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Summary

Large-sample hydrology is intended to provide a reliable characterization of
the spatial variability in hydrologic processes at the global, continental and
regional scales. With a primary focus being placed on large-scale streamflow
processes and streamflow datasets, large-sample approaches are increasingly
supplemented by the profusion of remote sensing data containing key infor-
mation on the different components of the water balance at different spatial
and temporal resolutions.

In this thesis, a large-sample application of the Variable Infiltration Capacity
(VIC) model has been carried out for a representative number of headwater
catchments located in Spain in order to 1) assess the model performance
against streamflow observations and satellite-based evaporation data across
the Spanish domain and 2) to perform hydrologic projections and analyse
the impacts of climate change on the various water storages and fluxes that
integrate the water balance.

The application of the VIC model in the Spanish catchments has been divided
into four study cases to uncover the potential of combining streamflow and
evaporation data into the different stages of the hydrological modelling
exercise. This effort extends to the sensitivity analysis stage, the calibration of
model parameters, the evaluation of model performance for the streamflow
and evaporation simulations, and the obtention of hydrologic projections for
the water balance components.

Firstly, the VIC model was calibrated for 31 headwater catchments belonging
to the Duero River Basin against monthly streamflow observations, and its
performance was evaluated for monthly simulations of streamflow and evapo-
ration. The VIC model produced satisfactory adjustments to both variables
and largely improved the benchmark performance. A sensitivity analysis
was carried out on the basis of a Monte Carlo experiment to quantify the
parameter sensitivities for each component of the water balance implemented
in VIC and understand their strong interdependency. A final equifinality
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Summary

assessment revealed that a considerable number of parameter combinations
yielded similar performance estimates to the optimum determined during
calibration for monthly streamflow.

The second study case included those 24 headwater catchments from Duero
where the VIC model produced better performance estimates for monthly
streamflow during calibration and evaluation to study the impacts of climate
change on atmospheric and land surface variables. The VICmodel simulations
were conducted using a Euro-CORDEX multi-model ensemble of 18 members
under the Representative Concentration Pathways (RCP) scenarios RCP4.5
and RCP8.5. The projected hydrologic changes evidenced a shift towards
an enhanced evaporative regime for all the catchments, attaining reductions
of annual streamflow of up to 40% for several catchments. The changes in
precipitation and evaporation were subject to a strong intra-annual variability
and could adequately explain the seasonal streamflow detriments.

The next study case presents a framework for integrating streamflow and
evaporation data into the sensitivity analysis and calibration stages based
on the mathematical definition of the Multi-Objective Optimization Problem
(MOOP). The framework was applied in three studied catchments, two located
in the Guadalquivir River Basin and one in Duero. The VIC soil parameters
and the routing parameters were identified as influential to the daily stream-
flow performance, whereas the vegetation parameters were important to the
performance for monthly evaporation. The multi-objective calibration exper-
iments produced an adequate adjustment to both variables simultaneously
and showed the specific benefits of Pareto-based approaches compared to the
long-established streamflow-only calibration exclusively performed against
streamflow data.

Lastly, a large-sample application of the VIC model was carried out for a total
of 189 headwater catchments encompassing the main River Basin Districts
in Spain. Daily streamflow and monthly evaporation data were combined to
study parameter sensitivities and calibrate and evaluate the VIC model using
meteorological observations. Results manifested an improvement in the joint
performance for daily streamflow and monthly evaporation if their metrics
are combined into a composite single objective during calibration. Hydrologic
projections were performed to analyse the impacts of climate change in the
studied catchments using regional climate simulations conducted with the
Weather Research and Forecasting (WRF) model for the Iberian Peninsula
under the RCP scenarios RCP4.5 and RCP8.5, and evinced that most of the
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catchments will likely experience a more evaporative regime with marked
reductions of streamflow and increasing soil drying conditions under future
climate.

This thesis constitutes an important contribution to the field of large-sample
hydrology and the application of multi-criteria approaches focused on the in-
tegration of streamflow and evaporation data into modelling frameworks. This
thesis provides an insightful characterization of the VIC model performance
and the VIC predictive capabilities for a large and representative number
of Spanish catchments. Results from this investigation will help steer future
developments to advance the process representation in hydrologic models
and increase the reliability of hydrologic projections in the context of global
warming.
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Resumen

La hidrología macroescala tiene como objetivo proporcionar una caracteri-
zación fidedigna de la variabilidad espacial de los procesos hidrológicos a
escala global, continental y regional. Siendo su principal centro de atención los
procesos de caudal a gran escala y las bases de datos de caudal, los enfoques
macroescala son complementandos cada vez más con datos de teledetección
que contienen información clave sobre los diferentes componentes del balance
de agua a distintas resoluciones espaciales y temporales.

En esta tesis se ha llevado a cabo una aplicación macroescala del modelo
hidrológico Variable Infiltration Capacity (VIC) para un número representativo
de cuencas de cabecera localizadas en España con objeto de 1) determinar el
ajuste del modelo frente a observaciones de caudal y datos de evaporación
basados en información de satélite sobre el dominio español, y 2) obtener
proyecciones hidrológicas y analizar los impactos del cambio climático en los
flujos y los almacenamientos de agua que integran el balance de agua.

La aplicación del modelo VIC en las cuencas españolas se ha dividido en
cuatro casos de estudio para analizar el potencial de combinar datos de
caudal y evaporación en las distintas etapas del ejercicio de modelización
hidrológica. Este esfuerzo se extiende a la etapa de análisis de sensibilidad, la
calibración de los parámetros del modelo, la evaluación del ajuste del modelo
para las simulaciones de caudal y evaporación, y la obtención de proyecciones
hidrológicas para los componentes del balance de agua.

En primer lugar, el modelo VIC se calibró en 31 cuencas de cabecera ubicadas
en la Demarcación Hidrográfica del Duero frente a observaciones mensuales
de caudal, y el ajuste se evaluó para las simulaciones mensuales de caudal
y evaporación. El modelo VIC produjo ajustes satisfactorios para ambas
variables y mejoró el ajuste seleccionado como referencia comparativa. Se
realizó un análisis de sensibilidad en base a una simulación de Monte Carlo
para cuantificar las sensibilidades de los parámetros correspondientes a cada
componente del balance de agua implementado en VIC y así entender la fuerte
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interdependencia entre ellos. Un análisis final de la equifinalidad del modelo
reveló que un número considerable de combinaciones de parámetros produjo
un ajuste similar al óptimo determinado durante la calibración del caudal
mensual.

El segundo caso de estudio incluyó aquellas 24 cuencas pertenecientes a la
Demarcación Hidrográfica del Duero donde el modelo VIC produjo un mejor
ajuste al caudalmensual durante la calibración y la evaluación para así estudiar
los impactos del cambio climático en las variables atmosféricas y del suelo.
Las simulaciones del modelo VIC fueron conducidas usando un ensamblado
de 18 miembros de la base de datos Euro-CORDEX bajo los escenarios de
emisión RCP4.5 y RCP8.5. Los cambios hidrológicos proyectados evidenciaron
un cambio hacia un régimen evaporativo más pronunciado para todas las
cuencas, alcanzando reducciones del caudal anual de hasta un 40% en varias
cuencas. Los cambios de la precipitación y la evaporación estuvieron sujetos a
una fuerte variabilidad intra-anual y pudieron explicar adecuadamente los
descensos estacionales de caudal.

El siguiente caso de estudio presenta un marco teórico para la integración
de datos de caudal y evaporación en las etapas de análisis de sensibilidad
y calibración tomando como base la definición matemática del problema de
optimización multi-objetivo (MOOP). El marco fue aplicado en tres cuencas de
estudio, dos localizadas en la Demarcación Hidrográfica del Guadalquivir y
una en la Demarcación Hidrográfica del Duero. Los parámetros del suelo del
modelo VIC y los parámetros de la propagación del caudal fueron influyentes
para el ajuste del caudal diario, mientras que los parámetros de la vegetación
fueron importantes para el ajuste de la evaporaciónmensual. Los experimentos
de calibración multi-objetivo produjeron un ajuste adecuado para ambas
variables simultáneamente y mostraron los beneficios específicos de una
optimización de Pareto en comparación con la tradicional calibración frente a
datos de caudal exclusivamente.

Por último, se llevó a cabo una aplicación macroescala del modelo VIC para un
total de 189 cuencas abarcando las principales Demarcaciones Hidrográficas
de España. Se combinaron datos diarios de caudal y datos mensuales de
evaporación para estudiar la sensibilidad de los parámetros y calibrar y
evaluar el ajuste del modelo empleando observaciones meteorológicas. Los
resultados manifestaron una mejora del ajuste simultáneo del caudal diario
y la evaporación mensual si sus métricas eran combinadas dentro de una
sola función objetivo durante la calibración. Las proyecciones hidrológicas
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permitieron analizar los impactos del cambio climático en las cuencas de
estudio usando simulaciones del modelo climático regional Weather Research
and Forecasting (WRF) para la Península Ibérica bajo los escenarios de emisión
RCP4.5 y RCP8.5, y mostraron que la mayoría de las cuencas experimentarán
probablemente un régimen más evaporativo con marcados descensos del
caudal y crecientes condiciones de aridez en el futuro.

Esta tesis constituye una contribución importante para el campo de la
hidrología macroescala y la aplicación de enfoques mulicriterio centrados en la
integración de datos de caudal y evaporación en la modelización. Este trabajo
proporciona una caracterización detallada del ajuste del modelo VIC y sus
capacidades predictivas para un número importante y significativo de cuencas
en España. Los resultados de esta investigación ayudarán a encaminar futuros
desarrollos para la representación de procesos en modelos hidrológicos y
permitirán obtener proyecciones hidrológicas más fiables en el contexto del
calentamiento global.
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1 Introduction

1.1 Overview of modelling approaches and datasets
in large-sample hydrology

The vulnerability of the water cycle to global warming constitutes a major
concern and a key challenge for the hydrologic community (Clark et al., 2016;
Blöschl et al., 2019a; Nathan et al., 2019). Climate change is likely to increase
the frequency and intensity of hydrologic extremes (Blöschl et al., 2019a;
Yang et al., 2019), such as droughts (Tomas-Burguera et al., 2020) and floods
(Vormoor et al., 2015), as well as the alteration of the freshwater availability and
the snow dynamics in mountainous systems (Viviroli et al., 2011; Mankin et al.,
2015; Thackeray et al., 2019). This situation has resulted in an increasing need
to develop effective adaptation strategies that mitigate the different hydrologic
stresses (Clark et al., 2016; Garrote et al., 2016) and guarantee future water
security (Lehner et al., 2019).

The scientific underpinning for understanding and monitoring the water cycle
relies upon simulations of water stores and fluxes ranging from local to global
scale (Fersch et al., 2020; Pokhrel et al., 2021). Our ability to reproduce existing
hydroclimatic conditions and anticipate their future changes depends on
an accurate representation of hydrologic processes within both climate and
hydrologic model structures (Clark et al., 2015a; Koppa et al., 2022). From a hy-
drological perspective, this situation brings about the need to enhance physical
realism in process-based hydrologicmodels by developing approaches focused
on a significant number of catchments across different hydroclimatic regions
(Addor et al., 2020) and on calibration strategies that integrate multivariate
data (Clark et al., 2017, 2021; Efstratiadis and Koutsoyiannis, 2010).

In order to enhance the robustness of the findings and conclusions stemming
from the analysis of hydrologic datasets and the application of hydrologic
models, large-sample hydrology (Addor et al., 2020) and large-scale hydrology
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1 Introduction

(e.g., Bierkens, 2015; Wood et al., 2011) aim to promote the transferability of
knowledge between regions and assess the applicability of hydrologic models
and theories at regional, continental and global scales. Large-sample hydrology
involves large sets (tens to thousands) of catchments, and its main focus is
to provide generalizable knowledge of hydrological processes and models
based on a large sample of catchments representing different hydroclimatic
conditions with a particular emphasis on streamflow (Addor et al., 2020).

Similarly, large-scale hydrology relies on simulations from land-surface mod-
els carried out at the so-called spatial hyper-resolution (> 1 km) to quantify
and monitor the terrestrial water cycle at the regional, continental and global
scales (Bierkens, 2015; Bierkens et al., 2015; Wood et al., 2011). Land-surface
models were initially developed as the land-surface scheme to be coupled to
General Circulation Models (GCMs) and Regional Climate Models (RCMs) in
order to incorporate the biophysical processes governing the land-atmosphere
interaction (Clark et al., 2015a). However, land-surface models have been exten-
sively used as hydrologic models in stand-alone (i.e., uncoupled) applications
(e.g., Hamman et al., 2018; Melsen et al., 2016a; Mendoza et al., 2015, 2016;
Sepúlveda et al., 2022), and the distinction between hydrologic models and
land-surface models has become blurred over time (Clark et al., 2015b).

Large-sample and large-scale hydrologic studies play an important role in
supporting water resources planning and quantifying hydrologic changes
across scales in the context of a changing climate (Addor et al., 2020; Wood
et al., 2011). Large-sample and large-scale applications can help elucidate
the different sources of uncertainty in hydrologic projections and assess
the relative contribution to the total uncertainty of the various modelling
components, such as the effect of the combination of multiple GCM/RCM
simulations of precipitation and temperature for different emission scenarios
(Marx et al., 2018), the use of different hydrologic and/or land-surface models
to determine the projected changes of annual runoff and discharge timing
(Melsen et al., 2018), or the extent to which climate change controls parameter
sensitivities (Melsen and Guse, 2019) and its implications for model calibration
and evaluation (Melsen and Guse, 2021).

The gap between both hydrological disciplines is becoming increasingly
reduced, and both fields can be considered as two complementary approaches
that attempt to provide a solid understanding of the spatial variability of
hydrologic processes and to facilitate the intercomparison of model structures
across climates (Addor et al., 2020). This is also manifested in the greater areas
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covered by hydrologic models (Beck et al., 2016, 2020), the development of
gridded runoff observations (Gudmundsson and Seneviratne, 2016; Ghiggi
et al., 2019), the tendency towards finer resolutions in land-surface models
(Bierkens, 2015; Wood et al., 2011), and the use of macroscale hydrologic
models in large-sample studies (e.g., Mizukami et al., 2017; Newman et al.,
2017; Rakovec et al., 2016a,b, 2019; Sepúlveda et al., 2022).

From a data perspective, large-sample hydrology encompasses hydrologic
studies founded on large-sample datasets of streamflow observations, hy-
drometeorological data and hydroclimatic and landscape attributes (Addor
et al., 2020). This includes investigations on extreme events (e.g., Blöschl et al.,
2017; Do et al., 2017; Gudmundsson et al., 2019), climate change impacts (e.g.,
Marx et al., 2018; Melsen et al., 2018), variations in terrestrial water storage
(e.g., Zhang et al., 2017), model evaluation and benchmarking (e.g., Aerts
et al., 2022; Newman et al., 2017; Rakovec et al., 2019), data and modelling
uncertainties (e.g., Beck et al., 2017; Coxon et al., 2015), parameter estimates
during calibration (e.g., Beck et al., 2016, 2020; Mizukami et al., 2017; Rakovec
et al., 2016a,b), and transferability of parameters in space based on parameter
regionalization techniques (e.g., Beck et al., 2020; Pool et al., 2021; Rakovec
et al., 2019).

But over and above the extensive hydroclimatic characterization commonly
provided in large-sample datasets, there is no doubt that streamflow is
considered a category of its own (Addor et al., 2020). Streamflow datasets
are primarily based on individual contributions from national hydrological
services, which constitute the building blocks of continental and global
streamflow repositories currently available. The role of national water archives
is of capital importance in this respect, and ultimately, it is the international
collaboration among national authorities worldwide which makes it possible
to tackle this complex challenge (Addor et al., 2020).

On a global scale, the Global Runoff Data Base1 (GRDB) represents the
biggest community effort and the most widely used streamflow dataset in
hydrologic studies. The GRDB dataset includes daily and monthly streamflow
observations for more than 9000 stations and is maintained by the Global
RunoffDataCentre (GRDC), an initiative supported by voluntary contributions
from national authorities around the world. Notably, GRDB has been recently
expanded by means of the Global Streamflow Indices and Metadata (GSIM)

1https://www.bafg.de/GRDC/EN/01_GRDC/13_dtbse/database_node.html
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archive (Do et al., 2018; Gudmundsson et al., 2018) to include time series of
streamflow indices in stations where raw streamflow data are not publicly
available.

At the continental and national scales, the European Water Archive (EWA)
is a comprehensive dataset comprising streamflow observations for more
than 3000 gauging stations in Europe provided by 29 national hydrological
services. The EWA archive has not been updated since October 2014, and
the former EWA stations have been progressively included in the GRDB
dataset and are now regularly updated there2. Moreover, the Catchment
Attributes and MEteorology for Large-sample Studies (CAMELS) dataset
(Newman et al., 2015) gathers hydrometeorological and landscape information
for 671 catchments in the contiguous United States. A similar approach to that
followed in CAMELS has been extended to produce large-sample datasets
in Australia (CAMELS-AUS, Fowler et al., 2021), Great Britain (CAMELS-GB,
Coxon et al., 2020), Chile (CAMELS-CL, Alvarez-Garreton et al., 2018) and
Canada (CANOPEX, Arsenault et al., 2016).

In Spain, two national initiatives stand out as the most important efforts
in the context of large-sample hydrology: first, the streamflow observations
monitored in Automatic Hydrological Information Systems (SAIHs, Sistemas
Automáticos de Información Hidrológica) and in the Official Network of Gaug-
ing Stations (ROEA, Red Oficial de Estaciones de Aforo) are jointly provided
in the SAIH-ROEA dataset3, a national archive annually updated that collects
daily and monthly streamflow observations for the main River Basin Dis-
tricts in Spain; secondly, the Integrated System for Rainfall-Runoff Modelling
(SIMPA, Sistema Integrado de Modelación Precipitación-Aportación; Estrela
and Quintas, 1996; Alvarez et al., 2005) stands as the greatest modelling effort
available for the Spanish domain through a set of monthly rasterized maps for
different hydrologic variables including runoff, actual evaporation and other
relevant water storages and fluxes4. Both initiatives are maintained and contin-
uously improved by the Spanish Center for Public Work Experimentation and
Study (CEDEX, Centro de Estudios y Experimentación de Obras Públicas),
and constitute the basis for water planning purposes in the country.

2https://www.bafg.de/GRDC/EN/04_spcldtbss/42_EWA/ewa.html
3https://www.miteco.gob.es/en/cartografia-y-sig/ide/descargas/agua/anuario-de-

aforos.aspx
4https://www.miteco.gob.es/es/agua/temas/evaluacion-de-los-recursos-

hidricos/evaluacion-recursos-hidricos-regimen-natural/
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The field of large-sample hydrology is now faced with the profusion of
satellite remote sensing products. What are the most common uses of remote
sensing data in hydrologic studies and how does this affect the application of
large-sample approaches? These questions will be addressed in next section.

1.2 Hydrologic applications of satellite remote
sensing data

Satellite remote sensing data have existed since the launch of Sputnik 1 and
Explorer 1 in the 1950s (Lettenmaier et al., 2015). However, it has not been until
recent decades that satellite remote sensing has proven to have a significant
impact on hydrologic studies (Cui et al., 2019; Dembélé et al., 2020a). Most of
the progress in remote sensing applications in hydrological sciences can be
attributed to the possibility of extending the knowledge of hydrologic processes
from field experiments to the regional, continental and global scales, as well
as to data-scarce areas with little or no access to hydroclimatic information
(Lettenmaier et al., 2015). This implies the use of satellite sensors to retrieve
important variables from a water balance perspective, including precipitation,
streamflow, evaporation rates, terrestrial water storage, soil moisture, snow
and surface water storage (Dembélé et al., 2020b).

Global precipitation products are available at multiple spatial and temporal
resolutions, and are of capital importance for regions lacking in-situ measure-
ments (Lettenmaier et al., 2015). For instance, the NASA’s Global Precipitation
Measurement (GPM) mission5 provides gridded precipitation data at 10 km
resolution and 30-minute time step. Gridded estimates of precipitation from
satellite sensors and their ever increasing accuracy have fostered the devel-
opment of global flood and drought forecasting systems, such as the Global
Flood Monitoring System6 (GFMS) developed at the University of Maryland
(Wu et al., 2014).

In-situ observations of streamflow are commonly performed using rating
curves that relate river stage to discharge. Based on this approach, the chal-
lenges of satellite streamflow estimates are obtaining cross-sectional velocities
in rivers to define rating curves and producing accurate measures of river

5https://gpm.nasa.gov/
6http://flood.umd.edu/
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stage. Current satellite remote sensing techniques are unable to measure
cross-sectional velocities, and the goal of estimating streamflow from satel-
lite sensors remains elusive (Lettenmaier et al., 2015). However, the field of
global hydrology and in particular global streamflow estimates are expected
to significantly advance thanks to the Global River Widths from Landsat
(GRWL) database (Allen and Pavelsky, 2018) and the Surface Water and Ocean
Topography7 (SWOT) mission, which is planned to launch on December 12,
2022 to provide an inventory of water bodies and rivers with more than 100 m
width and to measure global storage changes at sub-monthly, seasonal, and
annual time scales.

Evaporation represents the nexus between the water and energy budgets,
and is the second largest component of the global water balance (Konapala
et al., 2020; Koppa et al., 2022). Although there is a wide variety of methods
to estimate evaporation from remote sensing data, the two major variants
regarding techniques that are commonly used are represented in Vinukollu
et al. (2011) and Miralles et al. (2011). Vinukollu et al. (2011) estimated
global evaporation from satellite measurements using the Penman-Monteith
formulation, the Priestley-Taylor approach and the Surface Energy Budget
System (SEBS) method (Su, 2002). On its part, Miralles et al. (2011) reported
global evaporation estimates using passivemicrowave remote sensing data and
the algorithms in the Global Land Evaporation AmsterdamModel8 (GLEAM).
These two variants have been extensively used in global climate and hydrologic
research (Lettenmaier et al., 2015), and GLEAM has become an important
reference in hydrologic studies to calibrate and evaluate hydrologic models
(e.g., Bouaziz et al., 2021; Dembélé et al., 2020b,a; Koppa et al., 2019).

Terrestrial Water Storage (TWS) estimates for the globe are available from the
Gravity Recovery and Climate Experiment9 (GRACE) mission, a collaboration
between NASA and the German Space Agency (DLR). The GRACE dataset is
based on measurements of the gravitational field in the north-south direction
for each orbit, and is provided at 1º resolution and amonthly time step. GRACE
has allowed the hydroclimatic community to better quantify the water balance
at large scales, and has enabled the indirect estimation of continental and
global mass fluxes when combined with other satellite products (Lettenmaier
et al., 2015).

7https://swot.jpl.nasa.gov/
8https://www.gleam.eu/
9https://grace.jpl.nasa.gov/
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On the other hand, soil moisture is a central pillar of land-surface hydrology
and is an important boundary condition regarding the land-atmosphere inter-
actions (Seneviratne et al., 2010). Satellite soil moisture products are available
only for the first few centimeters of the soil profile, and are usually combined
with models to estimate complete soil moisture profiles (Lettenmaier et al.,
2015). Relevant satellite missions to retrieve soil moisture data include the
Soil Moisture and Ocean Salinity (SMOS) mission10 from the European Space
Agency (ESA) and the Soil Moisture Active and Passive (SMAP) mission11.
SMOS provides soil moisture information at ∼ 35 km resolution and a period-
icity of 2-3 days, while SMAP improves the resolution of SMOS and provides
soil moisture estimates at 3, 9 and 36 km for the same time step.

Finally, satellite measurements of snow-related variables and surface water
storages (i.e., lakes, reservoirs) are currently evolving. Snow has been the
first hydrologic variable measured through remote sensing techniques, and
although snow cover information can be accurately estimated based on re-
trievals from the Moderate Resolution Imaging Spectroradiometer12 (MODIS),
snow water equivalent measurements are still elusive, particularly in moun-
tainous areas with an heterogeneous distribution of snow (Lettenmaier et al.,
2015). MODIS provides a large suite of products including land, atmosphere,
cryosphere and ocean information at 250 m, 500 m and 1 km resolutions.
MODIS has also been used to estimate storage variations in large reservoirs
(e.g., Gao et al., 2012), although surface water storage retrievals are expected
to greatly improve in the light of results of the SWOT mission.

Satellite remote sensing data have the potential to improve land-surfacemodels
and hydrologicmodels via data assimilation or viamodel calibration (Dembélé
et al., 2020a; López López et al., 2017). Data assimilation is used to continuously
update model states with observations and compensate structural deficiencies,
and is a common procedure to merge satellite and ground-based observations
with land-surface models (Wood et al., 2011) and to generate global and
regional climate reanalysis products (Hersbach et al., 2020). To calibrate model
parameters, satellite data are normally combined with in-situ observations of
streamflow following either a single-objective or amulti-objective optimization
approach (Dembélé et al., 2020a; Efstratiadis and Koutsoyiannis, 2010; López
López et al., 2017).

10https://www.esa.int/Applications/Observing_the_Earth/FutureEO/SMOS
11https://smap.jpl.nasa.gov/
12https://modis.gsfc.nasa.gov/data/
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It is also important to highlight the growing role played by satellite information
in relation to the detection and accurate quantification of the impacts of climate
change on water resources availability. The use of satellite-based algorithms
to retrieve evaporation and terrestrial water storage information represents
an unprecedented opportunity to monitor the dynamics and the climate-
driven changes in evaporative fluxes (Konapala et al., 2020; Koppa et al., 2022)
and subsurface water storage (Pokhrel et al., 2021). Moreover, evaporation is
expected to increase as a consequence of global warming (IPCC, 2021), and
the projected declines for terrestrial water storage will likely lead to more
severe and frequent droughts (Pokhrel et al., 2021). These changes can pose
a challenge for future water security and water resources availability from
regional to global scale (Lehner et al., 2019; Konapala et al., 2020; Koppa et al.,
2022; Pokhrel et al., 2021).

Therefore, large-sample hydrology can strongly benefit from the inclusion of
satellite remote sensing data into modelling frameworks in order to calibrate
and evaluate models for more than one hydrologic variable (traditionally
streamflow) and draw more robust conclusions on catchment functioning
for a large number of catchments (Clark et al., 2017; Rakovec et al., 2016a,b,
2019). This is a promising solution to overcome the limitations of the so-called
streamflow-only calibration (Dembélé et al., 2020a), and a step forward in
the direction of "What is my model good for?" rather than "How good is my
model?" (Clark et al., 2021). This will help attain a more robust characterization
of thewater cycle, providing a solid foundation for an improvedwater planning
and greater resilience to the impacts of climate change.

1.3 Objectives and thesis outline

The main goal of this thesis is to develop a hydrological modelling framework
in order to examine the streamflow and evaporation dynamics and study the
impacts of climate change for a large set of Spanish catchments. As part of the
Iberian Peninsula, the Spanish domain constitutes a region where the effects
of climate change are already noticeable and are expected to be much more
pronounced by the end of the 21th century (IPCC, 2021). The Iberian Peninsula
has been previously identified as a hotspot (Diffenbaugh and Giorgi, 2012),
and has manifested recurrent droughts and an increasing tendency towards
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aridity conditions for the last decades (García-Valdecasas Ojeda et al., 2021;
Páscoa et al., 2017).

From a hydrological perspective, the Spanish catchments has shown a marked
reduction of streamflow during the last half century (Lorenzo-Lacruz et al.,
2012, 2013), and evaporative fluxes play a dominant role concerning the water
balance in the entire region (García-Valdecasas Ojeda et al., 2020b; Vicente-
Serrano et al., 2014). These changes are expected to exacerbate under climate
climate change (García-Valdecasas Ojeda et al., 2020a, 2021), and can pose
an important threat for the future water planning and management in the
country. Thus, the simultaneous integration of streamflow and evaporation
data into modelling frameworks represents a promising solution to achieve a
more reliable quantification of the water balance and a more robust approach
to assess the future impacts of climate change in Spain.

The modelling framework developed in this thesis will be focused on the
Variable Infiltration Capacity (VIC) model (Liang et al., 1994, 1996), one of the
most widely used hydrologic models in hydrologic studies (Addor andMelsen,
2019). The VIC model has been successfully implemented in many previous
large-sample studies and large-scale applications (e.g., Melsen et al., 2018;
Mizukami et al., 2017; Rakovec et al., 2019; Sepúlveda et al., 2022). This, together
with the large number of developments since its first appearance in 1994 (Liang
et al., 1994), makes VIC an excellent choice for the purpose of this thesis. The
VICmodel capabilities to integrate streamflowobservations and satellite-based
evaporation datawill be thoroughly investigated, and its predictive capabilities
will be leveraged to perform hydrologic projections for the Spanish catchments.
The application of the VIC model will be carried out in a step-by-step manner
for four study cases focused on differentmodelling approaches and catchments
belonging to the Spanish domain. The four study cases have been specifically
design to assess the potential of integrating streamflow and evaporation data
into the different stages of the hydrological modellling exercise: sensitivity
analysis, calibration and evaluation, and the predictive stage using climate
change information (i.e., hydrologic projections).

The rest of this thesis is structured as follows: Chapter 2 presents the Spanish
catchments and the hydroclimatic data that are to be used in the modelling
framework. Chapter 3 sets out the VIC model structure and the spatial
configuration approach for the modelling exercise. Chapter 3 also introduces
the four study cases representing the central core of the VICmodel application,
and the results and insights deriving from them are extensively described in
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1 Introduction

Chapters 4 to 7. Finally, Chapter 8 summarizes the main conclusions from this
thesis.
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2 Study area and Data

This chapter presents the Spanish catchments constituting the study area
of this research and the different hydroclimatic datasets that will be used
during the hydrological modelling exercise. Hydroclimatic information in-
cludes streamflow, precipitation and temperature observations, satellite-based
evaporation data and two datasets of climate change projections.

2.1 Headwater catchments and streamflow
observations

This thesis is focused on a large sample of headwater catchments distributed
across themain River BasinDistricts in Spain (Fig. 2.1, Table 2.1). 441 headwater
catchments were defined according to the physical location of a large number
of reservoirs and gauging stations gathered from SAIH-ROEA1, an integrated
network of streamflow observations administrated by the Spanish Center
for Public Work Experimentation and Study (CEDEX, Centro de Estudios y
Experimentación de Obras Públicas2) that includes hydrologic information
for more than 350 reservoirs and 900 gauging stations belonging to the main
River Basin Districts in Spain.

The headwater catchments were selected according to two criteria: 1) the
absence of upstream reservoirs, and 2) the largest possible catchment was kept
in those cases where several gauging stations fell within the same catchment
area. Streamflow observations from SAIH Hidrosur3 and the Catalan Water

1https://www.miteco.gob.es/en/cartografia-y-sig/ide/descargas/agua/anuario-de-
aforos.aspx

2https://ceh.cedex.es/anuarioaforos/default.asp
3http://www.redhidrosurmedioambiente.es/saih/
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2 Study area and Data

Fig. 2.1: River Basin Districts in Spain and the 441 headwater catchments considered in this
thesis. (a) River Basin Districts. (b) Topographic boundaries of the 441 headwater
catchments.

Agency4 (ACA, Agencia Catalana del Agua) are not integrated into the SAIH-
ROEA network and were not considered in this investigation.

The SAIH-ROEA database is delivered at daily and monthly time scales and
includes streamflow time series starting as early as 1911 for some catchments.
Streamflow estimates in gauging stations are retrieved from water depth
measurements using rating curves, and a daily water balance of water storages
and releases is applied in reservoirs to calculate inflow data, which are later
aggregated into monthly values. A data quality control of the number of gaps
in the streamflow observations will be applied in each particular study case to
select a subset of headwater catchments with enough data available. Specific
details on the quality control for streamflow data will be addressed later in
this thesis for each study case.

4https://aca.gencat.cat/ca/inici/
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2.2 Precipitation and temperature observations

Table 2.1: Number of headwater reservoirs and gauging stations per River Basin District
considered in this thesis.

River Basin District Reservoirs Gauging
stations Total

Miño-Sil, Galicia Costa and Cantábrico 28 64 92
Duero 18 15 33
Tajo 31 49 80
Guadiana 18 29 47
Guadalquivir 36 23 59
Segura 13 0 13
Júcar 20 6 26
Ebro 42 49 91

Total 206 235 441

2.2 Precipitation and temperature observations

Precipitation, maximum temperature and minimum temperature data were
extracted from two high-resolution (∼ 5 km) daily gridded datasets: the
Spanish PREcipitation At Daily scale (SPREAD) dataset5 (Serrano-Notivoli
et al., 2017) for precipitation data and the Spanish TEmperature At Daily scale
(STEAD) dataset6 (Serrano-Notivoli et al., 2019) for temperature data. Both
datasets cover the whole territory of Spain and were built using information
from an extensive net of observatories (> 12000 for SPREAD and > 5000 for
STEAD) of precipitation and maximum and minimum temperature provided
by several administrations including the Spanish Meteorological Agency
(AEMET, Agencia Estatal de Meteorología) and some River Basin Districts.

Precipitation series span the period 1950-2012 in peninsular Spain and the
period 1971-2012 in the Balearic and Canary Islands, whereas maximum and
minimum temperature series are longer and cover the periods 1901-2014
and 1971-2014 for peninsular Spain and the Canary and Balearic Islands,
respectively. The raw meteorological data were subject to an in-depth quality
control, and gaps were independently filled on each day and location to
produce a complete dataset. Both gridded products were finally constructed
through the calculation of Reference Values (RVs) andwere accompanied by an
estimation of uncertainty for all days and locations (see Serrano-Notivoli et al.,

5https://digital.csic.es/handle/10261/141218
6https://digital.csic.es/handle/10261/177655
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2017, 2019, for a detailed description of the methodological steps integrating
the quality control and gridding stages).

2.3 Satellite-based evaporation data

The Global Land Evaporation Amsterdam Model (GLEAM, Martens et al.,
2017; Miralles et al., 2011) comprises a set of algorithms for the estimation of
the different components of land evaporation (i.e., evaporation from bare soil
and from open water bodies, transpiration, interception loss and sublimation).
GLEAM evaporation is calculated using microwave remote sensing data and
a data assimilation infrastructure that has been optimized to operate at the
global scale.

GLEAM version 3 (Martens et al., 2017) is delivered as two global gridded
datasets (version 3a and version 3b) at 0.25º resolution that differ in the time
period covered and in their forcings: version 3a spans the period from 1980 to
the present day and is based on satellite and reanalysis data, whereas data
in version 3b are available from 2003 onward and are exclusively based on
satellite information. GLEAM version 3a has been selected in this thesis as the
reference dataset for evaporation given its greater temporal coverage, which
makes it suitable for the modelling purpose of this thesis.

The GLEAM dataset is gaining increasing attention in the hydrologic commu-
nity given the prevalent role of evaporative fluxes in the water balance and the
sparse availability of in-situ observations of evaporation. GLEAM has been
successfully used in many previous hydrologic studies including evaporation
as an evaluation objective during a post-calibration phase (e.g., Beck et al.,
2021; Bouaziz et al., 2021) or as calibration target itself (e.g., Dembélé et al.,
2020a,b; Koppa et al., 2019; López López et al., 2017).

2.4 Climate change projections

In this thesis, two datasets of climate change projections were chosen to
perform hydrologic projections for the future climate: 1) an ensemble of 18
Regional ClimateModel (RCM) experiments from the Euro-CORDEX database
(Table 2.2), and 2) simulations carried out with the Weather Research and
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2.4 Climate change projections

Table 2.2: Ensemble of combinations RCM+GCM chosen from the Euro-CORDEX database.

RCM GCM

RCA4

CNRM-CERFACS-CNRM-CM5
ICHEC-EC-EARTH, r12i1p1

IPSL-IPSL-CM5A-MR
MOHC-HadGEM2-ES
MPI-M-MPI-ESM-LR

CCLM4-8-17

CNRM-CERFACS-CNRM-CM5
ICHEC-EC-EARTH

MOHC-HadGEM2-ES
MPI-M-MPI-ESM-LR

HIRHAM5 ICHEC-EC-EARTH, r3i1p1
NCC-NorESM1-M

RACMO22E

CNRM-CERFACS-CNRM-CM5
ICHEC-EC-EARTH, r12i1p1
ICHEC-EC-EARTH, r1i1p1

MOHC-HadGEM2-ES

REMO2009 MPI-M-MPI-ESM-LR, r1i1p1
MPI-M-MPI-ESM-LR, r2i1p1

WRF331F IPSL-IPSL-CM5A-MR

Forecasting (WRF) model for the Iberian Peninsula in García-Valdecasas Ojeda
et al. (2020a,b).

The Euro-CORDEX project7 (Jacob et al., 2014) is established as the largest
climate modelling effort for the European region (Herrera et al., 2020), with a
plethora of RCM simulations available at 0.11º and 0.44º that have been the
basis of a great number of hydrological impact studies for many European
catchments (e.g., Gampe et al., 2016; Papadimitriou et al., 2016; Meresa and
Romanowicz, 2017; Hakala et al., 2018; Hanzer et al., 2018; Vieira et al., 2018;
Fonseca and Santos, 2019; Pastén-Zapata et al., 2020). Daily climate data
were gathered at a spatial resolution of 0.11º (EUR-11, ∼ 12.5 km) for eight
atmospheric variables: precipitation, maximum and minimum temperature,
near-surface wind speed, incoming shortwave and longwave radiation, atmo-
spheric pressure and vapour pressure. The multi-model ensemble consists of
18 RCM+GCM combinations for the Representative Concentration Pathways

7https://euro-cordex.net/
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(RCP) scenarios RCP4.5 and RCP8.5. Data were extracted for the historical
period of 1975-2005 and for 2021-2100 as the future period considering the
hydrologic year (i.e., fromOctober to September) and the associated hydrologic
seasons. The latter was divided into three sub-periods: short-term (2021-2050),
mid-term (2041-2070) and long-term (2071-2100) future periods.

The WRF model simulations were driven by the Fourth Version of the Com-
munity Climate System Model (WRFCCSM hereafter) and the Max Plank
Earth System Model at Low Resolution (WRFMPI hereafter) at 0.088º (∼ 10
km) resolution. Daily precipitation and maximum and minimum temperature
data were extracted for three study periods based on climatic years (i.e.,
from December to November): the historical period 1980-2015, the short-term
future period 2021-2050 and the long-term future period 2071-2100. The future
projections of climate change were carried out under RCP4.5 and RCP8.5. The
use of climatic years were preferred over the definition of hydrologic years in
order to facilitate the discussion and comparison of results with the findings
reported in García-Valdecasas Ojeda et al. (2020a,b).
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In this chapter, theVICmodel representation of thewater balance is introduced.
The surface runoff, baseflow and evaporation equations are described, as well
as the soil and vegetation parameters and the spatial configuration approach
adopted for VIC. The application of VIC in four study cases is finally outlined.
Specific methods corresponding to each study case will be further addressed
in the next four chapters.

3.1 The VIC model

The VIC model (Liang et al., 1994, 1996) is a semi-distributed macroscale
hydrologic model that was initially conceived as a Land-Surface Model (LSM)
to be coupled to General Circulation Models (GCMs) and Regional Climate
Models (RCMs) as a the land scheme that allows for simulating the biophysical
processes involved in the land-atmosphere interaction. Since then, the VIC
model has played the role of both a LSM and a hydrologic model and has
become one of the most widely used models in hydrological modelling studies
(Addor and Melsen, 2019).

Applications of VIC range from a global to a local scale (Hamman et al., 2018;
Melsen et al., 2016a) and are performed at the spatial hyper-resolution (≥ 1
km, Bierkens, 2015; Bierkens et al., 2015; Wood et al., 2011). The VIC model is
predominantly used in the United States (US) as its development started and
continues to be carried out in US research institutions (Addor and Melsen,
2019). This includes the ongoing real-time drought monitoring and forecasting
systems at University of California, Los Angeles1, and the NASA’s Land Data
Assimilation System2 (LDAS).

1http://www.hydro.ucla.edu/SurfaceWaterGroup/forecast/monitor/index.shtml
2https://ldas.gsfc.nasa.gov/
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The VIC model implements a wide variety of biophysical processes at the
grid-cell scale and computes the water and the energy balances at the land
surface. Such processes encompass, among others, the runoff generation,
evaporative fluxes into the atmosphere, thermal processes in the soil pro-
file, snow and frozen soil dynamics, the impoundment of surface water in
lakes and wetlands, and specific processes regulating the carbon cycle (e.g.,
photosynthesis, autotrophic respiration and heterotrophic respiration). Its
extensive parameterization is distributed into different modules or submodels
to provide scalability and a varying degree of complexity depending on the
modelling purpose.

In this thesis, the VICmodel version 4.2.d3 was selected to carry out hydrologic
simulations of water storages and fluxes at the catchment scale choosing the
water balance mode of operation and a daily time step. Hydrologic processes
in VIC are modelled for a total of three soil layers vertically interconnected
(Fig. 3.1). The sub-grid variability in land cover classes is evaluated statisti-
cally, and the spatially heterogeneous structure of the infiltration capacity is
conceptualized according to the Xinanjiang model (Zhao et al., 1980). This
approach takes into account the sub-grid variability in the soil moisture storage
capacity.

Vegetation

N+1 Land cover classes
- N Vegetation classes
- Bare soil

VIC water balance

Soil layer 1

Soil layer 2

Soil layer 3

EP

Qt

Qs

Qb

n = 1

2 3

4

N

...
N+1

Bare soil

Fig. 3.1: VIC model conceptualization.

3https://vic.readthedocs.io/en/vic.4.2.d/
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3.1 The VIC model

Surface runoff is generated through an infiltration excess applying the Xinan-
jiang formulation (Zhao et al., 1980) to the upper two soil layers:

Qs �


P − z2 · (θS − θ2) + z2 · θS ·

(
1 − i0 + P

im

)1+bi
, P + i0 ≤ im

P − z2 · (θS − θ2), P + i0 > im

(3.1)

For each time step Qs [L] is the surface (direct) runoff, P [L] is the precipitation,
z2 [L] is the depth of the upper two soil layers, θ2 is their volumetric soil
moisture content, θS is their porosity, im [L] is the maximum infiltration
capacity, i0 [L] is the infiltration capacity that corresponds to the soil moisture
at that time step and bi is the infiltration shape parameter.

Baseflow is generated in the third soil layer following the Arno formulation
(Franchini and Pacciani, 1991), and is expressed as:

Qb �


DSDm
WSθS

· θ3, 0 ≤ θ3 ≤ WSθS

DSDm
WSθS

· θ3 +

(
Dm −

DSDm
WS

)
·
(
θ3 −WSθS
θS −WSθS

)
, θ3 > WSθS

(3.2)

Here, Qb [L] is the baseflow for each time step, Dm [L] is the maximum
baseflow, DS is a fraction of Dm, θ3 is the volumetric soil moisture content
of the soil layer 3, θS is the porosity in this layer and WS is a fraction of θS.
The baseflow recession curve is divided into two parts: a linear part for lower
values of θ3 and a non-linear (quadratic) part for higher values of θ3. The total
runoff generated within a catchment (Qt) is finally calculated as the sum of Qs
and Qb (Fig. 3.1).

The water balance in the VIC model considers three types of evaporation de-
pending on each land cover class (N vegetation classes + Bare soil, see Fig. 3.1):
evaporation from the canopy layer (Ec), transpiration from the different types
of vegetation (Et) and evaporation from bare soil (E1). Potential evapotranspi-
ration (Ep) is calculated using the Food and Agriculture Organization (FAO)
Penman-Monteith equation (Allen et al., 1998), and represents the atmospheric
demand for water vapor. Actual evapotranspiration (E) is obtained as the sum
of the three components for each grid cell:
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E � Ec + Et + E1 (3.3)

TheVIC snowmodel divides eachgrid cell into snowbands, thereby accounting
for the sub-grid variability in topography, land uses and precipitation. The
snow model is applied separately to each snow band and land cover class to
calculate the snow depth and the snow water equivalent. The snowpack is
represented as a two-layer model that solves the energy and the mass balance
and determines whether the snowpack is subject to accumulation or ablation,
thus making VIC suitable for applications in any part in the world (Liang et al.,
1994, 1996).

3.2 Soil and vegetation parameters

While most of the soil and vegetation parameters required for the application
of the VIC model can be obtained from measurable quantities of soil and
vegetation characteristics, the conceptual parameters modulating the surface
runoff (bi, see Eq. 3.1) and baseflow generation (DS, WS and Dm, see Eq. 3.2) do
not have ameasurable physical meaning, and their values are to be determined
during calibration together with the soil depth. These parameters are the most
common calibration parameters according to the recommendations for the
calibration of the VICmodel4, and are also in agreement with previous studies
using VIC for sensitivity analysis and/or calibration purposes (e.g., Chawla
and Mujumdar, 2015; Liang et al., 2004; Mizukami et al., 2017; Melsen et al.,
2016b; Oubeidillah et al., 2014; Rakovec et al., 2014, 2019).

Table 3.1 summarizes the soil and vegetation datasets used to extract the
VIC soil and vegetation parameters considered observable. Soil properties
were taken from SoilGrids1km (Hengl et al., 2014) and EU-SoilHydroGrids
ver1.0 (Tóth et al., 2017), all of them at 1 km resolution. In both datasets the
different soil properties are provided for seven soil depths up to 2 m (0, 5,
15, 30, 60, 100 and 200 cm). These soil parameters are: (1) bulk density and
soil textural classes of the United States Department of Agriculture (USDA)
from SoilGrids1km; and (2), field capacity, saturated hydraulic conductivity,
porosity and wilting point from EU-SoilHydroGrids ver1.0. The depth of the

4https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Calibration/
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Table 3.1: Soil and vegetation datasets selected to extract the VIC parameters considered
observable.

Dataset Variable Resolution Data source
SoilGrids1km - Bulk density 1 km Hengl et al. (2014)

- USDA textural classes
EU-SoilHydroGrids ver1.0 - Field capacity 1 km Tóth et al. (2017)

- Hydraulic conductivity
- Porosity
- Wilting point

UMD-GLCC - Land cover classes 1 km Hansen et al. (2000)
GLDAS - 13 vegetations parameters (e.g.,

Leaf-Area Index, albedo, min-
imum stomatal resistance) for
each land cover class

1 km Rodell et al. (2004)

complete soil profile implemented in VIC was established at 2 m to match the
depth covered by the soil datasets. The thickness of the first soil layer (d1) was
fixed at 10 cm according to Liang et al. (1996), and the thickness of the second
soil layer (d2) was adjusted during calibration.

The VICmodel handles land uses information as a set of vegetation parameters
for the different vegetation classes specified in a vegetation library. Here,
the University of Maryland Global Land Cover Classification (UMD-GLCC,
Hansen et al., 2000) was chosen with a spatial resolution of 1 km, and a total of
13 vegetation parameters (Table 3.2) were defined for each vegetation class in
agreement with the Global Land Data Assimilation System (GLDAS, Rodell
et al., 2004) specifications for VIC5. The vegetation parameters remain mostly
fixed as default values and are rarely varied during calibration (although see
Melsen et al., 2016a; Mendoza et al., 2015; Sepúlveda et al., 2022, for some
exceptions).

3.3 Spatial configuration and routing procedure

A semi-distributed implementation of the VICmodelwas carried out following
a catchment-by-catchment approach and choosing a spatial resolution of 0.05º
(∼ 5 km). This resolution is a common choice in previous studies using VIC

5https://ldas.gsfc.nasa.gov/gldas/vegetation-parameters
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Table 3.2: VIC vegetation parameters for each vegetation class.

Parameter Description
depth1 Thickness of the first root zone
depth2 Thickness of the second root zone
rarc Architectural resistance
rmin Minimum stomatal resistance
LAI Leaf-Area Index
albedo Albedo
rough Vegetation roughness
disp Vegetation displacement
wind_h Height of wind speed measures
RGL Minimum incoming shortwave radiation for transpiration
rad_atten Radiation attenuation
wind_atten Wind speed attenuation through overstory
trunk_ratio Ratio of total tree height that is trunk

(e.g., Melsen et al., 2016b; Sepúlveda et al., 2022) and other semi-distributed
hydrologic model such as the mesoscale Hydrologic Model (mHM, see Marx
et al., 2018) and the Hydrologiska Byråns Vattenbalansavdelning (HBV)
model (e.g., Beck et al., 2020). In addition, the chosen resolution improves
the resolution of RCM simulations available in Euro-CORDEX (0.11º) and
the resolution of the WRF model simulations carried out in Argüeso et al.
(2012) and in García-Valdecasas Ojeda et al. (2017, 2020a,b) for the Iberian
Peninsula (0.088º), providing an increase in quality and reliability for the
process representation in space. The semi-distributed implementation of the
VIC model was carried out averaging the soil parameters for each grid cell
and keeping the vegetation parameters at the original resolution of 1 km as
the model considers the sub-grid variability in land cover classes.

The distributed hydrologic variables simulated with VIC for a given catchment
were averaged according to the fractional area of each cell falling inside
the catchment in order to respect its topographic area (Fig. 3.2). Since the
conceptualization of the VIC model does not include the horizontal fluxes
between contiguous grid cells, the runoff generated within a catchment needs
to be propagated to the catchment outlet in order to determine simulated
values of streamflow that can be compared with existing observations. In this
thesis, streamflow time series were calculated following two approaches (see
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Spatially distributed 
outputs

Catchment-averaged 
outputs

Runoff / Streamflow

Monthly aggregation
Streamflow = QtQt

Daily routing
Gamma-based UH
Streamflow = Qrout

Fig. 3.2: Spatial configuration for the VIC model outputs.

Fig. 3.2): 1) a monthly aggregation of the total runoff generated for a catchment
assuming that all the runoff drains by the end of the month; and 2) a Unit
Hydrograph (UH) approach (Te Chow et al., 1988) to perform a daily routing
of the runoff simulations.

The UH describes the response of a linear system to an input time func-
tion according to a certain unit impulse response function U(t) such that∫ ∞

0 U(t)dt � 1. Then, streamflow data can be calculated as the convolution
integral of the runoff time series and U(t):

Qrout(t) �
∫ t

0
Qt(τ)U(t − τ)dτ (3.4)

Where Qt represents the total runoff, Qrout is the streamflow and t − τ is
the time delay since the impulse was applied (Te Chow et al., 1988). For the
purpose of this thesis, a gamma distribution function with two parameters
was chosen as the UH:

U(t) � γ(t : k , θ) � 1
Γ(k)θk

tk−1e−t/θ (3.5)

Where k is a shape parameter [-], θ is a timescale parameter [T] and Γ(k) is the
gamma function. The gamma-based UH constitutes a parsimonious way to
represent the time delay between the runoff generated within the catchment
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and the streamflow draining through the catchment outlet, and has been
widely used to calibrate daily streamflow simulations in previous hydrological
modelling studies (e.g., Mizukami et al., 2017; Rakovec et al., 2014, 2019).

3.4 Study cases

The core of this thesis has consisted of the application of the VIC model in four
study cases. The four study cases involve the sensitivity analysis, calibration,
evaluation and predictive stages of the hydrological modelling exercise, and
constitute the content of the next four chapters. For the sake of completeness
and clarity, a brief outline for each study case is provided below:

1. The Duero River Basin under present climate: sensitivity analysis,
calibration and evaluation (Chapter 4; Yeste et al., 2020). The VICmodel
was calibrated for 31 headwater catchments belonging to the Duero
River by following a single-objective optimization approach focused on
the monthly simulations of streamflow. The VIC model performance
was evaluated for monthly streamflow and monthly evaporation, and a
cross-evaluation of the calibrated parameters was carried out to study
parameter transferability in space. The Standardized Regression Coef-
ficients (SRC) method (Saltelli et al., 2008) was applied to quantify the
sensitivity of thewater balance components to the calibration parameters,
and an equifinality assessment (Beven, 2006, 2012) was finally performed
for monthly streamflow.

2. The Duero River Basin under future climate: projected hydrologic
changes (Chapter 5; Yeste et al., 2021). The second study case is based
on the calibration results attained in the previous study case for the
Duero River Basin. The VIC model was applied in 24 headwater catch-
ments where the model produced satisfactory performance estimates
for monthly streamflow to obtain hydrologic projections for the water
balance variables using the calibrated VIC and an ensemble 18 members
from Euro-CORDEX (Jacob et al., 2014). The Quantile Mapping proce-
dure (Themeßl et al., 2011) was adopted as the bias correction method
for the meteorological forcings from Euro-CORDEX during the historical
period, and the projected hydrologic changes were calculated for the
short-term, mid-term and long-term future periods.
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3. Streamflow and evaporation trade-offs: sensitivity analysis and cali-
bration based on Pareto optimization (Chapter 6). In this study case
we propose a framework to integrate streamflow and evaporation data
into the sensitivity analysis and calibration stages of the hydrological
modelling exercise. The frameworkwas implemented for two catchments
located in the Guadalquivir River Basin and one catchment located in
Duero. The Distributed Evaluation of Local Sensitivity Analysis (DELSA)
method (Rakovec et al., 2014) was applied to identify influential pa-
rameters from among the VIC soil and vegetation parameters to the
performance against daily streamflow and monthly evaporation data.
A Pareto-based sensitivity analysis was subsequently carried out to
further refine the previous parameter selection, and the optimum joint
performance for daily streamflow and monthly evaporation was finally
determined on the basis of a constrained multi-objective calibration
approach.

4. Hydrologic simulations for theSpanish catchmentsunderpresent and
future climate (Chapter 7). The last study case builds into the experience
gained in the rest of the study cases to carry out a large-sample application
of the VIC model for 189 Spanish headwater catchments. A Regional
Sensitivity Analysis (RSA) method (Hornberger and Spear, 1981) was
conducted to select the most important soil and vegetation parameters
to represent the streamflow and evaporation dynamics, and the selected
parameters were calibrated following two single-objective calibration
strategies against daily streamflow and monthly evaporation data. The
model performance was evaluated for daily streamflow and monthly
evaporation using meteorological observations and WRF historical data
García-Valdecasas Ojeda et al. (2020a,b), and the hydrologic projections
were performed for the short-term and long-term future periods using
regional climate change simulations fromWRF.

Table 3.3 summarizes the modelling steps for the application of VIC in the
four study cases. Specific methods will be further described for each particular
study case in next chapters.

25



3 Methods

Ta
bl
e
3.
3:
Th

e
fo
ur

st
ud

y
ca
se
sa

nd
m
od

el
lin

g
st
ep

sf
or

th
e
ap

pl
ic
at
io
n
of

V
IC

in
th
is
th
es
is
.

St
ud

y
ca
se

N
o.

ca
tc
hm

en
ts

Se
ns

iti
vi
ty

an
al
ys

is
C
al
ib
ra
tio

n
an

d
ev

al
ua

tio
n

ap
pr
oa

ch
H
yd

ro
lo
gi
c
pr
oj
ec
tio

ns

1)
Th

e
D
ue

ro
Ri
ve

r
Ba

si
n

un
de

r
pr
es
en

t
cl
im

at
e

(C
ha

pt
er

4;
Ye

st
e

et
al
.,

20
20

)

31
SR

C
m
et
ho

d

-
C
al
ib
ra
tio

n
fo
r

m
on

th
ly

st
re
am

flo
w
;

ev
al
ua

tio
n

fo
r

m
on

th
ly

st
re
am

flo
w

an
d

m
on

th
ly

ev
ap

or
at
io
n;

cr
os
s-

ev
al
ua

tio
n

of
th
e
ca
lib

ra
te
d

pa
ra
m
et
er
s;

eq
ui
fin

al
ity

as
se
ss
m
en

t
fo
r

m
on

th
ly

st
re
am

flo
w

—

2)
Th

e
D
ue

ro
Ri
ve

r
Ba

si
n

un
de

rf
ut
ur
ec

lim
at
e(

C
ha

p-
te
r5

;Y
es
te

et
al
.,
20

21
)

24
—

-
C
al
ib
ra
tio

n
ba

se
d

on
pr
e-

vi
ou

s
st
ud

y
ca
se
;e

va
lu
at
io
n

fo
r
m
on

th
ly

st
re
am

flo
w

an
d

m
on

th
ly

ev
ap

or
at
io
n

us
in
g

Eu
ro
-C

O
RD

EX
da

ta

-Q
ua

nt
ile

M
ap

pi
ng

m
et
ho

d;
hi
st
or
ic
al

si
m
ul
at
io
ns

an
d

sh
or
t-t
er
m
,

m
id
-te

rm
an

d
lo
ng

-te
rm

fu
tu
re

pr
oj
ec
tio

ns
us

in
g
Eu

ro
-C

O
RD

EX
da

ta

3)
St
re
am

flo
w

an
d
ev

ap
or
a-

tio
n
tr
ad

e-
off

s(
C
ha

pt
er

6)
3

D
EL

SA
,

Pa
re
to
-b
as
ed

se
ns

iti
vi
ty

an
al
ys
is

-
M
ul
ti-
ob

je
ct
iv
e

ca
lib

ra
tio

n
fo
r

da
ily

st
re
am

flo
w

an
d

m
on

th
ly

ev
ap

or
at
io
n

—

4)
H
yd

ro
lo
gi
c
si
m
ul
at
io
ns

fo
rt
he

Sp
an

is
h
ca
tc
hm

en
ts

(C
ha

pt
er

7)
18
9

RS
A

-C
al
ib
ra
tio

n
fo
rd

ai
ly

st
re
am

-
flo

w
an

d
m
on

th
ly
ev

ap
or
at
io
n;

ev
al
ua

tio
n

fo
r
da

ily
st
re
am

-
flo

w
an

d
m
on

th
ly

ev
ap

or
at
io
n

us
in
g
va

ri
ou

sm
et
eo

ro
lo
gi
ca
l

ob
se
rv
at
io
ns

an
d
W

RF
da

ta

-
H
is
to
ri
ca
l
si
m
ul
at
io
ns

an
d

sh
or
t-t
er
m

an
d
lo
ng

-te
rm

fu
-

tu
re

pr
oj
ec
tio

ns
us

in
g

W
RF

da
ta

26



4 The Duero River Basin under
present climate: sensitivity
analysis, calibration and
evaluation

The content of this chapter is based on the following publication:

Integrated sensitivity analysis of a macroscale hydrologic model in
the north of the Iberian Peninsula

Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis,
Yolanda Castro-Díez and María Jesús Esteban-Parra

Published in Journal of Hydrology1

Abstract

Process-based hydrologic models allow to identify the behaviour of a basin
providing a mathematical description of the hydrologic processes underlying
the runoff mechanisms that govern the streamflow generation. This chapter
focuses on a macroscale application of the Variable Infiltration Capacity
(VIC) model over 31 headwater catchments belonging to the Duero River
Basin, located in the Iberian Peninsula, through a three-part approach: (1) the
calibration and evaluation of theVICmodel performance for all the catchments;
(2) an integrated sensitivity analysis concerning the soil parameters chosen

1DOI: https://doi.org/10.1016/j.jhydrol.2020.125230
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4 The Duero River Basin under present climate

for the calibration, and (3) an assessment of equifinality and the efficiency of
the calibration algorithm. The temporal evaluation of the model was done
for the calibration and the subsequent validation periods, and showed good
results for most of the catchments that largely improved the benchmark
performance. The spatial performance reflected a high transferability for
most parameter combinations, and the least transferable were related to
catchments located in the northern mountains. An additional evaluation of
the simulated actual evapotranspiration produced satisfactory adjustments
to two selected data products. The sensitivity measures were obtained with
the Standardized Regression Coefficients method through a post-process of
the outputs of a Monte Carlo simulation carried out for 10 000 parameter
samples for each catchment. This allowed to quantify the sensitivity of the
water balance components to the selected parameters for the calibration and
understanding the strong dependencies between them. The final assessment of
the equifinality hypothesis manifested that there are many parameter samples
with performances as good as the optimum, calculated using the Shuffled-
Complex-Evolution Algorithm. For almost all the analyzed catchments the
calibration algorithm resulted efficient, reaching the optimal fit. Both the
Monte Carlo simulation and the use of a calibration algorithm will be of
interest for other feasible applications of the VIC model in other river basins.
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4.1 Introduction

4.1 Introduction

Water resources in the Mediterranean Basin have undergone dramatic changes
during the 20th century as a consequence of the rising temperatures and the
significant decrease of precipitation (García-Ruiz et al., 2011). The effects of
climate change in this region are already noticeable and are expected to be
much more pronounced by the end of the 21th century (IPCC, 2014). This fact,
together with the increasingwater demand for agriculture, industry and urban
supply, makes the water scarcity problem of paramount importance, being
its accurate identification essential for adopting adequate water management
strategies and mitigation measures that ensure the sustainability of the water
resources (Chavez-Jimenez et al., 2013; Garrote et al., 2016).

Being able to identify the hydrologic behaviour of a basin is necessary in order
to assess the effects of climate and land changing conditions, and therefore a
profound description of the main hydrologic processes governing the response
of the basin is required. In this way, process-based hydrologic models are
powerful tools that represent the underlying runoffmechanisms governing the
streamflow generation for a given basin, and therefore constitute mathemati-
cal hypotheses on how the hydrologic system functions, characterizing the
potential changes of the water resources using precipitation and temperature
data as inputs variables.

Calibration and validation of hydrologic models are required in order to
develop reliable models (Savenĳe, 2009), and sensitivity analysis should be
carried out for a better knowledge of complex models (Song et al., 2015). More-
over, the recognition of the equifinality concept, that is, the existence of many
sets of parameters conducive to good adjustments to some target observations
(Beven, 2006, 2012), is unavoidable and necessary (Beven and Freer, 2001).
The correct identification of modelling uncertainties remains a fundamental
question for hydrologic models after several decades of continuous progress,
with a particular focus on structural uncertainties as they are more elusive
than input and parametric uncertainties (Blöschl et al., 2019a).

In the context of climate modelling, these models are usually called Land-
Surface Models (LSMs, Wood et al., 2011). Although there is a subtle difference
between a hydrologic model and a LSM, this distinction has become blurred
over time (Clark et al., 2015b). In this respect, the Variable Infiltration Capacity
(VIC) macroscale hydrologic model (Liang et al., 1994, 1996) has played a
major role in the hydroclimatic community according to evidende provided
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4 The Duero River Basin under present climate

in Melsen et al. (2016b) in a meta-analysis of 192 peer-reviewed studies
where the VIC model was calibrated and validated. Current research has
aimed at the calibration of the VIC model over the contiguous United States
(CONUS) domain and constitutes a promising approach for the calibration of
large-domain hydrologic models (Mizukami et al., 2017; Rakovec et al., 2019;
Yang et al., 2019). These studies involve a large-scale parameter estimation
through spatially distributed techniques such as the multiscale parameter
regionalization (MPR) method (Samaniego et al., 2010) for calibrating the VIC
model parameters using transfer functions that relate them to certain physical
properties (Mizukami et al., 2017; Rakovec et al., 2019), or the regionalization
of various streamflow characteristics for calibrating the model everywhere
(Yang et al., 2019).

Since its first development many efforts have been made in order to study the
sensitivity of the VIC model, which has been explored in a broad sense in the
following terms:

• Sensitivity to spatio-temporal variability: the impacts of the implemented
spatial resolution in the simulated runoff and other water fluxes have been
addressed in various studies, suggesting that there is a high influence of
the sub-grid variability of the precipitation on the model performance
(Haddeland et al., 2002; Liang et al., 2004). However, a critical spatial
resolution under which a better model performance is not necessarily
achieved (Liang et al., 2004) could exist. These impacts are also noticeable
in calibration and validation exercises with an increase of the model
accuracy at higher resolutions (Oubeidillah et al., 2014), although a high
transferability of the calibrated parameters across the different resolutions
may be an indicator of a poor representation of the spatial variability
(Melsen et al., 2016a). Unfortunately, the time step of the calibration and
validation has not kept up with the increasing spatial resolution, and this
is a crucial aspect for the correct representation of the involved hydrologic
processes (Melsen et al., 2016b). The fact that it is more difficult to transfer
parameters across temporal resolutions than across the spatial dimension
brings the need of a better representation of the spatial variability in
macroscale hydrologic models (Melsen et al., 2016a).

• Sensitivity to boundary conditions: understanding the boundary conditions
as the meteorological forcings that drive the simulations, the VIC model
sensitivity to the boundary conditions has been studied through the
application of different climate change scenarios and the analysis of the
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4.1 Introduction

impacts of changing precipitation and temperature on the hydrology and
water resources of several continental river basins (Nĳssen et al., 2001),
the Pacific Northwest (Vano et al., 2015), or more locally in the Colorado
River Basin (Christensen et al., 2004; Bennett et al., 2018) and in the upper
Ganga Basin (Chawla and Mujumdar, 2015). Also, these kind of studies
sometimes are carried out in conjunction with other sensitivity analysis,
i.e. the combined and segregated effects of climate change and land use
changes on streamflow (Chawla and Mujumdar, 2015) or the parameter
sensitivity under a changing climate (Bennett et al., 2018).

• Sensitivity to initial conditions: the question about if the hydrologic pre-
dictions are affected by the hydrologic initial conditions (i.e. the initial
moisture state at the snowpack and the soil profile) or if the boundary
conditions constitute the main contributor to the model simulations was
studied in detail in Cosgrove et al. (2003); Wood and Lettenmaier (2008);
Li et al. (2009). It is known that the soil moisture content for the bottom
soil layer of the VIC grid cells is the variable that commonly takes the
longest time to reach the equilibrium, and although there is not a general
agreement in how long the model spin-up period should be, since it highly
depends on each particular application, it has been found that wetter states
lead to faster spin-up times (Cosgrove et al., 2003; Melsen et al., 2016a).
This issue is of relevance for a proper calibration and validation of the
VIC model and is usually avoided by fixing a long-enough spin-up period
previous to the simulation together with a wet initialization of the soil
layers.

• Sensitivity to soil and vegetation parameters: since its generalization as a
three-layer soil model (VIC-3L) in Liang et al. (1996) after its two-layer
predecessor (VIC-2L, Liang et al., 1994), the sensitivity of the model to soil
parameters has been studied at basin-scale and at global-scale through
a cell-based approach. The basin-scale approach of Demaria et al. (2007)
allowed to estimate the sensitivity of the simulated streamflows to the
parameters that control the surface and subsurface runoff generation, and
the global-scale study of Chaney et al. (2015) evaluated the efficiency
of the VIC model for monitoring global floods and droughts under a
parameter uncertainty framework. The sensitivity to land use changes and
the vegetation parameters associated to the different vegetation classes (i.e.
Leaf Area Index and albedo) have also been explored and expressed for
the different components of the water and energy balances from the VIC

31



4 The Duero River Basin under present climate

model (VanShaar et al., 2002; Chawla and Mujumdar, 2015; Bennett et al.,
2018).

Thiswork aims to contribute to the knowledge of theVICmodel in amacroscale
application over the headwater catchments of an important basin located in
the north of the Iberian Peninsula, the Duero River Basin. For this end, the
hydrologic modelling exercise here developed has been divided into three
interrelated parts:

• The calibration of the VIC model for the selected catchments of the study
area and the subsequent evaluation of its performance against a benchmark
performance using the results of a well-calibrated model in Spain.

• An integrated sensitivity analysis for all the catchments focused on the soil
parameters chosen for the calibration.

• A final assessment of equifinality and the efficiency of the calibration
algorithm that links the calibration and sensitivity analysis results.

TheDueroRiver Basin has been investigated in variousprevious studies and the
main issues addressed are: the temporal trend of water supply and its relation
to precipitation, temperature and plant cover changes (Ceballos-Barbancho
et al., 2008); the hydrologic response to land-cover changes (Morán-Tejeda et al.,
2010, 2012a), the impacts of different climate oscillations (Morán-Tejeda et al.,
2010) and its response to the North Atlantic Oscillation (Morán-Tejeda et al.,
2011a); the characteristics of the different existing river regimes (Morán-Tejeda
et al., 2011b) and the effects of reservoirs on them (Morán-Tejeda et al., 2012b).
All these studies were based on statistical analyses of different hydroclimatic
and land-surface variables and contributed to a better understanding of the
hydrologic behaviour of the Duero River Basin. The hydrologic modelling
analysis carried out in this chapter can then provide an added value to this set
of issues since the potentialities of a macroscale hydrologic model such as the
VIC model have been examined in detail for this river.

In Sections 4.2 and 4.3 the study area and themethods are described. Section 4.4
gathers the results of the three-part approach and Section 4.5 corresponds to
the discussion of the key results. Finally, the main conclusions of this chapter
are provided in Section 4.6.
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4.2 Study area

4.2 Study area

The Duero River Basin constitutes the largest basin of the Iberian Peninsula
with a surface of 98073 km2. It is a shared territory between Spain and
Portugal, characterized by a high water contribution (∼ 15000 hm3/year). The
study is focused on the Spanish part of the basin (Fig. 4.1), which represents
the 80% of the area (78859 km2). Most of this territory constitutes a plain
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surrounded by mountainous chains, thus configuring two topographic areas
well differentiated. The large depression is filled with sediments of the Tertiary
and the Quaternary, constituting a complex hydrogeologic environment. The
lithology of the northern mountains consists of siliceous, calcareous and
carbonated rocks with local small aquifers to the west part and aquifers of
greater capacity to the east. The south systemharbors rocks of lowpermeability
and is dominated by a granite batholith. Finally, the eastern mountainous
areas hold a silicic core enclosed by carbonated rocks with a high presence of
karstic aquifers.

The basin presents a predominant Mediterranean climate with a mean annual
precipitation volume of 50000 hm3 which is mostly lost into the atmosphere
through evaporative fluxes (∼ 35000 hm3/year). Most precipitation is con-
centrated in the mountainous areas reaching values above 1500 mm/year to
the north of the basin and values slightly below 1000 mm/year to the south
and east. As for the most part of the Iberian Peninsula, precipitation exhibits
a very irregular intra-annual distribution, being concentrated in spring and
fall and almost nonexistent during summer. Winter months are cold with a
mean temperature of 2ºC in January, while summer is soft with maximum
temperatures occurring in July (∼ 20.5ºC). The Duero River Basin is regulated
by a total of 31 reservoirs, and additional streamflowmonitoring is also carried
out in a large network of ∼ 200 gauging stations.

4.3 Methods

4.3.1 Hydrologic dataset

The streamflow records were gathered in a monthly basis from the SAIH-
ROEA dataset for 33 headwater catchments belonging to the Duero River
Basin (see Section 2.1 in Chapter 2). An analysis of the percentage of gaps in
the time series revealed that 31 out of the 33 headwater catchments presented
less than 5% of missing values for the period Oct 2000 - Sep 2011, and were
selected as the study catchments for the modelling exercise (Fig. 4.1). Table 4.1
collects themain characteristics of the 16 reservoirs and the 15 gauging stations
included in the final selection: area (km2), mean elevation (m), averaged annual
precipitation (Pan, mm/year), potential evapotranspiration (PETan, mm/year),
and streamflow (Qan, hm3/year).
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4.3 Methods

Table 4.1: Main characteristics of the 31 catchments.
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4 The Duero River Basin under present climate

Precipitation, maximum temperature and minimum temperature data were
extracted from SPREAD and STEAD (Serrano-Notivoli et al., 2017, 2019, see
Section 2.2 in Chapter 2). Atmospheric pressure, incoming shortwave radiation,
incoming longwave radiation, vapor pressure and wind speed data were taken
from daily outputs of high resolution (0.088º, ∼ 10 km) simulations carried
out with the Weather Research and Forecasting (WRF) model driven by the
ERA-Interim Reanalysis data (WRFERA hereafter) for the spatial domain of
the Iberian Peninsula (García-Valdecasas Ojeda et al., 2017). The WRFERA
simulation for the Iberian Peninsula constitutes a suitable tool for studying the
AET behaviour, and its performance was recently evaluated showing a good
ability to represent the land-surface processes in this region (García-Valdecasas
Ojeda et al., 2020a). The meteorological forcings were interpolated to the VIC
grid cells for the 31 studied catchments (Fig. 4.2) following a nearest neighbour
assignment.

4.3.2 Parameter calibration

The model was calibrated for the period from October 2000 to September 2009
choosing theNash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) as the objective
function. The NSE was calculated by comparing the monthly observations of
streamflow with the monthly aggregated total runoff simulated by the VIC

Subwatershed boundary

Grid cell

Duero River Basin

Model resolution: 0.05º

Fig. 4.2: VIC model implementation.
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model. The calibration was carried out for the five soil parameters indicated
in Table 4.2 using the Shuffled-Complex-Evolution Algorithm (SCE-UA) of
Duan et al. (1994). A spin-up period of ten years previous to the calibration
period was simulated in order to ensure that the soil moisture content of the
three soil layers reached an equilibrium, and therefore the initial conditions
did not affect the calibration process.

4.3.3 Model evaluation

The temporal evaluation of the VICmodel capability to appropriately simulate
the streamflow was carried out by calculating four skill measures commonly
selected for this end (Mizukami et al., 2017; Rakovec et al., 2019; Yang et al.,
2019): NSE, the coefficient of correlation (r), and two ratios here called alphad
and alpham. NSE evaluates the predictive skill of the VIC model comparing
the monthly observations with the monthly simulations, and was chosen as
the objective function for the calibration exercise. r measures the degree of
agreement between the dynamics of the simulated and observed time series.
alphad is the ratio between the standard deviation of the simulations and the
standard deviation of the observations. alpham is the ratio of the mean of the
simulations to the mean of the observations.

The four skill metrics were calculated for the calibration period and were
validated for the period October 2009 - September 2011 (validation period)
in order to evaluate the model predictive skill outside the calibration years.

Table 4.2: Selected parameters for the calibration.

Parameter Units Lower bound Upper bound Description
bi - 10-5 0.4 Infiltration shape parameter (see

Eq. 3.1 in Chapter 3)
DS - 10-9 1 Fraction of Dm where non-linear

baseflow starts (see Eq. 3.2 in
Chapter 3)

WS - 10-9 1 Fraction of the porosity of soil
layer 3where non-linear baseflow
starts (see Eq. 3.2 in Chapter 3)

Dm mm/day 10-9 30 Maximum baseflow (see Eq. 3.2
in Chapter 3)

d2 m 0.1 0.9 Thickness of soil layer 2
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4 The Duero River Basin under present climate

The model performance was compared to a benchmark performance based
on the streamflow simulations carried out with the Integrated System for
Rainfall-Runoff Modelling (SIMPA) model (Estrela and Quintas, 1996; Alvarez
et al., 2005) for the domain of Spain. SIMPA simulations are periodically
updated and used among the different water districts of Spain as a tool for
water planning and water resources management purposes3.

The spatial assessment of the VIC model streamflow simulations was done
through a cross-evaluation exercise that aimed to analyze the spatial transfer-
ability of the five soil parameters chosen for the calibration. The VIC model
was run for each catchment using the calibrated parameters of the remaining
30 catchments, and the NSE was then calculated for the different model runs.
The spatial evaluation was done for the complete study period (calibration +
validation period).

Finally, the VIC model performance was also evaluated for the actual evap-
otranspiration (AET) simulations comparing the monthly outputs for each
catchment with two AET products: GLEAM version 3.3a (Martens et al.,
2017; Miralles et al., 2011, see Section 2.3 in Chapter 2), and the WRFERA
simulation carried out in García-Valdecasas Ojeda et al. (2017). The monthly
AET data for both products were spatially aggregated following a similar
aggregation method to that applied to the simulated total runoff. The same
four skill metrics posed for the streamflow were calculated for the AET in the
calibration + validation period, and the SIMPA model simulations were again
taken as the benchmark performance.

4.3.4 Sensitivity analysis

The Standardized Regression Coefficients (SRC) method (Saltelli et al., 2008)
aims to study the propagation of uncertainty frommodel inputs to outputs. The
SRC method is focused on the behaviour of the model outputs in relation to a
certain set of parameters once the boundary conditions (i.e. the meteorological
forcings) and the initial conditions (i.e. the soilmoisture content of the three soil
layers) have been fixed. This sensitivity analysis method requires two elements:
first, aMonte Carlo simulationwhere themodel is runwith a specified number

3https://www.miteco.gob.es/en/agua/temas/evaluacion-de-los-recursos-
hidricos/evaluacion-recursos-hidricos-regimen-natural/
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of parameter samples; and second, a multiple linear regression of each model
output of interest as a linear function of the parameters.

The sensitivity analysis was carried out for each catchment considered in the
study area. As in the calibration process, the period October 2000 - September
2009 was chosen and ten years of spin-up prior to the study period were run.

Monte Carlo simulation

A parametric space is defined through the selection of several parameters and
their upper and lower bounds. Here, a 5-dimensional parametric space was
established for the five calibration parameters and their corresponding upper
and lower bounds. A sampling method is then applied to the parametric space,
extracting a large-enough sample of parameters for theMonte Carlo simulation.
The Latin Hypercube Sampling (LHS) method (Iman and Conover, 1982) was
applied for this step extracting a total of 10000 random samples. This process
allowed to define a sampling matrix, Θ, of order m x n, where m represents
the number of samples (m = 10000) and n the number of parameters for the
analysis (n = 5). The model was finally run for each parameter combination
(i.e. row) of Θ.

The Monte Carlo simulation was also used for assessing equifinality and the
efficiency of the calibration algorithm by studying the response given by each
parameter sample in terms of the NSE. The results were compared with the
NSE determined during the calibration period.

Multiple linear regression

The outputs of interest from the VIC model were those components included
in the water balance: surface runoff (Qs), baseflow (Qb), total runoff (Qt),
actual evapotranspiration (AET) and the soil moisture content of the three
soil layers (SM1, SM2 and SM3). For each component and for each run of the
Monte Carlo simulation, the mean value of the simulated series was calculated,
and a multiple linear regression model was then adjusted relating the mean
values of each component with the sampling parameters:
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y � a0


1
...
1

 +
n∑

i�1
aiΘi (4.1)

Where y is a column vector with the m mean values of the component, a0 is
the intercept of the hyperplane, ai is the regression coefficient of the parameter
i and Θi is the column of the sampling matrix corresponding to the parameter
i. The standardized regression coefficients, βi, are then calculated for each
parameter:

βi �
σΘi
σyp

ai (4.2)

Here, σΘi and σyp are the standard deviations of Θi and the predicted values
of y, respectively. βi2 represents the relative contribution of the parameter i
to the variance of the model output of interest, being

∑n
i�1 βi

2 ≤ 1 and equal
to the coefficient of determination r2 of the adjustment. A threshold of r2 ≥
0.7 is usually defined for assuming that the fitted model has a good linear
behaviour, and therefore the coefficients βi are validmeasures of the sensitivity
(Saltelli et al., 2006), although they can be robust and reliable measures even
for nonlinear models (Saltelli et al., 2008). βi can take values between -1 and
1. A high absolute value of βi implies that the component is sensitive to the
parameter and its sign indicates whether the effect is positive or negative.

4.4 Results

4.4.1 Calibration results

The values of the four skill metrics for the calibration and validation periods
are shown in Table 4.3. Fig. 4.3 depicts the simulated streamflows during both
periods together with the observed streamflows for six selected catchments
(R-2011, R-2037, R-2038, GS-2005, GS-2089 and GS-2150) located in different
parts of the basin. TheNSE for the calibration period presents values above 0.75
in 19 out of the 31 catchments and reaches values above 0.85 in 10 catchments,
and the corresponding r values are high too. For the validation period, both
NSE and r values are predominantly high, and generally lower than the
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Table 4.3: Values of the four skill metrics for the calibration and validation periods.
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Fig. 4.3: Time series of the observed streamflows along with the simulated ones for the
calibration and the validation periods for six example catchments.
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corresponding ones for the calibration process, although minimum values
of NSE below 0 were attained for 3 catchments. Note that the results of the
calibration and the validation processes are slightly better for the reservoirs,
what could indicate a quality difference between the streamflow databases
from the reservoirs and from gauging stations.

Someof the high r values are obtained for lowNSEestimations,which indicates
that the model is able to capture the intra-annual variability of the streamflow
observations but is not able to reach a good fit for the peaks of streamflow
(Table 4.3, Fig. 4.3). For instance, stations R-2012 and GS-2035 present NSE
values for the calibration period of 0.2723 and 0.5047, respectively, being the
corresponding r values high and equal to 0.8983 and 0.8850, respectively. This
can be better understood analyzing the values of alphad and alpham in such
cases. The values of alphad and alpham are below 0.4 for station R-2012, and
this evidences a clear underestimation of both the variability of the streamflow
(i.e. low alphad) and its total volume during the period (i.e. low alpham). In
the case of station GS-2035, the variability of the simulated streamflow is
almost identical to the observations (alphad ∼ 1), while the streamflow volume
is greatly overestimated (alpham ∼ 2). It is interesting to note that high NSE
values were obtained for catchments with varying sizes, with good fits for
both small-sized (e.g. R-2011 and GS-2089) and medium-sized (e.g. R-2038 and
GS-2005) catchments, emphasizing the ability of the VIC model to provide
accurate predictions of the streamflow across different spatial scales.

Fig. 4.4 shows the cumulative distribution functions (CDFs) of the four
skill metrics together with the benchmark performance (i.e. SIMPA model
performance) for the calibration and validation periods separately. The NSE
and r values (Fig. 4.4a, b) are notably higher for the VIC model both in
calibration and validation conditions, being their corresponding CDFs steeper
and closer to the upper bounds of NSE and r. The CDFs for alphad and
alpham (Fig 4.4c, d) show that most of the catchments present values close to
1 for the VIC model in the calibration period, being its performance slightly
deteriorated in the validation years. The simulated streamflow variability and
volume are generally lower than the observations for the two model structures.
However, the streamflow variability becomes markedly overestimated by
SIMPA for cumulative probabilities superior to 0.8 and reaches alphad values
above 1.5. The overestimation is also evident for the streamflow volume, and
in this case the presence of values of alpham above 1.5 is noticeable both for
VIC and SIMPA.
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Fig. 4.4: CDFs of the four skill metrics for the streamflow simulations: a) NSE; b) r; c) alphad,
and d) alpham. Blue lines represent the VIC model performance and red lines
represent the SIMPA model (benchmark) performance. Straight lines correspond to
the calibration period and dotted lines correspond to the validation period.

4.4.2 Cross-evaluation of the calibrated parameters

Fig. 4.5a depicts the spatial distribution of the optimal NSE values reached
for the calibration + validation period, presenting values above 0.8 in 14 out
of the 31 catchments and values between 0.6 and 0.8 in 12 of them. There
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Fig. 4.5: Cross-evaluation of the calibrated parameters for the 31 catchments: a) spatial
distribution of the optimal NSE values, and b) cross-performance of the different
parameter combinations for each catchment.

is a spatial pattern for the optimal NSE distribution, and most of the lowest
values were obtained for the catchments located in the headwater areas of the
central depression of the basin, being mainly associated to gauging stations
(e.g. GS-2041 and GS-2105).

Fig. 4.5b shows the distribution of the differences between the NSE value
calculated for each experiment of the cross-evaluation exercise and the optimal
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4 The Duero River Basin under present climate

NSE corresponding to each catchment (i.e. NSE bias). The results can be
interpreted in two different directions: firstly, each row reflects the degree
of receptivity of a given catchment to the calibrated parameters obtained for
every catchment including itself. The presence of darker blue tones indicates a
greater parameter receptivity for the target catchment (i.e. NSE biases close
to 0). Secondly, each column represents the degree of transferability of the
different calibrated parameters when they are used to run the VICmodel for all
the catchments of the study area. In this case the presence of darker blue tones
indicates a greater transferability for the target parameter combination. The
maximum degrees of receptivity and transferability correspond to a null NSE
bias and are obtained when the target catchment and the target parameters
coincide (i.e. main diagonal of the pixel plot).

The horizontal dimension of the pixel plot reveals a predominance of low NSE
bias sequences, and therefore many of the catchments present an elevated
degree of receptivity to different parameter combinations. The greatest de-
grees of receptivity were independent from the model performance for the
streamflow simulations and were obtained for catchments with both high
optimal NSE estimations (e.g. R-2011 and GS-2089) and low optimal NSE
values (e.g. R-2012 and GS-2057). The lowest degrees of receptivity followed a
similar behaviour but were much less abundant (e.g. R-2001 and GS-2105), The
vertical dimension confirms a prevalence of low NSE bias sequences as well,
suggesting a high degree of transferability for the majority of the calibrated
parameters. In this case, the lowest parameter transferability occurs for stations
R-2012 to R-2014 and for stations R-2027 to R-2032, all of them located in the
northern mountains of the Duero River Basin (see Fig. 4.1).

4.4.3 Model performance for the AET simulations

Fig. 4.6 evaluates the AET predictability comparing VIC and the benchmark
AET simulations against the GLEAM and WRFERA datasets. There is a large
gap between the performance of VIC and SIMPA concerning the NSE metric
(Fig. 4.6a), yielding a median NSE value around 0.5 in the comparison of VIC
with both AET products, and a slower median NSE value of approximately
0.2 in the case of SIMPA. Each model structure reflects similar performances
against GLEAM and WRFERA when evaluated separately, although VIC
produces higher NSE values for cumulative probabilities above 0.5 in the
comparison with WRFERA.
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Fig. 4.6: CDFs of the four skill metrics for the AET simulations: a) NSE; b) r; c) alphad,
and d) alpham. Blue and green lines represent the VIC model performance against
GLEAM andWRFERA, respectively. Red and orange lines represent the SIMPAmodel
(benchmark) performance against GLEAM and WRFERA, respectively.

A comparable behaviour is observed in relation to r. The AET dynamics are
better captured by VIC with 60% of the population presenting values above
0.8 for both GLEAM and WRFERA, and being the performances against them
almost identical (Fig. 4.6b). The SIMPA model produces r values slightly
higher when compared against GLEAM and hardly reaches a value of 0.8 for
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very few catchments.

Lastly, there is a generalized underestimation of the AET variability and
the total volume for both model structures, with alphad and alpham values
predominantly below 1 and markedly slower for SIMPA (Fig. 4.6c, d). The
wide distance between the CDFs corresponding to alphad supposes that the
different performances can be better defined and distinguished for this skill
metric. The greatest closeness to 1 is observed for VIC, andwhile the variability
is underestimated when compared to WRFERA, it turns out to be particularly
overestimated in comparison to GLEAM. Concerning alpham, the spacing
between the different CDFs becomes narrower and the underestimation of
the mean AET is also noticeable in the VIC model comparison to GLEAM.
The greatest closeness to 1 now corresponds to the VIC model performance
against GLEAM, thus producing more similar AET volumes.

4.4.4 Integrated sensitivity analysis

Through the application of the SRC method the β coefficients for the five
calibration parameters of the water balance components in the VIC model
were obtained, and the results are shown in Fig. 4.7 for all the catchments. The
r2 value obtained from the multiple linear regression and the estimation of r2

as the sum of the squares of β coefficients are also depicted in Fig. 4.7 (h, i),
reflecting very similar values. The results of the sensitivity analysis for the
selected components to the parameters are given below in a component-by-
component basis providing the necessary explanations when there is a strong
dependency between them:

• Qs: the values of r2 are above 0.7 for all the catchments (Fig. 4.7), fulfilling
the criterion of enough linearity for interpreting the results of the sensitivity
analysis. The strongest positive effect corresponds to the parameter bi,
which means that a higher value of bi leads to more surface runoff. This is
clearly evidenced in Eq. 3.1 in Chapter 3, where a relation of exponential
type between Qs and bi is established. Dm produces a negative effect on
the surface runoff, suggesting that an increase of the maximum baseflow
brings a reduction of the surface component under the assumption of the
same meteorological forcings. d2 also yields a negative effect on Qs, and
this effect is related to an increase in AET.
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Fig. 4.7: (a to g) β coefficients for the 31 catchments. h) r2 value from the multiple linear
regression. i) r2 estimated from the β coefficients.

• Qb: the values of r2 mostly range from 0.5 to 0.7, with some values
close to 0.8 (Fig. 4.7). In this case the linearity criterion is hardly reached
and therefore it is difficult to interpret the β coefficients. However, it is
interesting to note that, with the exception of d2, the β coefficients of the
parameters are characterized by a low dispersion. This is an indicator of
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the robustness of the VIC model response, and although the threshold
of linearity is not always achieved, the dependency of Qb with respect to
these parameters can be accepted. As expected from the previous analysis
of the surface component of the runoff, bi reflects a strong negative effect.
The positive effects now correspond to DS and Dm. This is obvious in the
case of Dm but not so evident for DS since a higher value of DS only means
that the baseflow law tends to be more linear (see Eq. 3.2 in Chapter 3).
The amplitude of the β coefficients for d2 is broader than for the rest of the
parameters but always negative except for two catchments.

• Qt: the total runoff exhibits an additive effect of the previous components
for both r2 and the β coefficients as it is computed through the sum of
the surface runoff and the baseflow (Fig. 4.7). Thus, higher values of bi,
DS and Dm lead to an increase of Qt and higher values of d2 produce a
negative effect on Qt due to a rise of AET. This component is of particular
interest given that it is the component subject to calibration in this work.
In order to provide a better understanding on its behaviour the spaghetti
plots of the Monte Carlo simulation for an example catchment (R-2038)
are depicted in Fig. 4.8. As shown there, the time series of the observed
streamflow (Fig. 4.8c) falls into the range of responses of the model for
almost all the study period and therefore one or more sets of parameters
will afford a god fit with the observations.

• AET: this component and Qt are linked through the law of conservation
of mass applied to the system defined by each catchment, being the
precipitation equal to the sum of Qt, AET and the variation of the storage
in the hydrologic system. Moreover, the study period for the sensitivity
analysis is long-enough to neglect the last term of the water balance
equation, and the precipitation is fixed for each catchment as a boundary
condition. In consequence, the linearity of both Qt and AET with respect to
the parametersmust be similar and the β coefficients for AET are essentially
identical to the corresponding ones for Qt but with opposite signs (Fig. 4.7).
Fig. 4.8d shows the spaghetti plots of this component together with the
potential evapotranspiration (PET) profile. The reason of the existence
of some values of AET above the PET curve responds to the internal
handling of the Penman-Monteith equation used in the VICmodel because
various different approaches are considered when computing the potential
evapotranspiration, and the curve presented in Fig. 4.8d corresponds to
the current vegetation parameters.
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Fig. 4.8: Spaghetti plots of the water balance components resulting from the Monte Carlo
simulation for the catchment R-2038.

• SM1: the values of r2 are widely scattered and range from 0.35 to values
above 0.9 (Fig. 4.7). The nature of such a scattered distribution may be
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an outcome of the closeness between the soil moisture profiles in this
layer, making it difficult to adjust a multiple linear regression model to
its mean values. Similarly to the case of Qb, most of the β coefficients
present a relatively low dispersion and subsequently the results of the
sensitivity analysis can be interpreted. The negative effects mainly concern
to bi and Dm, demonstrating that a higher exponent in the surface runoff
equation and a highermaximumbaseflow are related to lower soil moisture
values for the upper soil layer. On the other hand, the positive effects are
associatedwith increasing values of d2 despite of revealing highlydispersed
β coefficients. The spaghetti plots of SM1 (Fig. 4.8e) seem to reproduce the
PET cycles and this results from the evaporative fluxes themselves as the
transpiration process occurs from the roots of the vegetation.

• SM2: it is the component with the highest linearity with regard to the
calibration parameters, proffering values of r2 very close to 1 for all the
catchments (Fig. 4.7). In this case d2 dominates the sensitivity of SM2
with a noticeable positive effect (i.e. values of β near to 1). The PET cycles
are also markedly represented in the soil moisture profiles of this layer
(Fig. 4.8f).

• SM3: even though the values of r2 lie between 0.6 and 0.7 predominantly,
some of them fall below 0.6 with minimum values close to 0.4 (Fig. 4.7).
Once again the dispersion of the β coefficients is relatively low and in
this occasion this is also true for d2. Baseflow takes place from this layer
and this is reflected in the β coefficients corresponding to DS, WS and Dm,
which present opposite signs and similar absolute values to the calculated
ones for Qb. As for the previous soil layers, the PET cycles are present too
but here there is a lag in the valleys of the soil moisture profiles due to the
delay in the baseflow generation process (Fig. 4.8g).

4.4.5 Equifinallity and efficiency of the calibration algorithm

Equifinality and the efficiency of the calibration algorithm were assessed
through the evaluation of the NSE values for the Monte Carlo simulations
of all the catchments by comparing the total runoff of each simulation with
the observed streamflow during the calibration period. For this purpose, two
counts of the number of simulations satisfying certain criteria were carried out:
first, the number of simulations for each catchment presenting NSE values
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above theNSE determined during the calibration (NSEcal) minus 0.05was used
as indicator of equifinality of the VIC model and the parameter samples; and
second, the number of simulations with NSE values above NSEcal hinted at the
efficiency of the SCE-UA algorithm in finding the optimal set of parameters
producing the best fit with the streamflow records. The results of this exercise
are expressed in Table 4.4.

It is clear that for the majority of the catchments there are many simulations
withNSE values very close to the optimalmodel, and in some cases the number
of simulations is fairly high (> 3000). This can be also appreciated when the
columns of the sampling matrix are plotted against the NSE of each simulation
in a “dotty plot”. Fig. 4.9 shows the dotty plots of the five parameters of the
calibration for two catchments (R-2038 and GS-2089) as an example of this
analysis. For both catchments the NSE values of the simulations are above 0
and the points clouds are concentrated on the top of the diagrams, suggesting
that a high number of them are close to the optimal fit (see also Table 4.4). The
shape of the dotty plots supplies useful information about the behaviour of the
parameter samples as a set. For example, the dotty plot of d2 for the catchment
R-2038 reflects a trend to produce high NSE values when the parameter values
are near to the upper bound. The optimum was reached for d2 = 0.8995 m,
while the rest of the fitted parameters were located between the fixed limits.
Also, most of the NSE values were below NSEcal when the second count
was executed, implying that the SCE-UA algorithm was highly efficient in
searching for the optimal set of parameters.

4.5 Discussion

4.5.1 VIC model performance for the streamflow simulations

The results of the calibration and the validation suggest that the macroscale
application of the VIC model carried out in this chapter performs well for a
large number of catchments in the Duero River Basin. The VIC model showed
a considerably better performance in the prediction of the streamflow in
comparison to the SIMPA model according to the four skill metrics calculated.
The VIC performance for the streamflow simulations in the calibration and
validation periods is also comparable to other studies using hydrologic models
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Table 4.4: Behaviour of NSE in the Monte Carlo simulations for assessing equifinality and the
efficiency of the calibration algorithm.

Code NSEcal NSE > NSEcal − 0.05 NSE > NSEcal
R-2001 0.8520 96 0
R-2011 0.9237 1970 5
R-2012 0.2723 426 0
R-2013 0.8263 1259 0
R-2014 0.8777 3463 0
R-2026 0.8865 2804 8
R-2027 0.8254 1863 56
R-2028 0.7475 1364 2
R-2030 0.6478 1132 0
R-2032 0.9409 3568 0
R-2036 0.6662 10 3
R-2037 0.8222 0 0
R-2038 0.9145 2808 0
R-2039 0.9521 227 0
R-2042 0.8903 368 0
R-2043 0.8322 1660 5
GS-2005 0.8307 32 5
GS-2016 0.8350 1758 0
GS-2028 0.6290 103 0
GS-2035 0.5047 373 0
GS-2041 0.7106 0 0
GS-2047 0.6277 267 0
GS-2049 0.7333 0 0
GS-2051 0.7743 2446 0
GS-2057 0.7230 518 3
GS-2089 0.9116 3578 3
GS-2104 0.8137 93 0
GS-2105 0.6204 8 0
GS-2124 0.7397 1 0
GS-2150 0.7909 3484 0
GS-2818 0.8724 26 0
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Calibrated values
NSE = 0.9145 
bi = 0.3240 
DS = 0.6915
WS = 0.5536
Dm (mm/d) = 24.1871 
d2 (m) = 0.8995

a) R-2038

Calibrated values
NSE = 0.9116 
bi = 0.2487
DS = 0.5722
WS = 0.6330
Dm (mm/d) = 17.1926 
d2 (m) = 0.5914

b) GS-2089

Fig. 4.9: Dotty plots for two catchments: a) R-2038 and b) GS-2089. Red dot corresponds to the
calibrated value for the corresponding parameter using the SCE-UA algorithm.
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developed in northern Spain (Morán-Tejeda et al., 2014) and recently in the
south of Spain (Pellicer-Martínez and Martínez-Paz, 2018; Yeste et al., 2018).

Other studies also aimed at the calibration and the evaluation of the VIC
model performance over the CONUS domain (Mizukami et al., 2017; Rakovec
et al., 2019; Yang et al., 2019) applying different techniques for the estimation
of spatially distributed parameters. The application of the MPR method
(Samaniego et al., 2010) to the VIC parameter estimations (Mizukami et al.,
2017; Rakovec et al., 2019) and the regionalization of various key streamflow
characteristics (Yang et al., 2019) have shown to be consistent manners for
estimating parameters both in gauged and ungauged basins. This supposes a
clear gain of information with respect to the calibration of individual basins
as the spatial discontinuities and limitations inherent to a basin-by-basin
approach are effectively avoided. However, this is always achieved at the
expense of a large loss of accuracy when compared to the individual basin
calibration (Mizukami et al., 2017; Rakovec et al., 2019).

The CDFs corresponding to the skill metrics (Fig 4.4) showed higher NSE
and r values than those obtained for the catchments of the CONUS domain,
as well as alphad and alpham values closer to 1. This is also noticeable for
the individual basin calibration (Mizukami et al., 2017; Rakovec et al., 2019).
The large gap between both VIC performances could be connected with the
selected calibration time step, andwhile the model was calibrated in a monthly
basis in this work, the other studies implemented a daily calibration.

This is supported by the results of the VIC performance obtained in Yang
et al. (2019) for five large basins, being the daily NSE values considerably
lower than the corresponding monthly estimations. Moreover, while the CDFs
here were calculated for 31 catchments, the CDFs in Mizukami et al. (2017)
and Rakovec et al. (2019) represented approximately 500 basins belonging
to a much bigger and heterogeneous domain that combines humid and dry
regions. Within the climatic variability of the Iberian Peninsula, the Duero
River Basin is representative of a wetter climate. The tendency for VIC to show
poorer results in drier regions (Mizukami et al., 2017; Yang et al., 2019) could
thus also explain its good performance in our study area.

Nevertheless, the calibration results were not exempt from poor skill metrics
estimations. It is to be expected that the application of a single model structure
over a heterogeneous spatial domain, such as the Duero River Basin, does
not conduct to a good adjustment of the simulated streamflow with the
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observations for all the studied catchments. Furthermore, the existence of
other potential pressures over the water resources may be responsible for those
cases where the evaluation exercise showed poor results, and therefore further
research is required in order to identify the origin of the biases with respect to
the observations of the simulated streamflows for these catchments.

Finally, the aggregation method has proven to be accurate and efficient,
permitting its application in other studies using hydrologic models that
operate over the grid cell in a similar mode to the VIC model. However, its
applicability may become limited as the catchment size increases, but it is
expected that for catchments with a similar size to these studied in this work,
this only could happen for a shorter calibration time step (e.g. daily time
step).

4.5.2 Spatial evaluation and AET predictability

The spatial evaluation exercise explored the parameter transferability and
evinced the VIC performance for the 961 experiments resulting from crossing
each catchment with each parameter combination.Many catchments produced
low NSE biases for most experiments, as well as almost all the parameter
combinations exhibited a high degree of transferability. The lowest degree of
receptivity was evident for those catchments where the Monte Carlo analysis
showed a lesser number of simulations close to the optimum (see Table 4.4
and compare with Fig. 4.5b).

Meanwhile, the parameter combinations reflecting the highest NSE biases
were found for various catchments located in the north of the basin. This
latitudinal gradient requires further research in order to study themain drivers
of its behaviour (e.g. forcing dependency, relation to soil properties). Notably,
these results could be the basis for a future application of VIC in both gauged
and ungauged parts of the Duero River Basin using those parameters with
greater transferability.

The VIC performance for the AET simulations was evaluated through the
CDFs of the same for skill metrics calculated for the streamflow. Since the
streamflow was the only variable subject to calibration, the VIC performance
was slightly lower for the AET simulations, but broadly improved the bench-
mark performance. The VIC model showed slightly higher NSE values when
compared to WRFERA, and this could be related to the use of some WRFERA
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data as meteorological forcings. The underestimation of the variability and the
AET volume are consistent with the VIC performance for the AET simulations
over the CONUS domain (Rakovec et al., 2019). The values of alpham for
the VIC-GLEAM comparison were higher than those for the VIC-WRFERA
performance, and this is also in line with previous results exhibiting a pre-
dominantly positive annual relative bias of WRFERA compared with GLEAM
for the study area (García-Valdecasas Ojeda et al., 2020a).

4.5.3 Sensitivity analysis and equifinallity assessment

The application of the SRC method allowed a deep understanding of the
existing relationships between the components of the water balance in the VIC
model and the selected parameters for the calibration as long as the linearity
criterion was fulfilled. Even when the coefficient of determination of the fitted
model did not satisfy the linearity criterion, the relatively low dispersion of
the β coefficients permitted the interpretation of the results. Special attention
deserves the component Qt since it is the component that was compared with
the streamflow observations during the calibration and validation processes.
The sensitivity of this component to the five soil parameters reflected an
additive effect of the sensitivity measures of Qs and Qb as Qt is calculated
as the sum of the surface and the subsurface components. Qt was mainly
sensitive to bi and d2, and this is consistent with the sensitivity measures for
the simulated streamflow carried out in Demaria et al. (2007) for four studied
catchments.

At the sight of the results of the equifinality assessment, it is unavoidable
accepting that no parameter set leads to a single optimal model, or in other
words, that there are many parameter samples with performances as good
as the optimum calculated with the calibration algorithm. As in the GLUE
method (Beven and Binley, 1992; Beven, 2012), this fact could be the starting
point of the calibration process, in which a measure of belief is associated to
each parameter set according to the degree of proximity to the optimum. This
will be an interesting research line for further investigation in the Duero River
Basin.

It is worth noting that if the calibration were repeated using different initial
conditions, one could expect a similar spread of the calibrated parameters to
that identified with the Monte Carlo analysis. However, fixing the number
of samples for the Monte Carlo exercise ensured that the sensitivity analysis
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could be done under equal conditions for all the catchments, and therefore
independently from the number of trials of the SCE-UA algorithm for each
individual calibration. In any case, we consider that the use of a calibration
algorithm provides a first-look into the goodness-of-fit response surface of
the hydrologic model in a computationally more efficient way than the Monte
Carlo experiment, serving as a sign of the goodness-of-fit of the overall
parameter samples.

4.6 Conclusions

The main conclusions of this chapter can be summarized as follows:

• The VIC performance for the streamflow simulations reflected good
results for most of the studied catchments in the Duero River Basin,
largely improving the benchmark performance. The results were slightly
better for the reservoirs than for the gauging stations and this may be a
consequence of a quality difference between the streamflow databases.
The poor results found in a few subwaterheds may be caused by the
existence of pressures over the water resources that have not been taken
into account in themodelling exercise. However, this is out of the scope of
this work since the main interest is placed on the macroscale application
of the VIC model, which has shown to perform well for a great part of
the Duero River Basin.

• An additional evaluation of the model performance was carried out
for the transferability of the calibrated parameters and for the actual
evapotranspiration simulations. Most parameter combinations exhib-
ited a high degree of transferability, and the least transferable were
associated to catchments located in the north of the basin. The VIC
performance was evaluated for two actual evapotranspiration products,
yielding satisfactory results with higher skill levels than the benchmark
evaluation.

• The β coefficients calculated during the sensitivity analysis allowed to
quantify the sensitivity of the water balance components to the selected
parameters for the calibration. The surface runoff and the soil moisture
content of the soil layer 2 were the components with the highest linearity
and were mainly dominated by the values of the infiltration shape
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parameter and the thickness of soil layer 2, respectively, both with a
positive effect. The total runoff presented a combined behaviour from the
surface runoff and the baseflow components, and the sensitivity analysis
yielded similar results to other sensitivity measures previously reported
in the literature. The potential evapotranspiration cycles were noticeable
in the whole soil profile and more evidently in the upper two soil layers.

• A final exercise for assessing equifinality and the efficiency of the
calibration algorithm was carried out, finding that there are many
parameter sets with NSE values as high as the NSE determined during
the calibration. The calibration algorithm was efficient and reached the
optimal fit for almost all the studied catchments. The use of a calibration
algorithm is also in line with other possible practical applications of the
VICmodel for studying the impacts of climate change onwater resources
in the Duero River Basin, where a parameter set must be chosen prior to
the simulations using climate change data.
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5 The Duero River Basin under
future climate: projected
hydrologic changes

The content of this chapter is based on the following publication:

Projected hydrologic changes over the north of the Iberian
Peninsula using a Euro-CORDEX multi-model ensemble

Patricio Yeste, Juan José Rosa-Cánovas, Emilio Romero-Jiménez,
Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda

Castro-Díez and María Jesús Esteban-Parra

Published in Science of the Total Environment1

Abstract

This chapter explores the impacts of climate change on the hydrology of the
headwater areas of the Duero River Basin, the largest basin of the Iberian
Peninsula. To this end, an ensemble of 18 Euro-CORDEX model experiments
was gathered for two periods, 1975-2005 and 2021-2100, under two Repre-
sentative Concentration Pathways (RCP4.5 and RCP8.5), and were used as
the meteorological forcings of the Variable Infiltration Capacity (VIC) during
the hydrological modelling exercise. The projected hydrologic changes for
the future period were analyzed at annual and seasonal scales using sev-
eral evaluation metrics, such as the delta changes of the atmospheric and

1DOI: https://doi.org/10.1016/j.scitotenv.2021.146126
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land variables, the runoff and evapotranspiration ratios of the overall water
balance, the snowmelt contribution to the total streamflow and the centroid
position for the daily hydrograph of the average hydrologic year. Annual
streamflow reductions of up to 40% were attained in various parts of the basin
for the period 2071-2100 under the RCP8.5 scenario, and resulted from the
precipitation decreases in the southern catchments and the combined effect
of the precipitation decreases and evapotranspiration increases in the north.
The runoff and the evapotranspiration ratios evinced a tendency towards an
evaporative regime in the north part of the basin and a strengthening of the
evaporative response in the south. Seasonal streamflow changes were mostly
negative and dependent on the season considered, with greater detriments in
spring and summer, and less intense ones in autumn andwinter. The snowmelt
contribution to the total streamflow was strongly diminished with decreases
reaching -80% in autumn and spring, thus pointing to a change in the snow
regime for the Duero mountains. Finally, the annual and seasonal changes
of the centroid position accounted for the shape changes of the hydrograph,
constituting a measure of seasonality and reflecting high correlations degrees
with the streamflow delta changes.
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5.1 Introduction

Global water resources are expected to undergo vital changes as a consequence
of the increasing temperatures and the varying precipitation regimes projected
for the future climate (IPCC, 2014). The global water cycle is governed by the
partitioning of precipitation into evapotranspiration and runoff (Saha et al.,
2020), and despite the importance of the future changes in precipitation, the
changes in evapotranspiration and runoff can play an even more meaningful
role for the assessment of future water security (Lehner et al., 2019).

Although many efforts have been made to identify the emergence of the
climate change signal under a wide range of climate scenarios (Taylor et al.,
2012; O’Neill et al., 2016; Lehner et al., 2019), its effects are already evident
in certain regions and are expected to become stronger with the increase
of greenhouse gas (GHG) emissions (IPCC, 2014). This is the case of the
Mediterranean Basin, where water scarcity and the occurrence of extreme
events have strengthened over the 20th century (García-Ruiz et al., 2011;
Garrote et al., 2016). For instance, Tramblay et al. (2020) indicate a growing
frequency and severity for Mediterranean droughts. Floods have shown a
downward trend in many catchments of southern Europe over the last decades
(Blöschl et al., 2019b; Tramblay et al., 2020), presumably due to decreasing
precipitation and increasing evaporation ratios, and resulting in diminutions
of up to 23% per decade (Blöschl et al., 2019b). However, catchments belonging
to north-western Europe have manifested increasing floods of about 11%
per decade (Blöschl et al., 2019b). This tendency is also noticeable for small
catchments of few squared kilometers in south-western Europe (Amponsah
et al., 2018), where enhanced convective storms and land-cover changes may
cause flash floods to increase (Blöschl et al., 2019b).

Approximately one half of the water scarcity areas of the Mediterranean Basin
are located in southern Europe (Iglesias et al., 2007; Garrote et al., 2016), where
the runoff reductions can present a threat formeeting thewater supply needs of
the agricultural, industrial and urban water demands (García-Ruiz et al., 2011).
Notably, the south-western sector of the Mediterranean region, represented by
the Iberian Peninsula, has been identified as a hotspot particularly vulnerable
to the climate change impacts (Diffenbaugh and Giorgi, 2012; Marx et al.,
2018; García-Valdecasas Ojeda et al., 2020a, 2021a). Precipitation is expected
to decrease over this region under climate change scenarios, with marked
projected reductions in autumn, spring and summer for Spain (Argüeso
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et al., 2012; García-Valdecasas Ojeda et al., 2020a,b) and Portugal (Soares
et al., 2017). Projected evapotranspiration changes over the Iberian Peninsula
reflect considerable spatio-temporal variability (García-Valdecasas Ojeda et al.,
2020a,b) and result from the interplay between the future water availability in
the soil and a higher atmospheric demand driven by increasing temperatures
(Jerez et al., 2012), with a trend towards soil-drying conditions by the end of the
21st century (García-Valdecasas Ojeda et al., 2020a). On the other hand, there
is substantial evidence for the decrease of Iberian streamflows during the last
half of the 20th century (Lorenzo-Lacruz et al., 2012), with a strong consensus
about this trend for different Iberian catchments under present and future
climate conditions (Salmoral et al., 2015; Gampe et al., 2016; Pellicer-Martínez
and Martínez-Paz, 2018; Yeste et al., 2018; Fonseca and Santos, 2019).

Climate change impact studies are mainly based on the analysis and applica-
tion of the projections carried out with General Circulation Models (GCMs)
and Regional Climate Models (RCMs) (Pastén-Zapata et al., 2020). While
the conceptualization of the Earth System processes is common for both
modelling approaches, their primary difference lies in the spatial resolution
of the implemented domain, typically set at 2.5º for GCMs (Tapiador et al.,
2020) and allowing a more accurate representation of the regional and local
characteristics in the case of RCMs (Rummukainen, 2010; Teutschbein and
Seibert, 2010). Nonetheless, the increasing computing power has led to a pro-
gressive refinement of the spatial resolution of GCMs, sometimes exceeding
and improving the RCMs resolution, and are expected to be superseded by
high-resolution GCMs in the next generation of climate model simulations
(Tapiador et al., 2020). Anyhow, RCMs projections still remain as a valuable
and suitable data source for impact studies given the lack of widespread
availability of high-resolution GCM projections, and constitute an appropriate
tool for the evaluation of hydrologic changes at the basin scale (Pastén-Zapata
et al., 2020).

Using an ensemble of RCM simulations from the Euro-CORDEX initiative
(Jacob et al., 2014), this chapter aims to identify and analyse the projected
hydrologic changes for an important basin located in the north of the Iberian
Peninsula, the Duero River Basin. The Duero basin has been previously studied
mainly from a statistical perspective focused on various hydroclimatic and
land-surface variables under present climate. For instance, Ceballos-Barbancho
et al. (2008) and Morán-Tejeda et al. (2010) reported the impacts of land-cover
changes on water availability and water resources management for the basin
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during the last half of the 20th century. Morán-Tejeda et al. (2011a) provided
useful insights on the different river regimes characterizing the Duero and its
tributaries. More recently, Fonseca and Santos (2019) studied the impacts of
climate change for the Tâmega River, a northern tributary of the Duero River
located in Portugal, using a Euro-CORDEX ensemble as well.

In this chapter, the Variable Infiltration Capacity (VIC) model (Liang et al.,
1994, 1996) has been implemented for various headwater catchments of the
Duero basin based on the previous calibration exercise carried out in Yeste
et al. (2020) for the study area. The VICmodel largely improved the benchmark
performance against streamflow observations and two actual evapotranspira-
tion products, ensuring the further applicability of the calibrated parameters
for the modelling exercise here developed. The main objective of this work
consists of evaluating the future changes of the different hydrologic variables
involved in the water balance at annual and seasonal scales, adopting different
interrelated approaches that accurately highlight many fundamental features
of the future hydrologic behaviour of the basin.

5.2 Study area and Data

TheDueroRiver Basin is an international basin located in the north of Spain and
Portugal and represents the largest basin of the Iberian Peninsula (98073 km2).
The focus of this work is placed on the 80% of its area, corresponding to the
Spanish territory (Fig. 5.1). The topography of the basin ismainly constituted by
a large central depression and the surroundingmountain chains that configure
the headwater areas of the hydrologic network. The mean annual precipitation
volume is around 50000 hm3 and mostly evaporates into the atmosphere (∼
35000 hm3), representing the remaining volume the water contribution of the
basin as natural runoff. With a predominant Mediterranean climate, most of
the precipitation occurs in the mountainous systems, exceeding 1000mm/year
in the northern mountains and showing values below 1000 mm/year in the
southern part of the basin. It is concentrated in the autumn, winter and spring
months, with a dry period affecting the majority of the area during summer,
with a warmer temperature (∼ 20.5 ºC in July).

The selection of the catchments for this chapter (Fig. 5.1, Table S5.1 in Support-
ing Information) was based on the implementation of the VIC model carried
out in Yeste et al. (2020) for the headwaters of the Duero River Basin (see
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Fig. 5.1: Duero River Basin and the 24 studied catchments. The prefix “R-” denotes “Reservoir”
and the prefix “GS-” denotes “Gauging Station”.

Chapter 4). The Nash-Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) was
selected there as the main evaluation metric, and despite the good perfor-
mance for the majority of the studied catchments, some of them showed poor
NSE estimations. A threshold NSE value of 0.67 was set in this work as an
acceptable model performance based on previous studies (e.g., Martinez and
Gupta, 2010; Ritter and Muñoz-Carpena, 2013; Her et al., 2019). This criterion
reduced the number of catchments considered to 24 out of the 31 originally
included in Yeste et al. (2020) (see Table S5.1).

Daily climate data were gathered from the Euro-CORDEX project for 18
RCM experiments (Jacob et al., 2014, see Section 2.4 in Chapter 2) at a spatial
resolution of 0.11º (EUR-11, ∼ 12.5 km). The dataset was regridded to 0.05º (∼
5 km) using the Climate Data Operator (CDO) software (Schulzweida, 2019)
and choosing a nearest neighbour assignment for the subsequent hydrological
modelling exercise.
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5.3 Methods

5.3.1 Bias correction

The straightforward application of raw RCM data for hydrological impact
studies is inadequate given the emerging systematic errors (i.e. biases) during
the dynamical downscaling of GCM outputs (Gudmundsson et al., 2012;
Hanzer et al., 2018). These uncertainties are usually managed with the use
of ensembles of RCM simulations and the application of bias correction
techniques (Déqué, 2007; Teutschbein and Seibert, 2012). Within the different
bias correction methods, the Quantile Mapping (QM) (e.g., Wood et al.,
2002; Déqué, 2007; Themeßl et al., 2011) has shown to produce better results
(Themeßl et al., 2011; Teutschbein and Seibert, 2012; Hakala et al., 2018) and
allows the correction of daily precipitation and temperature data (Meresa and
Romanowicz, 2017; Hakala et al., 2018; Pastén-Zapata et al., 2020).

In this workwe used the R package ‘qmap’ (Gudmundsson et al., 2012) in order
to fit the cumulative distribution functions (CDFs) of the meteorological time
series to the CDFs of the observations. Precipitation, maximum temperature
and minimum temperature were the only bias-corrected variables given the
absence of observations for the rest of the meteorological fields. For this end,
daily precipitation, maximum temperature and minimum temperature data
were gathered from the observational datasets SPREAD and STEAD (Serrano-
Notivoli et al., 2017, 2019, see Section 2.2 in Chapter 2) for the historical period.
The QMmethod was then applied for each month of the year using pooled
daily data. In the case of daily temperature, the QM technique was applied to
the diurnal temperature range (DTR) and the maximum daily temperature.
This approach effectively avoids the occurrence of negative DTR values and
improves the posterior estimation of minimum daily temperature (Thrasher
et al., 2012).

5.3.2 Snowmelt contribution to the total streamflow

The total runoff simulatedwith the VICmodel feeds onwater arising from both
rainfall and snowmelt that infiltrates into the soil. However, the proportion of
runoff corresponding to each of them is not explicitly accounted for (Siderius
et al., 2013), and can be calculated for each month as follows:
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Qsnow ,i � min
{

Qi ·
[

melti

raini + melti

]
,melti

}
(5.1)

For the month i, Qsnow,i [L3/T] is the streamflow arising from the snowmelt
(i.e. melt streamflow), Qsnow,i [L3/T] is the total streamflow, melti [L3/T] is the
snowmelt rate and raini [L3/T] the rainfall rate. This approach is analogous
to that applied in Siderius et al. (2013) and Li et al. (2019), and constitutes
an appropriate method for the estimation of the snowmelt contribution to
the total runoff. Eq. 5.1 assumes that Qsnow,i cannot exceed the melt-to-rain
ratio nor the total snowmelt occurring for a given month, thus not introducing
an imbalance conducive to unrealistic values. Note that in this work we use
the terms “runoff” and “streamflow” interchangeably due to the aggregation
method applied in Yeste et al. (2020) to the raw gridded outputs from VIC for
obtaining the hydrologic time series at the subwateshed scale.

5.3.3 Evaluation metrics and projected hydrologic changes

The projected hydrologic changes were firstly analysed applying the delta
change approach (Hay et al., 2000) to the mean annual and seasonal values of
precipitation (P), potential evapotranspiration (PET), actual evapotranspira-
tion (AET), total streamflow (Q) and melt streamflow (Qsnow). The statistical
significance of the delta-changes was evaluated using the Mann-Whitney U
test at 95% confidence level.

The future changes were then evaluated using five hydrologic signature
measures (Stewart et al., 2005; Rasmussen et al., 2014; Mendoza et al., 2015,
2016). The first two measures provide information about the overall water
balance for a certain region and can be derived from thewater balance equation
normalized by P:

1 �
Q
P

+
AET

P
+
∆S
P

(5.2)

Where ∆S is the variation of the storage in the hydrological system for a given
period, and all the variables are expressed in units of volume. For long periods,
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the storage component can be neglected (Rasmussen et al., 2014; Mendoza
et al., 2015, 2016), and Eq. 5.2 can be rewritten as:

1 �
Q
P

+
AET

P
� iQ + iE (5.3)

Where iQ is the runoff ratio and iE is the evapotranspiration ratio. Eq. 5.3
represents the steady-state for the water balance, and implies that both
measures are complementary. Therefore, iQ and iE will be used to evaluate
the present and future partitioning of precipitation into runoff and actual
evapotranspiration at annual scale.

The third signature measure is the snowmelt contribution ratio to the total
streamflow, Qsnow ratio, and can be calculated both at annual and seasonal
scales as follows:

Qsnowratio �
Qsnow

Q
(5.4)

Lastly, the centroid position for the daily hydrograph of the average hydrologic
year was selected for the diagnosis of the projected Q changes. The most
common metric is the X coordinate of the centroid for the entire hydrologic
year or “center time” of runoff (Stewart et al., 2005; Mendoza et al., 2015, 2016),
and evaluates the seasonality of runoff. In this work we have calculated both
the X and Y coordinates (CX, CY) at annual and seasonal scales, as shown in
Fig. 5.2. The annual and seasonal centroids together provide a more accurate
picture about the daily hydrograph. In addition, CY is a valuable source of
information about the shape of the hydrograph, and its future changes are
related to the annual and seasonal delta-changes of Q. The correlation between
the CY changes and the projected Q delta-changes was tested through a linear
adjustment calculating the coefficient of correlation r and the corresponding
slope and intercept values. In this case the statistical significance of the r
values was calculated using the Student’s-t test at 95% confidence level.
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Fig. 5.2: X and Y coordinates of the centroid for the daily hydrograph (CX, CY) at annual and
seasonal scales: a) annual centroid, b) fall centroid, c) winter centroid and d) spring
centroid.

5.3.4 Model validation

The predictive capability of VIC was firstly tested through the NSE values
corresponding to the monthly Q and AET ensemble simulations for the period
Oct 2000 - Sep 2011. This period was selected based on the prior calibration
exercise of Yeste et al. (2020), and spans the last part of the historical period
and the first years of the two RCP scenarios (historical+RCP validation periods
hereafter). The analysis was carried out for both historical+RCP validation
periods. Similarly to Yeste et al. (2020), Q simulations were validated against
monthly streamflow observations gathered from SAIH-ROEA (see Section 2.1
in Chapter 2), and AET was compared to the monthly outputs of the GLEAM
version 3.3a (Martens et al., 2017; Miralles et al., 2011, see Section 2.3 in
Chapter 2).

Lastly, the suitability of VIC to simulate the evaluation metrics previously
described was analyzed for the two historical+RCP validation periods. The
annual partitioning of precipitation into runoff and evapotranspiration was
only evaluated for iQ using streamflow observations and SPREAD precipita-
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tion, assuming the steady-state for the water balance represented in Eq. 5.3.
The annual and seasonal CX and CY values were compared to those obtained
with daily streamflow observations. The validation for Qsnow ratio was not
possible given the limited amount of observations for snow-related variables
in the Iberian Peninsula.

5.4 Results

5.4.1 Validation results

The NSE values of Q and AET for the historical+RCP8.5 validation period are
shown in Fig. 5.3a and Fig. 5.3b, respectively, and are almost identical to those
calculated for the historical+RCP4.5 validation period (Fig. S5.1a and Fig. S5.1b
in Supporting Information). NSE(Q) values are highly underestimated using
the Euro-CORDEX multi-model ensemble in comparison to the calibration
results in Yeste et al. (2020). This indicates that, while being an appropriate
measure for calibrating hydrologic models, NSE(Q) constitutes a high-end
performance extremely difficult to achieve when using climate model outputs.

Fig. 5.3: CDFs of the VICmodel performance for the period Oct 2000 - Sep 2011 corresponding
to the combination historical+RCP8.5: a) NSE for the streamflow simulations against
streamflow observations; b) NSE for the AET simulations against GLEAM; c) iQ
bias with respect to the ratio of SPREAD precipitation to streamflow observations.
Blue lines represent the ensemble simulation, and orange lines correspond to the
calibration results from Yeste et al. (2020).
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The runoff performance is commonly checked for less demanding metrics
such as iQ, which is calculated from mean values of runoff and precipitation
(Eq. 5.3) and plays a major role in assessing future water security (Lehner et al.,
2019). Contrarily to NSE(Q), the iQ biases of the ensemble and the calibration
presented similar distributions with most values falling in the ±0.1 range
(Fig. 5.3c and Fig. S5.1c in Supporting Information).

On the other hand, the ensemble clearly improved the VIC performance for the
AET simulations, presumably due to the model-nature of GLEAM. Further
calibration efforts for the Duero basinwill aim to improve the VIC performance
for AET targeting both Q and AET simulations simultaneously.

Finally, the annual and seasonal CX and CY biases for the historical+RCP8.5 val-
idation period (Fig. 5.4) resemble the ones estimated for the historical+RCP4.5
validation period (Fig. S5.2 in Supporting Information). Overall, the CDFs
corresponding to the ensemble suggest an acceptable performance when
compared to the calibration results from Yeste et al. (2020). The ensemble
reflected a higher presence of positive biases, while the calibration presented
slightly steeper CDFs closer to 0. Notably, the CX biases at annual scale are
comparable to those showed inMendoza et al. (2015, 2016) for three headwater
catchments in the Colorado River Basin.

5.4.2 Annual delta changes of P, PET, AET and Q

The mean annual values of P, PET and AET for the historical period are
depicted in Fig. 5.5a, and the mean annual values of Q for this period are
gathered in Table 5.1. A marked latitudinal gradient was found for the
atmospheric variables, with P values generally above 1000 mm/year and
PET values below 1000 mm/year for the northern catchments, and reaching
minimum P and maximum PET in the south. AET shows a narrower range of
variability with the majority of values falling between 400 and 700 mm/year.
The latitudinal gradient is also noticeable for this variable and reflects an
opposite spatial distribution to PET.

Fig. 5.6 collects the annual delta changes of P, PET, AET and Q for the period
2071-2100 under the RCP8.5 scenario. The changes corresponding to RCP4.5
for the three future periods, and to the RCP8.5 for the 2021-2050 and 2041-2070
are shown in Supporting Information (Fig. S5.3 to Fig. S5.7). A generalized
decrease of annual P is expected for all the future study periods presenting
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Fig. 5.4: CDFs of the VIC model performance for the annual and seasonal values of CX (a to d)
and CY (e to h) corresponding to the period Oct 2000-Sep 2011 and the combination
historical+RCP8.5. CX biases are calculated as the difference between simulated and
observed values. CY biases represent fractional changes calculated as [(simulations -
observations)/observations · 100]. Blue lines represent the ensemble simulation, and
orange lines correspond to the calibration results from Yeste et al. (2020).

maximum decreases of up to 40% in the south for the period 2071-2100 under
the RCP8.5 scenario. PET is subject to significant increases for all the future
study periods and RCPs, with maximum increases, above 40%, taking place in
the northern catchments by the end of the century under the RCP8.5 scenario.
The annual delta changes of P and PET suggest that the latitudinal gradient
noticed for both atmospheric fields in the historical period (Fig. 5.5a) tends to
fade away, and thus P and PET become more homogeneous over the entire
study area in the future periods.

The delta changes of AET range from significant increases of up to 30% in the
northern catchments to significant decreases of about 30% in the south for
the period 2071-2100 under the RCP8.5 scenario (Fig. 5.6). The AET changes
reflect a greater heterogeneity than the P and PET ones, and although the
historical values follow a north-south distribution (Fig. 5.5a), the future AET
changes do not compensate the latitudinal gradient. On the contrary, they
exacerbate it, leading to a widening on the range of values of AET.
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Fig. 5.5: Basin-averaged annual and seasonal values of P, AET and PET for the historical
period.
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Table 5.1: Basin-averaged annual and seasonal values of Q for the historical period.

Code Annual
(hm3/year)

Autumn
(hm3/season)

Winter
(hm3/season)

Spring
(hm3/season)

Summer
(hm3/season)

R-2001 312.22 65.43 121.62 101.05 24.12
R-2011 93.70 21.41 40.31 29.22 2.76
R-2013 150.37 42.42 57.24 41.88 8.83
R-2014 229.93 60.93 84.57 69.71 14.71
R-2026 445.30 110.75 158.98 138.26 37.31
R-2027 23.32 7.44 10.90 4.36 0.62
R-2028 71.66 25.41 24.70 17.98 3.57
R-2032 658.43 184.00 266.30 181.26 26.86
R-2036 46.80 11.21 17.89 15.00 2.70
R-2037 99.36 22.37 40.16 25.90 10.93
R-2038 773.35 237.64 337.55 178.98 19.18
R-2039 299.90 88.51 151.97 55.34 4.07
R-2042 122.79 22.17 64.59 32.49 3.55
R-2043 87.76 16.84 33.61 31.56 5.75
GS-2005 113.82 19.94 55.21 30.53 8.13
GS-2016 81.50 17.42 36.68 22.49 4.90
GS-2041 16.69 2.98 9.56 3.79 0.35
GS-2049 19.12 2.89 7.64 7.18 1.41
GS-2051 18.38 3.66 8.43 5.72 0.58
GS-2057 47.05 8.83 21.39 15.20 1.63
GS-2089 182.53 46.51 79.67 46.39 9.96
GS-2104 147.60 36.24 64.15 36.22 11.00
GS-2150 191.03 57.94 73.14 53.74 6.20
GS-2818 270.69 52.50 131.59 74.83 11.77

The delta changes of Q are prevalently negative and statistically significant
for all periods and RCPs, with changes below -40% in some of the southern
catchments for the period 2071-2100 under the RCP8.5 scenario (Fig. 5.6).
In this respect, two main driving mechanisms for the annual Q detriments
were identified: 1) the future P decreases in the southern mountains; and 2)
the combined effect of the future P reductions and the AET increases in the
north part of the basin. The former mechanism supposes that both the runoff
generation and the evapotranspiration processes become limited by the less
abundant precipitations under the future scenarios. The latter corresponds
to those areas where there is still enough water availability for satisfying the
higher atmospheric demand for water vapour (i.e. higher PET) in the future,
and therefore represents a two-fold limiting factor for the runoff generation.
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Fig. 5.6: Delta changes of annual and seasonal P, Q, AET and PET for the period 2071-2100
under the RCP8.5 scenario in the studied catchments. Significant changes at the 95%
confidence level have been marked with solid borders.

5.4.3 Seasonal delta changes of P, PET, AET and Q

The mean seasonal values of P, PET and AET for the historical period are
mapped in Fig. 5.5b, and Table 5.1 includes the mean seasonal values of Q.
Seasonal P evidences a latitudinal gradient for all the seasons comparable to
that observed in Fig. 5.5a for annual scale. The highest values are reached
during autumn and are above 500mm/season for various northern catchments.
The minimum values correspond to summer and are below 100 mm/season
in the south. Seasonal PET is broadly below 100 mm/season in autumn and
winter, being the latitudinal gradient almost inexistent. The PET values start
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to be noticeable in spring and achieve their maximum in summer with values
above 500 mm/season in the southern catchments. The maximum AET values
were obtained for the spring months and are above 200 mm/season for the
majority of the subwatesheds. The summer AET values are somewhat lower
than the spring ones, and they are broadly below 200 mm/season in autumn
and winter. Finally, the highest Q volumes take place in winter and are lower
in autumn and spring, with minimums attained in summer (Table 5.1).

Fig. 5.6 also shows the seasonal delta changes of P, PET, AET and Q for the
period 2071-2100 under the RCP8.5 scenario, being the changes associated to
the rest of the future periods and scenarios shown together with their annual
counterparts in Supporting Information (Fig. S5.3 to Fig. S5.7). The smallest
decreases of seasonal P correspond to autumn, while they predominantly
exceed 20% in spring and summer. Delta changes for winter, in turn, are mostly
positive, and notably significant under the RCP4.5 scenario for 2071-2100
(Fig. S5.7) and the RCP8.5 scenario for 2041-2070 (Fig. S5.6). Little difference
was found for the seasonal PET changes with respect to the annual changes,
though the significant increments are slightly larger in autumn and winter,
and less severe in spring and summer.

The significant AET increases detected for autumn and winter (Fig. 5.6)
manifest that the evapotranspiration process is limited by the atmospheric
demand of water vapour (i.e. PET) for the first half of the hydrologic year.
During summer, however, the AET changes are negative and significant
in the entire region, suggesting that the water availability constrains the
evaporative fluxes. The spring AET changes lie between those extremes and
show significant increases in the northern part of the basin and significant
decreases over the south, with similar results for the rest of the future periods
and scenarios (Fig S5.3 to Fig. S5.7). Hence, the seasonal AET changes can
explain the annual AET delta changes as follows: 1) the increases identified
for the northern catchments are due to the increments occurring in autumn,
winter and spring, without a noteworthy effect of the summer diminutions on
the annual differences; and 2) the projected detriments in the southernmost
areas are promoted by the spring and summer decreases, whilst the autumn
and winter increases do not cause a flip in the sign of the delta changes.

The seasonal delta changes of Q are mostly negative and more pronounced
in spring and summer, reaching reductions above 40% in a great number of
the catchments for the RCP8.5 scenario during the period 2071-2100 (Fig. 5.6).
There is a strong interplay between the seasonal P and AET as the driving
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forces of the seasonal Q detriments. Thus, P constitutes the limiting factor for
both the runoff generation and the evapotranspiration processes in summer,
and over the southern part of the basin in spring. The combined effect of
P decreases and AET increments is relevant in autumn, as well as for the
northern catchments in spring. The negative delta changes of Q for winter are
related to the sharp and significant AET increments.

5.4.4 Delta changes of Qsnow

The application of Eq. 5.1 allowed obtaining the Qsnow monthly time series for
each catchment of the study area that subsequently were aggregated at annual
and seasonal time scales. Table 5.2 collects the mean annual and seasonal
values of Qsnow for the historical period, showing higher Qsnow values for
the northern catchments as they are characterized by a greater elevation (see
Fig. 5.1 and Table S5.1). Fig. 5.7 shows the delta changes of annual and seasonal
Qsnow for the period 2071-2100 under the RCP8.5 scenario. The remaining
results for Qsnow are shown in Supporting Information (Fig. S5.8). The summer
months were excluded from this analysis due to the absence of a snowmelt
component for the streamflow values in this season.

The delta changes of Qsnow are always negative and significant, mostly exceed-
ing 80% in the long-term future period (Fig. 5.7), and being more pronounced
in autumn and spring. Qsnow constitutes the hydrological variable for which
the impact of climate change is more evident, evincing a generalized tendency

Fig. 5.7: Delta changes (excluding summer) of annual and seasonal Qsnow for the period
2071-2100 under the RCP8.5 scenario in the studied catchments. Significant changes
at a 95% confidence level have been marked with solid borders.
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Table 5.2: Basin-averaged annual and seasonal values (excluding summer) of Qsnow for the
historical period.

Code Annual
(hm3/year)

Autumn
(hm3/season)

Winter
(hm3/season)

Spring
(hm3/season)

R-2001 69.44 11.00 44.61 13.82
R-2011 22.25 4.24 14.44 3.56
R-2013 35.75 7.88 22.96 4.91
R-2014 72.94 15.34 40.34 17.26
R-2026 141.16 27.52 75.29 38.28
R-2027 2.81 0.67 2.04 0.09
R-2028 23.06 6.37 11.70 4.99
R-2032 195.16 40.66 114.07 40.42
R-2036 5.42 1.10 3.78 0.54
R-2037 10.83 1.93 7.86 1.03
R-2038 122.19 27.18 82.45 12.56
R-2039 6.80 1.67 5.07 0.05
R-2042 19.50 2.73 15.42 1.35
R-2043 27.99 4.71 16.09 7.19
GS-2005 9.77 1.30 8.13 0.34
GS-2016 11.47 2.18 8.27 1.02
GS-2041 1.29 0.15 1.12 0.02
GS-2049 0.87 0.14 0.69 0.04
GS-2051 5.02 0.85 3.37 0.80
GS-2057 11.24 1.50 7.17 2.58
GS-2089 39.49 7.80 26.75 4.94
GS-2104 22.28 4.02 16.62 1.64
GS-2150 60.15 13.67 32.81 13.63
GS-2818 6.87 0.87 5.75 0.25

for the headwaters of the Duero River Basin to be much less snow dominated
as a consequence of climate change.

5.4.5 Future changes of iQ, iE and Qsnow ratio

Fig. 5.8a shows the values of the signature measures iQ and iE for the historical
period, and their future changes are collected in Fig. 5.8b for the period 2071-
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a)

Fig. 5.8: (a) Values of iQ and iE for the historical period in the studied catchments. (b) Projected
changes of iQ and iE calculated as the difference between future and historical values
for the period 2071-2100 under the RCP8.5 scenario.

2100 under the RCP8.5 scenario (Fig. S5.9 in Supporting Information depicts
the results of iQ for the rest of the periods and RCP scenarios). The highest
values of iQ and iE occur for the northern and for the southern catchments,
respectively, being the sumof both ratios always close to 1. This complementary
assumption is also applicable to the iQ and iE changes, being their sum close to
0. The future changes of iQ and iE suggest that the northern catchments tend
towards the evaporative regime range, and the evaporative response becomes
stronger in the south.

The Qsnow ratio values for the historical period are presented in Fig. 5.9a
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Fig. 5.9: (a) Annual and seasonal values (excluding summer) of Qsnow ratio for the historical
period in the studied catchments. (b) Projected changes of annual and seasonal
Qsnow ratio (excluding summer) calculated as the difference between future and
historical values for the period 2071-2100 under the RCP8.5 scenario.

at both annual and seasonal scales, excluding summer. Most of the annual
Qsnow ratio values are above 0.3 for the northern basins, being weaker in
the southern mountains, with values that mainly range from 0.1 to 0.3. The
seasonal distribution reveals that the highest Qsnow ratio are concentrated in
the winter months and exceeds 0.4 in many northern catchments. Autumn
and spring show similar results with values always below 0.3. The future
changes of the Qsnow ratio at annual and seasonal time scales are depicted in
Fig. 5.9b for the period 2071-2100 under the RCP8.5 scenario (the rest of the
changes are shown in Fig. S5.10 in Supporting Information), and manifest a
clear predominance of negative values broadly below -0.1.

5.4.6 Future changes of the centroid position

Table 5.3 collects the coordinate pairs (CX, CY) of the annual and seasonal
centroids for the daily hydrograph for the average hydrologic year in the
historical period. The annual CX values present a mean value of 150.4 days
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Table 5.3: Centroid position at annual and seasonal time scales in the daily hydrograph for
the average hydrologic year corresponding to the historical period. CX is expressed
in days since Oct 1 and CY in hm3/day.

Code Annual Autumn Winter Spring
CX CY CX CY CX CY CX CY

R-2001 162.3 0.560 57.2 0.422 139.3 0.684 221.7 0.597
R-2011 150.6 0.191 62.9 0.164 136.2 0.224 219.4 0.181
R-2013 148.1 0.267 56.4 0.266 136.7 0.318 222.5 0.241
R-2014 152.7 0.405 56.4 0.381 137.5 0.469 221.6 0.411
R-2026 158.5 0.763 56.3 0.689 138.7 0.884 220.9 0.827
R-2027 131.2 0.051 61.4 0.054 133.5 0.062 219.4 0.027
R-2028 137.0 0.128 52.9 0.149 135.7 0.138 221.3 0.107
R-2032 144.6 1.254 58.0 1.198 136.8 1.478 218.7 1.137
R-2036 155.2 0.086 54.9 0.069 139.4 0.100 218.6 0.095
R-2037 160.3 0.169 55.5 0.137 137.2 0.224 219.4 0.158
R-2038 134.3 1.578 56.6 1.502 134.8 1.900 215.8 1.207
R-2039 129.6 0.738 64.4 0.716 131.9 0.890 213.9 0.395
R-2042 150.1 0.278 62.8 0.170 137.5 0.361 216.3 0.215
R-2043 164.8 0.164 60.9 0.120 138.8 0.187 222.3 0.184
GS-2005 157.8 0.233 58.9 0.136 137.0 0.314 217.1 0.199
GS-2016 154.1 0.157 61.0 0.124 136.5 0.204 221.1 0.133
GS-2041 144.3 0.043 66.0 0.027 134.0 0.056 214.6 0.027
GS-2049 171.5 0.037 60.9 0.021 139.9 0.043 222.9 0.041
GS-2051 153.6 0.038 64.4 0.029 137.3 0.047 219.4 0.035
GS-2057 156.1 0.097 59.0 0.059 140.3 0.120 218.1 0.097
GS-2089 147.5 0.352 59.9 0.320 135.9 0.445 219.2 0.285
GS-2104 150.6 0.272 56.2 0.225 136.7 0.358 218.0 0.229
GS-2150 141.6 0.367 58.0 0.379 136.2 0.407 219.6 0.337
GS-2818 152.8 0.574 64.9 0.435 136.3 0.736 219.2 0.459

and a difference of 41.9 days between the maximum and minimum values (i.e.
dispersion). The lowest annual CX values were generally obtained for northern
catchments (e.g. R-2027, R-2028 and GS-2150), being the highest ones mainly
located in the south (e.g. R-2037, R-2043 and GS-2057). The seasonal CX values
are less dispersed, with a maximum difference of 13.1 days in autumn and
not exceeding 10 days in winter and spring. The spatial distribution of CX for
autumn and spring is comparable to that obtained for the entire year, while
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spring exhibits an opposite pattern with minimums attained in the south.
On the other hand, a strong correlation (r > 0.99) was found between the CY
measures and the average Q values for the historical period (Table 5.1) in all
cases, thus implying that the highest CY values take place in winter and are
lower in autumn and spring.

The projected changes of the centroid position are shown in Fig. 5.10. The
annual CX changes (Fig. 5.10a) are predominantly negative and more pro-
nounced for the RCP8.5 scenario, being the differences mostly below 10 days.
A similar behaviour is also noticeable, but to a lesser degree, in winter and
spring. The autumn CX changes are, in turn, prevailingly positive and present
increases of up to 5 days. This represents an important feature of the future
behaviour of the autumn streamflow that is not well-captured in the annual
CX changes.

The CY changes (Fig. 5.10b) are negative and broadly below 20% both at
annual and seasonal time scales. However, the spring CY decreases are more
noticeable and usually exceed 20%, reaching decreases above 40% for RCP8.5.
The correlation between the CY changes and the delta changes of Q (Table S5.2
in Supporting Information) is characterized by r values statistically significant
at a 95% confidence level, with a varying degree of correlation depending
on the time scale and RCP considered. The CY and the Q changes practically
show a 1:1 relationship for winter and spring and both RCPs. Conversely, the
correlation is less marked for autumn and for the complete hydrologic year,
with r values below 0.9 and slightly above 0.9 at annual scale for the RCP8.5
scenario. Therefore, as the delta changes of Q, the projected changes of CY
pinpoint a generalized decrease of the streamflow for the study area, being in
some cases interchangeable measures (i.e. in winter and spring).

5.5 Discussion

5.5.1 Projected annual hydrologic changes

A similar spatial pattern for the annual P changes over the Duero Basin
(Fig. 5.6) was detected using WRF simulations over Spain in Argüeso et al.
(2012), concluding that the changes tend to be larger in the southern half of
the domain, particularly over the mountainous areas. Likewise, the annual P
changes are in agreement with those obtained in Fonseca and Santos (2019)
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Fig. 5.10: Projected changes of the centroid position at annual and seasonal time scales for
the different RCPs: a) changes of CX calculated as the difference between future and
historical values, and b) fractional changes [(future - historical)/historical · 100] of
CY. Boxplots in a) and b) represent the 24 studied catchments.

for the Tâmega River using also a Euro-CORDEX ensemble. The projected
annual PET changes are coherent with the findings of Moratiel et al. (2011)
for the Duero Basin, where increases between 5% and 11% are expected for
the annual PET by the end of the first half of the 21st century.

The annual delta changes of Q and AET (Fig. 5.6) corroborate the sign and the
magnitude of the projected changes of annual Q and AET for the Tâmega Basin
in Fonseca and Santos (2019), as well as they further extend the conclusions
reached there given the greater number of catchments considered in this
chapter and the higher number of members included in the Euro-CORDEX
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ensemble. Nonetheless, this work is focused in the Spanish part of the basin,
and even though it can be considered as representative of the entire area,
future research will encompass the totality of the basin in order to overcome
this limitation.

On the other hand, and similarly to this work, negative iQ changes were
found in Mendoza et al. (2015, 2016) in the Colorado River Basin. The steady-
state assumption reflected in Eq. 5.3 is one well-known and widespread
approach taken for the quantitative analysis of the water balance equation
(e.g., Rasmussen et al., 2014; Xu et al., 2014; Liang et al., 2015; Mendoza et al.,
2015, 2016; Hasan et al., 2018; Li et al., 2018). However, this assumption is rarely
checked and can lead to a long-term imbalance when the storage component
is not considered even for long periods (i.e. 10 to 30 years), particularly in arid
and semi-arid regions (Han et al., 2020). In order to avoid feasible inaccuracies
in the application of this approach, the steady-state assumption was tested for
all the studied catchments, remaining the sum of iQ and ie close to 1 for the
historical period and for all the future scenarios.

5.5.2 Projected seasonal hydrologic changes

The statistically significant positive delta changes corresponding to winter P
(Fig. 5.6) point to an important feature for the future precipitations in the central
catchments of the Duero Basin. Similarly, other studies using WRF projections
concluded that, contrarily to the rest of the seasons, winter precipitation is
projected to increase over certain areas of the Iberian Peninsula due to climate
change, remarkably over the Northern Plateau, but the increases are generally
non-significant (Argüeso et al., 2012; García-Valdecasas Ojeda et al., 2020a). In
the same vein, Soares et al. (2017), using WRF and Euro-CORDEX ensembles,
found both significant and non-significant increases of winter precipitation
for some areas in the north of Portugal including the Portuguese part of the
Duero River Basin.

The findings for the seasonal AET changes (Fig. 5.6) partially agree with the
results reported in García-Valdecasas Ojeda et al. (2020a), where comparable
changes were found during winter and summer over the study area. However,
the WRF simulations carried out there diverged from our results for the
rest of the hydrologic year: in autumn, the WRF projections led to significant
decreases for almost all the simulations, and in spring, the partitioning between
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significant increases in the northern headwaters and significant decreases in
the south were not captured.

It is expected that the VIC implementation of this work reproduces more
realistically the water balance and the future hydrologic changes of the Duero
headwaters since it was built upon the calibration exercise developed in
Yeste et al. (2020). Although the model was calibrated only using streamflow
observations, its performance was also evaluated against two AET prod-
ucts, producing good adjustments as well and improving the benchmark
performance in all cases.

Other feasible explanation can be related to the high number of models
included in the Euro-CORDEX ensemble in comparison to the two GCMs that
drove the WRF simulations in García-Valdecasas Ojeda et al. (2020a). Lastly,
the choice of the climatological year (i.e. from December to November) in
García-Valdecasas Ojeda et al. (2020a) could also conduct to some differences
when compared to the results for the hydrologic year (i.e. from October to
September) presented here.

The projected seasonal changes for Q (Fig. 5.6) were similar to those obtained
in Fonseca and Santos (2019) for the Tâmega Basin, with downward trends for
all the seasons except for winter, where a slight increase was projected. The
strongest diminutions were projected for summer, where water scarcity and
the increasing frequency of droughts may pose a serious threat in the future
in agreement with García-Valdecasas Ojeda et al. (2021a).

Although most of the summer Q changes were characterized by marked and
significant decreases, it is important to note the existence of a few significant
increases (Fig. 5.9). This responds to an atypical behaviour and is presumably
driven by two factors: firstly, the very nature of the low Q values in summer
supposes that a higher streamflow, though remaining in the low range,
produces a markedly positive delta change; and secondly, the averaging of
all the Q time series when the mean of the ensemble was calculated could
introduce small biases that finally led to a positive delta change in rare cases.

The results for Qsnow (Fig. 5.7) and Qsnow ratio (Fig. 5.9) resemble the relative
contribution of the snowmelt component to the generated runoff in the Ganges
basin applying an identical method for estimating Qsnow (Siderius et al., 2013),
whichwas expected to change as climatewarms. Similarly, Ceballos-Barbancho
et al. (2008) and Morán-Tejeda et al. (2010, 2011a) pointed to a change of the
snow regime in the Duero River Basin during the last half of the 20th century,

86



5.5 Discussion

with important implications for water management that already led to the
adoption of different management practices in other parts of Spain (López-
Moreno et al., 2004). The marked reductions observed for winter and spring
streamflow were likely caused by the decrease of winter precipitation and the
increase of winter and spring temperatures. The latter implies a decrease of
snow accumulation in winter and an earlier snowmelt presence during spring,
therefore affecting the amount and timing of the streamflow (Morán-Tejeda
et al., 2010, 2011a).

This downward tendency driven by a warmer climate has being previously
identified for the mountainous areas in Spain (López-Moreno et al., 2009;
Morán-Tejeda et al., 2017; Collados-Lara et al., 2019) and other parts of the
world (e.g., Bhatti et al., 2016; Majone et al., 2016; Coppola et al., 2018; Ishida
et al., 2018, 2019; Liu et al., 2018), thus suggesting a critical role of the snowmelt
component for the future management of mountain water resources (Viviroli
et al., 2011; Mankin et al., 2015).

5.5.3 Annual and seasonal changes of the hydrograph
centroid

The projected annual changes of CX (Fig. 5.10a) suggest that a time shift in
the hydrologic year towards earlier streamflow volumes takes place for the
future scenarios. The “center time” of runoff is considered a measure of the
streamflow seasonality, and is usually calculated for the average hydrologic
year as a single metric for the entire hydrograph (Stewart et al., 2005; Mendoza
et al., 2015, 2016). Mendoza et al. (2015) suggested that the negative sign of the
projected annual changes of CX are linked to a lesser presence of snow under
climate change conditions. This is consistent with the findings of this chapter
for the studied catchments, where Qsnow is expected to suffer the greatest
burden of the impacts of climate change.

It is important to note that with the only use of the annual CX position as a
signaturemeasure there are other important characteristics of the average daily
hydrograph that remain hidden and not completely depicted. This limitation
has been overcome by calculating the seasonal centroid position and its future
changes (Fig. 5.10), revealing additional information about the seasonal timing
of the streamflow that is expected to have a large impact on the future water
management strategies for the basin.
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Finally, the annual and seasonal CY changes (Fig. 5.10b) constitute another
valuable metric that can be related to the delta changes of Q both at annual
and seasonal scales (Table S5.2). The degree of correlation between them
responds to the question of to which extent the changes of the shape of the
hydrograph (i.e. CY changes) are related to the changes of the mean values
(i.e. delta changes of Q). Thus, the 1:1 relationship observed for winter and
spring indicates that the changes of shape are mainly driven by the delta
changes of Q. This is also supported by the closeness to 0 of the CX changes for
these seasons (Fig. 5.10a), being the shape of the hydrograph directly related
to the vertical shifting of the centroid. The annual and autumn changes of
the centroid position show greater complexity as the CX changes become a
contributing factor to the changes of shape. In these cases the CY changes and
the delta changes of Q are less correlated but still manifest a linear relationship
with statistically significant r values. This approach generalizes the common
usage of the “center time” of runoff as a measure of seasonality, and further
research will explore the implications of the changes of the CX and CY and
their relation to the corresponding delta changes for the rest of atmospheric
and land variables involved in the hydrology of the headwaters of the Duero
River Basin.

5.6 Conclusions

The multi-model ensemble approach has shown to be an effective tool for
the analysis of the impacts of climate change in the headwater areas of the
Duero River Basin both at annual and seasonal time scales. The simulations
carried out with the VIC model driven by a large number of Euro-CORDEX
RCM+GCM combinations and two RCPs has permitted a posterior analysis
applying the delta change method and estimating various signature measures
for the different land and atmospheric variables enmeshed in the modelling
exercise. The former evaluated the future changes of the mean values, and the
latter addressed other important hydrologic features including the relative
contribution of runoff and actual evapotranspiration to the overall water
balance, the snowmelt contribution to the total streamflow and the centroid
position for the daily hydrograph of the average hydrologic year. The main
findings of this chapter are as follows:

• The annual streamflow decreases were driven by two different mecha-
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nisms depending on the mountainous system considered. The precip-
itation decreases in the south part of the basin imposed a limit to the
runoff and evapotranspiration processes. The streamflow reductions for
the northern mountains were the outcome of a combined effect of the
precipitation decreases and evapotranspiration increases in the future
scenarios. The future changes of the runoff and the evapotranspiration
ratios revealed a tendency towards an evaporative regime for the north-
ern catchments, while the evaporative response strengthened in the
south. The sum of both ratios remained close to 1 for all the studied
cases, thus confirming the steady-state assumption usually non-tested in
many previous studies.

• The precipitation and evapotranspiration changes evinced a strong intra-
annual variability, and were directly related to the seasonal streamflow
detriments: the precipitation decreases constituted the limiting factor
for the runoff and evapotranspiration processes in summer for all the
studied catchments, and over the southern part of the basin in spring; the
compound effect of the precipitation reductions and the evapotranspira-
tion increments was noticeable in autumn for the entire basin, and over
the north in spring; lastly, the winter streamflow changes were mostly
negative and non-significant as a consequence of the non-significant
changes projected for the precipitation in this season.

• The snowmelt contribution to the total generated runoff was the hy-
drologic variable most affected by the climate warming over the study
area. The projected changes indicated a downward tendency towards
the practically non-existence of snow dominated hydrologic regimes for
the headwaters of the Duero River Basin. This behaviour exacerbates the
previous findings for the mountainous areas in Spain during the last
half of the 20th century, and suggests a major role of this component for
the future water management practices.

• The projected changes of the centroid position were estimated for the av-
erage daily hydrologic year at annual and seasonal scales, and accounted
for the variations of the streamflow seasonality (i.e. horizontal shifts)
and the streamflow volumes (i.e. vertical shifts). Particularly, the vertical
shifts showed a strong degree of correlation to the corresponding delta
changes of the streamflow, being interchangeable measures in winter
and spring. This approach generalized the widespread use of the “center
time” of runoff as a signpost of seasonality as many other key features
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were well-captured and fully explained, and can be further applied for
the rest of atmospheric and land variables involved in the modelling
exercise.
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6 Streamflow and evaporation
trade-offs: sensitivity analysis
and calibration based on Pareto
optimization

The content of this chapter is based on a manuscript submitted for publica-
tion:

A Pareto-based sensitivity analysis and calibration approach for
integrating streamflow and evaporation data

Patricio Yeste, Lieke A. Melsen, Matilde García-Valdecasas Ojeda, Sonia
R. Gámiz-Fortis, Yolanda Castro-Díez and María Jesús Esteban-Parra

Submitted to Water Resources Research

Abstract

Evaporation is gaining increasing attention as a calibration and evaluation
variable in hydrologic studies that seek to improve the physical realism of
hydrologic models and go beyond the long-established streamflow-only cali-
bration. However, this trend is not yet reflected in sensitivity analyses aimed
at determining the relevant parameters to calibrate, where streamflow has
traditionally played a leading role. On the basis of a Pareto optimization
approach, we propose a framework to integrate the temporal dynamics of
streamflow and evaporation into the sensitivity analysis and calibration stages
of the hydrological modelling exercise, here referred to as “Pareto-based
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sensitivity analysis” and “multi-objective calibration”. The framework is suc-
cessfully applied to a case study using the Variable Infiltration Capacity (VIC)
model in three catchments located in Spain as representative of the different
hydroclimatic conditions within the Iberian Peninsula. Several VIC vegetation
parameters were identified as important to the performance estimates for
evaporation during sensitivity analysis, and therefore were suitable candidates
to improve the model representation of evaporative fluxes. Sensitivities for
the streamflow performance, in turn, were mostly driven by the soil and
routing parameters, with little contribution from the vegetation parameters.
The multi-objective calibration experiments were carried out for the most
parsimonious parameterization after a comparative analysis of the perfor-
mance gains and losses for streamflow and evaporation, and yielded optimal
adjustments for both hydrologic variables simultaneously. Results from this
chapter will help develop a better understanding of the trade-offs resulting
from the joint integration of streamflow and evaporation data into modelling
frameworks.
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6.1 Introduction

Terrestrial water storage and water fluxes modulating the land-atmosphere
interaction are key components of the global water cycle and energy budget.
Water storage is in direct connection with the partitioning of precipitation
into runoff and evaporation (Lehner et al., 2019; Pokhrel et al., 2021), the latter
currently accounting for two thirds of global precipitation (Good et al., 2015).
The intensification of the global water cycle driven by an already changing
climate represents a challenge for future water security (Lehner et al., 2019),
and is likely to affect the occurrence of extreme events such as droughts
and floods (Blöschl et al., 2020; Miralles et al., 2019; Peterson et al., 2021).
Moreover, evaporation is projected to increase in the context of global warming
(IPCC, 2021), and its changes can pose an important threat for water resources
availability and the biosphere (Konapala et al., 2020; Koppa et al., 2022).

In this regard, the use of satellite-based and reanalysis evaporation data as well
as in-situ measurements allows for a better understanding of other relevant
spatio-temporal processes, particularly in data-scarce areas (Dembélé et al.,
2020a; López López et al., 2017) and in arid and semi-arid regions where
evaporative fluxes are dominant (Dembélé et al., 2020b; Koppa et al., 2022).
The growing availability of evaporation products provides an unprecedented
opportunity to improve the representation of the land-atmosphere interactions
in hydrologic models (Lettenmaier et al., 2015; Minville et al., 2014; Puertes
et al., 2019; Széles et al., 2020), effectively overcoming the inherent limitations
of the streamflow-only calibration (Dembélé et al., 2020a,b; Koppa et al., 2019).
The incorporation of multiple data sources into the calibration stage permits
to identify meaningful parameter combinations and helps achieve a more
realistic representation of the hydrologic cycle (Fowler et al., 2018; Gharari
et al., 2013; Koppa et al., 2019; Nĳzink et al., 2018; Rakovec et al., 2016a;
Zhang et al., 2020). This is particularly relevant for a field where streamflow
has dominated calibration endeavors (Becker et al., 2019; Dembélé et al.,
2020a,b) and evaporation has been considered a subproduct of the steady-state
assumption for closed hydrologic systems (Han et al., 2020; Liang et al., 2015;
Yang et al., 2017).

Although the use of evaporation data is becoming increasingly extended as
an evaluation variable during a post-calibration phase (e.g., Bouaziz et al.,
2021; Rakovec et al., 2016b,a, 2019; Yeste et al., 2020, 2021) or as a calibration
objective itself (e.g., Dembélé et al., 2020a,b; Demirel et al., 2018; Koppa
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et al., 2019; López López et al., 2017; Nĳzink et al., 2018; Széles et al., 2020),
evaporation-related parameters controlling the vegetation processes have
remained mostly unattended during sensitivity analysis. This is particularly
relevant in the light of results reported in Sepúlveda et al. (2022) for the
Variable Infiltration Capacity (VIC) model (Liang et al., 1994, 1996), one of the
most widely used models by the hydrological community (Addor and Melsen,
2019), and suggest that, among others, VIC vegetation parameters have strong
potential to improve model performance despite their sensitivities have been
largely unknown for decades.

In this chapter we propose a framework focused on the integration of the
temporal dynamics of streamflow and evaporation into the sensitivity analysis
and calibration stages, which is then applied to a case study using VIC in three
Spanish catchments. The hydroclimatic characterization of these catchments
(Yeste et al., 2018, 2020, 2021) together with the aridity conditions specific of
the Iberian Peninsula (García-Valdecasas Ojeda et al., 2020a, 2021a) make them
ideal candidates for the matter in question.

First, we revisit the definition of the multi-objective optimization problem and
outline how it can be addressed in practice. This will help prepare the ground
for introducing the followed approach, which is then applied to the case study.
The sound performance of VIC and the broad implications derived from this
work suggest a clear contribution to the body of multiple-criteria applications
in hydrology, as well as to the knowledge of evaporation and its integration
into the hydrological modelling exercise.

6.2 Multi-objective optimization problem

Multi-objective optimization aims to optimize multiple objectives at the same
time. Without loss of generality, the multi-objective optimization problem
(MOOP) is commonly formulated as aminimization problem (Miettinen, 1998),
and can be formally written as follows (Deb, 2001):

Minimize fm(x) m � 1, 2, ...,M
subject to g j(x) ≤ 0 j � 1, 2, ..., J

hk(x) � 0 k � 1, 2, ..., K
xi ∈ [x(L)i , x(U)i ] i � 1, 2, ...,N

 (6.1)
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where M is the number of objective functions fm to minimize. Each component
xi of the n-dimensional decision vector x � (x1, x2, ..., xN)must belong to the
interval defined by the corresponding upper and lower bounds x(L)i and x(U)i .
The MOOP can be subject to J inequality and K equality constraints applied
to the constraint functions g j and hk , respectively.

By definition, a conflict between the objectives leads to a trade-off in Pareto-
optimal solutions that are equally important or likely from an optimization
perspective, conforming the so-called Pareto front (Deb, 2001). As none of
the solutions can be considered to be superior when there is more than
one objective to minimize, Pareto-optimal solutions are also referred to as
non-dominated solutions. The MOOP then becomes a multi-criteria decision
making problem where only a small subset of solutions are selected for the
specific application based on expert knowledge or the use of decision making
techniques (Miettinen, 1998).

Classical approaches to solve a MOOP rely on the scalarization of the multiple
objectives into a composite single-objective function. The most common form
of scalarization involves the introduction of some preference information for
the objectives through weighting coefficients, which can be changed in order
to obtain alternative Pareto-optimal solutions (Deb, 2001; Miettinen, 1998).
Among these techniques, the weighted metric method represents the most
general problem for minimizing distances (Deb, 2001):

Minimize
(∑M

m�1 wm | fm(x) − z∗m |p
)1/p

(6.2)

where wm is the weight for the objective function fm , zm is the m-th component
of the ideal vector z∗ (usually the null vector) and p is a power parameter. The
weights are typically selected such that wm ≥ 0 and their sum is one. The
problem can be subject to the same constraints as in (6.1), and the parameter p
can take values between 1 and∞. Notably,when p � 2 the problem corresponds
to minimizing the weighted Euclidean distance to the ideal solution z∗. In the
particular case of p � 2 and M equal weights, the problem is equivalent to
minimizing the pure Euclidean distance.

A major disadvantage of classical methods is that only one solution is handled
at a time (Deb, 2001). In the event of non-convex and discontinuous Pareto
fronts, this unavoidably results in an incomplete representation of the optimal
solutions region (Miettinen, 1998). By contrast, multi-objective optimization
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evolutionary algorithms (MOEAs) follow a metaheuristic approach that ef-
fectively handles a population of candidate solutions in a single run, making
them suitable for nonlinear optimization problems regardless of any continuity
or convexity condition (Deb, 2001; Coello Coello, 2005). MOEAs are then left
with the task of converging to the Pareto front and achieving a well-distributed
set of solutions (Abraham and Jain, 2005; Deb, 2001; Laumanns, 2005; Yang
et al., 2014). Metaheuristic approaches have become the way forward to tackle
multi-objective optimization challenges in many areas of science and engineer-
ing, and the efforts to improve and develop them continue to the present day
(Blank and Deb, 2020; Falcón-Cardona et al., 2021; Hernandez-Suarez et al.,
2021; LaTorre et al., 2021).

6.3 Approach definition

In this section, the methodological steps towards our goal of integrating
streamflow and evaporation data into the model optimization process are
presented. These steps are schematized in Fig. 6.1, and their description is
provided in the following subsections. The core idea underlying the rationale
of this framework consists in the application of the MOOP definition to two
objectives that characterize the overall goodness-of-fit of the model regarding
the temporal dynamics of the streamflow and evaporation data, respectively.
In particular, we propose a multi-objective optimization approach that can
serve the purpose of both a sensitivity analysis and a calibration procedure
that are performed in tandem.

But first, it is essential to verify if the problem is affordable from a physical
perspective. As we will show below, the integration of both data sources into
the modelling framework is largely dependent on the law of conservation
of mass and its steady-state representation for the hydrologic system under
examination.

6.3.1 Verification for streamflow and evaporation data

Over long periods, the water balance equation can be written as follows after
normalizing by precipitation (Han et al., 2020; Mendoza et al., 2015, 2016;
Rasmussen et al., 2014; Yeste et al., 2021):
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a) Metrics selection b) Parameter screening
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Fig. 6.1: Schematic overview of the framework. (a) Metrics selection for streamflow and evap-
oration based on model performance. (b) Parameter screening to identify influential
parameters. (c) Pareto-based sensitivity analysis for parameterizations of varying
complexity. (d) Multi-objective calibration for the final selection of parameters.

1 �
Q

P
+

E

P
(6.3)

where P [L/T] is the mean annual precipitation for the period, Q [L/T] the
mean annual streamflow and E [L/T] is the mean annual evaporation.

Eq. 6.3 shows that different model simulations forced with same input P
data can reach the steady-state for different contribution levels of Q and E.
Hence, for a long enough period, an imbalance in the above equation when
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calculated for the reference data constitutes a potential condition for a trade-
off between the objectives (i.e., a Q-E trade-off) since the model will likely
produce a steady-state solution. If the imbalance is significant, the integration
of the streamflow and evaporation datasets could become unsuitable due to a
failure to comply with the law of conservation of mass. For small to negligible
imbalances, however, there is no a priori condition for a Q-E trade-off. In that
case, the trade-off will generally depend on the particular application and the
(in)ability of the model to simultaneously reproduce both datasets. Eq. 6.3 will
be thoroughly checked for the case study.

6.3.2 Metrics selection and parameter screening

The metrics selection step (Fig. 6.1a) is based on an preliminary evaluation
of model performance by means of several candidate performance metrics
for Q and E. These metrics are expressed as single scalar values aggregating
different statistical properties of model performance, and can be calculated at
different time scales (e.g., daily, monthly). This stage requires a large-enough
and representative sample of model responses, which can be achieved via a
Monte Carlo experiment specifically designed to explore parameter space. As
a result, a Q-metric and an E-metric are selected from the proposed candidates
according to their adequacy to the case study.

Next, a parameter screening procedure (Fig. 6.1b) is carried out to identify
influential and non-infuential parameters to the selected metrics. Sensitivity
analysis methods play a major role in this respect as they are traditionally used
to this end. In this way, global sensitivity analysis (GSA), regional sensitivity
analysis (RSA) and hybrid local-global methods are equally valid approaches
that can be conducted for that purpose.

6.3.3 Pareto-based sensitivity analysis and multi-objective
calibration

The last two steps are founded on a MOOP implementation for the selected
metrics. In the first place, the parameter screening procedure is further refined
in a Pareto setting. We call this step Pareto-based sensitivity analysis (Fig. 6.1c)
since it relies on the MOOP definition and is a continuation of the previously
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applied sensitivity analysis that aims to find themost parsimonious parameter-
ization leading to satisfactory results. This is attained through unconstrained
multi-objective optimization experiments targeted at parameterizations of
varying complexity as follows: starting from a reference parameterization that
covers the minimum number of parameters to be analyzed, the rest of the
parameters are included one at a time. All the parameters are then incorporated
into a full parameterization that reflects the maximum achievable complexity
for the given implementation, and one of the parameterizations is selected
based on the relative gain/loss in performance for both objectives. Optimal
model performance is finally determined for the selected parameterization
through a constrained multi-objective calibration exercise (Fig. 6.1d) focused on
a specific region of the objective space in order to discard unfeasible solutions
leading to poor performance estimates.

6.4 Case study

This section begins with the presentation of the area and data and the
hydrologic model that integrate the case study, and is then followed by a
description of how the four steps constituting our framework are implemented
for this particular case.

6.4.1 Area and data

In order to assess the applicability of the proposed framework, the approach
was implemented for three catchments in Spain corresponding to the following
stations (Fig. 6.2): station R-5055 “José Torán” (surface 247.4 km2, annual P
790 mm/year), R-5005 “Rumblar” (surface 573.3 km2, annual P 550 mm/year),
and R-2011 “Arlanzón” (surface 106.8 km2, annual P 1320 mm/year). Stations
R-5055 and R-5005 belong to the Guadalquivir River Basin, the southernmost
and one of the most arid basins in Spain, while station R-2011 is located
in the Duero River Basin, a transboundary basin that flows into northern
Portugal, and the biggest basin of the Iberian Peninsula. The Guadalquivir and
Duero River Basins perfectly represent the latitudinal gradient of the climate
variability for the Iberian Peninsula, and therefore are appropriate candidates
to test the spatial consistency of the applied methods. We refer to Yeste et al.
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a) R-5055 "José Torán" b) R-5005 "Rumblar" c) R-2011 "Arlanzón"

Water balance partitioning
Period: 01/10/2000 - 30/09/2010

Ratio R-5055 R-5005 R-2011

Q/P 0.33 0.24 0.56

E/P 0.67 0.84 0.41

Location

a. b.

c.
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Catchment
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River
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800 m
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+3000 m

Fig. 6.2: Location of the three studied catchments.

(2018, 2020, 2021) and references therein for a comprehensive hydroclimatic
characterization of these basins.

Hydrologic data in this chapter were assembled for a period of 10 hydrologic
years spanning fromOct 2000 to Sep 2010. Daily precipitation and temperature
observations were extracted from SPREAD and STEAD (Serrano-Notivoli
et al., 2017, 2019, see Section 2.2 in Chapter 2). Daily streamflow time series
for the studied catchments were acquired from the SAIH-ROEA dataset
(see Section 2.1 in Chapter 2), and evaporation data were gathered from
the daily of GLEAM version 3.5a (Martens et al., 2017; Miralles et al., 2011,
see Section 2.3 in Chapter 2). Additional meteorological forcings (i.e., wind
speed, radiation, atmospheric pressure, vapor pressure), were collated from
WRFERA simulations for the spatial domain of the Iberian Peninsula in
García-Valdecasas Ojeda et al. (2017).

The ratios of streamflow and evaporation to precipitation (Q/P and E/P)
corresponding to the study period were computed for all the catchments
and produced the following estimates: 0.33 and 0.67 for R-5055; 0.24 and 0.84
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for R-5005, and 0.56 and 0.41 for R-2011. These values do not introduce an
artificial imbalance as their sum remains close to 1, and therefore guarantee
the further applicability of the framework (see Section 6.3.1). The high values
of E/P for the three catchments are symptomatic of the aridity conditions of
the Guadalquivir and Duero River Basins, and thus reinforce the potential of
including evaporation information into the modelling framework (Dembélé
et al., 2020b; Koppa et al., 2022).

6.4.2 Parameter selection

A set of 20 parameters representing the soil, vegetation and routing pro-
cesses was subsequently selected for the parameter screening procedure, and
comprised 5 soil parameters, the 2 routing parameters and 13 vegetation
parameters (Table 6.1). Although the soil and routing parameters considered
here are commonly used in other studies for sensitivity analysis and/or cali-
bration purposes (e.g., Chawla and Mujumdar, 2015; Mizukami et al., 2017;
Oubeidillah et al., 2014; Rakovec et al., 2014, 2019; Yeste et al., 2020), the
vegetation parameters remain mostly fixed as default values and are rarely
varied during the hydrological modelling exercise (see Melsen et al., 2016a;
Mendoza et al., 2015; Sepúlveda et al., 2022, for some exceptions).

The values of the vegetation parameters were modified by means of multi-
plication factors varying from 0.5 to 1.5. Multiplication factors confer greater
flexibility on theVICparameterization of the vegetationprocesses, andwere ap-
plied to both the single-valued parameters and those with monthly variations
(see Table 6.1). This strategy is comparable to the use of spatial multipliers to
calibrate distributed hydrologic models (e.g., Bandaragoda et al., 2004; Francés
et al., 2007; Pokhrel and Gupta, 2010; Mendoza et al., 2015), and allows for
studying the potential of the VIC vegetation parameters as calibration targets
(Sepúlveda et al., 2022).

6.4.3 Performance metrics

In this work, the Nash-Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) was
chosen to evaluate the goodness-of-fit of the model, and the metrics for stream-
flow and evaporation were selected according to the relative performance of
NSE at daily and monthly time scales (Fig. 6.1a). NSE can be expressed as:
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Table 6.1: Parameters included in the parameter screening procedure. Parameters denoted
with subscript “f” correspond to the dimensionless multiplication factors used to
modify VIC vegetation parameters.

Parameter Units Min value Max value Description
bi - 10-5 0.4 Variable infiltration shape parameter
DS - 10-9 1 Fraction of Dm where non-linear base-

flow begins
WS - 10-9 1 Fraction of the porosity of the bottom

soil layer where non-linear baseflow
begins

Dm mm/day 10-9 30 Maximum baseflow
d2 m 0.1 0.9 Thickness of soil layer 2
rout1 - 10-9 10 Shape parameter of gamma function
rout2 days 10-9 2 Scale parameter of gamma function
depth1f - 0.5 1.5 Thickness of root zone for layer 1
depth2f - 0.5 1.5 Thickness of root zone for layer 2
rarcf - 0.5 1.5 Architectural resistance
rminf - 0.5 1.5 Minimum stomatal resistance
LAIf - 0.5 1.5 Leaf-area index
albedof - 0.5 1.5 Albedo
roughf - 0.5 1.5 Vegetation roughness
dispf - 0.5 1.5 Vegetation displacement
wind_hf - 0.5 1.5 Height of wind speed measures
RGLf - 0.5 1.5 Minimum incoming shortwave radia-

tion for transpiration
rad_attenf - 0.5 1.5 Radiation attenuation
wind_attenf - 0.5 1.5 Wind speed attenuation through over-

story
trunk_ratiof - 0.5 1.5 Ratio of total tree height that is trunk

NSE � 1 −
∑T

t�1(yt − yref,t)2∑T
t�1(yref,t − ȳref)2

(6.4)

where yt is the model output and yref,t is the reference value of variable y for
time step t, and ȳref is the mean value of reference data for the study period.
NSE is a multiple-criteria estimator of model performance, and can be also
formulated as an algebraic decomposition into three components representing
different statistical properties of model behaviour (Clark et al., 2021; Gupta
et al., 2009; Knoben et al., 2019; Lamontagne et al., 2020):
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NSE � 2αr − α2 −
(β − 1)2

CV2
ref

(6.5)

here, r is the coefficient of correlation between simulations and reference data,
α is the ratio of the standard deviations, β the ratio for mean values, and CVref
is the coefficient of variation of the reference data. α and β report, respectively,
on the overestimation (> 1) or underestimation (< 1) of the variability and
the mean value of the analyzed variable. CVref is model-independent, and
consequently NSE can be seen as an interplay between r, α and β (see Gupta
et al., 2009; Knoben et al., 2019, for a detailed description of these statistics
and their relationships). From the definition of β, two simulations satisfying
Eq. 6.3 will produce the following equality for the relative changes of βQ and
βE:

∆βE
∆βQ

�
∆E/Eref

∆Q/Qref
� −Qref

Eref
(6.6)

where Qref and Eref are the mean annual values of the Q and E reference
data, respectively. Then, simulations achieving the steady-state will manifest
a data-driven trade-off for βQ and βE as a straight line with negative slope
that only depends on reference data. The implications of selecting NSE as a
performance metric and its decomposition into r, α and β will be discussed in
the light of results.

6.4.4 Monte Carlo experiment and DELSA sensitivity analysis

A Monte Carlo experiment was conducted for each of the studied catchments
using aLatinHypercube sample (LHsample) of 10,000parameter combinations
for the 20 parameters listed in Table 6.1. NSE was calculated at daily and
monthly time scales for the streamflow and evaporation simulations, and
the best performing metric in each case was selected based on a comparative
study. Parameter sensitivities with respect to the two selected metrics were
studied by applying the Distributed Evaluation of Local Sensitivity Analysis
(DELSA) method (Rakovec et al., 2014), and the most influential parameters
were selected for each catchment.
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DELSA is a hybrid local-global method that estimates local gradients at several
locations across parameter space. Each parameter is individually perturbed
by a fixed amount at every location (usually 1%, see Melsen et al. (2016a);
Melsen and Guse (2019); Rakovec et al. (2014); Sepúlveda et al. (2022)) so
as to estimate the first-order partial derivatives, which are an indicator of
sensitivity. In this work, 1% perturbations were carried out for a population of
500 points (hereafter referred to as DELSA sample) that were extracted from
the LH sample based on their proximity to the ideal case of NSE = 1 for both
streamflow and evaporation. This initialization strategy is convenient insofar
as it allows for estimating parameter sensitivities in the region of interest from
an optimization perspective, thus making additional use of the outputs from
the Monte Carlo experiment.

6.4.5 Multi-objective optimization strategy and
single-objective experiments

In terms of eligibility, the approach followed in this chapter is open to any
multi-objective optimization algorithm and customization strategy one may
apply. In our case study, we selected two optimization algorithms: the Non-
Dominated Sorted Genetic Algorithm II (NSGA-II, Deb et al., 2002) and the
Multi-Objective Flower Pollination Algorithm (MOFPA, Yang et al., 2014).
NSGA-II is a well-established evolutionary algorithm that has been extensively
used in many optimization endeavors given its fast and efficient handling
of a evolving population of solutions (Ercan and Goodall, 2016). MOFPA is
a nature-inspired algorithm that mimics self-pollination effects of flowering
plants and cross-pollination processes over long distances carried out by
pollinators obeying a Lévy flight behaviour (Pavlyukevich, 2007; Yang and
Deb, 2010; Yang, 2012).

The combination of two or more algorithms to approximate the Pareto front
attempts to overcome the inability of one single optimizer to invariably
perform well regardless of the problem to be solved (also known as the "No
Free Lunch" theorem, see Wolpert and Macready, 1997), and constitutes an
effective measure to ameliorate this problem (Faris et al., 2016; Sun et al., 2020;
Vrugt et al., 2009) and a suitable method to explore complex objective spaces
(Maier et al., 2014; Vrugt and Robinson, 2007).

On the other hand, the nature of such an approach implies that there is a
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fine line between the Pareto-based sensitivity analysis and the multi-objective
calibration, it being the use (or not) of constraints. Constraints applied during
the multi-objective calibration exercise were handled through a parameterless
penalty approach (Deb, 2000), and were defined according to the results
obtained in the prior step.

Despite being commonly ignored in multi-criteria applications, constraints
remain a key aspect of optimization (Blank and Deb, 2020). Indeed, setting
limits of acceptability for the objectives ensures that optimal solutions cover
exclusively the region of interest of the objective space, and has shown to
improve the streamflow representation under changing climate conditions
(Fowler et al., 2018) as well as the possibility to effectively incorporate different
water fluxes in the calibration framework (Koppa et al., 2019).

Finally, five single-objective experiments were conducted for station R-5055 us-
ing the Shuffled Complex Evolution (SCE-UA) algorithm (Duan et al., 1994) in
order to benchmark the relative performance of different calibration strategies.
These experiments were based on the weighted metric method (Eq. 6.2) and
included: a streamflow-only calibration, an evaporation-only calibration, and
three weighted Euclidean distance experiments. Table 6.2 summarizes the dif-
ferent calibration strategies evaluated, and the implementational details of the
employed algorithms are provided in Text S6.1 in Supporting Information.

Table 6.2: Multi-objective and single-objective calibration experiments. Single-objective exper-
iments were implemented only for station R-5055.

Experiment Number of
objectives Objective(s) to minimize

Multi-objective calibration 2 1−NSE(Qd), 1−NSE(Em)
Evaporation-only calibration 1 1−NSE(Em)

Weighted Euclidean distance 1
√

0.75 · (1−NSE(Em))2 + 0.25 · (1−NSE(Qd))2

Weighted Euclidean distance 1
√

0.50 · (1−NSE(Em))2 + 0.50 · (1−NSE(Qd))2

Weighted Euclidean distance 1
√

0.25 · (1−NSE(Em))2 + 0.75 · (1−NSE(Qd))2

Streamflow-only calibration 1 1−NSE(Qd)
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6.5 Results

For the sake of clarity, the results for station R-5055 have been chosen as the
guiding thread facilitating the presentation of this section. Figures correspond-
ing to stations R-5005 and R-2011 are collected in Supporting Information, and
will be appropriately referred to throughout the section.

6.5.1 Metrics selection and DELSA sensitivity measures

First, a Monte Carlo experiment was conducted to explore parameter space for
the LH sample (Fig. 6.3). The metrics selection was carried out based on the
relative performance of VIC at daily and monthly time scales both for stream-
flow (Fig. 6.3a) and evaporation (Fig. 6.3b). The model yielded daily NSE(Q)
(NSE(Qd) hereinafter) values above 0.6 (Fig. 6.3a), suggesting that NSE(Qd)
was an appropriate metric to evaluate the streamflow performance. On the
contrary, NSE(E) reflected poorer results at daily scale, with monthly estimates
(NSE(Em) hereinafter) always above their daily counterparts (Fig. 6.3b). In this
case, NSE(Em) was chosen as the metric of interest, which is also in line with
GLEAM not being an observational dataset. NSE(Qd) and NSE(Em) were also
selected for the other two catchments (Fig. S6.1, S6.7).

The DELSA sensitivity analysis method was subsequently applied to study
how model parameters affected the selected metrics. The DELSA sample was
obtained from the joint representation of both metrics using a radial filter over
the LH sample in order to extract the 500 points closest to the top-right corner
of the scatterplot (Fig. 6.3c). This was done to investigate sensitivity only in
the region representing the highest model performance. As shown in Fig. 6.3d,
the 1% perturbations for the DELSA sample led to NSE scores close to those
corresponding to the original 500 points, thus ensuring a suitable coverage of
this area for the parameter screening procedure.

TheDELSAfirst-order sensitivitymeasures for streamflow and evaporation are
depicted in Fig. 6.4. Elevenout of the 20parameters evaluatedwithDELSAwere
identified as important with respect to at least one of the performance metrics.
This included the five soil parameters (bi, DS, WS, Dm, d2), the two routing
parameters (rout1, rout2) and four vegetation parameters (depth1f, depth2f,
rminf, LAIf). Among soil parameters, DS and Dm evoked the strongest model
response in terms of NSE(Qd) and NSE(Em) (Fig. 6.4a,b). The two routing
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Fig. 6.3: Results of the Monte Carlo experiment for station R-5055 to study parameter space. (a)
Daily and monthly estimates of NSE(Q) for the Latin Hybercube sample (LH sample).
(b) Daily and monthly estimates of NSE(E) for the LH sample. (c) Joint representation
of the selected performancemetrics, NSE(Qd) andNSE(Em), and radial filter to extract
the closest 500 points to the ideal solution (DELSA sample). (d) DELSA sample and
the 1% perturbations where DELSA sensitivity analysis is to be performed.

parameterswere themost important parameters toNSE(Qd), while the absence
of a feedback mechanism between the VIC model structure and the routing
scheme implied a null effect on NSE(Em). The four vegetation parameters
only affected the sensitivity measures for NSE(Em), although their effects were
substantially lower compared to DS and Dm. As for the other catchments, the
soil and routing parameters produced similar sensitivities to that obtained
for R-5055, while the number of important vegetation parameters varied from
two for R-5005 (Fig. S6.2) to five for R-2011 (Fig. S6.8).
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Fig. 6.4: DELSAfirst order sensitivities againstmodel performance for stationR-5055 computed
for streamflow (a) and evaporation (b). Only the most influential parameters for at
least one of the selected metrics are shown. The moving average has been depicted
on top of the DELSA sample in order to facilitate the screening procedure.
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6.5.2 Pareto-based sensitivity analysis

As shown in Fig. 6.5a, a total of six different parameterizations were evaluated
during this stage by progressively increasing the degrees of freedom of VIC
when optimized in a Pareto setting: firstly, a reference parameterization was
defined as the combination of the five soil parameters and the two routing
parameters (SR parameterization); secondly, the SR parameterization was
further extended by including each of the four vegetation parameters one at
a time (SR+depth1f, SR + depth2f, SR+rminf and SR+LAIf); finally, the full
parameterization encompassed all the 11 parameters identified with DELSA.
An analogous approach was followed during the Pareto-based sensitivity
analysis for the other two catchments (Fig. S6.3a, S6.9a).

The Pareto fronts obtained for the SR parameterization and the full parameter-
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Fig. 6.5: Results of the Pareto-based sensitivity analysis and the multi-objective calibration
for station R-5055. (a) Pareto fronts corresponding to the six parameterizations
evaluated during the Pareto-based sensitivity analysis. (b) Pareto front resulting
from the constrained multi-objective calibration for the selected parameterization. (c)
Comparative view of the optimal solutions obtained with the Pareto optimization
exercises and the five single-objective experiments for the objectives indicated below
the panels (see also Table 6.2).
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ization represent the low-end and top-end performances that can be attained
by VIC for each individual implementation. The greatest increase in model
performance when including all the parameters was achieved for NSE(Em)
in all the catchments, while the NSE(Qd) improvement was less pronounced.
This is supported by the results of DELSA, as the SR parameterization already
contains the most important parameters to NSE(Qd) (Fig. 6.4a, S2a, S8a).

Other Pareto fronts demonstrate the individual effects of the vegetation
parameters added to the SR parameterization. It is visible for R-5055 that the
addition of the LAIf parameter produced a substantial increase in performance
for NSE(Em) close to the full parameterization. The SR+LAIf parameterization
was consequently adopted during the multi-objective calibration exercise
(Fig. 6.5b) for it exhibited the biggest performance enhancement and only
required one extra degree of freedom with respect to the SR parameterization.
Similarly, both LAIf and rminf were added to the SR parameterization for
R-5005 (Fig. S6.3b), and depth1f and depth2f in the case of R-2011 (Fig. S6.9b).

6.5.3 Multi-objective calibration and predictive uncertainty

The calibration of the VIC model was carried out through a constrained
Pareto optimization based on the SR+LAIf parameterization (Fig. 6.5b). The
limits of acceptability for both NSE(Qd) and NSE(Em) were set at 0.6 based
on the unconstrained optimization results. The predictive intervals for the
constrained Pareto optimization showed a good coverage of the streamflow
observations and GLEAM data (Fig. 6.6), highlighting the capability of VIC to
reproduce both variables simultaneously. The constrained Pareto optimization
for R-5005 was done subject to NSE values greater than 0.5 (Fig S6.3b), and the
solutions also reflect a good adjustment to streamflow and evaporation data
(Fig. S6.4). In the case of R-2011, the constraints were set at 0.6, resulting in a
less pronounced Q-E trade-off (Fig. S6.9b) and a narrower predictive interval
(Fig. S6.10).

To provide a more complete picture of the multi-objective calibration results,
the Pareto front obtained was divided into three clusters representing different
model behaviours for which the parameters distributions were compared
(Fig. 6.7): cluster C1 represents the region of the front were NSE(Em) is
maximum and NSE(Qd) improves; cluster C2 is characterized by varying
NSE(Em) values while NSE(Qd) remains almost constant; finally, cluster C3
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Fig. 6.6: Predictive intervals corresponding to the multi-objective calibration for station R-5055.
(a and b) Daily streamflow simulations and observations for two different subperiods.
(c) Monthly evaporation simulations and GLEAM data for the complete study period.

includes points where NSE(Qd) is maximum and both NSE(Qd) and NSE(Em)
are slightly changing.

The widest boxplots in C1 correspond to Dm and rout1, and therefore are the
main drivers of the NSE(Qd) improvement. In C2, LAIf is the only parameter
responsible for the NSE(Em) changes, suggesting that small changes of LAIf
lead to great improvements in terms of evaporation performance, and corrob-
orating prior results from the Pareto-based sensitivity analysis. Results for C1
and C2 also confirm the sensitivities estimated by DELSA for Dm and rout1
regarding NSE(Qd) (Fig. 6.4a), and for LAIf in relation to NSE(Em) (Fig. 6.4b).
The changes of NSE(Qd) and NSE(Em) in C3 are, in turn, less evident when
seen through the lens of parameter distributions. These three behaviours are
also evinced by the abrupt changes of parameter values between the clusters,
particularly for bi, WS, Dm, d2 and rout1.
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Fig. 6.7: Parameter distributions from themulti-objective calibration exercise for station R-5055.
The Pareto front was divided intro three clusters representing well-differentiated
regions of model performance: C1 corresponds to the highest NSE(Em) estimates; C2
contains solutions where NSE(Qd) remains constant and high and NSE(Em) improves;
C3 is in the region with the highest NSE(Qd) values and lowest NSE(Em) estimates.
The parameter distributions were evaluated for the three clusters.

Regarding station R-5005, three clusters were defined with similar model
behaviours to those described above (Fig. S6.5). In this case, bi, d2 and rout1
represent the widest boxplots in the region of NSE(Qd) enhancement, while
rminf dominates the NSE(Em) increase. Finally, only one cluster was defined
for station R-2011 (Fig. S6.11), where the small parameter ranges are due
to the marginal NSE improvement found in the constrained objective space
(Fig. S6.9b).
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6.5.4 NSE decomposition and single-objective experiments

Based on Eq. 6.5, the three components of NSE, r, α and β, were calculated
for both NSE(Qd) and NSE(Em) and each of the studied catchments, and the
results are shown in Fig. 6.8, S6 and S12. The Q-E trade-off is evident for
all the components in the case of stations R-5055 and R-5005, and r is the
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Fig. 6.8: NSE decomposition into r, α and β and trade-off evaluation for station R-5055. The
NSE ordering is first determined for the Pareto front corresponding to the multi-
objective calibration using a divergent color scale (a). The NSE ordering is then
superimposed on the decomposition into r, α and β to evaluate the extent of the
Q-E trade-off (b to d). Eq. 6.6 was checked for the β components of NSE(Qd) and
NSE(Em), and the resulting values are indicated in panel d. The results of the NSE
decomposition for the solutions of the five single-objective experiments are depicted
in every panel in red, or indicated in grey if outside of the plotting region.
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most contributing factor to it as it manifests an identical NSE-ordering to that
presented in the Pareto front (see Fig. 6.8b and S6b and compare to Fig. 6.8a
and S6a, respectively). Remarkably, cluster C3 (Fig. 6.7) is also noticeable in the
NSE decomposition for R-5055 (Fig. 6.8), providing evidence of a complex and
non-convex objective space. The small NSE improvement evinced for R-2011
(Fig. S6.12) is, however, a symptom of a weak trade-off that is also reflected in
the short ranges of r, α and β.

Lastly, the single-objective calibration experiments for R-5055 tested the ability
to attain Pareto-optimal solutions using SCE-UA (Fig. 6.5c, 6.8a). Although
SCE-UA solutions mostly reach the Pareto front and resemble its shape, some
important features of the objective space are not well reproduced. Notably, the
point corresponding to the streamflow-only calibration yielded a sub-optimal
solution in comparison with the multi-objective experiment (Fig. 6.5c, 6.8a).
Both calibration strategies will be discussed and further analyzed in next
section.

α values are concentrated in the top-left quadrant of Fig. 6.8c, S6c and S12c,
revealing a generalized underestimation of the variability for the streamflow
(αQ < 1) and an overestimation of the variability for evaporation (αE > 1).
As expected, β values follow a straight line with negative slope (Eq. 6.6), and
its magnitude is close to the value of Qref/Eref computed for each catchment
(Fig. 6.8d, S6d and S12d). Lines aremostly located in the bottom-right quadrant,
suggesting an overall overestimation of the mean streamflow (βQ > 1) and an
underestimation of the mean evaporation (βE < 1)

6.6 Discussion

6.6.1 Integrating streamflow and evaporation data into
sensitivity analysis

The profusion of satellite-based and model evaporation data has proven to be
a promising step towards a better understanding of the hydrologic system.
Many studies have included evaporation as an evaluation variable to gain
further insight and strengthen the results for the streamflow-only calibration
(e.g., Bouaziz et al., 2021; Rakovec et al., 2019; Yeste et al., 2020).
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Calibration efforts including evaporation have been normally carried out for
multiple hydrologic variables either through aggregating functions (Dembélé
et al., 2020a,b; Demirel et al., 2018; Széles et al., 2020) or by following pure
Pareto approaches (Koppa et al., 2019; Nĳzink et al., 2018), and outline the
potential for enhancing the representation of hydrologic processes within the
modelling framework.

Despite the increasing number of works including evaporation as part of the
analysis, there is still no consensus on how evaporation data can be used to
improve hydrologic models (Dembélé et al., 2020a). Moreover, the evaporation-
related parameters are rarely considered during the sensitivity analysis stage,
where streamflow has traditionally played a major role. In the case of the VIC
model, this has resulted in numerous parameters with unknown sensitivities
(Sepúlveda et al., 2022).

In this respect, and depending on the studied catchment, up to 5 vegetation
parameters out of the 13 vegetation parameters initially selectedwere identified
as important to NSE(Em) with DELSA, although their effect was almost
unnoticeable for NSE(Qd) (Fig. 6.4, S2, S8). Particularly, LAIf and rminf were
among the most important parameters in terms of evaporation performance
for all the catchments, which is consistent with the findings of Sepúlveda et al.
(2022). Likewise, their effect was found to be negligible for NSE(Qd), though
it is expected to become important at annual scale according to Melsen and
Guse (2019). For their part, the soil and routing parameters reflected similar
sensitivities to those reported in previous studies (e.g., Demaria et al., 2007;
Gou et al., 2020; Lilhare et al., 2020; Melsen et al., 2016a; Melsen and Guse,
2019; Mendoza et al., 2015; Rakovec et al., 2014).

Although the results of the Pareto-based sensitivity analysis are largely in line
with the DELSA first-order sensitivity measures for the studied catchments,
the relative importance of each parameterization in terms of joint model
performance for both NSE(Qd) and NSE(Em) could not be uncovered by only
using DELSA. In this sense, the full parameterization experiments were still
subject to overparameterization as they included all the parameters identified
with DELSA. The Pareto-based sensitivity analysis successfully overcame
this limitation, and its strength lied in its ability to directly pinpoint the
most parsimonious implementation leading to a similar performance to that
corresponding to the full parameterization.

Thus, no more than two vegetation parameters were required in all cases:

115



6 Streamflow and evaporation trade-offs

LAIf for station R-5055 (Fig. 6.5), LAIf and rminf for R-5005 (Fig. S6.3), and
depth1f and depth2f for R-2011 (Fig. S6.9). As suggested in Sepúlveda et al.
(2022), these differences are likely connected to the existing hydroclimatic
gradient between the stations: stations R-5055 and R-5005 are located in the
Guadalquivir River Basin, the southern-most and one of the most semi-arid
basins in Spain (Yeste et al., 2018), while R-2011 belongs to a more humid
climate characteristic of the Duero River Basin (Yeste et al., 2020, 2021).

6.6.2 Benchmark comparison of calibration strategies

Multi-objective calibration and single-objective experiments

The optimization approach developed in this chapter serves the purpose
of both a sensitivity analysis and a calibration method, the only difference
being the use of constraints during optimization. Whereas the unconstrained
implementation included poor estimates for NSE(Qd) and NSE(Em) that are
of little interest from a calibration perspective (Fig. 6.5a, S3a, S9a), the use of
constraints during the multi-objective calibration produced solutions within
the predefined limits of acceptability (Fig. 6.5b, S3b, S9b).

The results for the single-objective experiments mostly reproduced the shape
of the Pareto front and yielded optimal solutions (Fig. 6.5c), although they
point out important technical issues concerning local optimality. In particular,
the streamflow-only calibration demonstrates that the optimization algorithm
became stuck in a local minimum (Fig. 6.5c), probably due to the higher density
of points revealed during the Monte Carlo experiment for this area (Fig. 6.3c).
Additionally, the calibration results for the weighted distances could barely be
differentiated from each other as the solutions tended to cluster together in
the region closest to the ideal solution (i.e., top-right corner of the scatterplot,
Fig. 6.5c).

A similar approach was carried out in Fowler et al. (2018) in an assessment
of the Differential Split-Sample Test (DSST, Klemeš, 1986) for two objectives
representing the calibration-evaluation trade-off for streamfow through both
multi-objective and single-objective experiments. They concluded that none of
the single-objective methods could satisfy the limits of acceptability for both
objectives at the same time if only the objective for the calibration period was
optimized.
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Nonetheless, single-objective optimization is still a valid alternative to a full
Pareto optimization procedure when working with multiple objectives if the
objectives are combined in a single aggregating metric such as the weighted
Euclidean distance. As shown in Fig. 6.5c, the performance gain for evaporation
with the weighted metric experiments was substantial in comparison with
the slight performance loss detected for streamflow. Future efforts will be
directed at exploring this issue in more detail for a large sample of Spanish
catchments.

NSE diagnosis

An important drawback of using NSE as an objective during optimization is
that the calibration process is ultimately bounded to the relation of r, α and β
that stems from its very definition. As shown in Gupta et al. (2009), the first
derivative of Eq. 6.5 with respect to α indicates that NSE is optimum when
α � r. This will favour (but not strictly impose) parameter combinations that
underestimate α as r is always less than 1, leading to an underestimation of
high-flows and an overestimation of low-flows (Gupta et al., 2009; Mizukami
et al., 2018). While this is visible for αQ, αE is always greater than 1 for all
the catchments (Fig. 6.8c, S6c and S12c), confirming previous research using
VIC and NSE as a performance metric for streamflow and evaporation in
Rakovec et al. (2019) and Yeste et al. (2020). A possible explanation for this is
that r values are generally higher for NSE(Em) than for NSE(Qd). On the other
hand, Eq. 6.6 reveals that β values are subject to a linear trade-off when the
steady-state is achieved that is exclusively dependent on reference data for
streamflow and evaporation. β lines in Fig. 6.8d, S6d and S12d indicate that
the steady-state is always reached by overestimating Q and underestimating
E in all cases, which is also in agreement with the findings of Rakovec et al.
(2019) and Yeste et al. (2020).

It has to be recognized that similar limitations are inherent to any aggregating
metric one may choose. For example, the Kling-Gupta Efficiency (KGE, Gupta
et al., 2009), which is together with NSE the most used performance metric
in hydrologic studies (Clark et al., 2021; Knoben et al., 2019), is based on a
Euclidean distance formulation for r, α and β. Limitations for β shown in
Eq. 6.6 apply to KGE as well by definition. It is also known that β values tend to
be overestimated with KGE if the mean value of reference data is small (Clark
et al., 2021; Santos et al., 2018). This constitutes a potential pitfall for regions
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undergoing arid conditions such as the Iberian Peninsula (García-Valdecasas
Ojeda et al., 2020a, 2021a; Páscoa et al., 2017; Vicente-Serrano et al., 2014),
where Rakovec et al. (2016b) observed poor estimates of KGE in a large-sample
evaluation of streamflow performance for 400 European river basins.

Besides its intrinsic limitations, the decomposition of NSE into r, α and β
provides valuable information as to why NSE values are as they are, and can
help elucidate possible causes of model failure as well as potential avenues for
improving model performance. The simultaneous consideration of NSE(Qd)
and NSE(Em) is also a necessary step in order to explore model performance
and alleviate the shortcomings of using a single system-scale metric (Clark
et al., 2021), which has been an ever-present goal in this chapter.

6.7 Conclusions

This chapter presents a framework to incorporate streamflow and evaporation
data into the sensitivity analysis and calibration stages of the hydrological
modelling exercise. The framework is articulated into four consecutive steps
inspired by the definition of the Multi-Objective Optimization Problem in
order to study the streamflow and evaporation trade-offs, giving rise to what
we have referred to as “Pareto-based sensitivity analysis” and “multi-objective
calibration”. The proposed approach was then applied to three Spanish
catchments using VIC.

The overall VIC performance for streamflow and evaporation was firstly
explored in a Monte Carlo experiment using daily and monthly estimates of
NSE. As a result, the daily NSE(Q) and the monthly NSE(E) were selected
as the metrics of reference. A parameter screening procedure based on the
DELSA method was then conducted to study parameter sensitivities, and
the most influential parameters were chosen in each case. This selection was
polished during the Pareto-based sensitivity analysis, and permitted assessing
the gains/losses in performance and identifying the most parsimonious
parameterization that produced a proper approximation to both streamflow
and evaporation data. The multi-objective calibration was performed for the
selected parameterization using constraints applied to the objective space
to avoid poor performance estimates, and the solutions were compared to
five single-objective optimization experiments for one of the catchments. The
multi-objective calibration outperformed the single-objective experiments
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and produced a better representation of the streamflow and evaporation
trade-offs, suggesting the possibility to obtain satisfactory estimates for both
variables with hardly any performance loss for streamflow compared to the
VIC calibration only against streamflow data.

The use of multiple-criteria methods as in this chapter is a step forward in
the direction of "What is my model good for?" rather than "How good is my
model?" (Clark et al., 2021), and has guided the development of the approach
and the experimental design since their early inception. Answers to the former
question started coming during sensitivity analysis, both with DELSA and
Pareto-based, and became clearly visible after calibrating VIC.We demonstrate
that Pareto-based sensitivity analysis preceding multi-objective calibration
is necessary to reach the full potential of multi-objective optimization. Our
results will contribute to gain further insight into the nature of the trade-off
resulting from the simultaneous adjustment to streamflow and evaporation
data.
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7 Hydrologic simulations for the
Spanish catchments under
present and future climate

This chapter is based on a manuscript in preparation for submission

Abstract

The joint integration of streamflow and evaporation data into sensitivity
analysis and calibration approaches has a great potential to improve the
representation of hydrologic processes in modelling frameworks. This chapter
aims to investigate the capabilities of the Variable Infiltration Capacity (VIC)
model to simulate water storages and fluxes under present and future climatic
conditions in a large-sample application comprising 189 headwater catchments
located in Spain. The study has been articulated into three parts: (1) a regional
sensitivity analysis for a total of 20 soil, routing and vegetation parameters to
select the most important parameters conducive to an adequate representa-
tion of the streamflow and evaporation dynamics; (2) a two-fold calibration
approach against daily streamflow data and monthly evaporation based on
the previous parameter selection for VIC, and (3) an analysis of the impacts of
climate change in the studied catchments using regional climate simulations
carried out with the Weather Research and Forecasting (WRF) model for the
Iberian Peninsula. The regional sensitivity analysis revealed that only two
vegetation parameters were sufficient to improve the VIC performance for
evaporation, and were added to the soil and routing parameter during the
calibration stage. Results from the two calibration experiments suggested
that, while the performance for streamflow remained close in both cases,
the performance for evaporation was highly improved if the objectives for
streamflow and evaporation were combined into a single composite function
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during optimization. A final assessment of the impacts of climate change
for the studied catchments demonstrated that most of the catchments will
likely undergo a more evaporative regime and will experience a shift towards
soil drying conditions. Results from this investigation will help gain a better
understanding of the hydrology of semi-arid regions and will help prepare the
ground for a fully gridded implementation of the VIC model in the Spanish
domain.
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7.1 Introduction

The feasibility of incorporating streamflow and evaporation data into the
different stages of the hydrological modelling exercise has been assessed
in previous chapters. In Chapter 4 (Yeste et al., 2020), the VIC model was
calibrated for 31 headwater catchments belonging to the Duero River Basin
against monthly streamflow data, and its performance was evaluated for
the monthly simulations of streamflow and evaporation. Results indicated
that it was possible to attain good adjustments for both hydrologic variables
simultaneously despite the model was calibrated only for one objective related
to streamflow. The adjustment to evaporation data, however, was highly
dependent on each catchment as the single-objective optimization approach
did not include evaporation information.

The Duero River Basin was further investigated in Chapter 5 (Yeste et al., 2021)
to determine the projected hydrologic changes under future climate using an
ensemble of 18Euro-CORDEXRCMexperiments and the calibratedparameters
from Chapter 4. In this case, even though the VIC performance during the
calibration period for monthly streamflow was considerably lower using
the RCM data compared to the meteorological observations, the ensemble
improved the performance for monthly evaporation, which could be related to
themodel-nature of the evaporation dataset used to evaluate the simulations.

The integration of streamflow and evaporation data was extended to the
sensitivity analysis and calibration stages in Chapter 6 by following a multi-
objective optimization approach to find Pareto optimal solutions for two
objectives. These objectives were specifically selected to characterize the
goodness-of-fit of theVICmodel to daily streamflowobservations andmonthly
evaporation data, respectively. The VIC model was applied in a case study to
examine the trade-offs in model performance during sensitivity analysis and
calibration for three headwater catchments: two located in the Guadalquivir
River Basin and one in Duero. The approach developed in Chapter 6 effectively
overcame the limitations of the so-called streamflow-only calibration and
produced satisfactory adjustments to the reference data, highlighting the
benefits of Pareto optimization for the bi-objective problem under study.

This chapter builds into all the experience gathered from previous chapters to
conduct a large-sample study for 189 Spanish headwater catchments using
VIC. Sensitivity analysis and model calibration will be carried out in tandem
for two performance metrics representing the model fits to daily streamflow
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observations and monthly evaporation. These metrics will be combined
into a single weighted metric to explore the effect of different weights on
the performance for the streamflow and evaporation simulations during
calibration. Catchment-wide simulations of climate change will be finally
carried out for the Spanish domain using the calibrated parameters to quantify
the long-term and short-term changes in water storages and fluxes.

7.2 Data

7.2.1 Streamflow data

In this work, the catchments selection was based on the complete set of 441
Spanish headwater catchments (Section 2.1 in Chapter 2) and a data quality
control for the daily streamflow observations gathered from SAIH-ROEA. A
baseline period was defined for the 20 hydrologic years spanning from Oct
1990 to Sep 2010 according to two criteria: 1) the overlapping period for daily
precipitation and temperature observations (see next section) is Jan 1950 - Dec
2012, implying that the selected baseline period covers the two most recent
decades of the overlapping period; 2) these two decades are a common choice
in previous studies using VIC over the Contiguous United States (CONUS)
domain (Mizukami et al., 2017; Rakovec et al., 2019), providing fertile ground
for the evaluation of the performance of the VIC model across climates.

A total of 189 headwater catchments (Fig. 7.1) comprising 94 reservoirs and 95
gauging stations were selected by setting a maximum percentage of missing
values of 10% during the baseline period as the limit of acceptability for
inclusion in the modelling framework. Among those catchments, 171 (84
reservoirs + 87 gauging stations) presented less than 5% of missing values, and
144 (80 reservoirs + 64 gauging stations) were below 1%. Table 7.1 collects the
number of catchments for every River Basin District included in the streamflow
dataset.

An exploratory data analysis of negative values during the baseline period
(Fig. 7.2)was subsequently conducted and revealed that 47 reservoirs presented
up to a 5% of negative estimates of daily streamflow and 46 reservoirs more
than 5%,whereas the 95 gauging stations and only 1 reservoir did not presented
values below 0 (Fig. 7.2a). In addition, the percentage ratio of negative to
positive values was calculated for each reservoir to quantify their relative
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Fig. 7.1: River Basin Districts in Spain and the 189 headwater catchments under study. (a)
Topographic boundaries of the 189 headwater catchments. (b) Point-representation of
the studied catchments choosing their outlets for the presentation of results.

importance, suggesting that negative values are close to 0 for reservoirs with
less than 5% of negative records and become more visible above 5% (the
median percentage ratio of negative to positive values for reservoirs with more
than 5% of negative records is 2.9%).

One feasible explanation for the presence of negative values in the daily time
series of streamflow for reservoirs is that inflow data are calculated applying a
dailywater balance towater storages and releases from the reservoir (Section 2.1
in Chapter 2). As opposed to the gauging stations, where streamflow is derived
from rating curves, the daily water balance in reservoirs can produce negative
estimates of streamflow (i.e. inflow) when the variation in the storage is
negative and its magnitude is greater than the water releases for any given day.
This is likely to happen in those days of the hydrologic year when streamflow is
minimum or null and the reduction in the storage is close to the water releases
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Table 7.1: Number of headwater reservoirs and gauging stations per River Basin District
included in this study.

River Basin District Reservoirs Gauging
stations Total

Miño-Sil, Galicia Costa and Cantábrico 13 15 28
Duero 11 12 23
Tajo 14 35 49
Guadiana 2 0 2
Guadalquivir 27 0 27
Segura 6 0 6
Júcar 8 5 13
Ebro 13 28 41

Total 94 95 189

(if any), such as at the beginning of the hydrologic year and in summer. To
further test this hypothesis, the monthly distribution of negative values for all
the catchments was calculated and compared against the average hydrologic
year for streamflow (Fig. 7.2b). Results confirm that most negative values are
concentrated in summer months, emerging in late spring and extending to
the beginning of the hydrologic year.

On the basis of this initial exploratory analysis, negative valueswere considered
as null for the purpose of this chapter, and the 189 headwater catchments were
included in the study. This assumption was taken in order not to compromise
the 10% of missing values criterion, as a more straightforward solution would
have been considering negative records as gaps. Future efforts will be placed
on further analyzing the effect that this assumption can potentially entail for
model calibration and evaluation.

7.2.2 Hydroclimatic data

Four study periods were selected to carry out the VIC model simulations: the
already defined baseline period was used for model calibration and evaluation
purposes; and three periods based on climatic years (that is, from December to
November) were selected to perform climate change simulations, the historical
period 1980-2015, the short-term future period 2021-2050 and the long-term
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Fig. 7.2: Exploratory data analysis for the negative values in the daily time series of streamflow
gathered from CEDEX for the 189 studied catchments during the baseline period. (a)
Scatter plot representation of the percentage ratio of negative to positive values (y-axis)
against the percentage ratio of the number of negative values to the number of records
(x-axis) for each catchment. “R” denotes “Reservoir” and “GS” denotes “Gauging
Station”. (b) Monthly distribution of the percentage ratio of the number of negative
values per month to the total number of negative values. Blue line corresponds to the
average hydrologic year of streamflow expressed as the monthly mean percentage of
annual streamflow calculated over all the catchments.

future period 2071-2100. The hydrologic projections were carried out under
the RCPs 4.5 and 8.5.
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Daily precipitation, maximum temperature and minimum temperature data
were gathered for the different study periods from the following sources (see
Chapter 2 for a more detailed description): data for the baseline period were
collected from SPREAD (Serrano-Notivoli et al., 2017) and STEAD (Serrano-
Notivoli et al., 2019). Meteorological forcings for the historical and future
periods were taken from the WRFCCSM and WRFMPI simulations in García-
Valdecasas Ojeda et al. (2020a,b) for the Iberian Peninsula. Finally, evaporation
data were collected from GLEAM version 3.5a (Martens et al., 2017; Miralles
et al., 2011). As in previous implementations of VIC for the Duero River Basin
(Yeste et al., 2020, 2021), all gridded datasets were downscaled to 0.05º spatial
resolution based on a nearest neighbour assignment to match the spatial
configuration of the VIC model.

Fig. 7.3 shows the computed values of the runoff ratio (Q/P) and the sum of the
runoff and evaporation ratio to precipitation ((Q+E)/P) for the baseline period.
Two thirds of the catchments manifest Q/P estimates below 0.4 (Fig. 7.3c)
and are predominantly located in the southeastern sector of the country
(Fig. 7.3a). Approximately 50% of the catchments produce (Q +E)/P estimates
between 0.9 and 1.1 (Fig. 7.3d), with negative imbalances ((Q + E)/P < 1)
mostly corresponding to catchments with a low runoff ratio and positive
imbalances ((Q + E)/P > 1) towards the northwest (Fig. 7.3b). The effect of
these imbalances will be thoroughly examined during the model evaluation
stage.

7.3 Methods

7.3.1 Regional sensitivity analysis

Parameter sensitivities were analyzed using the implementation of the Re-
gional Sensitivity Analysis (RSA) method of Hornberger and Spear (1981) in
the SAFE Toolbox (Pianosi et al., 2015). RSA is based on a classification of
model simulations into behavioural and non-behavioural according to one
or more performance metrics, and evaluates differences between parameter
distributions corresponding to both classes. The RSA sensitivity index for
a given parameter represents the maximum vertical distance between the
Cumulative Distribution Functions (CDFs) corresponding to the behavioural
and non-behavioural classes, which is equivalent to the Kolmogorov-Smirnov
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Fig. 7.3: Spatial distribution of the runoff ratio (Q/P) and the sumof the runoff and evaporation
ratio to precipitation ((Q+E)/P) for the studied catchments during the baseline period.
(a) Spatial distribution of Q/P. (b) Spatial distribution of (Q + E)/P. (c) Histogram of
Q/P estimates. (d) Histogram of (Q + E)/P estimates.

(KS) distance statistic computed in the KS test. Hence, the RSA sensitivity
index ranges from 0 to 1, with values closer to 1 indicating a greater parameter
sensitivity.

For each of the 189 catchments, the parametric space was explored conducting
a Monte Carlo simulation for 10,000 Latin Hypercube samples (Iman and
Conover, 1982) extracted from the parameter ranges of the 20 soil, vegetation
and routing parameters indicated in Table 6.1 in Chapter 6. RSA was applied
to the Nash-Sutcliffe Efficiencies of the Monte Carlo simulations of daily
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streamflow (NSE(Qd)) and monthly evaporation (NSE(Em)) calculated for the
baseline period, and choosing the median NSE(Qd) and median NSE(Em) to
classify behavioural and non-behavioural simulations.

The two most influential vegetation parameters to any of the two performance
metrics for each catchment were selected and incorporated together with the
five soil parameters and the two routing parameters (SR parameterization, see
also Section 6.5.2 in Chapter 6) into the calibration stage. Adding two extra
VIC vegetation parameters to the SR parameterization is sufficient to improve
the joint performance against streamflow and evaporation data according to
previous research in Chapter 6.

7.3.2 Calibration and evaluation approach

A Split-Sample Test (SST, Klemeš, 1986) was applied to hydroclimatic data
and time series of model simulations to calculate the performance metrics for
two independent periods of equal duration belonging to the baseline period:
a calibration period from Oct 1990 to Sep 2000 and a evaluation period from
Oct 2000 to Sep 2010. A spin-up simulation of 10 hydrologic years preceding
both the calibration and evaluation periods was conducted to provide initial
states of model storages free from the effect of initial conditions (this strategy
was also applied to the Monte Carlo simulation described in the previous
section). The performance of the VIC model was evaluated through NSE(Qd)
and NSE(Em) and their decomposition into correlation r, variability α and
bias β (see Section 6.4.3 in Chapter 6 for a full description of these statistics
and their relationships).

The VIC model was calibrated using the Shuffled-Complex-Evolution Algo-
rithm (SCE-UA) of Duan et al. (1994) following a single-objective optimization
approach for the nine selected parameters (five soil parameters, two routing
parameters and two vegetation parameters) to minimize a composite function
that aggregates the performance metrics for streamflow and evaporation:

Minimize
√

wQ · (1 −NSE(Qd))2 + wE · (1 −NSE(Em))2 (7.1)

This problem minimizes the two-dimensional weighted Euclidean distance
between points (NSE(Qd),NSE(Em)) and (1,1), and belongs to themore general
weighted-metric method to minimize distances (see Eq. 6.2 in Chapter 6). In
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this work, two calibration strategies for different weights combinations in
Eq. 7.1 were applied to the VIC model: firstly, a streamflow-only calibration
(Q-only calibration hereafter) was performed by choosing wQ � 1 and wE � 0.
Secondly, the model was calibrated for a weighted Euclidean distance (Q-E
calibration hereafter) selecting two equal weights wQ � wE � 0.5. The case of
two equal weights is equivalent to minimizing the pure Euclidean distance,
that is, wQ � wE � 1, as equal weights do not affect the optimization problem
in Eq. 7.1.

7.3.3 Projected hydrologic changes

The calibration strategy yielding a better model performance during the
baseline period against streamflow and evaporation simultaneously was
selected to study the impacts of climate change in the Spanish catchments.
This selection was carried out based on a comparative analysis of model
performance using meteorological observations from SPREAD and STEAD
and climate simulations fromWRFCCSM and WRFMPI.

The projected hydrologic changes were determined following a delta change
approach (Hay et al., 2000) to evaluate the differences in mean values between
the future and historical periods at annual and seasonal time scales. The
delta changes were calculated for precipitation (P), streamflow (Q), actual and
potential evaporation (E and Ep, respectively) and terrestrial water storage
(TWS). The latter was calculated as the sum of the soil moisture estimates for
the three soil layers implemented in the VIC model. The statistical significance
of the annual and seasonal delta changes was evaluated applying the Mann-
Whitney U test at 90% confidence level.

7.4 Results

7.4.1 RSA sensitivity analysis

The RSA sensitivity indices for NSE(Qd) and NSE(Em) are depicted in Fig. 7.4
and Fig. 7.5, respectively. TheNSE(Qd) behaviour wasmostly controlled by the
five soil parameters and the two routing parameters (i.e. SR parameterization),
with little or no influence from the vegetation parameters and no clear spatial
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Fig. 7.4: Spatial distribution of the RSA sensitivity indices calculated for NSE(Qd).

pattern for the RSA indices (Fig. 7.4). Among these parameters, the highest
sensitivities correspond to d2, rout1 and rout2, although bi, DS, WS and
Dm were also influential to the streamflow metric according to several local
estimates.
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Fig. 7.5: Spatial distribution of the RSA sensitivity indices calculated for NSE(Em).

Contrarily to NSE(Qd), NSE(Em) scores were greatly influenced by the vegeta-
tion parameters (Fig. 7.5). The highest sensitivities correspond to rminf and
LAIf, and manifest a spatial pattern in the northwest-southeast direction with
minimum sensitivities occurring for the northern catchments. This pattern
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Fig. 7.6: Frequency of the (first) most influential and second most influential vegetation
parameters according to the RSA sensitivity indices calculated for NSE(Em).

is also noticeable, but to a lesser extent, for depth1f, rarcf, albedof, rou ghf
and RGLf. d2 was revealed as the soil parameter with the largest sensitivity
towards NSE(Em), and together with the rest of the soil parameters it reflects
an opposite spatial distribution of the RSA index to that observed for rminf
and LAIf. As expected from the VIC model implementation, the routing
parameters had a null effect on NSE(Em) due to the routing scheme being
exclusively applied to the runoff simulations during a post-process phase.

The two most influential vegetation parameters to any of the two perfor-
mance metrics analysed were selected according to the values of the RSA
index. Fig. 7.6 indicates that LAIf and rminf were the two most influential
parameters for the vast majority of the catchments with little presence of
other vegetation parameters. For each particular catchment, the two selected
vegetation parameters were added to the SR parameterization during the
subsequent calibration exercise.
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7.4.2 Calibration and evaluation

Fig. 7.7 shows the spatial distributions of the NSE(Qd) and NSE(Em) values
calculated for the Q-only (Fig. 7.7a,c) andQ-E (Fig. 7.7b,d) calibration strategies
during the calibration period. The relative gain/loss in model performance
suggests that, while NSE(Qd) values remained similar for both calibrations
(Fig. 7.7a,b), the NSE(Em) performance was highly improved when the VIC
model was calibrated against streamflow and evaporation data simultaneously
(Fig. 7.7c,d).

This can also be appreciated in theCumulativeDistributionFunctions (CDFs) of
NSE(Qd) andNSE(Em) and their decompositiondepicted inFig. 7.8 andFig. 7.9,

Fig. 7.7: Spatial distribution of NSE(Qd) and NSE(Em) for the Q-only calibration (a,c) and the
Q-E calibration (b,d) during the calibration period.
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Fig. 7.8: CDFs of (a) NSE(Qd) and its decomposition into (b) rQ, (c) αQ and (d) βQ for both
calibration experiments during the calibration and evaluation periods.

respectively. The median NSE(Qd) is close to 0.6 for both strategies during the
calibration period (Fig. 7.8a), although the streamflow performance is slightly
deteriorated for the Q-E calibration as NSE(Qd) and NSE(Em) were combined
and equally weighted into a composite single-objective function (Eq. 7.1). On
the other hand, the median NSE(Em) during the calibration period calculated
for the Q-E calibration is 0.67, while the median NSE(Em) for the Q-only
calibration does not exceed 0. The NSE of monthly streamflow (NSE(Qm)) was
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Fig. 7.9: Same as Fig.7.8, but for (a) NSE(Em) and its decomposition into (b) rE, (c) αE and (d)
βE.

also calculated for the studied catchments (Fig. S7.1 in Supporting Information)
to provide a more complete picture of the VIC model performance, and results
indicate a marked increase in the NSE estimates compared to NSE(Qd) with a
median NSE(Qm) above 0.7 for both calibration strategies.

The decomposition of NSE(Qd) and NSE(Qm) reveals similar rQ values
(Fig. 7.8b, S7.1b) and αQ estimates generally below 1 for both calibrations
(Fig. 7.8c, S7.1c). The main difference between them lies in the βQ distribution,
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which is approximately symmetric around themedian for both calibrations but
reflects a steeper CDF closer to 1 for the Q-only calibration (Fig. 7.8d, S7.1d).
The NSE(Em) improvement for the Q-E calibration is also evinced in the
statistics used to compute it, rE being the component subject to the greatest en-
hancement (Fig. 7.9b). αE and βE estimates are comparable for both calibration
strategies with values slightly closer to 1 corresponding to the Q-E calibration
(Fig. 7.9c,d), and point to a generalized overestimation of the variability and a
slight underestimation of the bias, respectively.

Finally, the slight tomoderate loss inmodel performance during the evaluation
period for NSE(Qd) (Fig. 7.8a), NSE(Qm) (Fig. S7.1a) and NSE(Em) (Fig. 7.9a)
is indicative of an acceptable implementation and an adequate predictive
capability. A detailed characterization of the VICmodel performance including
the values of NSE(Qd), NSE(Qm) and NSE(Em) during the complete baseline
period is provided in Tables S7.1 to S7.8 in Supporting Information for every
River Basin District and each individual catchment. The VIC model skill will
be further verified and tested for the baseline period in next section using
different meteorological datasets.

7.4.3 Evaluation using multiple meteorological datasets

Fig. 7.10 shows the biases in the Q/P ratio with respect to the observations dur-
ing the baseline period that stem from both calibration approaches when using
SPREAD/STEAD, WRFCCSM and WRFMPI data. Q/P biases corresponding
to the Q-only calibrated parameters are broadly in the range ±0.1 for all the
datasets (Fig. 7.10a,b,c), while the Q-E calibration increases these deviations
as a consequence of calibrating VIC against streamflow and evaporation data
simultaneously (Fig. 7.10d,e,f).

Results for SPREAD/STEAD and the Q-only calibration suggest that negative
biases tend to be associated with higher Q/P values and vice versa (see
Fig. 7.10a and compare to Fig. 7.3a), while the Q/P biases corresponding to
the Q-E calibration display an opposite spatial distribution to that observed
for the (Q + E)/P values (see Fig. 7.10d and compare to Fig. 7.3b) and exhibit
a high negative correlation (r � −0.91). For the WRF datasets, there is a
predominance of negative Q/P biases for WRFCCSM and positive biases in
the case of WRFMPI.
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Fig. 7.10: Spatial distribution of the Q/P bias calculated as the difference between the values
simulated with the VIC model using SPREAD/STEAD, WRFCCSM and WRFMPI
and the observed values during the baseline period (see also Fig. 7.3). (a to c)
Q/P bias corresponding to the Q-only calibrated parameters. (d to f) Q/P bias
corresponding to the Q-E calibrated parameters.

The distributions of NSE(Qd), NSE(Em) and their decomposition for each
meteorological datasets during the complete baseline period are depicted in
Fig. 7.11. It is visible that the VIC performance attained for NSE(Qd) using
SPREAD/STEAD (SPST) is not achievable with WRFCCSM and WRFMPI
(Fig. 7.11a), presumably due to the low rQ values obtained with them
(Fig. 7.11b). αQ and βQ estimates for WRFCCSM and WRFMPI also exhibit
marked differences with respect to SPREAD/STEAD (Fig. 7.11c,d), although
WRFCCSM values are closer to the VIC performance using observations.

The VIC performance for NSE(Em) is, in turn, similar for all the datasets
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Fig. 7.11: Distributions of (a to d) NSE(Qd) and its decomposition into rQ, αQ and βQ and (e
to h) NSE(Em) and its decomposition into rE, αE and βE during the baseline period
using SPREAD/STEAD (SPST), WRFCCSM and WRFMPI. Blue, red and purple
boxplots (i.e., boxplots to the left in each pair group) correspond to Q-only calibrated
parameters. Green, orange and pink boxplots (i.e., boxplots to the right in each pair
group) correspond to the Q-E calibrated parameters.

and clearly demonstrate the effect of each calibration experiment even for
WRFCCSM and WRFMPI (Fig. 7.11e). In the case of evaporation, the rE values
corresponding to the WRF datasets are high (Fig. 7.11f), particularly when
using the Q-E calibrated parameters, and αE and βE are close to 1 (Fig. 7.11g,h).
Again, the performance for WRFCCSM is slightly better than for WRFMPI.

7.4.4 Projected annual and seasonal hydrologic changes

Fig. 7.12 and Fig. 7.13 portray the annual and seasonal delta changes of
precipitation (P), streamflow (Q), evaporation (E) and terrestrial water storage
(TWS) for the period 2071-2100 under the RCP8.5 scenario using WRFCCSM
and WRFMPI, respectively. Results for that period under RCP4.5 and for
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the period 2021-2050 under both RCPs are gathered in Fig. S7.2 to S7.7 in
Supporting Information. The delta changes of potential evaporation (Ep) are
collected as well in Supporting Information in Fig. S7.8 and Fig. S7.9. What
follows is a detailed description of the delta changes for the different hydrologic
variables under study, with the focus placed on the long-term future period
under RCP8.5 given the greater severity of the changes then detected. The
delta changes for the rest of the future periods and RCP scenarios will be
appropriately referred to throughout the section to provide further insights
and relevant information.

Annual P is expected to decline throughout the Spanish domain by the end of
the century, with significant decreases ranging from ca. 20% in the northern
catchments to up to 40% in the south (Fig. 7.12, 7.13). These changes are also
evident, but less pronounced, under the RCP4.5 scenario (Fig. S7.6, S7.7),
whereas there is a prevalence of non-significant changes for the short-term
future period in all cases (Fig. S7.2, S7.3, S7.4, S7.5). At seasonal scale, the P
delta changes for the long-term future period are negative and significant,
exceeding -40% in spring, summer and autumn. Delta changes in winter, by
contrast, are mostly non-significant for all the future periods and RCPs, and
sometimes present positive values (e.g., Fig. 7.12).

The delta changes of Q indicate a generalized decrease at annual and seasonal
scales in most future scenarios, showing values broadly below -80% in the
long-term future period under RCP8.5 for many southern catchments (these
values cannot be observed in Figs. 7.12 and 7.13 as the colorbar for the delta
changes has been chosen to adequately represent the projected hydrologic
changes considering all the hydrologic variables and all the future study
periods at once). The Q detriments are in agreement with the P decreases since
the latter constitute a limiting factor for the runoff generation process. There
are some important differences between WRFCCSM andWRFMPI concerning
the Q delta changes in all the future scenarios as the detriments are more acute
for WRFMPI. This is particularly noticeable for the period 2021-2050 under
RCP8.5: while WRFCCSMmanifests a widespread presence of non-significant
Q delta changes (Fig. S7.4), WRFMPI is characterized by significant decreases
between 20% and 40% at annual scale and above 40% in summer and autumn
(Fig. S7.5).

The annual E changes reflect a latitudinal gradient for the period 2071-
2100 under both RCPs (Fig. 7.12, 7.13, S7.6, S7.7) consisting of: 1) significant
diminutions between 20% and 30% for the southern catchments, and 2)
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Fig. 7.12: Delta changes of annual and seasonalP,Q,E andTWS for theperiod 2071-2100under
the RCP8.5 scenario using WRFCCSM. Significant changes at the 90% confidence
level have been marked with solid borders.

significant increments of up to 20% for a small portion of the catchments located
in the northwestern sector of the country. This gradient is also appreciable for
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Fig. 7.13: Delta changes of annual and seasonal P, Q, E and TWS for the period 2071-2100
under the RCP8.5 scenario usingWRFMPI. Significant changes at the 90% confidence
level have been marked with solid borders.

the short-term future period even though both the increases and decreases
are less severe and statistical significant changes are less abundant (Fig. S7.2
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to S7.5). The seasonal E changes are subject to a strong intra-annual variability,
with significant increases in the northern catchments in winter and spring,
and significant decreases emerging in spring in the southern catchments. The
summer and autumn E changes, in turn, are mainly positive and in some cases
exceed 40% (Fig. 7.12, 7.13). The E behaviour is upper limited by Ep, which is
expected to raise in all the future scenarios (Fig. S7.8, S7.9).

Lastly, the delta changes of TWS points towards soil drying conditions in
all the studied catchments, with most significant decreases occurring for the
long-term future period under both RCPs (Fig. 7.12, 7.13, S7.6, S7.7). The
annual TWS changes and the seasonal TWS changes in winter and spring
reflect a similar spatial pattern with decreases slightly superior corresponding
to the southern catchments. In summer and autumn, those changes spread to
the northern catchments and become maximum there, causing a flip in the
sign of the gradient that finally disappears at annual scale.

7.5 Discussion

7.5.1 Parameter sensitivities

This study expands on previous investigations for the Duero River Basin in
Yeste et al. (2020, 2021) by involving the main River Basin Districts in Spain.
This permits to obtain more robust information on model realism and the
hydrological functioning for a wide range catchments representative of the
hydroclimatic variability within the studied region. The RSA sensitivity analy-
sis method allowed for quantifying parameter sensitivities in 189 headwater
catchments distributed across the Spanish domain for the various soil, routing
and vegetation parameters considered in this work. As in Chapter 6, parameter
sensitivities were calculated with respect to NSE(Qd) and NSE(Em), which
were the performance metric selected to evaluate the goodness-of-fit of the
VIC model simulations for streamflow and evaporation, respectively.

d2 and the two routing parameters governing the gamma distribution function
(i.e., rout1 and rout2) were identified as the most important parameters
to NSE(Qd) (Fig. 7.4), highlighting the importance of applying a routing
procedure to attain adequate adjustments of the daily streamflow simulations
to the observations. The use of a gamma function is a common choice in many
studies usingVIC to post-process the runoff simulations given its parsimonious
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representation of the unit hydrograph (Mizukami et al., 2017; Rakovec et al.,
2014, 2019), and constitutes an important leap forward in comparison with
the monthly aggregation of runoff carried out in Yeste et al. (2020, 2021). The
rest of the soil parameters were also identified as important to NSE(Qd), and
yielded comparable sensitivities to those uncovered in many previous works
(e.g., Gou et al., 2020; Lilhare et al., 2020; Melsen and Guse, 2019; Mendoza
et al., 2015; Yeste et al., 2020). The influence from the vegetation parameters on
NSE(Qd), however, was negligible, corroborating the findings of Sepúlveda
et al. (2022) in a large-sample application of VIC in Chile.

On the contrary, NSE(Em) was found to be most sensitive to the vegetation
parameters, LAIf and rminf being the most important vegetation parameters
according to the RSA sensitivity indices (Fig. 7.5, 7.6). This is in line with
the VIC parameter sensitivities reported in Chapter 6 and in Sepúlveda
et al. (2022), suggesting that VIC vegetation parameters have a significant
potential to improve the representation of evaporative processes if included in
calibration. From among soil parameters, d2 was themost important parameter
to NSE(Em), which could be related to the water uptake by vegetation in the
root zone as it is directly affected by the thickness of the VIC soil layers.

7.5.2 Model performance during the baseline period

The large-sample application of the VIC model provided valuable insights
into the VIC performance for streamflow and evaporation in the 189 studied
catchments. The capability of the VIC model to produce acceptable estimates
of NSE(Qd) and NSE(Em) simultaneously was tested by following a two-fold
calibration approach based on the weighted Euclidean distance definition
for two objectives (Eq. 7.1), namely Q-only and Q-E calibration. While the
Q-only calibration led to satisfactory estimates of NSE(Qd) andNSE(Em) scores
below 0 for more than half of the catchments (Fig. 7.7), the Q-E calibration
substantially improved the NSE(Em) estimates and still showed NSE(Qd)
values to those corresponding to the Q-only calibration. Similar conclusions
were reached in Chapter 6 according to the five single-objective calibration
experiments carried out for one test catchment located in the Guadalquivir
River Basin.

The decomposition of NSE into r, α and β and their representation through
cumulative distribution functions is a convenient way to facilitate the inter-
comparison of multiple model implementations in large-sample studies (e.g.,
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Mizukami et al., 2017; Rakovec et al., 2019; Yeste et al., 2020). The same de-
composition can also be applied to other performance metrics based on these
statistics such as the Kling-Gupta Efficiency (KGE, Gupta et al., 2009) to further
understand the causes behind model performance (e.g., Aerts et al., 2022;
Rakovec et al., 2016a,b). The VICmodel results forNSE(Qd), NSE(Em) and their
decomposition into r, α and β (Fig. 7.8, 7.9) revealed a similar performance for
daily streamflow and monthly evaporation to that reflected in large-sample
applications over the CONUS domain in Mizukami et al. (2017) and Rakovec
et al. (2019). The VIC model performance for streamflow was also comparable
to previous results for the Duero River Basin (Morán-Tejeda et al., 2014; Yeste
et al., 2020), Tajo (Pellicer-Martínez and Martínez-Paz, 2018; Pellicer-Martínez
et al., 2021), Guadalquivir (Yeste et al., 2018), Segura (Pellicer-Martinez and
Martínez-Paz, 2015a; Pellicer-Martínez et al., 2015b) and Júcar (Marcos-Garcia
et al., 2017; Suárez-Almiñana et al., 2020).

As described in Chapter 6, the integration of streamflow and evaporation
data into model calibration is ultimately subject to the law of conservation
of mass and the magnitude of the imbalance resulting from merging three
independent datasets of precipitation, streamflow and evaporation. If the
imbalance is significant and the period is long-enough, this will unavoidably
result in a data-driven trade-off for the streamflowand evaporation simulations
as the model will produce a steady-state solution that cannot match the mean
values of streamflow and evaporation data simultaneously. Such condition
was thoroughly checked for the two VIC calibrations using meteorological
observations and WRF model simulations as model forcings (Fig. 7.10), and
results indicated that the bias in the runoff ratio (i.e., Q/P) was higher for the
Q-E calibration while its magnitude remained similar for all the datasets.

This limitation will be further explored in future implementations of the
VIC model for the Spanish catchments to produce seamless distributed
parameters maps and Spanish-wide simulations based on a fully gridded
implementation. For the purpose of this study, the Q-E calibration was selected
as the reference implementation to carry out the hydrologic projections
according to an additional evaluation of model performance using the WRF
model simulations (Fig. 7.11). Similarly to the monthly simulations in Yeste
et al. (2021) using an ensemble of 18 Euro-CORDEX model experiments, NSE
was found to be too demanding for evaluating the model performance for
daily streamflow because the daily streamflow dynamics (i.e., rQ) could be
hardly captured. In the case of monthly evaporation, the computed NSE(Em)
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scores were much higher and always comparable to the values corresponding
to the meteorological observations.

7.5.3 Future projections

The spatial patterns of the hydrologic delta changes calculated for WRFCCSM
and WRFMPI are in agreement in most of the Spanish domain, particularly
for the long-term future period under both RCPs (Fig. 7.12, 7.13, S7.6, S7.7).
The magnitude of the projected changes, however, differs for both WRF
datasets depending on the future scenario, which is in line with findings in
García-Valdecasas Ojeda et al. (2020a,b) for the Iberian Peninsula using the
same datasets. The inter-model variability can be related to the characteristics
inherited from the lateral boundary conditions driving the WRF model
simulations (García-ValdecasasOjeda et al., 2020a,b), and is expected to become
diluted by applying a bias correction method to historical data (Hakala et al.,
2018; Papadimitriou et al., 2016; Pastén-Zapata et al., 2020; Yeste et al., 2021).

The projected decreases of P are in accordance with results in Argüeso
et al. (2012) and García-Valdecasas Ojeda et al. (2020a) based on WRF model
simulations for Spain and the Iberian Peninsula, respectively, revealing a more
pronounced effect of climate change for the southern catchments. Contrarily
to the rest of the seasons, P is expected to slightly increase in some northern
and central catchments by the end of the century, yet this compensatory effect
is generally non-significant and remains unnoticeable at annual scale. This
confirms previous research in Argüeso et al. (2012) and García-Valdecasas
Ojeda et al. (2020a) for the northern half of the country.

The partitioning of P into Q and E is expected to shift towards an enhanced
evaporative regime as a consequence of climate change in the Spanish catch-
ments. This important shift may pose a threat for the future water security
and the availability of water resources in the region, where the occurrence
of hydroclimatic extremes in the form of more frequent and longer-lasting
droughts is envisaged to increase (García-Valdecasas Ojeda et al., 2021a,b). At
a smaller scale, comparable results were reported in Yeste et al. (2021) and
Fonseca and Santos (2019) for the Spanish and Portuguese parts of the Duero
River Basin, respectively, where Q is projected to dramatically decrease at
annual and seasonal time scales.
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The delta changes of E are contingent upon the futurewater availability and the
upper limit imposed by Ep, which is projected to uniformly increase for all the
future scenarios (Fig. S7.8, S7.9). As a consequence, E is the hydrologic variable
subject to the highest intra-annual variability, with increases approximating
the Ep limit in winter and decreases reflecting a progressive shortening of
water availability for the rest of the seasons. These results partially confirm
the findings of García-Valdecasas Ojeda et al. (2020a) for E over the Spanish
domain, the main differences being concentrated in winter as significant
increases were not detected for the long-term future period under both RCPs
in this study. Similarly to Yeste et al. (2021), the disparity in the projected
changes of E with respect to García-Valdecasas Ojeda et al. (2020a) can be
attributed to the calibration approach followed to attain a more accurate
representation of the water balance in the region (see also Yeste et al., 2020).

Finally, TWS changes provide key information of the subsurface water dy-
namics as an aggregate estimate of soil moisture changes. TWS decreases
evidenced a steady movement towards soil dryness for all the future scenarios,
resulting in less availability of water for the runoff generation and the evapora-
tive processes. The future behaviour projected for TWS is in agreement with
the soil moisture characterization reported in García-Valdecasas Ojeda et al.
(2020a) based on the Soil Moisture Index (SMI, Seneviratne et al., 2010). The
main difference between TWS and SMI lies in the thickness of the soil profile
considered to calculate them: while SMI was calculated using the upper 1
m of soil implemented for the WRF model simulations (García-Valdecasas
Ojeda et al., 2020a), TWS aggregates the whole soil profile, which in this
work was fixed at 2 m depth according to the VIC model implementation.
It is expected that TWS provides a better representation of the soil state for
the purpose of this study as all the three soil layers included in the VIC
model parameterization are hydrologically active. In any case, both TWS
and SMI are soil-state variables that appropriately capture the subsurface
water dynamics and have a strong potential to quantify and explain many
hydroclimatic processes (García-Valdecasas Ojeda et al., 2020a; Güntner et al.,
2017; Heistermann et al., 2022; Ruosteenoja et al., 2018).

7.6 Conclusions

The main findings of this study can be summarized as follows:
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7.6 Conclusions

• The regional sensitivity analysis helped identify the parameter sensitivi-
ties with respect to the selected metrics to evaluate the performance of
the VIC model against daily streamflow and monthly evaporation data
in all the studied catchments. The soil and routing parameters were re-
vealed as the most important parameters to the streamflow performance,
while the influence from the vegetation parameters was negligible. The
VIC performance for evaporation was mostly controlled by the soil
parameters and two of the vegetation parameters.

• The VIC model was calibrated following a single-objective optimization
approach applied to the streamflow simulations exclusively and to the
streamflow and evaporation simulations simultaneously. The perfor-
mance of the VIC model was evaluated for two independent periods,
suggesting that it is possible to achieve satisfactory adjustment to both
hydrologic variables at the same time if their performance metrics are
combined into a composite function that aggregates the individual
performance for streamflow and evaporation.

• An additional evaluation of the performance of the VIC model for
the streamflow and evaporation simulations was carried out using two
regional climatemodel datasets asmeteorological forcings.While theVIC
performance for streamflow was poor in comparison to the simulations
conducted for the meteorological observations due to the inability of
the climate datasets to reproduce the daily dynamics of streamflow, the
performance for monthly evaporation was high and remained close to
that corresponding to the meteorological observations.

• The impacts of climate change in the Spanish catchments were assessed
for the two regional climate model datasets, and the projected hydro-
logic changes were analyzed for the VIC model simulations of water
storages and fluxes for several future scenarios. An enhanced evaporative
regime was projected for the future partitioning of precipitation into
streamflow and evaporation, and the diminutions of terrestrial water
storage indicated a shift towards soil drying conditions for all the studied
catchments.

149





8 General conclusions

The modelling framework developed in this thesis has been successfully
applied in a wide range of Spanish catchments and has allowed for the
examination of the VIC model performance and its predictive capabilities
concerning multiple hydrologic variables. What follows is an overview of
the main conclusions reached in this work. These are organized into three
different categories addressing the three stages of the hydrological modelling
framework: sensitivity analysis, calibration and evaluation, and hydrologic
projections. Specific conclusions for each of the four study cases analyzed in
this thesis can be found in Chapters 4 to 7.

Sensitivity analysis

Four sensitivity analysismethodswere applied to study parameter sensitivities
in relation to the different components of the water balance and the perfor-
mance of the VIC model against streamflow and evaporation data. The main
findings for the sensitivity analysis stage can be summarized as follows:

• A global sensitivity analysiswas applied to quantify the effect of the five soil
calibration parameters on the water balance variables for 31 headwater
catchments located in the Duero River Basin (Chapter 4). The sensitivity
indices for the total runoff resulted from the compounding effect of the
surface runoff and baseflow component, and the sensitivity indices for
actual evaporation reflected an identical magnitude to the indices for
total runoff but with opposite sign due to the model reaching the steady
state during the study period. The five soil parameters were important to
the soil moisture simulations as they govern the equations describing the
water storages and fluxes implemented in VIC for the three soil layers.

• A hybrid local-global sensitivity analysis method was applied to an initial
selection of 20 soil, vegetation and routing parameters as the param-
eter screening procedure in three studied catchments located in the
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8 General conclusions

Guadalquivir and Duero River Basins (Chapter 6). The most influential
parameters to the performance of the VIC model for daily streamflow
and monthly evaporation were chosen in each case, and the selection
was further refined during the Pareto-based sensitivity analysis following a
multi-objective optimization approach without constraints. This strategy
facilitated the identification of the most parsimonious parameterization
leading to an adequate approximation to streamflow and evaporation
data simultaneously, and only required adding two extra vegetation
parameters to the soil and routing parameterization.

• A regional sensitivity analysis was applied to the same initial selection of
20 soil, vegetation and routing parameters to identify the most influential
parameters to the VIC performance of daily streamflow and monthly
evaporation for a total of 189 headwater catchments distributed across
the Spanish territory (Chapter 7). The distributed maps of sensitivity
indices revealed the spatial variability in parameter sensitivities for the
Spanish domain. The streamflow performancThe modelling framework
developed in this thesis has been successfully applied in a wide range
of Spanish catchments and has allowed for the examination of the VIC
model performance and its predictive capabilities concerning multiple
hydrologic variables.What follows is an overviewof themain conclusions
reached in this work. These are organized into three different categories
addressing the three stages of the hydrological modelling framework:
sensitivity analysis, calibration and evaluation, and hydrologic pro-
jections. Specific conclusions for each of the four study cases analyzed
in this thesis can be found in Chapters 4 to 7.e was mostly driven by the
soil and routing parameters, with little influence from the vegetation
parameters. The soil parameters and two vegetation parameters were
identified as important to the performance for evaporation. This in line
with previous results in this thesis for the hybrid local-global and the
Pareto-based sensitivity analyses.

Calibration and evaluation

The calibration of the VIC model was carried out following three optimization
approaches focused on streamflow and evaporation, and the model perfor-
mance for the streamflow and evaporation simulations was evaluated at
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different temporal resolutions. The following conclusions were drawn from
the model calibration and evaluation stage:

• A single-objective calibration approach against monthly streamflow ob-
servations was applied to the 31 studied catchments in Duero, and the
performance of the VIC model for monthly streamflow and monthly
evaporation was evaluated for two independent periods (Chapter 4). The
VIC model reflected satisfactory adjustments to monthly streamflow and
evaporation data and improved the benchmark performance. A high
degree of parameter transferability in space was detected in relation to
the VIC performance for streamflow, and equifinality in model parame-
ters was observed for many catchments where a considerable number of
parameter combinations produced a similar performance estimate for
streamflow to that calculated during calibration.

• A multi-objective calibration approach was undertaken to adjust the most
influential parameters according to the hybrid local-global and the Pareto-
based sensitivity estimates for three studied catchments (Chapter 6) and
optimize the joint model representation of daily streamflow observations
and monthly evaporation data. Constraints were applied to the objective
space to optimize model performance within the limits of acceptability
established for streamflow and evaporation. The trade-offs in model
performance for both variables were well captured in the resulting Pareto
front, and indicated that a significant improvement for the evaporation
representation can be attained at the expense of a very reduced loss in
model performance for streamflow.

• A composite-single-objective calibration approach consisting of two strate-
gies was adopted in 189 catchments across Spain to optimize 1) themodel
representation of daily streamflow , and 2) the joint model performance
for daily streamflow and monthly evaporation (Chapter 7). The calibra-
tion parameters were selected according to the sensitivity estimates from
the regional sensitivity analysis, and the performance of the VIC model
for the streamflow and evaporation simulations was evaluated for two
independent periods. The combination of the performance metrics of
streamflow and evaporation into a composite-single-objective function
does not lead to a significant deterioration of the streamflow represen-
tation and makes it possible to adequately reproduce both hydrologic
variables at the same time.
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Hydrologic projections

Hydrologic projections for multiple water balance components were carried
out using the calibrated VIC and meteorological forcings gathered from
different regional climate change simulations to study the impacts of climate
change in the Spanish catchments. The main findings for the hydrologic
projections stage are as follows:

• Hydrologic projections using Euro-CORDEX data were performed for a
selection of 24 headwater catchments located in Duero where the VIC
model produced higher performance estimates for monthly streamflow
during calibration and evaluation (Chapter 5). The ability of the Euro-
CORDEX ensemble to reproduce monthly streamflow and evaporation
data was evaluated and compared against the model performance
using meteorological observations, showing that, while the performance
for streamflow was deteriorated with Euro-CORDEX, the evaporation
performance was remarkably improved. This could be potentially due to
the model-nature of the satellite-based evaporation dataset1.

• The projected hydrologic changes in the Duero River Basin evidenced a
shift towards an enhanced evaporative regime regarding the partitioning
of precipitation into streamflow and evaporation for all the studied catch-
ments. The streamflow diminutions in the northern catchments could be
explained by the precipitation decreases and the evaporation increases
projected for them, while the streamflow reductions in the southern
catchments were driven by a lesser availability of water resources. The
snowmelt contribution to the runoff generation was projected to highly
diminished in future scenarios and become almost non-existent in catch-
ments where the snowmelt contribution to runoff was relevant under
present climate.

• Hydrologic projections using WRF data were carried out for the complete
set of 189 Spanish headwater catchments to study the impacts of climate
change at national scale (Chapter 7). These simulationswere implemented
separately for the two calibration experiments integrating the composite-
single-objective calibration approach. The performance of the VICmodel
against daily streamflow and monthly evaporation was evaluated for

1This, however, has not been observed for the complete set of 189 Spanish catchments
after a calibration focused on daily streamflow alone, as will be stated later.
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the WRF datasets and was compared to the performance estimates
attained using meteorological observations. The poor performance for
daily streamflow simulations using WRF data was associated to their
inability to reproduce the daily dynamics of the streamflow observations.
The performance for monthly evaporation, in turn, was highly affected
by the calibration strategy and was comparable to that corresponding to
the meteorological observations.

• Similarly to theDueroRiver Basin, a tendency towards amore evaporative
regime was also appreciated for the 189 Spanish catchments, and the
latitudinal gradient of the annual and seasonal changes projected for
streamflow and evaporation could be satisfactorily captured with the
VIC model simulations performed for the complete set of catchments.
An additional analysis of the changes in terrestrial water storage revealed
increasing soil drying conditions towards the end of the 21th century for
the Spanish catchments.

This thesis represents an important contribution to the field of large-sample
hydrology and a major advance in the application of multi-criteria approaches
aimed at integrating streamflow observations and satellite-based evaporation
data. This investigation will also help steer future developments to improve
the calibration and evaluation of hydrologic models and provide more reliable
hydrologic projections for the future climate. In particular, the hydroclimatic
community and water practitioners in Spain can strongly benefit from these
results as they provide a baseline reference for the evaluation of different
modelling approaches as well as other hydrologic models.

Future research

The contributions of this thesis will be further extended in the near future to
explore multiple research lines on the basis of the large-scale implementation
of the VIC model for the Spanish catchments. The great amount of hydrologic
information will soon become supported with complementary data analysis
and modelling approaches that will help strengthen the key results and con-
clusions from this thesis and will help achieve a more reliable characterization
of the water balance for the Spanish domain.

In particular, the research is planned to be extended to other subcatchments
located within the topographic area of the studied catchments where there
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exists additional streamflow information from upstream gauges. This is an
adequate step to assess the parameter transferability in space, and an early
answer to the feasibility of undergoing a posterior parameter regionalization
approach to estimate seamless parameter fields and develop a Spanish-wide
gridded implementation of the VIC model.

The Spanish-wide implementation of VICwill facilitate the comparison against
the monthly SIMPA simulations available for streamflow, evaporation and
additional hydrologic variables that are annually updated. The calibration
of VIC against daily streamflow observations and monthly evaporation data
is expected to produce a more reliable quantification of the water balance
in Spain as the VIC model has been calibrated to adequately reproduce the
daily streamflow dynamics and the predominance of evaporative fluxes in the
region has been appropriately weighted.

The use of remote sensing data of subsurface water storages and other sources
of evaporation data will be key to advance the evaluation of the VIC sim-
ulations. For instance, GLEAM is regularly updated and currently delivers
an evaporation dataset exclusively based on satellite data in addition to the
evaporation dataset used in this thesis. Moreover, the VIC model simulations
of terrestrial water storage will be evaluated against other databases such
as GRACE to analyze model consistency for other relevant processes not
considered during calibration.

Finally, the emerging field of decadal predictions is intended to provide amore
reliable characterization of the future climate for a planning horizon of 1 to 10
years through climate simulations where the soil states have been initialized
with observational data. Decadal simulations can be used to forced VIC and
assess the hindcast and forecast skills of decadal predictions systems from a
hydrological perspecive. These simulations will provide a solid foundation for
the future water planning and the development of adaptation strategies that
can help mitigate the impacts of climate change in the Spanish catchments.
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Conclusiones generales

El ejercicio de modelización desarrollado en esta tesis ha sido aplicado
exitosamente en un amplio rango de cuencas españolas y ha permitido
examinar el ajuste del modelo VIC y sus capacidades predictivas en relación a
múltiples variables hidrológicas. Lo que sigue es un resumen de las principales
conclusiones de este trabajo. Éstas se han organizado en tres categorías
correspondientes a las tres etapas de la modelización hidrológica: análisis
de sensibilidad, calibración y evaluación, y proyecciones hidrológicas. Las
conclusiones específicas para cada uno de los casos de estudio analizados en
esta tesis pueden encontrarse en los Capítulos 4 al 7.

Análisis de sensibilidad

Se aplicaron cuatro métodos de análisis de sensibilidad para estudiar la
sensibilidad de los parámetros en relación a los distintos componentes del
balance de agua y al ajuste del modelo VIC frente a datos de caudal y
evaporación. Los principales hallazgos para la etapa de análisis de sensibilidad
pueden resumirse como sigue:

• Se aplicó un análisis de sensibilidad global para cuantificar el efecto de
los cinco parámetros del suelo sobre las variables del balance de agua
en 31 cuencas de cabecera localizadas en la Demarcación Hidrográfica
del Duero (Capítulo 4). Los índices de sensibilidad de la escorrentía
total resultaron de un efecto acumulado de las componentes superficial
y subterránea de la escorrentía, y los índices de sensibilidad para la
evaporación real reflejaron una magnitud idéntica a los de la escorrentía
total pero con signo opuesto debido a que el modelo alcanzó el estado
estacionario durante el período de estudio. Los cinco parámetros del
suelo fueron importantes para las simulaciones de humedad del suelo,
dado que gobiernan las ecuaciones de los almacenamientos y los flujos
de agua implementados en el modelo VIC para las tres capas de suelo.
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• Se aplicó un análisis de sensibilidad híbrido local-global sobre un conjunto
de 20 parámetros del suelo, la vegetación y la propagación del caudal
para realizar una preselección de parámetros en tres cuencas de estudio
localizadas en las Demarcaciones Hidrográficas del Guadalquivir y
del Duero (Capítulo 6). Los parámetros más influyentes sobre el ajuste
del modelo para el caudal diario y la evaporación mensual fueron
seleccionados en cada caso, y la selección se refinó durante el análisis
de sensibilidad basado en Pareto siguiendo un proceso de optimización
multi-objetivo sin restricciones. Esta estrategia facilitó la identificación de
la parametrización más parsimoniosa conducente a una aproximación
adecuada a los datos de caudal y evaporación simultáneamente, y
solamente requirió añadir dos parámetros extra de la vegetación a la
parametrización del suelo y la propagación del caudal.

• Se aplicó un análisis de sensibilidad regional sobre el mismo conjunto
inicial de 20 parámetros del suelo, la vegetación y la propagación del
caudal para identificar los parámetros más influyentes sobre el ajuste del
modelo para el caudal diario y la evaporación mensual en 189 cuencas de
cabecera distribuidas sobre el territorio español (Capítulo 7). Los mapas
distribuidos de los índices de sensibilidad revelaron la variabilidad
espacial de las sensibilidades de los parámetros para el dominio español.
El ajuste del caudal estaba principalmente ligado a los parámetros
del suelo y de la propagación del caudal, con poca influencia de los
parámetros de la vegetación. Se identificaron como importantes para el
ajuste a los datos de evaporación los cinco parámetros del suelo y dos
parámetros de la vegetación. Esto se encuentra en línea con los resultados
obtenidos durante el análisis de sensibilidad híbrido y al análisis de
sensibilidad basado en Pareto.

Calibración y evaluación

La calibración del modelo VIC se llevó a cabo siguiendo tres estrategias
de optimización centradas en el caudal y la evaporación, y el ajuste del
modelo para las simulaciones de caudal y evaporación fue evaluado a distintas
resoluciones temporales. Estas son las conclusiones para la etapa de calibración
y evaluación:

• Se aplicó una estrategia de calibración de un solo objetivo frente a ob-
servaciones mensuales de caudal en 31 cuencas de la Demarcación
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Hidrográfica del Duero, y se evaluó el ajuste del modelo para el caudal
mensual y la evaporaciónmensual en dos períodos independientes (Capí-
tulo 4). El modelo VIC reflejó ajustes satisfactorios al caudal mensual y la
evaporación mensual, mejorando el ajuste seleccionado como referencia
comparativa. Se detectó un alto grado de transferabilidad espacial de
los parámetros calibrados en relación al ajuste del caudal, y se observó
equifinalidad en los parámetros del modelo para muchas cuencas en las
que un número considerable de combinaciones de parámetros produjo
un ajuste similar para el caudal al calculado durante la calibración.

• Los parámetros más influyentes de acuerdo con el análisis de sensi-
bilidad híbrido y el análisis de sensibilidad basado en Pareto fueron
ajustados mediante calibración multi-objetivo en tres cuencas de estudio
para optimizar el ajuste simultáneo frente a datos diarios de caudal y
datos mensuales de evaporación (Capítulo 6). Se aplicaron restricciones
sobre el espacio objetivo para optimizar el ajuste del modelo dentro de
los límites de aceptabilidad establecidos para el caudal y la evaporación.
La frontera de Pareto capturó adecuadamente el efecto compensatorio
en el ajuste a ambas variables, sugiriendo que es posible obtener una
mejora significativa del ajuste a la evaporación a consta de una pérdida
muy reducida del ajuste para el caudal.

• Se adoptaron dos estrategias de calibración compuesta de un solo objetivo
en 189 cuencas en España para optimizar 1) la representación en el
modelo del caudal diario, y 2) el ajuste simultáneo al caudal diario y
la evaporación mensual (Capítulo 7). Los parámetros de la calibración
fueron seleccionados de acuerdo con las estimaciones de sensibilidad
efectuadas con el análisis de sensibilidad regional, y el ajuste del modelo
para las simulaciones de caudal y evaporación se evaluó en dos períodos
independientes. La combinación de las métricas del caudal y la evapo-
ración en una sola función objetivo no condujo a un deterioro del ajuste
del caudal e hizo posible reproducir adecuadamente ambas variables
hidrológicas a la vez.

Proyecciones hidrológicas

Se obtuvieron proyecciones hidrológicas para los múltiples componentes del
balance de agua usando el modelo VIC calibrado y empleando forzamientos
meteorológicos extraídos de diferentes simulaciones regionales de cambio
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climático para estudiar los impactos del cambio climático en las cuencas
españolas. Las principales conclusiones para la etapa de las proyecciones
hidrológicas son las siguientes:

• Se realizaron proyecciones hidrológicas usando datos de Euro-CORDEX en
una selección de 24 cuencas de cabecera localizadas en la Demarcación
Hidrográfica del Duero para las que el modelo VIC produjo un mejor
ajuste del caudal mensual durante la calibración y la evaluación (Capí-
tulo 5). Se evaluó la habilidad del ensamblado de Euro-CORDEX para
reproducir el caudal y la evaporación mensual y se comparó frente al
ajuste usando observaciones meteorológicas, demostrando que, mientras
que el ajuste para el caudal empeoró con Euro-CORDEX, el ajuste de la
evaporación mejoró notablemente. Esto pudo deberse a la naturaleza de
modelo de la base de datos de evaporación empleada1.

• Los cambios hidrológicos proyectados en la Demarcación Hidrográfica
del Duero evidenciaron un cambio hacia un régimen evaporativo más
pronunciado en relación con el particionamiento de la precipitación en
caudal y evaporación para todas las cuencas de estudio. Las disminu-
ciones del caudal en las cuencas del norte quedaron explicadas por los
descensos de precipitación y los aumentos de evaporación proyectados,
mientras que los descensos del caudal en las cuencas del sur estaban
ligados a una menor disponibilidad de recursos hídricos. Se proyectó un
descenso muy alto de la contribución de la fusión nival a la generación
de escorrentía, llegando prácticamente a desaparecer en cuencas donde
la contribución de la fusión nival a la escorrentía era relevante bajo clima
presente.

• Se llevaron a cabo proyecciones hidrológicas usando datos del modelo WRF
para el conjunto de 189 cuencas españolas de cabecera de cara a estudiar
los impactos del cambio climático a escala nacional (Capítulo 7). Estas
simulaciones fueron implementadas por separado para los dos ejercicios
de calibración que integraron el proceso de calibración compuesta de un
solo objetivo. Se evaluó el ajuste del modelo VIC para el caudal diario y
la evaporación mensual usando los datos del modelo WRF, y se comparó
con los ajustes estimados empleando observaciones meteorológicas. El
bajo ajuste al caudal diario empleando datos del modelo WRF estuvo

1Esto, sin embargo, no ha sido observado para el conjunto completo de 189 cuencas
españolas después de una calibración centrada exclusivamente en el caudal diario, como se
destacará después.
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asociado a su incapacidad para reproducir las dinámicas diarias de
las observaciones de caudal. El ajuste para la evaporación mensual,
en cambio, se vio muy afectado por la estrategia de calibración, y fue
comparable al ajuste obtenido con las observaciones meteorológicas.

• De forma similar a lo sucedido en el Duero, se apreció una tendencia
hacia un régimen evaporativo más acentuado para las 189 cuencas
españolas, y se pudo capturar satisfactoriamente el gradiente latitudinal
de los cambios anuales y estacionales proyectados con el modelo VIC.
Se efectuó un análisis adicional de los cambios en el almacenamiento
terrestre de agua, indicando un incremento de las condiciones de aridez
en las cuencas españolas hacia el final del siglo 21.

Esta tesis supone una contribución importante al campo de la hidrología
macroescala y un avance en la aplicación de enfoques multicriterio centrados
en la integración de observaciones de caudal y datos satelitales de evaporación.
Esta investagación ayudará a conducir futuros desarrollos para mejorar la
calibración y la validación de modelos hidrológicos y ayudará a obtener
proyecciones hidrológicas más fiables bajo clima futuro. En particular, la
comunidad hidroclimática en España puede beneficiarse de estos resultados
dado que proporcionan una referencia base para la evaluación de distintas
estrategias de modelización así como de distintos modelos hidrológicos.

Estudios futuros

Las contribuciones de esta tesis se extenderán próximamente para explorar
múltiples líneas de investigación tomando como base la implementación
macroescala del modelo VIC en las cuencas españolas. La gran cantidad de
información hidrológica será pronto complementada con análisis de datos y
estrategias de modelización adicionales que ayudarán a reforzar los resultados
y la conclusiones clave de esta tesis y a conseguir una caracterización más
fidedigna del balance de agua para el dominio español.

En particular, se pretende extender el estudio a otras subcuencas localizadas
en el área topográfica de aquellas cuencas de estudio donde existen datos
adicionales de caudal en estaciones de aforo localizadas aguas arriba. Esto es
un paso adecuado para estudiar la transferabilidad espacial de parámetros,
y una respuesta temprana a la posibilidad de llevar a cabo una estrategia de
regionalización paramétrica para estimar mapas distribuidos de parámetros
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y llevar a cabo una implementación del VIC para una malla cubriendo el
dominio español.

La implementación mallada del VIC facilitará la comparación frente a las
simulaciones mensuales del model SIMPA para el caudal, la evaporación y
otras variables hidrológicas que se actualizan anualmente. Se espera que la
calibración del modelo VIC frente a observaciones diarias de caudal y datos
mensuales de evaporación sea capaz de producir un cuantifiación más realista
del balance de agua en España dado que ha el modelo ha sido calibrado para
reproducir adecuadamente las dinámicas diarias de caudal y la predominancia
de flujos evaporativos ha sido ponderada adecuadamente.

El uso de datos de teledetección de los almacenamientos subsuperficiales
de agua y otras fuentes de datos de evaporación serán clave para avanzar
la evaluación de las simulaciones con el modelo VIC. Por ejemplo, GLEAM
es actualizado regularmente y en la actualidad ofrece una base de datos de
evaporación basada exclusivamente en datos de satélite junto con la base de
datos usada en esta tesis. Además, las simulaciones del almacenamiento de
agua terrestre serán evaluadas frente a otras bases de datos como GRACE para
analizar la consistencia del modelo en relación a otros procesos hidrológicos
relevantes que no se han considerado durante la calibración.

Finalmente, el campo emergente de las predicciones decenales tiene como
objeto proporcionar una caracterización más fiable del clima futuro para un
horizonte de planifación que abarca de 1 a 10 años por medio de simulaciones
climáticas donde las condiciones iniciales de humedad del suelo se han fijado
con datos observacionales. Las simulaciones decenales pueden ser empleadas
para forzar el modelo VIC y determinar la capacidad predictiva de los sis-
temas de predicciones decenales desde un punto de vista hidrológico. Estas
simulaciones constituirán una base sólida para la planificación hidrológica en
el futuro y el desarrollo de estrategias de adaptación que puedan ayudar a
mitigar los impactos del cambio climático en las cuencas de España.
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Supporting Information

Supporting Information for Chapter 5
• 2 Supporting Tables
• 10 Supporting Figures

Table S5.1: Main characteristics of the selected catchments: area (km2), mean altitude (m) and
calibrated NSE value obtained in Yeste et al. (2020).

Code Name Area (km2) Mean altitude (m) NSE
R-2001 Cuerda del Pozo 546.7 1319 0.852
R-2011 Arlanzón 106.7 1440 0.9237
R-2013 La Requejada 220.7 1378 0.8263
R-2014 Camporredondo 229.6 1673 0.8777
R-2026 Barrios de Luna 482.9 1496 0.8865
R-2027 Villameca 45.8 1180 0.8254
R-2028 Moncabril (Sistema) 62.9 1712 0.7475
R-2032 Riaño 592.3 1451 0.9409
R-2036 Linares del Arroyo 761.3 1111 0.6662
R-2037 Burgomillodo 803.1 1097 0.8222
R-2038 Santa Teresa 1845.4 1326 0.9145
R-2039 Águeda 788.4 895 0.9521
R-2042 Castro de las Cogotas 853.3 1279 0.8903
R-2043 Pontón Alto 150.4 1582 0.8322
GS-2005 Osma 893.1 1090 0.8307
GS-2016 Pajares de Pedraza 281.3 1298 0.835
GS-2041 Villalcázar de Sirga 307.7 929 0.7106
GS-2049 Cabañes de Esgueva 270.2 995 0.7333
GS-2051 El Espinar 36.7 1610 0.7743
GS-2057 Villovela de Pirón 202 1183 0.723
GS-2089 Morla de la Valdería 281.1 1369 0.9116
GS-2104 Villaverde de Arcayos 371.1 1146 0.8137
GS-2150 Pardavé 223.8 1448 0.7909
GS-2818 Rabal 597.9 678 0.8724
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Table S5.2: Linear regression between the fractional changes of CY and the delta changes of Q
at annual and seasonal time scales. All the r values are statistically significant at a
95% confidence level using the Student’s t-test.

Linear regresion Annual Autumn Winter Spring
RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

r 0.837 0.924 0.889 0.899 0.986 0.997 0.963 0.97
Slope 0.741 0.91 0.616 0.785 1.034 0.995 1.014 1.037
Intercept -6.051 -7.127 -7.637 -9.52 -0.822 -0.924 -1.678 -2.467

Fig. S5.1: CDFs of theVICmodel performance for the periodOct 2000 - Sep 2011 corresponding
to the combination historical+RCP8.5: a) NSE for the streamflow simulations against
streamflow observations; b) NSE for the AET simulations against GLEAM; c) iQ
bias with respect to the ratio of SPREAD precipitation to streamflow observations.
Blue lines represent the ensemble simulation, and orange lines correspond to the
calibration results from Yeste et al. (2020).
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Fig. S5.2: CDFs of the VICmodel performance for the annual and seasonal values of CX (a to d)
and CY (e to h) corresponding to the period Oct 2000-Sep 2011 and the combination
historical+RCP4.5. CX biases are calculated as the difference between simulated and
observed values. CY biases represent fractional changes calculated as [(simulations
- observations)/observations · 100]. Blue lines represent the ensemble simulation,
and orange lines correspond to the calibration results from Yeste et al. (2020).
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Fig. S5.3: Delta changes of annual and seasonal P, Q, AET and PET for the period 2021-2050
under the RCP4.5 scenario in the studied catchments. Significant changes at the 95%
confidence level have been marked with solid borders.
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Fig. S5.4: Delta changes of annual and seasonal P, Q, AET and PET for the period 2021-2050
under the RCP8.5 scenario in the studied catchments. Significant changes at the 95%
confidence level have been marked with solid borders.
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Fig. S5.5: Delta changes of annual and seasonal P, Q, AET and PET for the period 2041-2070
under the RCP4.5 scenario in the studied catchments. Significant changes at the 95%
confidence level have been marked with solid borders.
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Fig. S5.6: Delta changes of annual and seasonal P, Q, AET and PET for the period 2041-2070
under the RCP8.5 scenario in the studied catchments. Significant changes at the 95%
confidence level have been marked with solid borders.
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Fig. S5.7: Delta changes of annual and seasonal P, Q, AET and PET for the period 2071-2100
under the RCP4.5 scenario in the studied catchments. Significant changes at the 95%
confidence level have been marked with solid borders.
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Fig. S5.8: Delta changes (excluding summer) of annual and seasonal Qsnow for the indicated
periods and RCP scenarios in the studied catchments. Significant changes at a 95%
confidence level have been marked with solid borders.
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Fig. S5.9: Projected changes of iQ and iE as the difference between future and historical values
for the indicated periods and RCP scenarios.

172



Supporting Information for Chapter 5

Fig. S5.10: Projected changes of annual and seasonal Qsnow ratio (excluding summer) cal-
culated as the difference between future and historical values for the indicated
periods and RCP scenarios.
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Supporting Information for Chapter 6
• 1 Supporting Text
• 12 Supporting Figures

Text S6.1 Implementation of the optimization algorithms

The implementation details of the algorithms used in the different optimization
experiments are given below.

• Pareto-based sensitivity analysis: NSGA-II and MOFPA were each run
twice 100 population points randomly extracted from the DELSA sample
(i.e., biased initialization) and 25 generations. The four populations were
combined to extract the best 100 solutions, and the most contributing
algorithm to this selectionwas runonce again, this time for 50 generations,
to further tune the results.

• Multi-objective calibration: the most contributing algorithm was finally
run for 200 points and 25 generations. A biased initialization strategy
was implemented again choosing the final population from the Pareto-
based sensitivity analysis and another random selection from the DELSA
sample.

• Single-objective experiments: SCEUA was implemented to tackle five
objective single-objectives experiments usingdifferentweights for stream-
flow and evaporation. In order to ensure convergence to the Pareto front,
the termination criterion was set for a maximum number of iterations of
10000, instead of prespecifying a small size for the parametric space or a
threshold for the objective improvement.
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Fig. S6.1: Results of the Monte Carlo experiment for station R-5005 to study parameter space.
(a) Daily and monthly estimates of NSE(Q) for the Latin Hybercube sample (LH
sample). (b) Daily and monthly estimates of NSE(E) for the LH sample. (c) Joint
representation of the selected performance metrics, NSE(Qd) and NSE(Em), and
radial filter to extract the closest 500 points to the ideal solution (DELSA sample). (d)
DELSA sample and the 1% perturbations where DELSA sensitivity analysis is to be
performed.
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Fig. S6.2: DELSA first order sensitivities against model performance for station R-5005 com-
puted for streamflow (a) and evaporation (b). Only the most influential parameters
for the selected metrics are shown.
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Fig. S6.3: Results of the Pareto-based sensitivity analysis and the multi-objective calibration for
station R-5005. (a) Pareto fronts corresponding to the parameterizations evaluated
during the Pareto-based sensitivity analysis. (b) Pareto front resulting from the
constrained multi-objective calibration for the selected parameterization.
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Fig. S6.4: Predictive intervals corresponding to the multi-objective calibration for station
R-5005. (a and b) Daily streamflow simulations and observations for two different
subperiods. (c) Monthly evaporation simulations and GLEAM data for the complete
study period.
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Fig. S6.5: Parameter distributions from the multi-objective calibration exercise for station
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Fig. S6.7: Same as Fig. S6.1, but for station R-2011.
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Fig. S6.8: Same as Fig. S6.2, but for station R-2011.
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Fig. S6.9: Same as Fig. S6.3, but for station R-2011.
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Fig. S6.10: Same as Fig. S6.4, but for station R-2011.
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Fig. S6.12: Same as Fig. S6.6, but for station R-2011.
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Table S7.1: NSE values during the complete baseline period for the Miño-Sil, Galicia Costa
and Cantábrico Districts.

Code Name Q-only calibrated Q-E calibrated
Qd Qm Em Qd Qm Em

R-1177 Ordunte 0.29 0.43 -0.09 0.22 0.31 0.65
R-1253 La Cohilla 0.50 0.69 -0.83 0.35 0.38 0.07
R-1406 Salime 0.84 0.91 -0.30 0.80 0.84 0.67
R-1637 Albarellos 0.55 0.78 -0.27 0.57 0.78 0.61
R-1718 Montearenas 0.74 0.79 -0.27 0.74 0.81 0.83
R-1741 San Sebastián 0.49 0.70 -0.90 0.42 0.51 0.54
R-1781 Edrada Conso 0.67 0.85 0.50 0.67 0.83 0.63
R-1790 Chandreja 0.75 0.86 0.05 0.71 0.82 0.64
R-1791 Prada 0.76 0.86 -0.34 0.72 0.79 0.73
R-1795 Leboreiro Mao 0.47 0.50 -0.56 0.46 0.50 0.47
R-1796 Vilasouto 0.60 0.70 -0.23 0.54 0.66 0.72
R-1807 Las Salas 0.50 0.78 -0.46 0.40 0.75 0.71
R-1808 Las Conchas 0.77 0.87 -0.75 0.74 0.87 0.75
GS-1163 Lemona 0.51 0.68 -0.27 0.40 0.43 0.71
GS-1196 Coterillo 0.73 0.80 0.34 0.71 0.80 0.67
GS-1285 Rales 0.80 0.85 0.72 0.74 0.83 0.77
GS-1302 Ozanes 0.75 0.77 0.24 0.75 0.79 0.79
GS-1378 Grado 0.67 0.76 -0.36 0.50 0.39 0.73
GS-1395 Trevias 0.76 0.58 0.27 0.79 0.61 0.82
GS-1427 San Tirso de Abres 0.76 0.80 -0.63 0.59 0.54 0.70
GS-1431 Masma 0.51 0.72 -1.93 0.26 0.25 0.65
GS-1433 San Acisclo 0.51 0.72 0.38 0.50 0.69 0.74
GS-1438 Chavín 0.24 0.61 0.52 0.24 0.61 0.65
GS-1464 Muñiferal 0.64 0.82 0.46 0.63 0.79 0.76
GS-1485 Anllóns 0.76 0.83 0.36 0.64 0.77 0.86
GS-1552 Puente Cira 0.65 0.84 -0.61 0.63 0.83 0.76
GS-1724 Quilós 0.79 0.78 -0.69 0.74 0.73 0.60
GS-1734 Puente de Domingo Flórez 0.76 0.86 -0.59 0.64 0.67 0.68
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Table S7.2: NSE values during the complete baseline period for the Duero River Basin District.

Code Name Q-only calibrated Q-E calibrated
Qd Qm Em Qd Qm Em

R-2001 Cuerda del Pozo 0.62 0.70 -0.75 0.44 0.33 0.67
R-2011 Arlanzón 0.72 0.83 -0.06 0.70 0.81 0.66
R-2013 La Requejada 0.62 0.76 -0.31 0.54 0.61 0.12
R-2014 Camporredondo 0.69 0.83 -0.12 0.63 0.78 0.16
R-2026 Barrios de Luna 0.66 0.77 -0.15 0.58 0.67 0.53
R-2027 Villameca 0.77 0.84 -0.10 0.60 0.63 0.71
R-2030 Porma Juan Benet 0.59 0.67 -0.95 0.48 0.44 0.33
R-2032 Riaño 0.75 0.88 -0.06 0.69 0.84 0.35
R-2036 Linares del Arroyo 0.48 0.64 -0.12 0.63 0.77 0.79
R-2037 Burgomillodo 0.56 0.77 0.51 0.54 0.76 0.79
R-2038 Santa Teresa 0.68 0.84 -0.45 0.60 0.73 0.47
GS-2005 Osma 0.70 0.69 -0.39 0.65 0.57 0.63
GS-2016 Pajares de Pedraza 0.50 0.41 0.79 0.47 0.37 0.80
GS-2031 Peral de Arlanza 0.75 0.84 0.24 0.69 0.79 0.76
GS-2041 Villalcázar de Sirga 0.46 0.50 0.31 0.49 0.58 0.75
GS-2044 Valladolid-Esgueva 0.63 0.63 -0.07 0.46 0.52 0.44
GS-2047 Mediana de Voltoya 0.41 0.51 0.17 0.33 0.36 0.46
GS-2052 Guĳas Albas 0.60 0.72 0.64 0.59 0.70 0.69
GS-2057 Villovela de Pirón 0.33 0.46 0.16 0.16 0.23 0.78
GS-2068 Caldas de Nocedo 0.59 0.68 -0.22 0.52 0.59 0.34
GS-2124 Medina de Rioseco 0.29 0.51 -0.54 0.27 0.34 0.53
GS-2126 Villárdiga 0.39 0.08 -0.72 0.57 0.44 0.61
GS-2818 Rabal 0.70 0.78 -0.55 0.58 0.59 0.74
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Table S7.3: NSE values during the complete baseline period for the Tajo River Basin District.

Code Name Q-only calibrated Q-E calibrated
Qd Qm Em Qd Qm Em

R-3006 Entrepeñas 0.62 0.67 0.24 0.74 0.82 0.76
R-3050 El Vado 0.73 0.86 0.49 0.72 0.84 0.68
R-3065 Pálmaces 0.61 0.86 0.11 0.64 0.86 0.55
R-3068 Beleña 0.65 0.84 0.24 0.61 0.77 0.66
R-3111 El Burguillo 0.78 0.91 0.40 0.73 0.85 0.78
R-3145 Jerte Plasencia 0.74 0.87 -0.62 0.73 0.85 0.75
R-3148 Borbollón 0.75 0.90 -0.93 0.68 0.77 0.71
R-3157 El Vellón 0.58 0.82 0.22 0.55 0.80 0.61
R-3160 Rivera de Gata 0.75 0.88 -1.16 0.75 0.88 0.72
R-3189 Navacerrada 0.64 0.79 0.51 0.61 0.74 0.68
R-3191 Navalmedio 0.68 0.81 0.71 0.68 0.80 0.71
R-3196 Pinilla 0.66 0.81 0.52 0.64 0.80 0.65
R-3199 Navalcán 0.71 0.84 -0.36 0.75 0.83 0.53
R-3287 Alcorlo 0.58 0.84 0.69 0.60 0.83 0.72
GS-3045 Priego Escabas 0.64 0.75 0.25 0.59 0.74 0.58
GS-3161 Arenas de San Pedro 0.79 0.93 -0.96 0.85 0.94 0.57
GS-3163 Piedras Albas 0.52 0.59 -0.24 0.48 0.55 0.68
GS-3172 Huete 0.26 0.01 0.56 0.15 0.17 0.67
GS-3173 La Peraleja 0.25 0.56 0.53 0.23 0.42 0.62
GS-3182 Garcibuey 0.68 0.89 -0.58 0.67 0.78 0.69
GS-3185 Santibáñez el Bajo 0.65 0.72 -1.56 0.61 0.70 0.66
GS-3186 Priego Trabaque 0.51 0.89 0.38 0.30 0.83 0.75
GS-3212 Malpica 0.55 0.70 0.37 0.57 0.74 0.73
GS-3213 Alcaudete de la Jara 0.33 0.62 -0.31 0.30 0.59 0.50
GS-3217 Horcajo de Montemayor 0.47 0.59 0.07 0.57 0.70 0.72
GS-3218 Miranda del Castañar 0.51 0.68 0.44 0.49 0.62 0.73
GS-3220 Santa Marta de Magasca 0.43 0.57 0.31 0.51 0.71 0.50
GS-3221 Bohonal de Ibor 0.68 0.84 -0.44 0.64 0.77 0.69
GS-3222 Peraleda de San Román 0.48 0.61 -0.12 0.46 0.67 0.66
GS-3224 Gargüera 0.69 0.88 0.13 0.69 0.87 0.51
GS-3226 Candeleda 0.38 0.54 0.05 0.38 0.53 0.69
GS-3229 Losar de la Vera 0.38 0.59 -0.99 0.38 0.60 0.68
GS-3233 Valdecaba Baja 0.27 0.39 -0.48 0.35 0.56 0.47
GS-3234 Jajaíz de la Vera 0.60 0.83 -0.39 0.66 0.84 0.70
GS-3235 Nuñomoral 0.62 0.81 -0.60 0.64 0.79 0.69
GS-3236 El Ladrillar 0.40 0.52 -0.52 0.29 0.34 0.75
GS-3244 Campillo de Deleitosa 0.63 0.85 -0.69 0.55 0.73 0.65
GS-3246 Ayuela 0.53 0.60 -0.06 0.51 0.58 0.64
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Table S7.3 (cont.): NSE values during the complete baseline period for the Tajo River Basin
District.

Code Name Q-only calibrated Q-E calibrated
Qd Qm Em Qd Qm Em

GS-3250 Trujillo Magasca 0.41 0.63 -0.11 0.25 0.57 0.49
GS-3251 La Pueblanueva 0.42 0.59 0.32 0.39 0.56 0.60
GS-3254 Aragosa 0.32 0.38 0.12 0.29 0.37 0.33
GS-3255 Torre del Burgo 0.50 0.53 0.17 0.38 0.37 0.46
GS-3260 Villanueva de la Vera 0.37 0.60 -1.48 0.37 0.64 0.66
GS-3266 Camarenilla 0.22 0.46 -1.13 0.19 0.39 0.42
GS-3273 Velilla de San Antonio 0.36 0.39 0.20 0.35 0.37 0.52
GS-3276 Torrejón 0.50 0.66 -0.05 0.52 0.75 0.61
GS-3278 Valencia de Alcántara 0.27 0.45 -0.47 0.31 0.58 0.64
GS-3279 Trujillo Tozo 0.48 0.51 -0.17 0.43 0.58 0.54
GS-3284 Cañaveral 0.34 0.44 -0.55 0.35 0.58 0.67

Table S7.4: NSE values during the complete baseline period for the Guadiana River Basin
District.

Code Name Q-only calibrated Q-E calibrated
Qd Qm Em Qd Qm Em

R-4005 Gasset 0.72 0.87 0.13 0.66 0.81 0.58
R-4007 Torre de Abraham 0.71 0.82 -0.09 0.63 0.70 0.56
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Table S7.5: NSE values during the complete baseline period for the Guadalquivir River Basin
District.

Code Name Q-only calibrated Q-E calibrated
Qd Qm Em Qd Qm Em

R-5001 Tranco de Beas 0.74 0.83 -0.32 0.60 0.57 0.69
R-5005 Rumblar 0.55 0.80 -0.29 0.36 0.40 0.37
R-5006 Montoro III 0.60 0.64 -0.24 0.34 0.53 0.43
R-5011 El Pintado 0.69 0.78 -0.85 0.75 0.91 0.64
R-5012 Bembézar 0.56 0.71 -0.75 0.58 0.86 0.65
R-5014 Cala 0.66 0.86 -0.40 0.61 0.80 0.63
R-5016 Aracena 0.73 0.88 0.35 0.67 0.78 0.68
R-5017 Retortillo 0.75 0.92 0.26 0.73 0.88 0.61
R-5018 Guadalmena 0.71 0.74 0.26 0.72 0.78 0.66
R-5020 Cubillas 0.52 0.74 -0.31 0.39 0.58 0.51
R-5021 Los Bermejales 0.80 0.85 0.02 0.80 0.87 0.76
R-5022 Torre del Águila 0.79 0.91 0.18 0.56 0.83 0.56
R-5029 La Bolera 0.46 0.64 -0.53 0.37 0.40 0.47
R-5037 Sierra Boyera 0.50 0.78 -0.14 0.46 0.70 0.46
R-5038 Quéntar 0.56 0.67 -0.05 0.29 0.39 0.49
R-5039 Quiebrajano -0.10 -0.47 -1.34 -0.47 -1.11 -0.35
R-5044 Dañador 0.38 0.46 -1.12 0.29 0.26 0.32
R-5045 Aguascebas 0.61 0.79 -0.46 0.58 0.71 0.67
R-5046 Guadanuño Cerro Muriano 0.64 0.83 -0.72 0.55 0.73 0.64
R-5047 Martín Gonzalo 0.60 0.83 -0.18 0.47 0.63 0.60
R-5048 Canales 0.35 0.38 -0.08 0.16 0.15 0.46
R-5049 Yeguas 0.71 0.82 -0.72 0.64 0.80 0.69
R-5050 Colomera 0.71 0.79 -0.94 0.64 0.71 0.50
R-5052 La Fernandina 0.73 0.86 -0.30 0.53 0.73 0.63
R-5055 José Torán 0.69 0.82 -0.98 0.67 0.87 0.65
R-5056 Huesna 0.75 0.84 -1.03 0.74 0.88 0.62
R-5062 Guadalmellato 0.63 0.79 -0.89 0.60 0.73 0.68
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Table S7.6: NSE values during the complete baseline period for the Segura River Basin District.

Code Name Q-only calibrated Q-E calibrated
Qd Qm Em Qd Qm Em

R-7001 Anchuricas 0.57 0.75 -0.39 0.53 0.70 0.64
R-7004 La Novia 0.42 0.67 -0.32 0.23 0.05 0.35
R-7005 Alfonso XIII 0.37 0.36 -0.24 0.26 0.33 0.15
R-7006 La Cierva 0.42 0.30 -0.76 0.21 0.05 0.31
R-7010 Santomera 0.85 0.84 -0.04 0.83 0.75 0.62
R-7011 Argos 0.34 0.48 -0.36 0.20 0.37 0.57

Table S7.7: NSE values during the complete baseline period for the Júcar River Basin District.

Code Name Q-only calibrated Q-E calibrated
Qd Qm Em Qd Qm Em

R-8002 Alcora 0.37 0.28 -0.43 0.42 0.34 0.67
R-8006 Arquillo de San Blas 0.09 0.57 0.71 0.08 0.51 0.81
R-8007 Beniarrés 0.73 0.84 -0.28 0.49 0.19 0.54
R-8015 Guadalest 0.14 0.04 -0.84 -0.07 -0.38 0.40
R-8018 Onda 0.16 -0.36 0.26 0.21 -0.29 0.66
R-8019 Regajo 0.38 0.22 -0.51 0.05 -0.58 0.33
R-8023 La Toba 0.65 0.72 0.15 0.58 0.60 0.63
R-8025 Ulldecona 0.07 0.40 0.34 0.06 0.33 0.76
GS-8028 Villalba Alta 0.35 0.38 0.64 0.35 0.41 0.73
GS-8087 Belmontejo 0.10 0.10 -0.34 -1.50 -0.47 0.51
GS-8104 Los Santos 0.30 0.24 0.48 0.25 0.20 0.52
GS-8137 Tiriez 0.47 0.48 -0.11 0.49 0.55 0.64
GS-8138 Balazote 0.81 0.82 -0.29 0.65 0.70 0.62
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Table S7.8: NSE values during the complete baseline period for the Ebro River Basin District.

Code Name Q-only calibrated Q-E calibrated
Qd Qm Em Qd Qm Em

R-9801 Ebro 0.61 0.81 -0.36 0.49 0.52 0.42
R-9808 Maidevera 0.70 0.79 -0.05 0.28 0.10 0.30
R-9809 Mansilla 0.68 0.65 -0.12 0.53 0.48 0.70
R-9812 La Tranquera 0.04 0.40 0.53 0.04 0.33 0.72
R-9814 Las Torcas 0.23 0.33 0.29 0.21 0.22 0.59
R-9815 Moneva 0.23 0.66 -0.13 0.38 0.50 0.45
R-9817 Cueva Foradada 0.05 0.17 0.73 0.22 0.55 0.74
R-9821 Pena 0.51 0.75 0.45 0.51 0.65 0.65
R-9825 Eugui 0.70 0.85 0.05 0.63 0.84 0.20
R-9829 Yesa 0.55 0.54 0.50 0.54 0.51 0.71
R-9830 Alloz 0.67 0.73 -0.09 0.52 0.47 0.64
R-9841 Vadiello 0.46 0.00 -0.59 0.28 -0.93 0.52
R-9868 Ciurana -0.44 -1.98 -1.66 -0.59 -5.30 0.57
GS-9031 Zorita 0.87 0.85 0.46 0.80 0.70 0.72
GS-9040 Boltaña 0.40 0.32 0.40 0.38 0.33 0.77
GS-9047 Capella 0.59 0.70 0.21 0.52 0.64 0.58
GS-9052 Beceite 0.03 0.39 -0.25 -0.01 -0.29 0.55
GS-9055 Morata de Jiloca 0.26 0.30 0.35 0.30 0.31 0.74
GS-9057 Embid de Ariza 0.12 0.16 -0.06 0.41 0.53 0.53
GS-9058 Jubera 0.30 0.27 0.24 0.40 0.42 0.32
GS-9064 Aspurz 0.58 0.61 0.04 0.50 0.48 0.65
GS-9071 Estella 0.65 0.47 -0.20 0.64 0.56 0.67
GS-9073 Sangüesa 0.40 0.53 0.14 0.38 0.51 0.74
GS-9078 Garínoain 0.36 0.64 0.42 0.51 0.59 0.77
GS-9079 Urroz 0.63 0.77 0.40 0.68 0.85 0.57
GS-9086 Barásoain 0.24 0.39 0.12 0.26 0.24 0.60
GS-9093 Oña 0.52 0.61 0.52 0.53 0.60 0.66
GS-9095 Barbastro 0.43 0.30 -0.07 0.26 0.33 0.70
GS-9155 Biota 0.41 0.59 -0.12 0.21 0.28 0.28
GS-9165 Miranda de Ebro 0.68 0.81 -0.73 0.45 0.32 0.62
GS-9177 Batea 0.49 0.59 0.29 0.34 0.52 0.78
GS-9184 Ateca 0.30 0.34 -0.25 0.21 0.21 0.48
GS-9185 Cintruénigo 0.42 0.46 0.60 0.33 0.31 0.71
GS-9187 Erla 0.49 0.65 0.42 0.52 0.71 0.66
GS-9188 Berguenda 0.59 0.62 -0.34 0.64 0.76 0.72
GS-9189 Orón 0.14 0.13 0.39 0.07 0.06 0.53
GS-9197 Leza de Río Leza 0.40 0.40 0.60 0.43 0.44 0.71
GS-9221 Larrinoa 0.51 0.53 0.18 0.49 0.51 0.51
GS-9231 Candasnos 0.14 -0.02 -0.12 -0.07 -0.92 0.40
GS-9253 Arnedillo 0.54 0.59 0.69 0.55 0.60 0.76
GS-9261 Trasobares 0.48 0.43 0.06 0.36 0.30 0.51
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Fig. S7.1: CDFs of (a) NSE(Qm) and its decomposition into (b) rQ, (c) αQ and (d) βQ for both
calibration experiments during the calibration and evaluation periods.
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Fig. S7.2: Delta changes of annual and seasonalP,Q,E andTWS for theperiod 2021-2050under
the RCP4.5 scenario using WRFCCSM. Significant changes at the 90% confidence
level have been marked with solid borders.
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Fig. S7.3: Delta changes of annual and seasonal P, Q, E and TWS for the period 2021-2050
under the RCP4.5 scenario usingWRFMPI. Significant changes at the 90% confidence
level have been marked with solid borders.
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Fig. S7.4: Delta changes of annual and seasonalP,Q,E andTWS for theperiod 2021-2050under
the RCP8.5 scenario using WRFCCSM. Significant changes at the 90% confidence
level have been marked with solid borders.
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Fig. S7.5: Delta changes of annual and seasonal P, Q, E and TWS for the period 2021-2050
under the RCP8.5 scenario usingWRFMPI. Significant changes at the 90% confidence
level have been marked with solid borders.
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Fig. S7.6: Delta changes of annual and seasonalP,Q,E andTWS for theperiod 2071-2100under
the RCP4.5 scenario using WRFCCSM. Significant changes at the 90% confidence
level have been marked with solid borders.
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Fig. S7.7: Delta changes of annual and seasonal P, Q, E and TWS for the period 2071-2100
under the RCP4.5 scenario usingWRFMPI. Significant changes at the 90% confidence
level have been marked with solid borders.

200



Supporting Information for Chapter 7

Fig. S7.8: Delta changes of Ep for all the future scenarios corresponding to WRFCCSM.
Significant changes at the 90% confidence level have beenmarkedwith solid borders.
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Fig. S7.9: Delta changes ofEp for all the future scenarios corresponding toWRFMPI. Significant
changes at the 90% confidence level have been marked with solid borders.
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