Formation in the Córdoba section; Figure 3) and an upper
member characterized by sandy slates with several intercala-
tions of sandstones and volcanic rocks (equivalent to the
lowermost Los Villares Formation in the Córdoba section).
The upper Miaolingian (late Drumian-Guzhangian) Playón
Formation overlies the Vallehondo Formation and consists
in a thick sequence of slates and fine-grained sandstones
with abundant felsic/mafic volcanic intercalations [91],
which attest to the rifting stage that gave way to the opening
of the Rheic Ocean [65, 90, 92–94].

3. Samples and Methodology

This work reports detrital zircon U-Pb geochronological
data obtained from 15 upper Ediacaran-middle Cambrian
samples collected along the Córdoba and Zafra sections.
The samples are listed in Table 1.

In the Córdoba area, samples COR13 and COR14 come
from the lower levels of the Torreárboles Formation
(Figure 3) outcropping in the Torreárboles hill, which is
located in the northern limb of an open syncline affecting
the Cambrian sequence (Figure 2(a)). Sandstone levels inter-
calated in the upper part of the Pedroche Formation (COR1
and COR2) were sampled along the CO-3404 road
(Figures 2(a) and 3). Samples COR5 and COR6 correspond
to sandstones from the Castellar Quartzite (Figure 3) collected
close to the Santo Domingo hermitage. The Los Villares For-
mation was sampled in the northern limb of the syncline
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(COR8 and COR9; Figure 3). COR10 was sampled along the
N-432a road from the Serie Negra Group (Figure 3).

In the Zafra area, samples ZAF13 and ZAF8 were col-
lected from the Vallehondo Formation (upper member;
[90]). Sample ZAF13 is located stratigraphically below the
Castellar Quartzite (Figure 3) and was collected at the shore
of the Albuera del Castellar Lake (Figure 2(b)); sample ZAF8
was taken in the upper part of the Vallehondo Formation
(Figure 3), 1 km east of La Lapa along the EX-320 road
(Figure 2(b)). Sample ZAF14 was collected 2 km SE of Zafra
in the upper part of the Castellar Quartzite (Figures 2(b)
and 3). The rest of the samples from the Zafra area were
collected along the EX-320 road in the Serie Negra Group
(ZAF1) and Torreárboles Formation (ZAF2 and ZAF3;
Figures 2(b) and 3).

Almost all the samples are composed of more than 70%
of quartz grains with a grain-size varying from 0.05-0.2mm
(COR1, COR2, COR6, and ZAF8) to 0.5-1mm (COR5,
COR8, COR9, COR13, COR14, ZAF13, and ZAF14). These
rocks also include oxides, mica, and some grains of K feldspar
and plagioclase. COR10 is strongly foliated; about 20% of the
grains (mainly of quartz and oxides) are rounded and sur-
rounded by the foliation. ZAF1 is a greywacke composed of
quartz, K feldspar, plagioclase, and lithic clasts, included in
a very fine-grained matrix; the clasts have grain-sizes
between 0.2 and 1mm. ZAF2 and ZAF3 contain about
30% of quartz grains with 0.1-1mm size, surrounded by
a fine-grained matrix made up of quartz, ores, and mica.

For each sample, 4-5 kg of rock was collected and proc-
essed in the laboratories of the University of Granada
(Spain) in order to separate detrital zircon grains. This pro-
cess included mechanical smashing in a jaw-crusher, sieving,
density separation by panning of the 0.3-0.05mm fraction,
magnetic separation, and, finally, handpicking. The zircon
grains were then mounted in epoxy discs, polished, cleaned,
gold-coated, and analyzed using laser ablation inductively
coupled plasma mass spectrometry (LA-ICPMS) at the John
de Laeter Centre (JdLC) of the Curtin University (Perth,
Australia). More details about the analytical procedure,
including standard materials and references to the method-
ology, are detailed in Supplementary Material 1.

To grant a robust statistical representativeness of the
dates, the zircon grains were imaged by cathodolumines-
cence (CL), once the U-Th-Pb analyses were performed.
The CL images were performed at the JdLC using a Mira3
Field Emission SEM instrument. A selection of CL images,
with the analyzed spot and the correspondent age, is
included in Figures 4 and 5.

Raw data were statistically analyzed using IsoplotR
[95] for calculating the mean square weighted deviation
(MSWD) of the youngest detrital zircon population (mini-
mum 3 data) and obtaining Multidimensional Scaling
(MDS) plots. DensityPlotter 8.4 [96] was used to obtain the
Kernel Density Estimators (KDE) and histograms (band-
width: 30Ma; bin: 30Ma). The error associated with the
206Pb/238U ratio in zircon grains older than 1.5Ga increases
rapidly; therefore, this ratio was used only for ages younger
than 1.5Ga, while the 207Pb/206Pb ratio was used to calculate
ages older than 1.5Ga. Only data with a discordance value

lower than 10% and f206 (common Pb) values lower than
1% were considered for the characterization and analysis of
the samples. Errors are expressed at 1σ level. The complete
tables of results are included in Supplementary Material 2.

4. Results

4.1. Córdoba Section

4.1.1. Late Ediacaran Sample (COR10)

(1) Serie Negra Group. COR10 is a quartzitic sandstone from
the Serie Negra Group (Table 1). From this sample, 127
analyses were carried out, which yielded 76 concordant data
(Figure 6(a)). Zircon grains have a length varying from c.
100 to 250μm; they are rounded to elongated and pres-
ent continuous oscillatory and sector zoning (Figure 4).
The youngest detrital zircon population is late Ediacaran
(564:8 ± 2:6Ma, n = 5, and MSDW= 1:51) and, hence,
coherent with the stratigraphic age of the sample.

The main detrital zircon population found in sample
COR10 is late Tonian-Ediacaran. It includes c. 89% of the
data (n = 68; c. 848-555Ma), with an Ediacaran mean age
of 628:9 ± 0:8Ma which roughly coincides with the main
peak of the population. Two very minor detrital zircon popu-
lations have Orosirian-Statherian (3 grains; c. 1941-1889Ma)
and Rhyacian-Orosirian (4 grains; c. 2171-1951Ma) ages. A
metamorphic rim yielded early Ordovician age.

4.1.2. Terreneuvian Samples (COR13 and COR14)

(1) Torreárboles Formation. Two hundred and fifty-nine
analyses were carried out on two samples (141 in COR13
and 118 in COR14) yielding 207 concordant results
(Figure 6(b)). Zircon grains from these samples are rounded
to elongated, with lengths from c. 70 to 200μm. The internal
structures show frequent continuous oscillatory zoning and
cores overgrown by rims, as well as a few sector zoning
and homogeneous grains (Figure 4) The youngest detrital
zircon populations are late Ediacaran in age (COR13: 567:3
± 3:6Ma, n = 3, and MSWD = 0:91; COR14: 575:7 ± 2:6
Ma, n = 5, and MSWD = 0:63).

The predominant detrital zircon population in these sam-
ples is late Tonian-Ediacaran (c. 810-557Ma) and includes
41.5% of the data (n = 86). The mean age of the population is
629:2 ± 0:7Ma. Paleoproterozoic zircon grains are also com-
mon, and they group into two populations: a late Orosirian-
Statherian one (c. 1941-1738Ma, n = 28, 13.5% of the data with
a mean age of 1905:8 ± 2:8Ma) and a Rhyacian-early Orosirian
one (c. 2216-1974Ma, n = 55, 26.6% of the data with a mean
age of 2108:2 ± 1:9Ma). The latter is characterized by two
second-order peaks at c. 2055Ma and 2170Ma. Nineteen data
(9.2%) have Meso- to Neoarchean ages (c. 2925-2604Ma, clus-
tered around c. 2765Ma). Scattered grains yielded Paleoarch-
ean (n = 6), Siderian-Rhyacian (n = 7), and Ectasian-early
Tonian (n = 6) ages.

4.1.3. Series 2 Samples (COR1 and COR2)

(1) Pedroche Formation. A total of 271 analyses were carried
out on samples COR1 (138) and COR2 (133) (Table 1),
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yielding 209 concordant results (Figure 6(c)). Zircon grains
have a length varying from c. 50 to 150μm; they are mainly
rounded, and their internal structures can be homogeneous
or showing sector and continuous oscillatory zoning and

cores overgrown by rims (Figure 4). The youngest detrital
zircon populations are 579:0 ± 1:5Ma (COR1, n = 16, and
MSWD= 1:35) and 579:6 ± 1:5Ma (COR2, n = 16, and
MSWD= 1:25).

Detrital zircon populations:
Late Tonian-Ediacaran (c. 850-540 Ma)
Stenian-early Tonian (c. 1150-850 Ma)
Late Orosirian-Statherian (c. 1950-1700 Ma)
Rhyacian-early Orosirian (c. 2200-1950 Ma)
Mesoarchean-early Siderian (c. 3200-2400 Ma)

COR14 100 𝜇m

24 um-76.d
1939.1 ± 18.4 Ma

24 um-15.d
1890.8 ± 22.1 Ma

24 um-45.d
574.9 ± 5.8 Ma

30 um-36.d
596.9 ± 6.1 Ma

24 um-33.d
626.4 ± 6.5 Ma

24 um-10.d
665.8 ± 8.6 Ma

24 um-31.d
637.7 ± 6.1 Ma

24 um-23.d
2619.6 ± 25.4 Ma

30 um-44.d
2775.3 ± 13.4 Ma

30 um-1.d
2023.6 ± 
13.5 Ma

30 um-46.d
2201.4 ± 13.1 Ma

30 um-19.d
2143.4 ± 11.9 Ma

COR13 100 𝜇m

24 um-31.d
1882.7 ± 16.9 Ma

30 um-9.d
1929.1 ± 13.7 Ma

30 um-60.d
593.1 ± 5.8 Ma

30 um-10.d
612.5 ± 6.9 Ma

30 um-35.d
676.5 ± 6.9 Ma

24 um-16.d
634.1 ± 6.9 Ma

30 um-43.d
628.0 ± 5.8 Ma

24 um-25.d
2798.4 ± 15.8 Ma

24 um-32.d
2045.2 ± 21.6 Ma

30 um-42.d
2077.3 ± 10.4 Ma

30 um-47.d
2151.1 ± 11.2 Ma

COR10

100 𝜇m

24 um-49.d
555.3 ± 6.5 Ma

24 um-65.d
622.3 ± 6.3 Ma

30 um-33.d
629.1 ± 7.6 Ma

30 um-32.d
632.5 ± 6.0 Ma

24 um-27.d
759.8 ± 9.0 Ma

24 um-20.d
1897.5 ± 24.3 Ma

30 um-44.d
1951.4 ± 16.3 Ma

24 um-51.d
2041.7 ± 27.4 Ma

24 um-58.d
2170.9 ± 18.3 Ma

COR9 100 𝜇m

24 um-11.d
610.9 ± 7.2 Ma

24 um-51.d
635.1 ± 7.7 Ma

30 um-44.d
701.1 ± 8.0 Ma

24 um-15.d
658.8 ± 7.2 Ma

24 um-37.d
665.9 ± 6.8 Ma24 um-10.d

1849.7 ± 14.7 Ma

30 um-31.d
1892.6 ± 12.0 Ma

30 um-17.d
1948.2 ± 17.9 Ma

24 um-49.d
1969.6 ± 26.4 Ma

30 um-12.d
2099.4 ± 12.5 Ma

24 um-34.d
2188.1 ± 14.6 Ma

COR8

100 𝜇m

24 um-18.d
606.6 ± 7.3 Ma

24 um-43.d
644.4 ± 7.8 Ma

24 um-63.d
627.7 ± 7.2 Ma

24 um-79.d
665.2 ± 9.2 Ma

30 um-58.d
618.6 ± 5.5 Ma

24 um-96.d
752.7 ± 7.3 Ma

30 um-37.d
2138.5 ± 11.1 Ma

30 um-3.d
2169.1 ± 14.1 Ma

COR6 100 𝜇m

24 um-21.d
589.2 ± 5.8 Ma

30 um-34.d
722.2 ± 6.5 Ma

24 um-33.d
620.6 ± 7.7 Ma

30 um-67.d
614.3 ± 5.4 Ma

30 um-32.d
639.0 ± 6.0 Ma

24 um-76.d
601.3 ± 6.0 Ma

24 um-77.d
2021.7 ± 20.4 Ma

24 um-48.d
2077.1 ± 13.8 Ma

30 um-70.d
2211.9 ± 16.4 Ma 30 um-43.d

2133.8 ± 11.4 Ma

COR5 100 𝜇m

30 um-5.d
614.5 ± 
6.0 Ma

30 um-31.d
642.3 ± 7.0 Ma

24 um-44.d
623.1 ± 7.8 Ma

30 um-14.d
657.7 ± 6.2 Ma

24 um-31.d
721.7 ± 7.0 Ma 24 um-66.d

1773.8 ± 42.3 Ma

24 um-53.d
2092.1 ± 27.2 Ma

30 um-19.d
2187.5 ± 10.8 Ma

COR2

100 𝜇m

24 um-95.d
613.6 ± 6.4 Ma

30 um-25.d
1005.5 ± 9.6 Ma

30 um-2.d
1889.0 ± 13.5 Ma

30 um-5.d
2003.4 ± 11.8 Ma 24 um-92.d

2150.5 ± 15.2 Ma

30 um-5.d
2003.4 ± 11.8 Ma

24 um-27.d
2070.1 ± 15.6 Ma

24 um-91.d
1943.8 ± 25.6 Ma

24 um-82.d
705.6 ± 7.0 Ma

24 um-7.d
819.0 ± 8.3 Ma

24 um-110.d
634.5 ± 7.3 Ma

30 um-12.d
622.2 ± 5.6 Ma

100 𝜇m

24 um-20.d
584.0 ± 6.1 Ma

24 um-107.d
628.9 ± 2.4 Ma

24 um-40.d
1963.7 ± 38.4 Ma

24 um-72.d
2839.3 ± 10.8 Ma

24 um-33.d
2106.8 ± 21.2 Ma

24 um-64.d
1892.4 ± 27.1 Ma

30 um-32.d
617.9 ± 5.3 Ma

24 um-28.d
586.4 ± 5.6 Ma

30 um-5.d
2084.9 ± 11.9 Ma30 um-24.d

2855.1 ± 10.2 Ma

24 um-118.d
651.0 ± 6.5 Ma

24 um-93.d
1906.7 ± 25.1 Ma

24 um-97.d
2047.4 ± 28.0 Ma

30 um-15.d
622.1 ± 5.6 Ma

30 um-17.d
2066.3 ± 12.7 Ma

COR1

Figure 4: Cathodoluminescence images of a selection of zircon grains from the Córdoba samples.
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Forty-nine percent of the data (n = 103) is included in a
late Tonian-Ediacaran (c. 835-543Ma, mean age of 628:7
± 0:6Ma) detrital zircon population, characterized by a
main peak at c. 610Ma and a very minor one at c. 805Ma.
Paleoproterozoic grains define two detrital zircon popula-
tions, which include Rhyacian-early Orosirian (c. 2207-
1958Ma, n = 48, 23.0% of the data) and late Orosirian-
Statherian (c. 1944-1799Ma, n = 24, 11.5% of the data)
dates. The mean ages of these populations are 2071:9 ± 2:1
and 1894:3 ± 3:2Ma, respectively, and correspond to the
peaks in the histogram and KDE plots (Figure 6(c)). A few
data (n = 7, 3.3%) form a very minor detrital zircon popula-
tion of Stenian-early Tonian (c. 1103-963Ma) age. Seven-
teen grains (8.1% of the data) have Meso to Neoarchean
ages (c. 2878-2607Ma) clustered at c. 2670 and 2830Ma.
Finally, very scarce grains yielded Paleoarchean (n = 1), late
Neoarchean-Siderian (n = 3), Ectasian (n = 3), and Tonian
(n = 3) ages.

4.1.4. Miaolingian Samples (COR5, COR6, COR8, and
COR9). These samples correspond to the Castellar Quartzite
(COR5 and COR6) and Los Villares Formation (COR8
and COR9).

(1) Castellar Quartzite. In samples COR5 and COR6, 295
analyses were carried out (121 and 174, respectively), 205

of which yielded concordant results (Figure 6(d)). Zircon
grains from these samples are rounded to elongated with
lengths of c. 50-150μm. Internal structures show frequent
continuous oscillatory zoning, rims overgrowing older cores,
and some sector zoning (Figure 4). Both samples have late
Ediacaran youngest detrital zircon populations (COR5:
559:0 ± 2:3Ma, n = 7, and MSWD = 1:18; COR6: 557:1 ±
3:43Ma, n = 3, and MSWD = 0:85).

The main detrital zircon population includes 143 late
Tonian-Ediacaran grains (c. 776-542Ma, 69.8% of the data)
with a peak broadly coinciding with the Ediacaran mean age
(628:9 ± 0:5Ma). Seventeen percent of the data (n = 34) have
Rhyacian-early Orosirian ages (c. 2213-1962Ma) clustered
in a peak with Orosirian mean age (2089:7 ± 2:4Ma). Minor
detrital zircon populations yielded late Orosirian-Statherian
(1806:0 ± 6:3Ma, n = 9, 4.4% of the data between c. 1915
and 1709Ma) and Neoarchean-early Siderian (scattered data
between c. 2682 and 2439Ma, n = 9, 4.4% of the data) ages.
Other scattered zircon grains have Mesoarchean (n = 2), late
Siderian-Rhyacian (n = 4), and late Calymmian-Tonian
(n = 4).

(2) Los Villares Formation. Samples COR8 and COR9 were
collected from the upper and lower Los Villares Formation,
respectively. Two hundred and sixty-eight analyses were

20 um – 99.d
567.9 ± 5.8 Ma

20 um – 6.d
625.4 ± 6.2 Ma

20 um – 82.d
675.1 ± 
6.6 Ma

20 um – 32.d
609.4 ± 5.9 Ma 20 um – 92.d

1894.53 ± 16.2 Ma 20 um – 30.d
1876.3 ± 18.2 Ma

20 um – 120.d
1916.5 ± 17.0 Ma

20 um – 12.d
2013.1 ± 12.1 Ma

20 um – 49.d
2515.0 ± 8.81 Ma

20 um – 100.d
2144.9 ± 16.3 Ma20 um – 26.d

634.8 ± 6.2 Ma

ZAF14

100 𝜇m

ZAF13
100 𝜇m

20 um – 68.d
567.6 ± 6.5 Ma

20 um – 34.d
640.9 ± 7.3 Ma

20 um – 28.d
1890.1 ± 13.0 Ma

20 um – 16.d
1925.3 ± 10.7 Ma

20 um – 14.d
2152.3 ± 10.1 Ma20 um – 120.d

2081.0 ± 12.4 Ma
20 um – 95.d
2182.6 ± 12.9 Ma

20 um – 122.d
611.6 ± 6.1 Ma

20 um – 22.d
1011.3 ± 11.2 Ma

20 um – 104.d
624.8 ± 6.5 Ma

20 um – 140.d
644.8 ± 6.3 Ma

ZAF8

100 μm

20 um – 17.d
591.2 ± 6.4 Ma

20 um – 42.d
1000.3 ± 9.9 Ma

20 um – 96.d
1975.5 ± 20.7 Ma

20 um – 137.d
2084.4 ± 9.7 Ma

20 um – 87.d
645.3 ± 6.6 Ma

20 um – 21.d
841.0 ± 8.2 Ma

20 um – 68.d
1864.2 ± 13.9 Ma

20 um – 112.d
639.7 ± 6.2 Ma

20 um – 127.d
664.2 ± 7.3 Ma

ZAF3

100 𝜇m

20 um – 80.d
576.6 ± 3.0 Ma

20 um – 22.d
971.0 ± 4.9 Ma

20 um – 68.d
1912.0 ± 30.3 Ma

20 um – 69.d
2448.0 ± 11.0 Ma

20 um – 117.d
2670.0 ± 11.9 Ma

20 um – 43.d
2030.2 ± 14.9 Ma

20 um – 89.d
1877.4 ± 25.7 Ma

20 um – 63.d
2065.8 ± 14.0 Ma

20 um – 104.d
649.0 ± 4.8 Ma

20 um – 21.d
620.7 ± 3.7 Ma

20 um – 71.d
635.4 ± 3.5 Ma

20 um – 96.d
788.4 ± 4.0 Ma

ZAF2 100 𝜇m

20 um – 44.d
601.2 ± 4.0 Ma

20 um – 78.d
1985.1 ± 
14.8 Ma

20 um – 24.d
2046.3 ± 
14.9 Ma

20 um –50.d
2117.5 ± 
13.9 Ma20 um – 28.d

2017.2 ± 14.1 Ma

20 um – 27.d
2632.7 ± 
11.0 Ma

20 um – 92.d
2689.7 ± 
13.4 Ma

20 um – 26.d
623.0 ± 3.1 Ma

20 um – 117.d
630.3 ± 3.3 Ma

20 um – 69.d
648.1 ± 3.5 Ma

20 um – 43.d
774.2 ± 3.7 Ma

ZAF1 100 𝜇m

20 um – 134.d
557.4 ± 2.6 Ma

20 um – 37.d
1781.7 ± 21.8 Ma

20 um – 102.d
2021.3 ± 12.0 Ma

20 um – 36.d
2059.9 ± 13.8 Ma

20 um – 115.d
3059.9 ± 8.6 Ma

20 um – 133.d
2171.5 ± 11.0 Ma

20 um – 22.d
1828.0 ± 17.8 Ma

20 um – 140.d
610.2 ± 3.6 Ma

20 um – 19.d
608.3 ± 2.7 Ma 20 um – 3.d

622.5 ± 3.1 Ma 20 um – 103.d
632.2 ± 
3.6 Ma

Figure 5: Cathodoluminescence images of a selection of zircon grains from the Zafra samples. Different colors correspond to different ages
following the same code as shown in Figure 4.
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carried out (149 in COR8 and 119 in COR9) and yielded 187
concordant results (Figure 6(e)). The grains are mainly elon-
gated, with lengths of c. 70-150μm, sector and continuous
oscillatory zoning, and cores overgrown by rims (Figure 4).
The youngest detrital zircon populations in both samples
gave very similar late Ediacaran ages (COR8: 583:0 ± 3:3
Ma, n = 3, and MSWD = 1:11; COR9: 601:9 ± 1:65Ma, n =
15, and MSWD= 1:3).

In these samples, the late Tonian-Ediacaran detrital zir-
con population is very dominant and includes 76.5% of the
data (c. 884-574Ma, n = 143, mean age of 645:4 ± 0:6Ma).
Minor detrital zircon populations cluster in three peaks at c.

1875, 2055, and 2180Ma. The youngest of these peaks is defined
by 15 data with late Orosirian-Statherian ages (c. 1948-1839Ma,
8.0% of the data) and a Statherian mean age (1875:8 ± 4:1Ma).
The other two minor peaks include Rhyacian-early Orosirian
data (n = 21, 11.2% of the data, c. 2229-1969Ma, mean age of
2127:1 ± 3:0Ma). Scattered grains yielded Neoarchean-
Siderian (n = 7) and late Stenian (n = 1) ages.

4.2. Zafra Section

4.2.1. Late Ediacaran Sample (ZAF1)

(1) Serie Negra Goup. Sample ZAF1 was collected from the
late Ediacaran Serie Negra Group (Table 1). One hundred

11.2% 4.3%

8.0%

76.5%

16.6%
4.4%

4.4%
69.8%

4.9%

8.1%

11.5%

3.3%

23.0% 49.3%

4.8%

9.2%

26.6%
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Córdoba (COR8, COR9) (n = 187/268)
Los Villares Fm.

Miaolingian

Córdoba (COR13, COR14) (n = 207/259)
Torreárboles Fm.

Terreneuvian

Córdoba (COR1, COR2) (n = 209/271)
Pedroche Fm.

Series 2

Córdoba (COR5, COR6) (n = 205/295)
Castellar quartzite

Miaolingian

Córdoba (COR10) (n = 76/107)
Serie Negra Gr.
Late Ediacaran

Late Tonian-Ediacaran (c. 850-540 Ma)

Stenian-early Tonian (c. 1150-850 Ma)

Late Orosirian-Statherian (c. 1950-1700 Ma)

Rhyacian-early Orosirian (c. 2200-1950 Ma)
Mesoarchean-early Siderian (c. 3200-2400 Ma)

Others ages and scattered data

Main Detrital Zircon ages:

(a) (b)

(c)

(e)

(d)

b

Figure 6: (a–e) U-Pb detrital zircon age distribution in the late Ediacaran-middle Cambrian samples of the Córdoba area (see location in
Figure 2). Diagrams include Kernel Density Estimates (KDE, black curves), histograms (colored bars), and pie-charts. Colors represent the
main detrital zircon ages. n: number of concordant data (bold)/total number of analyses; percentages were calculated according to the
number of concordant data.
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and forty analyses were carried out on the same number of
detrital zircon grains, yielding 111 concordant ages
(Figure 7(a)). Zircon grains are elongated, with lengths of
c. 100-150μm. The internal structures (Figure 5) show some
cores overgrown by rims and both sector and continuous
oscillatory zoning. The youngest detrital zircon population,
composed of 4 data between c. 597 and 589Ma, gave an
Ediacaran mean age (593:1 ± 1:6Ma and MSDW= 1:26).

The predominant detrital zircon population includes 55
data (49.5% of the data) of late Tonian-Ediacaran (c. 847-
557Ma) age and yields a latest Cryogenian mean age
(640:7 ± 0:5Ma) with a main Ediacaran peak at c. 630Ma.
The Rhyacian-Orosirian population represents 22.5% of
the data (n = 25; c. 2260-1985Ma; mean age of 2129:4 ±
2:5Ma), which appear clustered around two peaks at c.
2210 and 2045Ma. Minor detrital zircon populations have
Orosirian-Statherian (c. 1920-1782Ma, n = 5, 4.5%, mean
age of 1866:4 ± 6:7Ma) and Mesoarchean-Siderian (c.
3135-2440Ma, n = 21, 18.9%, with two minor peaks at c.
3025 and c. 2580Ma) ages. A few scattered zircon grains

yielded Paleoarchean (n = 1), Siderian (n = 1), Statherian
(n = 1), and Tonian (n = 2) ages.

4.2.2. Terreneuvian Samples (ZAF2 and ZAF3)

(1) Torreárboles Formation. Two hundred and eighty analy-
ses (140 in sample ZAF2 and 140 in sample ZAF3) were car-
ried out on detrital zircon grains from these samples, 190 of
which yielded concordant results (Figure 7(b)). The zircon
grains from these samples have a length from c. 80 to
120μm, and they are mainly elongated. Their internal
structures include continuous oscillatory zoning and cores
overgrown by rims (Figure 5). The youngest detrital zir-
con population of these two samples are Ediacaran
(ZAF2; 596:6 ± 1:9Ma, n = 4, and MSWD = 1:46) and
Early Cambrian (ZAF3; 526:7 ± 1:6Ma, n = 3, and MSWD=
0:61) in age.

The main peak in the distribution plot (c. 645Ma) is
defined by 40.5% of the data (n = 77), with late Tonian-
Ediacaran ages (c. 814-555Ma) and a late Cryogenian mean
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age (646:7 ± 0:4Ma). Another important detrital zircon pop-
ulation is the Rhyacian-early Orosirian one, including 25.9%
of the data (n = 49) between c. 2189 and c. 1985Ma (mean
age of 2093:7 ± 1:7Ma). Sixteen percent of the data (n = 31)
have Mesoarchean-early Siderian ages ranging from c. 3194
to c. 2367Ma but show a rather dispersed distribution. Two
minor detrital zircon populations yielded Orosirian-
Statherian (c. 1926-1836Ma, n = 8, 4.2% of the data, mean
age of 1889:8 ± 6:5Ma) and Stenian-early Tonian (c. 1113-
866Ma, n = 8, 4.2% of the data, mean age of 947:2 ± 1:8Ma
) ages. Finally, several scattered grains have Paleoarchean
(n = 7), Siderian-early Rhyacian (n = 3), Statherian (n = 2),
Ectasian (n = 1), and early Cambrian (n = 4) ages.

4.2.3. Miaolingian Samples (ZAF14, ZAF8, and ZAF13).
Among the Miaolingian samples from the Zafra area
(Table 1), ZAF8 and ZAF13 were collected from the
Vallehondo Formation, while ZAF14 belongs to the Castel-
lar Quartzite, which, in this area, has been described as an
intercalation within the Vallehondo Formation (Figures 2(b)
and 3; Palacios et al., [90]). ZAF13 was collected below the
Castellar Quartzite, while ZAF8 is from above. Nevertheless,
the two Vallehondo Formation samples yielded very similar
results and are described together.

(1) Castellar Quartzite. One hundred and forty analyses were
carried out on detrital zircon grains from sample ZAF14 and
yielded 94 concordant results (Figure 7(c)). Zircon grains are
rounded to elongated, with lengths of c. 100-150μm, cores
overgrown by rims, and sector and continuous oscillatory
zoning (Figure 5). The youngest detrital zircon population
includes 6 dates and is late Ediacaran in age (571:5 ± 2:4Ma
and MSWD= 0:91).

The main peak observable in the KDE plot is marked by
the Cryogenian-Ediacaran data (c. 712-564Ma, n = 48,
51.1% of the data, mean age of 615:4 ± 0:9Ma). Similarly,
to the other samples so far described, ZAF14 is characterized
by a late Orosirian-Statherian detrital zircon population
(c.1954-1837Ma, mean age of 1901:9 ± 2:9Ma), but in this
case, it includes up to 26.6% of the data (n = 25). Minor pop-
ulations consist of Rhyacian-early Orosirian (c. 2178-
2013Ma, n = 9, 9.6% of the data, mean age of 2092:5 ± 4:2
Ma) and late Neoarchean-Siderian (c. 2515.0-2358.8Ma,
n = 5, 5.3% of the data, peak at c. 2410Ma) dates. Scat-
tered grains have Mesoarchean (n = 1), Statherian (n = 2),
late Stenian-early Tonian (n = 3), and early Cambrian
(n = 1) ages.

(2) Vallehondo Formation. A total of 280 analyses were car-
ried out on samples ZAF8 (140) and ZAF13 (140), yielding
210 concordant results (Figure 7(d)). The zircon grains from
these samples have lengths of 100-150μm and mainly elon-
gated shapes. The internal structures show frequent sector
zoning and cores overgrown by rims, as well as some contin-
uous oscillatory zoning (Figure 5). The youngest detrital zir-
con populations in the two samples are late Ediacaran in age
(ZAF8: 574:6 ± 1:2Ma, n = 21, and MSWD = 0:96; ZAF13:
575:7 ± 2:2Ma, n = 7, and MSWD= 0:96).

Sixty-four percent of the data (n = 135) have late
Tonian-Ediacaran ages (c. 845-545Ma) organized in a main
peak at c. 595Ma and with an early Ediacaran mean age
(621:5 ± 0:5Ma). Most of the remaining data are distributed
in 4 minor peaks with Stenian-early Tonian (mean age
1006:8 ± 2:6Ma, c. 1118-908Ma, n = 16, 7.6% of the data),
late Orosirian-Statherian (mean age 1862:3 ± 3:3Ma, c.
1942-1754Ma, n = 16, 7.6% of the data), Rhyacian-early
Orosirian (mean age 2118:6 ± 1:9Ma, c. 2190-1965Ma, n =
26, 12.4% of the data), and Mesoarchean-Siderian (c. 2819-
2447Ma, n = 8, 3.8% of the data, peaked at c. 2705Ma) ages.
Scattered zircon grains have Paleoarchean (n = 2), late Side-
rian (n = 1), and Statherian-Stenian (n = 6) ages.

5. Discussion

5.1. Maximum versus True Depositional Ages. The youngest
detrital zircon populations (YDP) in the studied samples
are Ediacaran, except for sample ZAF3 that yielded Terre-
neuvian age (c. 527Ma). Leaving aside this sample and those
from the late Ediacaran Serie Negra Group, no systematic
variation in the YDP is observed along the Cambrian strati-
graphic sequence, with all values ranging from c. 557 to c.
602Ma (Figure 8). YDP are used to constrain maximum
depositional ages (MDA) when no true depositional ages
(TDA) derived from paleontological dating and/or direct
numerical dating of volcanic intercalations are available.
This is not the case in the studied samples, which have been
accurately dated based on their fossiliferous content [83, 90,
97–99]. Thus, the TDA of the studied samples is generally
between c. 35 and 60Ma younger than MDA, with this dif-
ference decreasing towards the bottom of the Cambrian
stratigraphic sequence (Figure 8). This trend is well in accor-
dance with the results obtained from Ordovician-Devonian
OMZ metasedimentary rocks, with YDP ranging from 582
to 592Ma and differences between MDA and TDA of 100-
180Ma [23].

According to most authors, the Cambrian-Devonian
succession of the OMZ represents a pre- (early Cambrian)
and synrift (middle Cambrian) to passive margin (Ordovi-
cian-Devonian) transition, coeval to the opening of the
Rheic, and other minor peri-Gondwanan oceans (e.g., [36,
65, 73]). The comparison between TDA and MDA supports
this tectonic interpretation, with the maximum differences
between TDA and MDA occurring during early Devonian
time, i.e., at the end of the period of oceanic expansion that
preceded the Variscan orogeny. Nevertheless, the prominent
presence of lower Cambrian to Lower Ordovician plutonic
and volcanic rocks outcropping in the OMZ (e.g., [65] and
references therein) compared with the absence of these ages
in the detrital zircon populations found in coeval and youn-
ger sedimentary rocks is intriguing. This is especially true in
the case of the Cambrian rocks of this study, supposedly
deposited during the rifting stage in the northern Gondwa-
nan margin, when differential block uplift and rotation
might have favored the incorporation of synrift igneous
material into coeval or slightly younger sediments. The most
plausible explanation for the absence of Cambrian detrital
zircon populations (only very few scattered grains were
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found in the studied samples) is that this magma-rich rift
environment was below sea level at that time and was not
exhumed to the surface until the collisional and/or postcolli-
sional stages of the Variscan orogeny during Carboniferous-
Permian time. Sample ZAF3 from the Torreárboles Forma-
tion breaks this rule, since its MDA and TDA are virtually
coincident, which probably means that synrift igneous-

derived detrital zircons were occasionally incorporated dur-
ing the deposition of these Terreneuvian detrital sequences
of the OMZ.

To sum up, the comparison between MDA and TDA in
the Lower Cambrian-Lower Devonian sequence of the OMZ
is compatible with a rift to drift transition, in which the dif-
ference between TDA and MDA increases upwards from

EDIACARAN

TERREN.

LOWER

LOWER
CARBONIFEROUS

MID.-UP.

SILURIAN

FURONG.

M
IA

O
LI

N
G

IA
N

SE
RI

ES
 2

O
RD

O
V

IC
IA

N

LOWER
DEVONIAN

CA
M

BR
IA

N

n = 137

n = 247

n = 414

n = 304

n = 392

n = 209

n = 993

n = 190

n = 207

n = 226

n = 111

n = 76

0 500 1000 2000
Age (Ma)

30001500 2500 3500

MDA (Ma)

~550

~540

593-586

591-582

590

565

567-576

579

593

597-527

602-557

575-571

CH6

Unconformity

Black quartzite

Sandstone

Amphibolite

Conglomerate 

Slate

Shale

Limestone

Volcanic rocks

1 km

�is work (Córdoba)

�is work (Zafra)

Previous works*

�is work

Previous works*

SAMPLES:

Figure 8: Synthetic stratigraphic column of the OMZ with KDEs of the Cambrian-Devonian samples studied in this (black stars) and
previous (white stars) works (∗): [23, 26, 28, 37, 68, 128, 129]. MDA: maximum depositional age.

13Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2022/6187518/5750878/6187518.pdf
by Univ de Granada Biblioteca Fac de Ciencias user
on 16 January 2023



being almost coeval (in a lower Cambrian sample) to c.
180Ma (Lower Devonian), while the input from
intrabasinal-derived rift-related magmatic sources was gen-
erally very limited.

5.2. Potential Sources of Detrital Zircon Grains in the
Cambrian Rocks of the Ossa-Morena Zone. The Cambrian
samples studied in this work were deposited during a time
lapse of c. 40Ma (c. 540-500Ma), during the rifting process
that finally led to the formation of the northern Gondwanan
margin. The dominant detrital zircon population in all the
samples is the late Tonian-Ediacaran one (850-550Ma),
which represents between 40 and 90% of the concordant
analytical results (Figures 6 and 7). Zircon grains from these
ages can be attributed to the prominent long-lived Cado-
mian magmatic arc and the partially coeval Pan-African
orogen, whose materials are dominant in the vast majority
of Cambrian to Carboniferous metasedimentary rocks of
the Variscan orogen (Figure 9) (e.g., [23, 31, 100–104] and
references therein, [105–110]).

The second order detrital zircon populations are
Rhyacian-early Orosirian and late Orosirian-Statherian (c.
2200-1950 and 1950-1700Ma, respectively) in age, together
accounting for 8-36% of the concordant ages (Figures 6
and 7). Several samples also contain Mesoarchean-early
Siderian grains representing up to 19% of the concordant
data (Figures 6 and 7). The commonly invoked source for
these detrital zircon populations is the WAC (Eburnean
and Leonian-Liberian orogenies, respectively) (e.g., [111]
and references therein); although, they are also compatible
with a Tuareg Shield origin (see [104] and references
therein).

Samples ZAF8 and ZAF13 slightly depart from the
above-mentioned pattern, with the minor presence of a
Stenian-early Tonian detrital zircon population peaked at
c. 1Ga, which represents c. 8% of the concordant results
(Figure 7(d)). Similar results to the ones obtained in these
two samples were reported from Cambrian-Lower Devonian
rocks of the Moroccan Variscides, where the c. 1Ga sub-
ordinate detrital zircon population has been attributed to
intermittent and distant sources located at the Saharan
Metacraton [100, 102, 103, 107, 108].

Previous geochronological data on detrital zircon grains
from Cambrian OMZ rocks (e.g., [26, 30, 68, 110]) yielded
results totally coincident with the ones reported here, i.e., a
main population of late Tonian-Ediacaran (850-550Ma;
Figure 8) ages, with minor peaks centered at c. 2Ga, and lack
of Stenian-early Tonian detrital zircon grains (except for
very minor and local occurrences). These data, combined
with the results from samples of the Serie Negra Group, have
been used to locate the OMZ close to the WAC during
Ediacaran-Cambrian times, in a western position with
respect to the other Variscan zones [26, 28, 30, 68]. Never-
theless, Solís-Alulima et al. [110] proposed that the Sierra
Albarrana Domain, located in the northern part of the
OMZ and made up of poorly dated Cambrian rocks, is akin
to the CIZ and was placed close to the Saharan Metacraton
at Cambrian times. This proposition is difficult to reconcile
with the virtual absence of c. 1Ga detrital zircon grains in

the Sierra Albarrana rocks, since the presence—not the
absence—of a noticeable peak of that age is taken as diagnos-
tic of a Saharan Metacraton provenance (e.g., [15]).

5.3. Cambrian to Ordovician Change in the Detrital Zircon
Record of the Ossa-Morena Zone. The rift to drift transition
in the OMZ deduced from the stratigraphic and magmatic
records (e.g., [65, 73, 112]) is also reflected in the available
detrital zircon spectra. In this respect, the OMZ middle
Ordovician-Lower Devonian rocks contain an important
Stenian-early Tonian detrital zircon population (up to 27%
of the concordant data; Figures 8 and 9) [23] and, hence,
strongly contrast with the Cambrian rocks reported here
and in previous works (Figure 10), which have only spo-
radic Stenian-early Tonian detrital zircon grains, or more
frequently show a total absence of these ages. We tenta-
tively attributed the presence of an apparent Stenian-early
Tonian detrital zircon population in Ordovician-Lower
Devonian OMZ rocks to an Ediacaran-earliest Cambrian
eastward translation of this continental piece during the
vanishing stages of the Cadomian orogeny, i.e., from an
Ediacaran location close to the WAC to a Cambrian posi-
tion close to the Saharan Metacraton [23].

There is an almost consensus in primarily (Ediacaran
time) locating the OMZ close to the WAC [26, 28, 30, 68].
Furthermore, the putative correlation of the OMZ in Iberia
with the STZ in Central Europe, which is widely accepted
(e.g., [38, 39, 40, 113, 114]), reinforces this paleogeographic
attribution. Thus, the OMZ-STZ would constitute an elon-
gated continental terrane (Figure 11(a)), with a c. 2Ga
Paleoproterozoic WAC basement which was dredged in
the Galicia Bank [115, 116] and crops out locally in the
Cherbourg-Trégor region of NW France [117–119] and the
STZ (e.g., [40] and references therein). Finally, the Sm-Nd
isotopic signature of Ediacaran rocks from the OMZ and
STZ also supports the affinity with the Paleoproterozoic
WAC [120, 121].

Given that the available detrital zircon data cover now
the whole OMZ preorogenic stratigraphic sequence (Upper
Ediacaran-Lower Devonian; Figures 8 and 9), we will try in
the next paragraphs to refine our initial hypothesis for the
incorporation of a noticeable 1Ga detrital zircon population
at Ordovician time.

In this regard, a first issue to consider is the possibility of
intermediate sediment repositories (ISR) [122] for the late
Stenian-early Tonian detrital zircon grains, which would
prevent from stablishing a direct connection with the pri-
mary source. Nevertheless, the lack of a significant uncon-
formity between the Cambrian and Ordovician-Devonian
rocks in the OMZ undermines this possibility. Furthermore,
the occurrence of a minor 1Ga detrital zircon population is
only occasional in Cambrian OMZ rocks, as well as in coeval
rocks from other areas located close to the WAC (e.g., Anti-
Atlas). Consequently, these rocks cannot be considered an
ISR for the Stenian-early Tonian detrital zircon grains found
in the Ordovician-Devonian OMZ sequence (up to 27%),
since sediment recycling should maintain the detrital zircon
content in the primary/intermediate source [122] but not
selectively augment the content of one of the populations.
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Therefore, a direct connection with a primary 1Ga source
seems justified by the high percentage of this population in
the Ordovician-Devonian OMZ rocks. Furthermore, an
MDS plot of the available Ediacaran-Devonian OMZ sam-

ples also supports this fundamental difference between
pre-Ordovician and Ordovician-Devonian OMZ rocks
(Figure 10). Thus, Ediacaran-Cambrian samples cluster in
two groups characterized by a slightly different percentage
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distribution of the major populations. In contrast,
Ordovician-Devonian samples cluster in a clearly separated
third group, reflecting the presence of an increasing num-
ber (≥20% of the data) of Stenian-early Tonian dates,
absent or very scarce in older samples. We can conclude
that the most plausible explanation for this contrast in
the Stenian-early Tonian detrital zircon content is related
to a change in sediment provenance from a WAC source
(Cambrian) to a Saharan Metacraton one (Ordovician-
Devonian), where these zircon grains were available from
a primary source located in the present-day interior of
Africa (e.g., [15]).

A second issue to be addressed is whether the Cambrian-
Ordovician change in the detrital zircon record of the OMZ
is due to a reorganization of the drainage systems and/or to
an eastward displacement of the OMZ-STZ terrane. This
Cambrian-Ordovician change is coeval to the rift-drift
transition culminating in the formation of the northern
Gondwanan margin, which, in turn, might have favored sed-
iment input from the Saharan Metacraton. Thus, relief decay
associated with passive margin development may have
destroyed putative topographic barriers (remains of the
Cadomian magmatic arc and Pan-African belt) that
impeded sediment supply from the east (Saharan Metacra-
ton). Furthermore, drainage system expansion during this
stage is also plausible as attested by the eastern Gondwana
super-fan system [15], which might have enlarged its depo-
sitional area since Ordovician time. If this was the case, the
Cambrian-Ordovician change in the detrital zircon content
of OMZ rocks would be simply due to a shift in the sedimen-

tary systems with the addition of an eastern Gondwanan
source to the sediment supply.

Alternatively, the change in the OMZ Cambrian-
Ordovician detrital zircon record might be due to a tectoni-
cally driven eastward displacement that brought this terrane
to a closer position with respect to other zones of the Iberian
Massif (CIZ, WALZ, and CZ). In this regard, Azor et al. [23]
proposed that the eastward translation of the OMZ occurred
during the vanishing stages of the Cadomian orogeny (latest
Ediacaran-earliest Cambrian). Nevertheless, the data pro-
vided here constrains the change in the detrital zircon record
at late Cambrian to early Ordovician time, coeval with the
rift-to-drift transition and not with the subduction-to-rift
one as initially claimed [23].

To sum up, two alternative scenarios can explain the
change in the detrital zircon record of the OMZ: (i) a drain-
age system reorganization favored by the rift to drift transi-
tion with no significant translation of the OMZ terrane, or
(ii) an eastward displacement of this terrane facilitated by
plate tectonic kinematics. In the following paragraphs, we
explore an intermediate scenario, which is maybe more
likely considering the whole available data.

A first option to be considered is whether the OMZ
might have been located close to the WAC all along the
Ediacaran-Devonian timespan, or a certain amount of tec-
tonically driven eastward translation to close to the Saharan
Metacraton is required. In this regard, the Ediacaran OMZ
samples only contain Paleoproterozoic and Neoproterozoic
detrital zircon grains, plausibly derived from the WAC and
the surrounding Pan-African and Cadomian mountain belts,
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Metacraton, and Arabian-Nubian Shield); VWA/NA: assumed motion of the North Africa complex basement with respect to the West
African Craton; VWA/CS: assumed motion of the Cadomian-subducted plate with respect to the West African Craton. (c) After the
rifting stage that marks the onset of the Variscan cycle (early-middle Cambrian), relief decay and drainage system reorganization
occurred at late Cambrian-early Ordovician rift-to-drift transition, facilitated the incorporation of detrital zircon grains sourced at the
Saharan Metacraton.
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with no input from the Saharan Metacraton. The Cambrian
samples reported here have very similar detrital zircon spec-
tra, though in some of them, a minor 1Ga population is also
present. This can be related to a distant and intermittent
Saharan Metacraton source, but the tectonic setting might
have caused eastward translation that favored the incorpora-
tion of the 1Ga detrital zircon grains. Despite the lack of
reliable geometric and kinematic data on the Cadomian
orogeny, the distribution and geochemistry of late Ediacaran
rocks in the OMZ were unanimously attributed to a mag-
matic arc formed over a subduction zone affecting the north-
ern Gondwanan margin at that time [26, 64, 121, 123].
Based on the proposal of Linnemann et al. [26] for the
Cadomian subduction kinematics and the direct evidence
of Pan-African collisional kinematics [124], Azor et al. [23]
suggested a scenario with right-lateral displacement at latest
Ediacaran-early Cambrian times (Figure 11(b)), shortly after
the interruption of the Pan-African convergence. Thus, the
OMZ terrane (and its European counterparts) would have
undergone eastward displacement during the vanishing
stages of the Cadomian orogeny. This displacement would
have translated the OMZ close to the Tuareg Shield
(Figure 11(b)), which, in turn, would have provided most
of the detrital zircon grains found in the Cambrian rocks
reported here. Interestingly, the Tuareg Shield is character-
ized by the absence of c. 1Ga zircon grains ([104] and refer-
ences therein), in accordance with the detrital zircon spectra
found in the Cambrian rocks of the OMZ. During early-
middle Cambrian time, after this dextral displacement of
the OMZ, rift-related sedimentation and magmatism pre-
vailed [65, 125].

The rift-to-drift evolution of the OMZ and other
European counterparts occurred in the context of Rheic
and other minor ocean opening at late Cambrian-early
Ordovician times. In this situation, the reorganization of
the drainage systems feeding the OMZ might have been
the ultimate responsible for the incorporation of 1Ga detri-
tal zircon grains coming from the Saharan Metacraton
(Figure 11(c)). By admitting an eastward translation of the
OMZ during the vanishing stages of the Cadomian orogeny
to a paleoposition close to the Tuareg Shield, we do not need
to invoke additional tectonic displacement during the rift-
to-drift transition, and, hence, we claim for the simplest
explanation, i.e., a variation of the drainage system caused
the change in the OMZ detrital zircon record with no signif-
icant tectonic displacement (Figure 11(c)). However, both
boundaries of the OMZ are important tectonic contacts with
pre-Variscan and Variscan displacement, and, hence, the
putative influence of tectonic displacement cannot be
excluded.

6. Conclusions

(i) Two classical sections of the Ossa-Morena Zone
(Córdoba and Zafra; OMZ) with well-exposed and
palaeontologically dated Cambrian rocks, have been
analyzed to obtain detrital zircon U-Pb geochrono-
logical data. All of the studied samples show a dom-
inant late Tonian-Ediacaran population which

represents 40-90% of the concordant ages and
peaks at c. 600Ma. Secondary populations include
Rhyacian-early Orosirian and late Orosirian-
Statherian ages which account for 8-34% of the
concordant data and show peaks centered at c.
2100 and 1900Ma. Mesoarchean-early Siderian
ages usually define a minor population represent-
ing 3-19% of the concordant data and show peaks
between c. 2450 and 3050Ma. Most of the studied
samples lack a Stenian-early Tonian population,
except for two samples that show a minor peak
(3-8% of the data) at c. 1000Ma

(ii) The youngest detrital zircon population in most of
the Cambrian rocks of the OMZ is late Ediacaran
(c. 557-602Ma), with no systematic variation along
the stratigraphic sequence. By taking these ages as
maximum depositional ages (MDA) and comparing
them with true depositional ages (TDA) of the
Cambrian rocks of the OMZ, it can be inferred that
the TDA of the studied samples is about 35-60Ma
younger than the MDA, with this gap increasing
towards the top of the stratigraphic sequence. Only
one sample yielded a youngest detrital zircon popu-
lation with early Cambrian age (i.e., close to the
stratigraphic age), which can be attributed to detri-
tus derived from intrabasinal magmatic activity
during the rifting that affected the northern Gond-
wana margin at Cambrian time

(iii) The detrital zircon contents found in the Cambrian
rocks of the OMZ suggest derivation from the West
African Craton and/or the Tuareg Shield and hence
can serve to locate this terrane in a western position,
with respect to the other Iberian Variscan zones at
the onset of the rifting stage that opened the Rheic
Ocean and drifted Avalonia from Gondwana

(iv) The detrital zircon spectra of the Cambrian OMZ
rocks have a marked difference with middle
Ordovician-Lower Devonian ones. The latter con-
tain a noticeable Stenian-early Tonian detrital zircon
population with a peak at c. 1000Ma, while the for-
mer lack this population, or it only represents a very
minor population. This difference is explained in
terms of a reorganization of the drainage systems
during the rift-to-drift transition occurred at late
Cambrian-early Ordovician time, which would have
favored the incorporation of detrital zircon grains
derived from the Saharan Metacraton

(v) Previously, the latest Ediacaran-earliest Cambrian
evolution of the OMZ involved significant eastward
displacement from an initial position close to the
West African Craton to a final one close to the
Tuareg Shield. This eastward translation occurred
during the vanishing stages of the Cadomian orog-
eny, which might have changed the plate kinematic
scenario from subduction to right-lateral shearing
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