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Olgierd Hryniewicz a, Olga Kamińska a, Gennaro Vessio b, Natalia Díaz-Rodríguez d

a Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
bUniversity of Bari Aldo Moro, Bari, Italy
c Institute of Psychiatry and Neurology, Warsaw, Poland
dUniversity of Granada, Spain
a r t i c l e i n f o

Article history:
Received 10 March 2022
Received in revised form 17 August 2022
Accepted 3 October 2022
Available online 8 October 2022

Keywords:
eXplainable Artificial Intelligence
Linguistic summaries
Granular computing
Fuzzy linguistic descriptions
Machine Learning
Neural networks
Bipolar disorder
a b s t r a c t

We introduce an approach called PLENARY (exPlaining bLack-box modEls in Natural
lAnguage thRough fuzzY linguistic summaries), which is an explainable classifier based
on a data-driven predictive model. Neural learning is exploited to derive a predictive model
based on two levels of labels associated with the data. Then, model explanations are
derived through the popular SHapley Additive exPlanations (SHAP) tool and conveyed in
a linguistic form via fuzzy linguistic summaries. The linguistic summarization allows trans-
lating the explanations of the model outputs provided by SHAP into statements expressed
in natural language. PLENARY accounts for the imprecision related to model outputs by
summarizing them into simple linguistic statements and for the imprecision related to
the data labeling process by including additional domain knowledge in the form of
middle-layer labels. PLENARY is validated on preprocessed speech signals collected from
smartphones from patients with bipolar disorder and on publicly available mental health
survey data. The experiments confirm that fuzzy linguistic summarization is an effective
technique to support meta-analyses of the outputs of AI models. Also, PLENARY improves
explainability by aggregating low-level attributes into high-level information granules, and
by incorporating vague domain knowledge into a multi-task sequential and compositional
multilayer perceptron. SHAP explanations translated into fuzzy linguistic summaries sig-
nificantly improve understanding of the predictive modelling process and its outputs.
� 2022 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

eXplainable Artificial Intelligence (XAI) embraces a plethora of intelligent methods that are enriched by the ability to
describe and explain the decision made by the model in a way that can be easily understood by end-users. Unfortunately,
common XAI techniques provide explanations in the form of visual descriptions (plots, heatmaps, etc.) that are hardly
interpreted by common users. Accessibility to such explanations is limited to a technical audience which includes AI experts
(developers and data/research scientists) and domain experts who have no technical background but can validate model
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output and explanation techniques. Most XAI techniques do not use natural language as a universal means of communica-
tion to convey model explanations. Indeed, there is an abundance of works that derive natural language descriptions of
image classifiers or rather image captioning models, but few attempts have been made to derive linguistic explanations
for models learned from tabular data and/or derived from model-agnostic XAI techniques. Furthermore, although some
works aim to visualize a saliency map over words [1] to render an explanation in natural language, most approaches cen-
tered on explainability focus on local explanations for question answering tasks or saliency analysis to highlight the impor-
tance of words based on attribution scores.

Another important aspect is that, in most XAI techniques, the features present are primarily taken into account when
explaining their importance, while the missing features are discarded [2]. However, in real-world applications, the lack of
a certain feature is also informative in determining a type of outcome class. For example, in supporting medical diagnosis,
such as bipolar disorder prediction, a lack of a symptom, such as anxiety, is informative in determining the healthy class.
Therefore, XAI methods should be equipped with mechanisms to account for the lack of features and symptoms and present
explanations at different levels of granularity so that psychiatrists understand the comprehensive process of arriving at the
prediction of healthy or pathological classes and symptoms.

The goal of this work is to increase the explainability of a classification model learned from tabular data by providing
descriptions in natural language and addressing the uncertainty identified at various stages of the entire modeling process
leveraging the expert knowledge available in the form of various levels of annotations associated with the data. To this end,
we propose a three-step approach called PLENARY (exPlaining bLack-box modEls in Natural lAnguage thRough fuzzY lin-
guistic summaries)1 which manages to create an accurate and explainable classifier equipped with linguistic summaries han-
dling imprecision at different levels. In the first step, we apply a neural network model to learn how to classify data by
exploiting full supervision in the form of standard class labels, intended as a primary level of labels, as well as additional anno-
tations that may come from domain or expert knowledge, which represent an intermediate labels. Taking advantage of the
availability of these mid-level annotations mitigates some of the uncertainty related to the prediction outcome of the final
classes. In the second step, we derive model explanations by applying the well-known SHapley Additive exPlanations (SHAP)
technique as a versatile and model-agnostic XAI technique based on game theory that is well suited to providing model expla-
nations from tabular data [2]. Since SHAP results are visual and imprecise, we address this imprecision in the third step of our
approach by applying linguistic summarization to derive natural language sentences that support understanding of such graph-
ical explanations. Then, through linguistic summaries, it is possible to directly compare different SHAP outputs. It is worth not-
ing that what we are proposing is not a hybrid fuzzy neural approach, but a multi-step pipeline for XAI, where the output of
each step is the input to the next one in a cascade fashion. To validate our approach, we consider medical application domain
where decision support AI needs to be validated by experts. Specifically, we consider a real-life use case of predicting bipolar
disorder states using acoustic attributes of phone calls and a publicly available benchmark dataset on mental health surveys.

To summarize, the major contribution of this work is PLENARY: an explainable classification system enriched by fuzzy
linguistic summarization that represents a complete classification framework for the explanation and summarization of out-
puts. Other major contributions incorporated into the proposed framework are the following:

� A compositional neural network architecture that learns a multi-output classification model via supervised learning
based on a two-level hierarchy of labels associated with the data;

� The use of fuzzy linguistic summaries to convey imprecise explanations provided by SHAP in natural language
expressions;

� The validation of the proposed framework in a medical diagnosis use case which is the monitoring of bipolar disorder to
assess and explain classes related to mental health. The performance of PLENARY is also illustrated in the use case of
treatment prediction based on mental health survey data.

The rest of this paper is structured as follows. Section 2 presents the bipolar disorder use case as the main motivating
example. Section 3 reviews related literature. Section 4 presents the proposed method. Section 5 describes the experimental
setup and discusses the results obtained. Section 6 concludes the paper and outlines the future directions of our research.
2. Motivation: a use case in bipolar disorder classification as a decision support system

In this section, we motivate our research by illustrating a typical case study in the context of psychiatric care. Specifically,
we consider the problem of supporting the diagnosis of bipolar disorder (BD) state through the analysis of acoustic data from
phone calls. Some progress has been made in the treatment of BD over the past decade; nevertheless, the diagnosis and mon-
itoring of this disorder remains challenging. This is probably due to the still limited understanding of the nature of the dis-
ease and, consequently, the difficulty in predicting relapses. One issue that has received attention recently is a fundamental
one: the classification of BD episodes.
1 PLENARY repository:https://github.com/ITPsychiatry/plenary
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2.1. The needs for explaining relations between attributes, symptoms, and states

In the classification of BD episodes, the interpretability of an AI model is desirable to gain the user’s trust in the model
thanks to the understanding of the working mechanism underlying the model supporting the psychiatrist’s diagnosis. More-
over, the interpretability of the model can help the user to better identify any criticality in the data related to the specific
subject case and improve the model. In particular, in psychiatry, many clinical decisions are made based on both objective
factors and subjective considerations. Insights into the AI model decisions give the possibility to improve further human
preferences and judgments, which are not readily incorporated into empirical data.

Another motivation for this research is the improvement of the management of uncertainty that comes at different levels
when analyzing real-world data. In particular, for the BD use case, it is observed that the data annotations that are commonly
applied in state prediction (euthymia, depression, mania, mixed state) are uncertain. Recent reviews of existing mental disor-
der classification systems, e.g. [3], have highlighted the need to revise the criteria for diagnosing affective states that have
been promoted for many years. The current guidelines for mood disorders focus on a model that places much more emphasis
on symptom groups [4]. These guidelines explicitly recommend a descriptive approach to the diagnosis of BD, based on par-
ticular symptoms. Grouping commonly observed symptoms into domains allows for a more accurate reflection of real-world
observations. One of these proposed grouping strategies was based on distinct categories based on activity (i.e., general psy-
chomotor activity, speech), cognition (including thought disorder and disorganization), and emotion (i.e., mood, irritability,
disruptive behavior). A clear advantage of this approach is the appropriate description of mixed states (states that mix
depressive and manic symptoms) and a better understanding of the sequence of symptoms.

Clinicians can obtain a certain amount of information about a patient’s affective state by observing activity, mood, speed
of thought and speech, and general appearance. However, these conclusions are difficult to quantify and difficult to compare
objectively, for example in a subsequent visit. Common rating scales used in psychiatry, such as Hamilton Depression Rating
Scale (HDRS) and Young Mania Rating Scale (YMRS), are based on a disease classification (ICD-11/DSM-V) which needs to be
revised [4]. In particular, these rating scales are insufficient for motor symptoms, including activity, energy, and speech [5].
Another problem with scales is that these measures also depend on the interviewer’s skill, as well as the patients’ ability to
describe their emotions. Nevertheless, changes in general activity, mood, and speed of speech are key signs of mood states.
Therefore, real-time assessment of various objective parameters that reflect activity, mood, cognition, and speech may be an
alternative to clinical assessment in BD patients. However, there is a lack of objective biomarkers, especially those that are
easy to use in clinical practice. Thus, further research on BD should consider symptom groups rather than a set of strict cri-
teria [4].
2.2. The needs for explaining high-level acoustic attributes of speech

Voice analysis promises to support the monitoring of mental illnesses [6]. Acoustic features such as energy in different
bands or Mel-frequency parameters can be extracted from the voice common libraries, e.g., openSMILE2. Although the acous-
tic features of the voice extracted from smartphones, the so-called low-level attributes, allow for accurate prediction of BD
states, they are difficult for medical experts to interpret. A typical doctor using a decision support system does not have specific
domain knowledge of low-level acoustic descriptors. Psychiatrists are more inclined to make statements at the highest level of
granularity so that they can link it to their prior knowledge from the study of the state of the art and observations made in clin-
ical practice on the high-level features of speech. For example, [7] concludes that in the depressive state, the speech activity is
reduced and pause-related voice features are intensified.

Finally, the extraction of acoustic attributes from speech is accompanied by several uncertainties. In particular, patients
use devices with different microphone quality. The background noises recorded during the patient’s phone calls are chang-
ing. Furthermore, some phone calls are not processed if the patient has disabled the smartphone application responsible for
data collection. The proposed PLENARY approach takes into account high-level features of speech and annotations at differ-
ent levels. It explains not only the states but also symptoms, thanks to the use of fuzzy logic and a multitask sequential and
compositional multilayer perceptron.
3. Related work

In this section, we review relevant literature related to the three main components of our method, namely machine learn-
ing for tabular data, XAI techniques and linguistic summarization.
3.1. Machine learning for tabular data

Deep learning models have become the first choice solutions for image, video, and text data [8]. However, when it comes
to more standard tabular data, their predominance is no longer maintained and tree-based methods are usually preferred,
2 https://www.audeering.com/research/opensmile/.
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especially Gradient Boosting [9]. In fact, these are generally better suited to mixed categorical and numerical data and are
much less sensitive to feature scaling, and anomalies or noise in the data.

In the present study, we experiment with neural networks for the following main reasons. First of all, especially in the
presence of large and/or highly dimensional continuous data, such as those collected by sensors or instruments, even the
most classic multilayer perceptrons (MLPs) are still competitive in terms of predictive accuracy compared to standard
machine learning models, and sometimes they are able to provide better results. For example, in [10] simple neural networks
with few hidden layers and neurons have been successfully used for cataract detection, providing superior performance over
many other machine learning algorithms. Similarly, in [11] some authors of this work have found that simple MLPs can out-
perform tree-based methods when asked to classify pediatric patients with multiple sclerosis, based on their miRNA expres-
sions. In these cases, neural networks can directly learn new intermediate representations of the input data, effectively
solving classification or regression tasks. To this end, in this paper, we have deliberately chosen a model architecture that
is relatively simple and less prone to overfitting.

The second motivation for choosing neural networks is their high flexibility [12] and their ability to perform lifelong or
continual learning. In fact, they allow for a non-linear topology, shared layers, and even multiple inputs or outputs. In this
work, we will investigate a multi-output model with shared representation to exploit the ‘‘entanglement” between labels at
different levels concerning the same patients.
3.2. eXplainable AI for tabular data

Using the data a model has been trained with can tell a lot about a model’s behavior. This is a strategy often exploited by
many of the existing XAI techniques [13]. These are intended to make it easier to trace and understand the logic of a model
when resulting in a particular output for a given input. The XAI literature can be divided using several taxonomies [2], but
mainly it could be split into ante-hocmethods, which inherently provide some level of interpretability, and post hocmethods,
which, after having trained a black-box model, apply the XAI technique to display an explanation interface on top. Typically,
in models where the input data provided to the model is tabular, explanations come in the form of an association of how the
presence or absence of a feature affects model performance. The ante-hoc XAI methods inherently reach a certain level of
interpretability during model building. These include white-box or gray-box models (e.g., decision trees and random forests)
which typically exhibit greater interpretability at the cost of losing performance. To guarantee a proper balance between
model accuracy and transparency, in this work we focus on rendering post hoc methods in natural language.

The goal of post hoc XAI techniques is to explain the outputs of models that are not interpretable by design. Hence, a post
hoc method is typically applied as an additional step after building a model to derive some form of explanation. Most of these
methods are model-agnostic, meaning they can be applied to any underlying machine learning model. One of the most
widely used post hoc XAI methods is LIME (Local Interpretable Model-agnostic Explanations) [14] which explains the pre-
dictions of any classifier by computing importance scores of features based on a local approximation of the model around a
given prediction. Another recent post hoc method is DeepLIFT (Deep Learning Important FeaTures) which has been proposed
as an explanation method for deep learning models [15]. DeepLIFT decomposes the output of a neural model by back-
propagating all neurons’ contributions to each input feature. This is done by evaluating the difference between each neuron’s
output and a ‘‘reference” output and calculating the importance score based on this difference. Another framework is SHAP
(SHapley Additive exPlanations) [16] which emerged from game theory and uses the notion of a fair payout; in other words,
how to fairly assign responsibility to each feature for a model given the output. Given a model or data point prediction, the
SHAP value computed for each feature represents the positive or negative contribution of that particular feature value to the
final model result. In [16], SHAP has shown stronger agreement with human explanations than explanations extracted using
other XAI methods (LIME and DeepLIFT).

Many explainability techniques such as SHAP normally have a technical audience as the target of the explanation (e.g.,
data scientists or developers). However, it is often difficult to translate graphical analysis into simple terms for a non-
technical audience such as domain experts, decision-makers, or end-users (such as patients). Indeed, explanations of an
ML model are diverse, can be complex to interpret, and are often difficult to align with the language spoken by domain
experts or decision-makers. The ‘‘linguistic misalignment” that exists between algorithm explanations and human expert
explanations makes evident the need for simplified ways to communicate the result of XAI techniques. The use of natural
language can be a way to make explanations more compatible with those of domain experts. This is because ultimately mod-
els and decision support systems will need the verification and validation of these experts.

Other ways to help the compatibility of machine explanations with those of human experts are the use of explainable
neuro-symbolic methodologies such as aligning model training with expert knowledge graphs [17]. Backing up AI models
with an established knowledge base or scientific model is critical for implementing responsible AI systems, especially for
critical applications in the medical domain [18]. Given the high flexibility of the SHAP method (see for example [19]), in this
work we exploit SHAP to explain the output of the classifier developed to predict the final class. Since SHAP is suitable to be
applied to intermediate features, the model outcome can be compositional [17]. This means we have two levels of explain-
able features that serve as the logic of the final class explanation. Using SHAP we can verify which features are the most rel-
evant to predict the class (e.g., the BD state of a patient) and intermediate features (e.g., symptoms).
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3.3. Linguistic summary of a model outcome

Applications in various domains have demonstrated improved understanding of large datasets through the use of natural
language statements, e.g. [20,21]. The main objective of this paper is to mine the outputs of the XAI system to support non-
technicians (e.g., medical experts) with linguistic summaries on the relationship between the importance of features and
their impact on the model outputs. Within this research, the methodology of protoforms [22,23] and computations on fuzzy
sets are adapted to describe the relation between groups of attributes and global explanations. Various extensions have been
proposed in the literature for the form of linguistic descriptions and for the reasoning process itself; see, for example, the
review by Boran et al. [24]. In [25], the authors introduce composite protoforms and ground them on the theory of natural
language processing to allow for the identification of discourse relations in texts. In [26], multi-subject linguistic summaries
for graph databases are introduced, instead of relational ones. Recently, in [27] the authors introduce and discuss the com-
plex problem of plural referring expressions. There is also a group of works that focus on summarizing time-series data (e.g.,
[28]) or sequential data (e.g., [29]) to reflect their changing nature. Other methods use rules as an approach to get close to
natural language explanations, for example LORE [30]. Some others aim to produce natural language processing of tabular-
data predictive models [31]. These normally translate threshold-based conditions into if-then rules that put into context the
key features that make a data assigned to given model output. For example, Generalized Linear Rule Model (GLRM) [32] is an
XAI technique for producing global explanations of models that are weighted combinations of rules. Once the data scientist
has chosen the variables to study, GLRM displays their linear relationship with the model and allows combining rules with
linear terms to transform the contribution into rules of the type ‘‘if months since most recent request <¼ 21, the model reduces
the risk score of repayment by 0.3”. These rules can reflect whether the variable is positively or negatively affecting the pre-
diction, the location and size of the non-linear changes, the relation with the prediction score, the significance of the variable
relative to the prediction, and the direction of the correlation of the chosen variables. Regardless of the particular approach to
deriving sentences in natural language, a powerful way to represent and process linguistic terms while preserving their
human consistency is the definition of information granules [33]. Information granules can be informally defined as a col-
lection of objects linked together by some closeness (resemblance) relation that makes the objects indistinguishable at a
higher level [34]. As such, they can be regarded as abstract constructs that are well suited to represent linguistic term sets
that describe phenomena in an easily understandable way. Therefore, the idea of information granulation aligns very well
with the need to explain artificial models [35].

Being abstract entities, information granules are fuzzy rather than crisp, thus Fuzzy Set Theory (FST) can be a powerful
tool for representing granules. FST offers a suitable mathematical framework for defining information granules that can be
used within the ‘‘computing with words” paradigm [36]. According to this paradigm, propositions in natural language are
translated into fuzzy constraints on the variables involved. FST provides a good theoretical background to represent
perception-based information granules, which are easily associated with linguistic terms drawn from natural language.
Offering an intelligible view of concepts through the use of a simplified natural language, FST is a natural candidate for
designing explainable decision support models and linguistic terms described through fuzzy sets naturally lend themselves
to XAI techniques. This is the main motivation for using fuzzy granules in our proposed approach.

4. The proposed PLENARY approach

Formally, we assume the availability of a set X � Rn�d of n training examples represented by d attributes (features) and
labeled with one of t classes. Thus, each sample xi 2 X is associated with a one-hot ground truth vector of length t, here

denoted by y tð Þ
i 2 0;1f gt : Pt

j¼1y
tð Þ
j ¼ 1

n o
. The information about this class represents the first (main) level of labels associ-

ated with the data that enable the application of any supervised learning method to derive a single-task classification model.
We also assume that a second, intermediate level of s labels (mid-level labels for short), coming from domain knowledge, is
associated with the training data. Hence, each sample xi 2 X is also associated with a one-hot ground truth vector of length s,

here denoted by y sð Þ
i 2 0;1f gs : Ps

j¼1y
sð Þ
j ¼ 1

n o
. For example, in the motivating BD case study described in Section 2, each

patient can be associated with two levels of labels. At first, the patient is associated with s symptoms whose values can range
between 0 and a maximum depending on a clinical scale. Based on an estimate of these symptoms, a doctor typically assigns
a diagnosis in one of t possible mental states. These mental states represent the main level of labels associated with a patient.
Both symptoms and mental states can be jointly exploited to derive a multi-task predictive model.

The key idea of our method is therefore to exploit first-level and second-level labels together to allow the creation of a
multi-output model capable of simultaneously predicting both targets y sð Þ and y tð Þ. Given training data annotated with a two-
level hierarchy of labels (symptoms and mental states), we develop a modeling methodology to create explainable classifi-
cation models. Once the classification model has been learned from the data, the classifier result is explained via the model-
agnostic SHAP technique and then linguistic summaries are created using fuzzy quantified sentences. In summary, the pro-
posed PLENARY approach consists of three main sequential steps:

1. Creation of a compositional classification model via supervised learning based on a two-level hierarchy of labels associ-
ated with data;
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2. Explanation of the outcomes of the predictive model using SHAP;
3. Creation of linguistic summaries on global model explanations using fuzzy quantified sentences.

We now describe each step in detail. Then, we explain the evaluation procedure of the proposed PLENARY approach.

4.1. Multi-task sequential and compositional multilayer perceptron

We propose a multi-output sequential and compositional MLP, which is trained to simultaneously predict two different
levels of labels (symptoms and mental states in our case study) associated with the same data. To this end, the network
architecture sequentially combines two output layers to simultaneously predict both targets y sð Þ and y tð Þ. We denote by
bY sð Þ and bY tð Þ the two outputs of the network that approximate the two levels of targets, respectively, for all n training
examples.

Formally, the final output of the model is:
bY tð Þ ¼ softmax bY sð ÞW 2ð Þ þ b 2ð Þ
� �

;

whereW 2ð Þ 2 Rs�t and b 2ð Þ 2 Rt are the final output layer weights and biases. bY sð Þ 2 Rn�s is the intermediate output of the net-
work defined as:
bY sð Þ ¼ HW 1ð Þ þ b 1ð Þ
;

being W 1ð Þ 2 Rh�t and b 1ð Þ 2 Rt the intermediate output layer weights and biases, and H 2 Rn�h being the output of a hidden
layer made of h hidden units:
H ¼ ReLU XW 0ð Þ þ b 0ð Þ
� �

;

where W 0ð Þ 2 Rd�h and b 0ð Þ 2 Rh are the hidden layer weights and biases. Also, to reduce overfitting, a dropout layer (with a
dropout rate of p ¼ 0:2) is added next to the hidden layer. In this way, a random fraction of hidden activations is dropped out
during training with probability p. The common ReLU activation function is used for the hidden layer, whereas a classic soft-
max activation function is used for the final output layer as the goal is to perform a multi-class classification. Hence, for the
final output the network minimizes the cross-entropy loss function:
L2 ¼ H y tð Þ; ŷ tð Þ� � ¼ �
Xt

j¼1

y tð Þ
j log ŷ tð Þ

j ;
where ŷ tð Þ are the predicted class probabilities for each training example, and y tð Þ is the one-hot ground truth vector of length
t.

For the intermediate output, the activation function may vary depending on the nature of the mid-level annotations. If
these annotations are available in the form of numeric values (e.g., symptoms are represented as ordinal values in our case
study) no activation function is used: in such a case, this layer performs a multi-output regression and the associated loss
function is the classic mean absolute error element-wise:
L1 ¼ MAE y sð Þ; ŷ sð Þ� � ¼ y sð Þ � ŷ sð Þ�� ��;

where y sð Þ and ŷ sð Þ are the ground truth and predicted values for each training example, respectively. If mid-level annotations
are available in the form of class labels, then L1 is the cross-entropy as L2. Overall, using backpropagation, the sequential and
compositional MLP network minimizes the composite loss function:
L ¼ L1 þ L2:
Fig. 1 schematizes this model architecture. In practice, the predictions provided by the intermediate output layer are used
directly as new features for final classification. Since the two levels of labels are highly interconnected, this multi-task strat-
egy aims to improve the accuracy and/or agreement of the explanations for the two different outputs. The optimization of
the first output, in fact, is intended as an auxiliary regression task to support the main classification task.

4.2. Explaining the model output using SHAP

SHAP [16] is one of the most used model-agnostic methods and one of the most used for tabular data. This game theory-
based XAI method computes SHAP values to appropriately allocate the payout associated with a prediction among features
based on their contribution. To perform this assignment, the feature attribution is decomposed additively, as a linear model,
to obtain the following explanation model g:
379



Fig. 1. Architectural diagram of the multi-task neural network.
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g x0ð Þ ¼ /0 þ
XM
i¼1

/ix0i; ð1Þ
whereM is the size of the coalition in terms of input features, x0 2 0;1f gM indicates the presence (1) or not (0) of that feature
in the given coalition, and /i 2 R. This contribution is called the SHAP value of the feature i and in its definition [16] it con-
siders the difference between a prediction model using feature i; f S[ if g xð Þ, and another that does not use it, f S xð Þ, where S is a
coalition or possible subset of features.

A disadvantage of computing SHAP values is that they can change their value depending on the order of coalition selec-
tion [18]. However, obtaining exact SHAP values can be computationally very expensive because of the combinatorial explo-
sion of every possible coalition of subsets of features. This is why in practice some approximation is computed instead, e.g. by
performing random samplings of the possible sets S or Monte Carlo approximations of a set of coalitions to compute the
average.

An illustrative example of SHAP analysis in a global explanation (summary) plot is in Fig. 2. Each point in the figure rep-
resents a classified data point and the color code represents its range of feature values. SHAP presents the model output for a
given class (here depression diagnosis) as an inverted pyramid of the most contributing features to that class. This means
that the features with the highest contribution, i.e. with the highest absolute value, will be placed at the top, and those with
a lower absolute value will be placed from top to bottom. The positive contribution towards that class is shown on the pos-
itive side of the X axis (representing positive SHAP values); while the negative side of the axis represents a negative contri-
bution or the contribution of those features against the prediction of that class.

4.3. Creation of linguistic summaries based on fuzzy quantified sentences

Linguistic summaries are descriptions in natural language that summarize large numeric datasets. Within this paper, the
main purpose of constructed linguistic descriptions is to linguistically summarize:

1. The relation between the input features and the impact on the prediction of the classes, i.e. the main level of labels (BD
classes in our case study). For example, Among records that contribute positively to predicting depression class, most of them
have voice quality-related features at low level [DoT ¼ 1:0], where DoT stands for the degree of truth and measures the
validity of this sentence. In this work, linguistic summarization based on Shapley values describes not only the positive
contribution to the prediction of a class but also whether an attribute is against predicting a particular class or if it
remains unclear.

2. The relation between the input features and the impact on the prediction of the intermediate level of labels (e.g., symp-
toms in BD case study). For example, Among records that contribute positively to predicting decreased activity symptom, most
of them have quality-related features at high level [DoT ¼ 0:65].

O ¼ o1; o2; . . . ; obf g is a set of objects (e.g., speech signal extracted from phone calls). The attributes A ¼ a1; a2; . . . ; arf g
(e.g., loudness of speech) measure their properties. Next, the linguistic term set lai ¼ lai1 ; . . . ; l

ai
kai

n o
(e.g., high loudness) is

defined for each attribute from A. We use type-I fuzzy sets to describe linguistic terms, and algorithm [37] for heuristic
tree-based search across all linguistic term sets and attributes.

Following [22], a linguistic summary (LS) based on an extended protoform is defined as:
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Fig. 2. Illustrative example: summary plot of Shapley values explaining the output of a simple model in our case study with top 5 most contributing
features.
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LS ¼ LS Q ;R; Pð Þ ¼ Among R objects from O; Q have P DoT½ � ð2Þ

having the quantifier Q (e.g., most recordings), the qualifier R (e.g., high level of the loudness feature of speech), the summarizer
P (e.g., high level of the Shapley values), and DoT 2 0;1½ � that is the degree of truth of the sentence. Thus, the attribute prop-
erties (e.g., low loudness,most records) are linguistic terms modeled as information granules which are represented by fuzzy
numbers. We build triangular fuzzy numbers based on quartiles derived from the data as depicted in Table 1. For example,
the medium terms are expressed as triangular fuzzy numbers Q1;Q2;Q3½ �.

As an illustrative example, let us consider we aim to create the linguistic summary based on the following protoform:
Among records that contribute against predicting depression class, most of them have spectral centroid feature at high level. A
fuzzy number describing the quantifier most needs to be created. Next, the respective fuzzy numbers describing the low,
medium, and high levels of the spectral centroid acoustic feature have to be created. Also, we create fuzzy numbers to
describe the positively contribute to prediction, around zero and against predicting based on the Shapley values. Fig. 3 shows
an illustrative example of such linguistic variables. Finally, the number of final linguistic summaries can be very large or dif-
ficult to parse as some may contain alternative sentence terms. A common way to address this issue is to apply deletion-
based sentence compression techniques [38]. Along with this idea, we include in PLENARY an automatic post-processing
filtering step that selects the top-most certain sentences (i.e., those with the DoT greater than a threshold) to reduce the
number of sentences presented to an expert. This filtering function can be applied according to a quality criterion or multiple
criteria.

4.4. Evaluation of SHAP-based linguistic summary explanations

In this section, we describe the evaluation approach starting from the single sentences and, subsequently, we assess the
quality of linguistic summaries made up of groups of sentences.

4.4.1. Evaluating individual sentences
One of the earliest and most popular measures of quality of a linguistic summary LS (Eq. 2) is the degree of truth (DoT),

defined as:
DoT Q ;R; Pð Þ ¼ lQ

Xn

i¼1

lR xið Þ � lP xið Þ� �
Xn
i¼1

lR xið Þ

0
BBBB@

1
CCCCA; ð3Þ
where �: [0,1] � [0,1] ![0,1] is a triangular norm (t-norm for short) and lQ ;lR;lP : R ! 0;1½ � are the membership functions
of the fuzzy numbers representing the quantifier Q, qualifier R, and the summarizer P, respectively. We also adopt the degree
of support (DoS) and the degree of focus (DoF) [39]. The degree of support of a linguistic summary LS indicates how many
objects in the dataset are covered by the particular summary, and it is defined as:
DoS P;Rð Þ ¼ 1
n

Xn
i¼1

xi : lP xið Þ > 0 ^ lR xið Þ > 0
� �

; ð4Þ
where lR;lP : R ! 0;1½ � are membership functions of the fuzzy numbers representing the qualifier R and the summarizer P,
respectively. The degree of focus of a linguistic summary LS informs about coverage of objects that meet the condition
expressed by the qualifier R. It is defined as follows:
DoF Rð Þ ¼ 1
n

Xn

i¼1

lR xið Þ; ð5Þ
where lR : R ! 0;1½ � is the membership function of the fuzzy number representing R. Furthermore, to complement the
objective quality measures, we introduce expert-based evaluation at the sentence level. AI systems often report desirable
qualitative properties such as satisfaction, confidence, and/or trust in the explanation (usually involving the use of question-
381



Fig. 3. Illustrative example of linguistic variables describing the spectral centroid acoustic feature and the SHAP values describing its importance.

Table 1
Construction of fuzzy numbers A ¼ f 1; f 2; f 3; f 4ð Þ based on quartiles. Q1 is the first quartile, Q2 is median, and Q3 is the third.

Attribute Type f 1 f 2 f 3 f 4

low z-shape min min Q1 Q2

medium triangular Q1 Q2 Q2 Q3

high s-shape Q2 Q3 max max
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naires for the explanation demanding audience [40]). Among the various properties, consistency, reliability, relevance, and
usefulness are some of the most common XAI metrics [41,42,40]. However, only the latter resulted to be intuitive for the
domain experts for the psychiatric use case considered. Indeed, the expert-based criteria proposed to evaluate explanations
are often strongly conditioned by the use case to which they refer [43,2,44]. For the sake of simplicity, we have limited our-
selves to the degree of usefulness (DoU) with the aim of quantifying how useful the sentence explanation is from the per-
spective of domain experts, e.g. in our case, psychiatrists. Ideally, such expert-based DoU scores should be provided by
multiple domain experts. Therefore, another metric to consider is the reliability defined as the degree of weighted agreement
among the raters’ ratings [42]. Finally, atomic or low-level explanations (e.g., evaluating contrastive rule-based and example-
based explanations) have not always proved sufficient without exposing a clarification of the overall rationale of the com-
plete AI system behaviour [45]. Thus, apart from sentence-level measures, we discuss the evaluation of groups of summaries.
First, objective measures such as consistency are recalled; second, we discuss expert-based measures for the group of
summaries.
4.4.2. Evaluating groups of sentences
The set of summaries is assumed to be consistent when it satisfies the non-contradiction and double negation properties

[46]. Non-contradiction implies that linguistic summaries made up of contradicting terms have a complementary degree of
truth. Formally, contradictory forms of a summary based on extended protoform LS are defined as follows:

C1 Q ;R; Pð Þ = Among R objects from O; : Q have P
C2(Q,R,P) = Among R objects from O;Q have : P.

The double negation D of a sentence LS is defined as

D LSð Þ = C1 C2 LSð Þð Þ = C2 C1 LSð Þð Þ =Among R objects from O; : Q have : P.

The double negation property states that DoT D LSð Þð Þ ¼ DoT LSð Þ. For more details on the constraints on the definition of
quantifiers and qualifiers, we refer the reader to [46]. Let us now consider the following sentence as an example

LS1 = Among records that contribute positively to predicting euthymia class, most of them have energy-related features at low
level.

Assuming high and low are antonyms, as are most and a few, the following two sentences exemplify contradictory forms:

C1 = Among records that contribute positively to predicting euthymia class, a few of them have energy-related features at low
level.
C2 = Among records that contribute positively to predicting euthymia class, most of them have energy-related features at high
level.

Also, the following sentence is an example of double negation to LS1:
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LS2 = Among records that contribute positively to predicting euthymia class, a few of them have energy-related features at high
level.

Finally, the objective measures are confronted with the expert-based evaluation at the group of summaries level. In par-
ticular, to fulfill the needs for causability [47] in model explanations [44], we measure the quality of the group of explana-
tions via the system causability scale (SCS) [43]. We assess the quality of the PLENARY system’ outcomes with the following
quesitons:

1. I found that the data included all relevant known causal factors with sufficient precision and granularity.
2. I understood the explanations within the context of my work.
3. I could change the level of detail on demand.
4. I did not need support to understand the explanations.
5. I found the explanations helped me to understand causality.
6. I was able to use the explanations with my knowledge base.
7. I did not find inconsistencies between explanations.
8. I think that most people would learn to understand the explanations very quickly.
9. I did not need more references in the explanations (e.g., medical guidelines, regulations).

10. I received the explanations in a timely and efficient manner.

Furthermore, sentences must be well understood by users, and therefore must comply with standard measures of com-
munication such as Grice’s maxims [48]. These were proposed by linguist Paul Grice as an attempt to ensure that textual
communicative efforts are effective. Grice’s maxims are important criteria to comply with because they are general princi-
ples that effective communications should exhibit. We introduce the following questionnaire inspired by Grice’s maxims to
further assess the quality of PLENARY system’s outcomes:

1. The group of sentences provides all the information we need, and no more (maxim of quantity).
2. The group of sentences provides truthful statements and avoids providing information not supported by evidence (maxim of

quality).
3. The group of sentences is relevant to the discussion objective of explaining the model (maxim of relation).
4. The group of sentences is clear, and as brief and orderly as possible, avoiding obscurity and ambiguity (maxim of manner).

Both questionnaires have been assessed with Likert scale ratings (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree,
5 = strongly agree). Finally, we apply statistical tests to compare whether there are significant differences between the char-
acteristics obtained by the various predictive models. The statistics used for the comparison of the considered characteristics
are calculated using partially the dependent raw input data. Moreover, these data are not normally distributed. Therefore, for
the comparison of the considered approaches, we must use non-parametric (distribution-free) statistical tests for possibly
dependent data. For this reason, we have chosen the Wilcoxon signed-rank test. The p-values of these tests have been cal-
culated from the asymptotic distributions of the test statistics. Their values greater than 0.05 indicate that there is insuffi-
cient statistical evidence to reject the hypothesis that the characteristics being compared have the same distributions.
5. Experiment

The proposed PLENARY approach was validated in two real-world use cases: explaining the classification of bipolar dis-
order and mental health survey. The experiments were devoted to investigating whether: (1) SHAP explanations translated
into fuzzy linguistic summaries improve understanding of the model outputs and the modeling process itself; (2) a compo-
sitional neural network architecture that learns a multi-task classification model via supervised learning based on a two-
level hierarchy of labels can effectively incorporate domain knowledge into the predictive model; (3) the introduction of spe-
cialist knowledge in the form of middle-layer labels affects performance in terms of prediction accuracy or explainability of
model outcomes.
5.1. Case study to explain bipolar disorder classification

The first set of experiments was performed on the BDMON dataset collected from four patients affected by bipolar dis-
order and monitored for a period of 9 months between February and October 2018 within a prospective study (see [49] for
the protocol of this study). BDMON concerns a 4-class classification corresponding to the BD states:

� Euthymia (class 0);
� Depression (class 1) characterized by depressive symptoms, such as decreased mood and energy, anhedonia, anxiety;
� Mania (class 2) characterized by manic symptoms, such as unusually increased energy, decreased need for sleep, eupho-
ria, excessive talking;

� Mixed state (class 3) characterized by the coexistence of manic and depressive symptoms.
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The BDMON dataset consists of 86 speech acoustic parameters extracted from voice data using openSMILE [50] and 29
attributes collected from the psychiatric assessments of the intensity of depressive and manic symptoms. The acoustic attri-
butes were divided into short frames of 20 ms, then calculated by omitting the interlocutor’s speech. The BDMON dataset
used contains only visit data, thanks to which the dataset has valid labels. Table 2 presents a short quantitative summary
of the BDMON dataset with the labels obtained along with an overview of the data size. It can be seen that the number
of instances characterizing the maniac class is under-represented and is over 20 times smaller than the instances represent-
ing depression. Moreover, mania was only observed in one patient. On the other hand, mania is included in the mixed state,
which is already present in two patients in a larger number of rows.

In addition to the class labels corresponding to mental states, domain knowledge was also available in the form of psy-
chiatric assessments collected during the patients’ visits. During one visit, the doctor interviewed the patient and assessed
her/his state using 18 questions concerning depressive symptoms derived from the Hamilton Depression Rating Scale
(HAMD) and 17 questions associated with the intensity of manic symptoms derived from the Young Mania Rating Scale
(YMRS). Next, questions of both scales were grouped into symptoms (as described in Table 3) and these symptoms were then
treated as middle-layer labels. The first column describes the symptom group, the middle column further describes the
symptom group and related questions to be evaluated, and the last column indicates the maximum number of data points
from that scale. The idea of introducing symptoms as an intermediate level of annotations for BD data is one of the main
novelties of this work as it has not been applied before in the context of AI decision support systems for monitoring mental
disorders.

Furthermore, it is observed that low-level acoustic data are difficult for psychiatrists to interpret. For this reason, we have
offered assistance by grouping the low-level acoustic descriptors into more interpretable objects, such as loudness and pitch
of speech. Thus, similar to [29], in this paper we group the acoustic features into more interpretable high-level features, i.e.
energy-related features, spectral-related features, pitch-related features, and voice quality-related features. Table 4 shows
the amount of low-level acoustic attributes included in each group and Table 13 and Table 14 in the Supplementary Material
show detailed grouping and statistical characteristics of the acoustic dataset.
5.1.1. Accuracy evaluation
In this section, we present the evaluation of the proposed approach against baseline approaches in terms of accuracy. The

following methods were considered:

� XGBoost, which is trained to classify the bipolar state (primary level of labels) and is considered the basis for benchmark-
ing performance;

� Single-task MLP, which is trained to classify the bipolar state (primary level of labels);
� The proposed multi-task sequential and compositional MLP, which is trained to perform two recognition tasks in
sequence, namely symptom prediction and BD state classification.

Table 5 reports the results obtained for the BD state classification by the three methods. All methods have been tested
using the same data. It can be seen that both MLP models achieved similar accuracy, which at the same time is much higher
than the XGBoost baseline. Notably, the XGBoost model is not able to identify three of the four bipolar disorder states. The
healthy class (euthymia) has a recall of 0:69, so the model can identify nearly a third of healthy patients. However, the met-
rics are very low, especially in a medical context, where we are more interested in correctly identifying the presence of
unhealthy states.

On the other hand, while the MLP models return higher results than the ensemble method, quantitative evaluations do
not suggest improvements from the injection of expert knowledge in the form of an additional layer of labels. We can
observe that the best precision and recall values are obtained for the euthymia state. The MLP models are also able to detect
quite well the depression and mixed states (precision 0:60 and recall 0:70). These are quite high values if we consider that
this is a multi-class classification problem. The models are unable to identify samples belonging to the under-represented
class (corresponding to the mania state). This suggests that the neural networks need more samples to learn how to discrim-
inate this class.
5.1.2. Explanation of predictive model results using SHAP
Fig. 4 shows the global explanation of SHAP in terms of the four bipolar states. The color bars represent the average

impact of the twenty most important features on the magnitude of the model output, obtained with the baseline and the
sequential and compositional MLP model. The SHAP global plot for all classes in Fig. 4 shows that the class to which most
of the features contribute is the mixed state. This shows that the more crisp disease states (other than the mixed state) are
responsible for accounting for a smaller subset of features contributing to these classes (euthymia, mania, and depression).
However, the purple bar shows an exception, and this is for the mania state, for which, in many cases, less globally relevant
features become important for the model to diagnose the case as maniac (see the second topmost quarter of features where
purple is the predominant color in the bars). This correlates with our expert explanations which pointed out that although
energy is normally more important than pitch features when diagnosing manic states, loud speaking is indeed the key ele-
ment, something that is not the case or not considered a critical feature when diagnosing states such as depression, mixed, or
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Table 2
Summary of the BDMON dataset presenting patient characteristics, their BD states, psychiatric ratings (HAMD and YMRS), and phone calls recorded in the
ground-truth considered.

Patient id Visit BD state HAMD YMRS # instances # calls

[0.5ex] 1 2 mixed 12 35 3.64 M 188
1 3 euthymia 1 4 1.95 M 142
1 4 mixed 8 10 0.76 M 73
2 1 euthymia 4 1 0.15 M 20
2 2 euthymia 2 0 2.63 M 147
2 3 depression 13 0 2.84 M 71
3 2 euthymia 1 5 1.06 M 57
3 3 mixed 9 18 1.11 M 75
3 4 euthymia 2 1 2.17 M 91
3 5 depression 11 3 1.48 M 69
4 1 depression 13 4 0.71 M 44
4 2 depression 10 2 0.65 M 84
4 3 depression 12 3 1.88 M 115
4 4 depression 13 3 1.42 M 82
4 5 mania 2 8 0.32 M 32

TOTAL: 22.77 M 1290

Table 3
Description of symptoms (middle-layer labels). The max # points reflect the possible maximum points describing the maximum intensity of the symptom,
based on the rating scales of the psychiatric assessment.

Symptom Description Max # points

Anxiety Anxiety, fear mental symptoms 6
Decreased activity Inhibition, work, and interests 8
Decreased mood Criticism, depressing mood, feeling guilty 10
Disorganization Appearance, formal thoughts disorder, thoughts disorder, view 16
Elevated activity Increased activity, speech 12
Elevated mood Elevated mood 4
Irritability Irritability, destructive behavior 16
Sleep disorder Early awakening, intermittent sleep, sleep disorder, sleep 10
Somatisation Fear somatic symptoms, generic somatic symptoms, hypochondria 10
Suicide Suicide tendencies 4

Table 4
High-level acoustic features applied to group low-level parameters
for fuzzy linguistic summarization.

High-level acoustic features # low-level features

Energy/loudness-related features 36
Spectral features 33
Pitch-related features 12
Voice quality-related features 5
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euthymia. Moreover, unlike the quantitative results in which the mania state was not identified, these plots suggest that for
the sequential and compositional MLP model (Fig. 4 (b)) several features contribute significantly to modeling the output for
the mania state (purple one).

Comparing top and bottom plots in Fig. 4 we can see that a bimodal-like distribution in terms of feature relevance is
observed in the sequential compositional MLP model. This might better capture the importance of certain types of acoustic
features that contribute to two different classes in a different manner depending on the class being predicted, as experts cor-
roborate, with regards to features related to high pitch value and quality of voice. For some classes, energy is more important
than pitch, but for other classes, quality of voice and loud speaking becomes the most important (e.g., in maniac state). This
may be explained by the smoothness of this bimodal-looking distribution in the sequential compositional MLP model. This
smoothness becomes a little less obvious if we look at the baseline model, which has less information to perform the clas-
sification task.

Figs. 5 and 6 show global SHAP explanations, in terms of single data points, for the four classes euthymia (a), depression
(b), mania (c), and mixed state (d), respectively for the baseline and the sequential and compositional MLP model. If we com-
pare the graphs obtained with the two models, we can see how the sequential and compositional MLP model provides a
smoother and easier to interpret SHAP distribution of the data points. The sequential and compositional MLP shows in
the first plot (class 0) that the top 4 features changed in terms of feature value (color reversed in the same top features,
except for the top 3 features contributing to class 0). It is also interesting to see that the rankings are not necessarily pre-
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Table 5
Comparative results for the BD state classification task. The best hyperparameter configuration is also reported under the results of each model, obtained by
grid-searching over the following sets: # estimators 2 250;500;750f g; max depth 2 3;5;7f g; objective 2 fsoftmax, softprobg; optimizer 2 fAdam, SGDg; learning
rate 2 0:01; 0:001;0:001f g; batch size 2 16;32;64f g; epochs 2 5;10;15f g.

Method Class Precision Recall F1-score

XGBoost 0 (Euthymia) 0.34 0.69 0.46
1 (Depression) 0.00 0.00 0.00
2 (Mania) 0.3 0.02 0.02
3 (Mixed state) 0.00 0.00 0.00
Accuracy 0.29
# estimators = 500, max depth = 3, objective = softprob

Single-task MLP 0 (Euthymia) 0.83 0.80 0.82
1 (Depression) 0.60 0.67 0.63
2 (Mania) 0.79 0.01 0.03
3 (Mixed state) 0.70 0.70 0.70
Accuracy 0.72
optimizer = Adam, learning rate = 0.001, batch size = 32, epochs
= 15

Multi-task MLP 0 (Euthymia) 0.83 0.80 0.81
1 (Depression) 0.59 0.68 0.63
2 (Mania) 0.78 0.02 0.03
3 (Mixed state) 0.71 0.68 0.69
Accuracy 0.72
optimizer = Adam, learning rate = 0.001, batch size = 32, epochs
= 15
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served, e.g. alpharatio_sma3 in the baseline model at position 20 in the feature contribution ranking disappears from the
ranking in the sequential and compositional MLP model. Also, there appears to be better feature disentanglement in terms
of less color mix-up at each side of the x-axis, i.e. a more homogeneous color coding transition appears to occur in the
sequential and compositional MLP against the baseline model, which seems natural, as the baseline does not perform any
intermediate prediction steps to aid in symptom detection before deciding the class of the disease state.

Fig. 7 shows the global model SHAP analysis obtained from the first output of the sequential and compositional MLP
model, i.e. the first labels pertaining to symptoms from low-level speech features. As discussed above, clinicians use ten dif-
ferent symptoms to derive patient states (see Table 3). Unlike the other methods, the sequential and compositional MLP
model is also able to predict these symptoms from the collected acoustic features, which are more significant than the
low-level features for clinicians. It can be observed that clear color distinctions are preserved, which means that high values
of those speech features are positively correlated with/against the detection of that particular symptom. It would have been
disturbing to have mixed colors on one side of the SHAP plot, which is not the case in our SHAP plots obtained for classes
(anxiety, irritability, somatization, suicide, sleep disorder, etc.).

Finally, for each symptom in Table 3, a global SHAP explanation has been generated with the sequential and composi-
tional MLP. Fig. 8 shows the SHAP plots for the symptoms of elevated activity (a) and decreased activity (b). The presence
of several outliers makes the graphs flattened. However, it is interesting to note that the low-level pcm_LOGenergy_sma
is the most significant feature for the decreased activity symptom and negatively contributes to modeling it. Medical experts
have included this feature in the energy/loudness-related features, so the higher the value of this feature, the lower its con-
tribution to the symptom. To confirm this, we can find the same feature with inverted colors for the elevated activity symp-
tom. However, even though we have used symptoms as high-level labels since they are close to the way clinicians think in
diagnosing BD, the SHAP graphs are still not very intuitive, especially for them. Thus, in the next subsection, we summarize
these groups of explanations with the use of fuzzy linguistic summarization.
5.1.3. Linguistic summaries of global model explanations
We now present linguistic summaries derived from PLENARY. Table 6 collects the linguistic summaries for the prediction

of euthymia (healthy class, formerly referred to as class 0), depression (class 1), mania and the mixed state based on the
sequential and compositional MLP.

Summaries describe either a positive contribution to predicting a particular class, a contribution against predicting a class,
or an unclear relation between the attribute and the model output (expressed as the around zero contribution to the predic-
tion of a particular class). In addition, summaries inform about the direction of these relations, and in particular whether low
or high values of the attributes are meaningful for the prediction. For example, from Table 6 we see that the following sum-
mary is valid: Among records that contribute positively to predicting the depression class, most of them have spectral features at a
high level [DoT ¼ 1:0;DoS ¼ 0:29;DoF ¼ 0:31] (Id102). The degree of support informs how many objects in the dataset are
covered by this summary, so the condition of contributing positively to predicting depression and spectral features at high-
level is satisfied. The degree of support is complemented by the degree of focus which informs about the overall coverage
of the qualifier feature, that is contributing positively to predicting depression class. Let us now look at the summary related
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Fig. 4. Global model SHAP analysis for disease state prediction with a) the baseline model, and b) the sequential and compositional MLP model. The bi-
modality of feature contributions is more smoothly assessed and appreciated with our sequential and compositional MLP, demonstrating the usefulness for
the interpretability of the results when having a two-step compositional approach to classification based on recognizing symptoms first.
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Fig. 5. From left to right and top to bottom: 20 most contributing features to the baseline MLP model for a) class 0 (euthymia), b) class 1 (depression), c)
class 2 (mania), d) class 3 (mixed state). The mixed state corresponds to symptoms of depression and mania together.
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to another group of parameters which is the voice quality. We observe that Among records that contribute positively to pre-
dicting depression class, most of them have voice quality-related features at a low level [DoT ¼ 1:0;DoS ¼ 0:18;DoF ¼ 0:31]
(Id104). While the support of this summary is small (and amounts to 0.18), this summary is also true.

Linguistic summaries allow us to reason about the overall contribution of the parameter groups and, in doing so, better
understand how the models work at a global level. For example, the following linguistic summary Among records that con-
tribute around zero to predicting the depression class, most of them have energy-related features at high level
[DoT ¼ 0:12;DoS ¼ 0:17;DoF ¼ 0:06] (Id101) is true only to some extent. We see that it is the only summary in this group
about the energy-related features and its relation with the depression class (class 1). The analysis of the SHAP values from
the previous section revealed that observing the low-level attributes in Fig. 6 (top 20 features), the following five belong to
the considered energy/loudness high-level group: pcm rmsenergy sma, audspec lengthl1norm sma, audSpec Rfilt sma compare
0–25, pcm LOGenergy sma and pcm zcr sma. And, out of those five, only for the rmsenergy attribute the Shapley values confirm
that the levels of rmsenergy contribute positively to predicting the depression class. Considering that there are 36 low-level
acoustic attributes in the energy-related features group and only one has a significant impact, it is not surprising that the
summary Id101 with the considered quantifier most is fairly true. PLENARY allows the generation of summaries on single
sentences; however, these summaries need to be further analyzed to draw meaningful conclusions. Further research will
address this issue and extend the PLENARY approach by generating summaries of the behavior or patterns identified in
the non–homogeneous high-level parameter groups. Furthermore, the summaries provided by PLENARY allow us to effec-
tively compare the impact of various high-level groups on class predictions. For example, from Table 6 it can easily be con-
cluded that pitch-related features are more significant for the prediction of mania or mixed state than for euthymia and
depression. We also identify summaries that complement each other. For example, Among records that contribute around zero
to predicting mania, most of them have energy-related features at low level [DoT ¼ 1:0;DoS ¼ 0:19;DoF ¼ 0:03] (Id001). At the
same time, we see that Among records that contribute against predicting the mania class, most of them have energy-related
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Fig. 6. From left to right and top to bottom: 20 most contributing features to the sequential and compositional MLP model for a) class 0 (euthymia), b) class
1 (depression), c) class 2 (mania), d) class 3 (mixed state). The mixed state corresponds to symptoms of depression and mania together, and this plot
accordingly shows the consistent and clean contribution of each feature. The low values of the top two speech features contribute most to this state, while
high values of the top 3 and 4 features contribute positively to this class.
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features at low level [DoT ¼ 0:33;DoS ¼ 0:68;DoF ¼ 0:73]. The aforementioned summaries, while valid only to a certain
extent, complement each other.

Table 7 shows validated linguistic summaries of the relation between high-level acoustic attributes and the prediction of
two exemplary symptoms, namely elevated activity and decreased activity. We can observe in Table 7 that the spectral-
related features are considered in the summaries related to the elevated activity symptom. At the same time, the
spectral-related features are not valid for predicting the decreased activity symptom. This result is consistent with the
domain knowledge and the fact that the elevated activity is usually directly related to the mania state. The main purpose
of symptom-based summaries is a better understanding of the predictive modeling process. For example, we can conclude
from this table that Among records that contribute positively to predicting decreased activity symptom, most of them have
spectral-related features at low level [DoT ¼ 0:81;DoS ¼ 0:26;DoF ¼ 0:31] (Id401). This summary is surprising in view of
the summary Among records that contribute positively to predicting euthymia, most of them have spectral-related features at
low level [DoT ¼ 1:0;DoS ¼ 0:30;DoF ¼ 0:21] (Id005). The linguistic summaries for symptoms generated by PLENARY clearly
extend understanding of the modeling process and the importance of features.
5.1.4. Medical perspective on the results of PLENARY in the BD use case
In this section, we describe and discuss the expert-based evaluation of the results of PLENARY at the group of sentences

level. First, from a medical point of view, the information about symptoms (Table 7) significantly extends approaches
focused on the classification of mental states. For example, mood and activity do not always go hand in a given illness epi-
sode, and such knowledge could help predict the most varied types of deterioration in BD, not just the classic forms of
depression or mania, as in the label-based approach. This is particularly helpful in the prediction of mixed states and sub-
syndromal conditions, and, consequently, in the selection of a pharmacological strategy appropriate to the given symptoms.
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Fig. 7. Global model SHAP analysis for symptom prediction with the sequential and compositional MLP model.

Fig. 8. From left to right: 20 top contributing features to the sequential and compositional MLP model global SHAP values for a) elevated activity symptom
and b) decreased activity symptom.
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Secondly, for the medical expert, linguistic summaries describing records that contribute positively to predicting a class or
symptom are considered more informative than those that contribute negatively or those with an uncertain contribution.
The key point of Table 6 is that most groups of voice parameters (reflecting pitch, voice signal spectrum, and voice quality)
differ in episodes of illness (depression, mania) from the state of euthymia. As shown in Table 6, among the groups of voice
parameters that contribute positively to predicting the euthymic state, most have low-level values. Among the parameters
that contribute positively to predicting a depressive state, most of the features related to the voice spectrum have values at a
high level. The exact opposite association was found for mania: most of the spectral features that contribute positively to
predicting mania have values at a low level. What is also clinically relevant is that most of the pitch-related features that
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Table 6
Evaluation of linguistic summaries from PLENARY for the prediction of BD classes with the sequential and compositional MLP model. Degree of truth, degree of
support, degree of focus, and expert-based degree of usefulness are applied as criteria. Post-processing criteria: DoT > 0:1 and DoF > 0:05. Summaries that
contribute positively to predicting a class are presented in bold. The font colors of the LS description indicate the high-level semantic groups of acoustic
features. LS related to: the energy-related features are marked in black; the spectral-related features are marked in olive; the pitch-related features in orange;
and the quality-related features are marked in purple.

Table 7
Evaluation of linguistic summaries for the prediction of elevated activity and decreased activity symptoms with DoT > 0:1 from the sequential and compo-
sitional MLP model. Degree of truth, degree of support, degree of focus, and expert-based degree of usefulness are applied as criteria. Summaries that contribute
positively to predicting a class are presented in bold. The font colors of the LS description indicate the high-level semantic groups of acoustic features. LS results
for all other symptoms are collected in the GitHub repository.
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contribute positively to predicting mania have values at a high level. For the mixed state, it is not possible to draw clear clin-
ical conclusions about the prediction of this state. Most of the results are in line with previous studies, as well as with clinical
observations. In particular, the increased pitch has been correlated with mania [51]. As for loudness (energy-related fea-
tures), although this voice parameter appears to be important in the clinic (manic patients often speak louder, in depression
quieter), here the results obtained are inconclusive. One reason could be that this is an individually variable trait, depending
on gender as well as the type of depression (depression with psychomotor retardation, depression with anxiety and agita-
tion). Therefore, considering symptoms rather than specific labels can help improve prediction. In addition, linguistic sum-
maries from Table 6 have been evaluated by the domain expert in terms their usefulness. Fig. 9 compares the degree of
usefulness with DoT and DoS of the linguistic summaries for the prediction of euthymia, depression, mania, and mixed state,
from the sequential and compositional MLP model. Summary Ids are spanned in a two-dimensional space to verify whether
these pairs of measures are in accordance. It can be observed that the expert found useful summaries with low DoT (graphs
in the first column, e.g. summaries Id002, Id205, and Id301), and vice versa summaries with a high degree of truth have been
deemed not useful (e.g., summaries Id204 and Id202 referring to contribution around zero to predict mania). Similar results can
be observed for DoS (graph on the right), where summaries with low covering (DoS) are considered useful (e.g., Id002, Id104,
Id206, and Id301). Overall, summaries with positive contributions are more understandable and easier for the clinician to
interpret than those with around zero contributions, especially when the sentence specifies an extreme value such as
low, high of certain voice features, e.g. Among records that contribute positively to predicting mania class, most of them have
pitch-related features at high level. Next, we ran a statistical test for DoT and DoS of the set of linguistic summaries from
the sequential and compositional model and the baseline model. The results are presented in Table 8. The characteristics
are compared within all four classes, respectively. As can be seen in the table, the distributions underlying our samples
are not statistically significantly different. For example, when the Wilcoxon signed-rank test is used to compare degrees
of truth for linguistic summaries on the prediction of the euthymia class, the computed p-value is 0.5, supporting the sta-
tistical hypothesis that the median of the pairwise differences is zero. We conclude that in terms of objective quality mea-
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Table 9
Evaluation of the quality of the group of LS sentences in terms of explanation quality and causability based on the System Causability Scale (SCS) questionnaire
[43] (the mean SCS score is computed as the sum of the avarage values of the 10 questions divided by 50) and Grice’s maxims with Likert scale ratings (1
= strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree).

Questionnaire Domain expert
evaluation

System Causability Scale statement

SCS1. I found that the data included all relevant known causal factors with sufficient precision and granularity 2
SCS2. I understood the explanations within the context of my work 4
SCS3. I could change the level of detail on demand 1
SCS4. I did not need support to understand the explanations 4
SCS5. I found the explanations helped me to understand causality 4
SCS6. I was able to use the explanations with my knowledge base 4
SCS7. I did not find inconsistencies between explanations 2
SCS8. I think that most people would learn to understand the explanations very quickly 5
SCS9. I did not need more references in the explanations (e.g., medical guidelines, regulations) 4
SCS10. I received the explanations in a timely and efficient manner 5

Mean SCS score (on a 0;1½ � range): 0.7

Grice’s Maxims
GM1. The group of sentences provides all the information we need, and no more (maxim of quantity) 4
GM2. The group of sentences provides truthful statements and avoids providing information not supported by evidence

(maxim of quality)
5

GM3. The group of sentences is relevant to the discussion objective of explaining the model (maxim of relation) 5
GM4. The group of sentences is clear, and as brief and orderly as possible, avoiding obscurity and ambiguity (maxim of

manner)
3

Mean Grice’s maxims rating (on a 1–5 Likert scale): 4.25

Fig. 9. Top row from left to right: degree of usefulness and degree of truth for linguistic summaries on euthymia, depression, mania, and mixed state from
the sequential and compositional MLP model. Bottom row: degree of usefulness and degree of support for linguistic summaries for prediction of euthymia,
depression, mania, and mixed state. The descriptions of the Ids are provided in Table 6.

Table 8
Results of the Wilcoxon signed-rank test (W denoted the test statistics) that compare the quality of linguistic summaries produced by the proposed sequential
and compositional MLP vs. the MLP baseline. The degree of truth and degree of support are considered quality measures for predicting the four BD classes.

Criterion Euthymia Depression Mania Mixed state

DoT W = 30.5; p-value = 0.50 W = 17.5; p-value = 0.94 W = 19.5; p-value = 0.12 W = 30.0; p-value = 0.78
DoS W = 305.0; p-value = 0.86 W = 249.0; p-value = 0.27 W = 215.0; p-value = 0.10 W = 301.0; p-value = 0.81
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Table 10
Mental health survey classification results. The best hyperparameter configuration is also reported under the results of each model, obtained by grid-searching
over the following sets: # estimators 2 100;200;300f g; max depth 2 3;5;7f g; optimizer 2 fAdam, SGDg; learning rate 2 0:01; 0:001;0:001f g; batch size
2 16;32;64f g; epochs 2 30;50;100f g; # HF 2 2;10½ �; NMF solver 2 fmultiplicative update, coordinate descentg.

Method Class Precision Recall F1-score

XGBoost N (Control) 0.70 0.68 0.69
Y (Treatment) 0.81 0.83 0.82
Accuracy 0.77
# estimators = 200, max depth = 3, objective = logistic

Single-task MLP N (Control) 0.76 0.52 0.61
Y (Treatment) 0.76 0.90 0.82
Accuracy 0.76
optimizer = Adam, learning rate = 0.001, batch size = 32, epochs = 50

Multi-task MLP N (Control) 0.87 0.38 0.53
Y (Treatment) 0.72 0.97 0.83
Accuracy 0.75
optimizer = Adam, learning rate = 0.001, batch size = 32, epochs = 50
# HF = 5, NMF solver = coordinate descent, max iter = 1000, tol = 1e–6
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sures, the linguistic summaries obtained from the baseline and the proposed MLP are comparable. Although the tests did not
reveal statistically significant differences for the considered characteristics, the inclusion of domain knowledge allowed the
generation of additional information in the form of linguistic summaries on the middle-layer labels, and, therefore, the
understanding of the modeling process has been improved. Finally, we present and discuss the outcomes of the expert-
based evaluation of the group of linguistic summaries generated for the BD use case; the questionnaire to assess LS in terms
of Grice’s maxims is also reported in Table 9. As the table shows, the psychiatry domain expert granted a high-quality mean
SCS (0.7/1) to PLENARY explanations based on LS rendering the SHAP analysis. When it comes to Grice’s maxims, a high
score of 4.25/5 is obtained regarding the relevance, quality, quantity, and manner of communicating the predictive process.
However, the ability to change the degree of detail on demand, in a future interactive explanation system, could improve the
inconsistency among explanations found (SCS3, SCS7). Likewise, the manner in which LSs are presented could be studied to
improve ambiguity (GM4), since the precision and granularity of the explanations may at times be hard to digest by experts
(SCS1).
5.2. Use case in mental health survey

As a second case study, we considered the Mental Health in Tech Survey data3 collected by the Open Sourcing Mental Ill-
ness non-profit corporation. It aims to measure how mental health is viewed by employers and employees of technology com-
panies and the occurrence of these disorders. The original data contain more than 1200 surveys, described by 27 attributes.
Preprocessing step has been performed to remove unnecessary information (such as timestamp, country, state, and comments)
and to standardize the answers (e.g., ‘‘Male”, ‘‘M”, and ‘‘Male-ish” refer to the same concept). In addition, rows containing miss-
ing values have been removed, categorical data have been encoded into ordinal features where appropriate, and only features
with at least three categories have been included in this analysis. Thus, the final data consist of 972 rows described by 22 fea-
tures corresponding to the questions in the survey.4 Two target classes indicate whether (Y) or not (N) a subject has sought a
cure for mental health. Interestingly, more subjects sought treatment (619) than those who did not (353).
5.2.1. Accuracy evaluation
We start with the presentation of the accuracy evaluation. Similarly to the previous use case, the following methods have

been considered: XGBoost, the baseline MLP, and the sequential and compositional MLP, which is trained to perform two
recognition tasks in sequence: middle-level labels and target classes. In this case, the middle-level labels are simulated with
a non-negative matrix factorization which enables to group the data while assigning them to hidden factors, and thus allow-
ing a certain level of interpretability. Table 10 reports classification results for these three methods. Overall, the results are
comparable. XGBoost performs slightly better than the MLP models, suggesting that perhaps the problem does not need
complex models to be solved. Indeed, we are using this simple dataset on purpose, to easily show the three-step process used
by PLENARY to explain the classification results of black-box models. It is worth pointing out that although the sequential
and compositional MLP model has lower accuracy, the use of the intermediate labels identified by non-negative matrix fac-
torization has increased the recall of class Y to 0:97 (i.e., the model is able to identify nearly everyone who has sought a cure).
3 https://osmihelp.org/research (OSMH/OSMI Mental Health in Tech Survey).
4 Please refer to the GitHub repository for more details on the data.
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5.2.2. Explanation of predictive model results using SHAP
Fig. 10 compares SHAP global explanations for the two target classes, N and Y, with the single-task MLP and the sequen-

tial and compositional MLP model. It can be clearly observed that the most important feature to discriminate between the
two classes is family_history. Indeed, if a previous mental illness has occurred in the family, it positively influences the pre-
diction (looking for a cure). The same result can be derived from both algorithms. However, looking at the two classes, the
two models disagree on the feature rankings and their influence on the predictive models.

Let us dwell on the treatment class (Y), to understand what are the factors that most influence the need for mental health
care, according to the two algorithms and their visual explanations. For the sequential and compositional MLP model, the top
contributing features are benefits, anonymity, and work_interfere, which positively influence the choice of seeking cures. It
means that benefits for mental health care are available in the company, anonymity is protected, and the individual suffers
from a mental health condition that interferes with her/his work. For the baseline model, the top influencing factors for class
Y are the presence of a previous mental illness in the family (family_history), the interference between the subject’s mental
illness and her/his regular work activities, (work_interfere), the guarantee of anonymity (anonymity), and the availability of
benefits for mental health cure (benefits). The number of employees (no_employees) negatively affects the prediction, sug-
Fig. 10. From left to right and top to bottom: a) baseline global SHAP analysis for class N (a subject did not seek treatment for a mental health condition); b)
baseline global SHAP analysis for class Y (a subject sought treatment for a mental health condition); c) sequential and compositional MLP global SHAP
analysis for class N; d) sequential and compositional MLP global SHAP analysis for class Y, for the mental health survey data.
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gesting that the larger the company, the less an employee would be willing to seek cures. Conversely, fewer employees may
encourage them to seek help. Surprisingly, this observation concerning the distinction between the complementarity of each
class explanations for no_employees is not observable for the sequential and compositional MLP model.

It should be noted that the two classes are complementary: indeed, with quite a few exceptions at the tail of the ranking,
the other class should often find the opposite explanation. While rankings are not preserved in this binary classification
model, the variation in ranking positions is nearly preserved (except for physical_health_consequence and a few others). How-
ever, this is not that dramatic, considering that the overall SHAP values in absolute value for the top contributing features are
never very high for any of the features. A curiosity is the fact that some feature contributions are not reversed in terms of
positive vs. negative contribution to the model (gender, age, obs_consequence, mental_vs_physical, mental_health_interview),
as one would normally expect in a binary classification problem. This may indicate their irrelevance or their correlation with
some other feature. In fact, for example, the mental_health_interview feature corresponds to the question: ‘‘Would you bring
up a mental health issue with a potential employer in an interview?”. The answer to this question is somewhat controversial,
despite the subjects’ willingness to access mental healing therapy.

Fig. 10 shows with both SHAP global plots that the sequential and compositional MLP model has on average, for all fea-
tures, lower SHAP values than the baseline, providing less explanatory power to the same features. However, the spread of
the points does not seem to vary much. The lack of change in the density of feature contributions in both classes shows sim-
ilar rankings among the top contributing features to the disease state outcome.
5.2.3. Linguistic summaries of global model explanations
We now present linguistic summaries derived from the PLENARY approach. Table 11 collects the linguistic summaries for

the prediction of treatment based on the sequential and compositional MLP model. We filtered them based on the quality
criteria and only summaries with DoT > 0:5 are presented. We can see in Table 11 that most of the selected protoforms have
a degree of truth of 1.0, suggesting that the selected explanations are trustable. DoS and DoF measure the coverage of a given
protoform and the coverage of the condition expressed by the qualifier, respectively. Protoforms suggest that features pos-
Table 11
Linguistic summaries for prediction of the treatment class with DoT > 0:5 from the sequential and compositional MLP model. Summaries that contribute
positively to predicting a class are presented in bold.

Id Protoform DoT DoS DoF

001 Among records that contribute against predicting treatment class, most of them have Age-related features at low level 1 0.57 0.11
002 Among records that contribute around zero to predicting treatment class, most of them have Age-related features at low

level
1 0.83 0.84

003 Among records that contribute positively to predicting treatment class, most of them have age feature at low level 1 0.42 0.05
004 Among records that contribute against predicting treatment class, most of them have wellness_program feature at

medium level
1 0.46 0.10

005 Among records that contribute around zero to predicting treatment class, most of them have wellness_program feature at
medium level

1 0.68 0.82

006 Among records that contribute positively to predicting treatment class, most of them have wellness_program
feature at medium level

1 0.54 0.08

007 Among records that contribute against predicting treatment class, most of them have anonymity feature at low level 1 0.41 0.38
008 Among records that contribute around zero to predicting treatment class, most of them have anonymity feature at low

level
1 0.63 0.42

009 Among records that contribute positively to predicting treatment class, most of them have anonymity feature at low
level

1 0.22 0.19

010 Among records that contribute positively to predicting treatment class, most of them have leave feature at low level 1 0.25 0.11
011 Among records that contribute against predicting treatment class, most of them have phys_health_consequence feature at

medium level
1 0.51 0.08

012 Among records that contribute around zero to predicting treatment class, most of them have phys_health_consequence
feature at medium level

1 0.68 0.80

013 Among records that contribute positively to predicting treatment class, most of them have
phys_health_consequence feature at medium level

1 0.38 0.12

014 Among records that contribute against predicting treatment class, most of them have coworkers feature at medium level 1 0.49 0.12
015 Among records that contribute around zero to predicting treatment class, most of them have coworkers feature at

medium level
1 0.63 0.77

016 Among records that contribute positively to predicting treatment class, most of them have coworkers feature at
medium level

1 0.51 0.01

017 Among records that contribute against predicting treatment class, most of them have mental_health_interview feature at
medium level

1 0.72 0.05

018 Among records that contribute around zero to predicting treatment class, most of them have mental_health_interview
feature at medium level

1 0.83 0.85

019 Among records that contribute positively to predicting treatment class, most of them havemental_health_interview
feature at medium level

1 0.78 0.09

020 Among records that contribute positively to predicting treatment class, most of them have seek_help feature at
medium level

0.77 0.39 0.17

021 Among records that contribute around zero to predicting treatment class, most of them have leave feature at low level 0.65 0.56 0.67
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itively contributing to the treatment class are age at low level (i.e., younger employees are more willing to see for treat-
ments), wellness program, anonymity, leave, phys health consequence, coworkers, mental health interview, and seek for help,
at different levels. However, some of these features, such as age, at the same time give a positive, negative, and zero contri-
bution to the treatment class prediction. This behavior derives from different subsets of data and expresses in natural lan-
guage what also the SHAP graphs have shown, that is the impact of the model output, even if positive or negative, has very
low values (Fig. 10).

It is also observed that some summaries are true to some extent, e.g. Among records that contribute positively to predicting
treatment class, most of them have sought help feature at medium level [DoT ¼ 0:77;DoS ¼ 0:39;DoF ¼ 0:17] (Id020). We have
then compared the measures used to quantitatively evaluate the linguistic summaries (DoT and DoS), with the expert-based
degree of usefulness (DoU). For this purpose, we used a two-dimensional graph that represents the protoforms in the space
defined by the degree of usefulness and by each of the measures (Fig. 11). As observed in Fig. 11, and similarly to the bipolar
disorder case study, there is no agreement between useful protoforms and the quantitative measures used to describe the
quality of the explanations. Indeed, some protoforms with high DoT are considered not useful (e.g., Id018 and Id017 in the
first graph), protoforms with low coverage, such as Id009 and Id010, are considered very useful, and, on the contrary, proto-
forms with high coverage, such as Id018 and Id017, are assessed as not useful. However, these results do not suggest that the
qualitative measures or the expert evaluation are necessarily wrong: they only point out that different criteria are
considered.

Finally, we ran statistical tests for various quality measures to assess whether the quality of the resulting set of linguistic
summaries is significantly different than summaries from the baseline model (MLP). We considered DoT and DoS as quality
measures and compared the prediction of the treatment class vs no treatment class.

The results of the Wilcoxon signed-rank test are reported in Table 12. For example, when this test is used to compare
degrees of truth for linguistic summaries on treatment prediction from the baseline and the proposed MLP model, the com-
puted p-value is 0.75, supporting the statistical hypothesis that the median of pairwise differences is zero. We conclude that
in terms of the objective quality measures, the linguistic summaries obtained from the two predictive models are
comparable.
Table 12
Results of the Wilcoxon signed-rank test (W denotes the test statistic) that compares the quality of linguistic
summaries produced by the proposed sequential and compositional MLP vs. the MLP baseline. The degree of
truth and degree of support are considered quality measures for predicting the treatment and no treatment
class, respectively.

Criterion Treatment No treatment

DoT W = 9.0; p-value = 0.75 W = 9.0; p-value = 0.75
DoS W = 1387.5; p-value = 0.69 W = 1012.0; p-value = 0.03

Fig. 11. From left to right: comparisons between degree of usefulness and degree of truth or degree of support for linguistic summaries (with DoT > 0:5) to
predict the treatment class, from the sequential and compositional MLP model. Descriptions of LS Ids are provided in Table 11.
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6. Conclusions and future work

In this paper, we have proposed a new framework, PLENARY, to explain black-box models in natural language through
the use of fuzzy linguistic summaries. Several key features make PLENARY a suitable tool for XAI. A key feature is the intro-
duction of an intermediate layer of annotations to mitigate some uncertainties related to classes. A second key feature is that
the grouping of low-level attributes into high-level information granules using linguistic summarization improves the over-
all explainability of the model results. Experimental evaluations confirmed that fuzzy linguistic summarization comple-
ments global model explanations derived from the popular SHAP tool. Furthermore, the results demonstrate that
PLENARY improves understanding of model outputs by appropriate incorporation of the domain knowledge. In particular,
the proposed sequential and compositional neural network architecture can effectively incorporate domain knowledge into
the predictive model. The introduction of specialist knowledge in the form of middle-layer labels does not affect perfor-
mance in terms of prediction accuracy (it remains at a comparable level); however, the inclusion of this knowledge improves
the understanding of the model outputs.

Moreover, from the point of view of the application considered, new technologies have great potential to support psychi-
atrists in understanding the outcomes of disease classification. As our results have shown, in some cases it is not possible to
draw clearly interpretable conclusions from a label-based analysis, which relies on rigid classification criteria. A symptom-
enhanced approach appears to be more supportive in predicting various combinations of depressive and manic symptoms
present in non-classical forms of episodes, including subsyndromal and mixed states. Notably, we present explanations at
different levels of granularity so that end-users (e.g., psychiatrists) understand the comprehensive process of arriving at
the prediction of healthy or pathological classes and symptoms. This represents a huge opportunity to improve clinical
decision-making from early recognition of relapse to personalized and more effective treatment at the individual level. This
could be a step forward in creating a personalized approach based on objective real-world biomarkers, such as voice data.
This study also showed that the evaluation of SHAP values by domain experts still proves to be very difficult, since most
of the speech features have an unclear relationship with clinical symptoms. However, psychiatrists might say more when
SHAP feature contributions are organized into class groups (such as Fig. 5 and 6). We have found that in this way it is possible
to draw more general conclusions concerning only what is relatively clear, i.e. the mixed state and mania. Another illustra-
tive lesson from this study reflects how different XAI metrics compared to human experts assess quality in model explana-
tions. While we can propose to domain experts to evaluate intuitive XAI metrics based on notions such as consistency,
reliability, relevance, and usefulness, only the latter appeared to be intuitive and quantifiable in terms of clinical practicality
in the considered psychiatric use cases. Furthermore, this study revealed the need for having an expert-in-the-loop for the
whole modeling process. For example, some features presented in the SHAP plots are much more important for the domain
expert, and, ideally, such preferences of experts towards features should be wisely included early in the modeling process.
Also, the current SHAP library contains very limited features for comparative analyses of the outcomes of various predictive
models. In particular, the global SHAP plots should have the same scale to make it easier for domain experts to analyze the
differences between alternative models.

The proposed approach is a significant use case but could be extended to other application domains as future work. Future
work also assumes an analysis of uncertain labels and domain knowledge. For example, the number of classes depends on
the domain but there may be several, such as mild depression, severe depression, etc. The proposed PLENARY approach
could serve as a global and human-consistent validation framework for assessing whether global model explanations are
robust. However, further experiments are needed to demonstrate all the benefits and limitations in terms of validating
the robustness of the system through linguistic summarization. Also, as of now, SHAP is able to explain uncertain (gradual)
assignments to classes. For example, our model assigns a 0.3 chance that an instance is of class A and 0.7 that it is of class B.
We aim to evaluate that, for example, ‘‘The model is not certain enough to predict neither class A nor class B”. In SHAP, we show
features ranked in terms of feature contribution. How we select key features may be different for each class or symptom, as
domain experts characterize each class based on a priority of symptoms that can vary when trying to prove diagnosis A ver-
sus diagnosis B.

The PLENARY approach proposed for linguistic summarization on global model explanations starts a new and promising
research direction with potential for further extensions and applications. In addition to summarizing the global model expla-
nations, there is also a need to provide protoforms that allow for linguistic descriptions of local explanations in a synthetic
way. Another extension would be the creation of a dynamic approach to summarize high-level groups that are not homo-
geneous in terms of impact on the predicted class. Also, further research will consider not only other types of protoforms
but also quantifiers and t-norms. This paper also illustrates the need for more comprehensive multi-object summaries that
allow for effective assessment and comparative analysis of global model explanations from multiple predictive models.
Finally, to improve the understandability of the final explanations generated by PLENARY, abstraction summarization
approaches could also be investigated to generate paragraph-based linguistic summaries rather than individual sentence-
based summaries. Extracting linguistic units larger than sentences, such as paragraphs, could actually make the final sum-
maries easier to read. To this aim, we plan to apply other operations to the sentences, clustering semantically related sen-
tences into groups [52]. Another possibility is to adopt deep learning models for abstractive summarization, as proposed
[53]. These further investigations will be the focus of our future work devoted to improving the explainable facet of
PLENARY.
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Code availability

The program code and running examples of PLENARY are available at the following link: https://github.com/
ITPsychiatry/plenary.
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