
T E S I S D O C TO R A L

N E W A P P L I C AT I O N S O F M O D E L S B A S E D O N
I M P R E C I S E P R O B A B I L I T I E S W I T H I N DATA M I N I N G

Presented by:
Serafín Moral García

Advisors:
Joaquín Abellán Mulero

Carlos Javier Mantas Ruiz

To apply for the:
International PhD Degree in Information and Communication

Technologies.

Programa de Doctorado en Tecnologías de la Información y la
Comunicación

Noviembre 2022



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Editor: Universidad de Granada. Tesis Doctorales  
Autor: Serafín Moral García 
ISBN: 978-84-1117-627-9 
URI: https://hdl.handle.net/10481/79149 

https://hdl.handle.net/10481/79149


Serafín Moral García

New applications of models based on imprecise probabilities within Data Mining

Tesis Doctoral. ©© 2022

This document was written with LATEX using a modified ArsClassica, a rework-
ing of the ClassicThesis style designed by André Miede.

License
Este obra está bajo una licencia de Creative Commons
Reconocimiento-NoComercial-SinObraDerivada 4.0 Interna-
cional. https://creativecommons.org/licenses/by-nc-nd/4.0/

Contact
☞ seramoral@decsai.ugr.es



A B S T R AC T

When we have information about a finite set of possible alternatives pro-
vided by an expert or dataset, a mathematical model is needed to represent
such information. In some cases, a unique probability distribution is not ap-
propriate for this purpose because the available information is not sufficient.
For this reason, several mathematical theories and models based on imprecise
probabilities have been developed in the literature. In this thesis work, we an-
alyze the relations between some imprecise probability theories and study the
properties of some models based on imprecise probabilities. When imprecise
probability theories and models arise, tools for quantifying the uncertainty-
based information in such theories and models, usually called uncertainty
measures, are needed. In this thesis work, we analyze the properties of some
existing uncertainty measures in theories based on imprecise probabilities and
propose uncertainty measures in imprecise probability theories and models
that present some advantages over the existing ones.

Situations in which it is necessary to represent the information provided
by a dataset about a finite set of possible alternatives arise in classification, an
essential task within Data Mining. This well-known task consists of predicting,
for a given instance described via a set of attributes, the value of a variable
under study, known as the class variable. In classification, it is often needed to
quantify the uncertainty-based information about the class variable. For this
purpose, classical probability theory (PT) has been employed for many years.
In the last years, classification algorithms that represent the information about
the class variable via imprecise probability models have been developed. Via
experimental studies, it has been shown that classification methods based on
imprecise probabilities significantly outperform the ones that utilize PT when
data contain errors.

When classifying an instance, classifiers tend to predict a single value of the
class variable. Nonetheless, in some cases, there is not enough information
available for a classifier to point out a single class value. In these situations, it
is more logical that classifiers predict a set of class values instead of a single
value of the class variable. This is known as Imprecise Classification.

Classification algorithms (including Imprecise Classification) often aim to
minimize the number of instances erroneously classified. This would be opti-
mal if all classification errors had the same importance. Nevertheless, in prac-
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tical applications, different classification errors usually lead to different costs.
For this reason, classifiers that take the misclassification costs into account,
also known as cost-sensitive classifiers, have been developed in the literature.

Traditional classification (including Imprecise Classification) assumes that
each instance has a single value of a class variable. However, in some domains,
this task does not fit well because an instance may belong to multiple labels
simultaneously. In these domains, the Multi-Label Classification task (MLC)
is more suitable than traditional classification. MLC aims to predict the set of
labels associated with a given instance described via an attribute set. Most of
the MLC methods proposed so far represent the information provided by an
MLC dataset about the set of labels via classical PT.

In this thesis work, we develop new classification algorithms based on im-
precise probability models, including Imprecise Classification, cost-sensitive
Imprecise Classification, and MLC, that present some advantages and obtain
better experimental results than the ones of the state-of-the-art.



R E S U M E N A M P L I O E N C A S T E L L A N O

Motivación

Cuando se dispone de información sobre un conjunto finito de posibles al-
ternativas proveniente de un experto o un conjunto de datos, se suele emplear
un modelo matemático para representar dicha información. Esto es muy útil
para inferencia y toma de decisiones en el conjunto de alternativas. La teoría
clásica de la probabilidad (TP) es la forma estándar de representar la informa-
ción disponible sobre las alternativas. En la TP, la probabilidad de cada suceso
puede determinarse de forma precisa. Este enfoque clásico es adecuado en mu-
chos casos donde hay información suficiente para determinar la probabilidad
de cada alternativa de forma exacta.

Sin embargo, en algunas situaciones, no hay información suficiente dispo-
nible para determinar la probabilidad de cada alternativa de manera precisa.
Así, en tales casos, una única distribución de probabilidad no es apropiada
para representar la información disponible en el conjunto de alternativas. Es-
to puede deberse a imprecisión o errores en la extracción de los datos. Por
ejemplo, supongamos que tenemos una urna con diez bolas, cuatro de color
negro, cuatro con color blanco y otras dos cuyo color no se sabe. En este caso,
si extraemos aleatoriamente una bola de la urna, sabemos que la probabilidad
de que esa bola sea negra es menor o igual que 0,6 y mayor o igual que 0,4,
pero no podemos determinar de forma precisa la probabilidad de tal suceso,
puesto que no sabemos cuántas de las otras dos bolas son negras.

Por este motivo, se han desarrollado muchas teorías matemáticas basadas
en probabilidades imprecisas para representar la información disponible. Ejem-
plos de ellas son conjuntos credales, probabilidades coherentes inferior y superior,
capacidades de Choquet, teoría de la evidencia (TE), e intervalos de probabilidad al-
canzables. Todas estas teorías generalizan la TP. Algunas teorías de probabilida-
des imprecisas son más generales que otras, y hay también pares de teorías de
probabilidades imprecisas tales que ninguna de ellas generaliza la otra. Una
de las teorías más generales de probabilidad imprecisa es la basada en con-
juntos credales 1. Dado que cada teoría basada en probabilidades imprecisas
tiene propiedades matemáticas específicas, algunas de estas teorías son más
apropiadas que otras en situaciones concretas.

1 Un conjunto credal es un conjunto cerrado y convexo de distribuciones de probabilidad.

vii



Para representar la información sobre una muestra de observaciones acerca
de un conjunto de alternativas, se han desarrollado en la literatura modelos
matemáticos concretos basados en teorías de probabilidades imprecisas. Uno
de los más remarcables es el modelo impreciso de Dirichlet (IDM). Este modelo
es paramétrico y cumple algunos principios que se establecieron como apro-
piados para inferencia. Posteriormente, se propuso el modelo no paramétrico de
inferencia predictiva (NPI-M). A diferencia del IDM, el NPI-M es un enfoque
no paramétrico que no asume conocimiento previo sobre los datos. Además,
las inferencias con el NPI-M suelen producir resultados intuitivamente más
coherentes que las inferencias con el IDM. Pese a esto, el NPI-M necesita li-
diar con restricciones difíciles debido a la representación de los datos usada
en este modelo. De hecho, el conjunto de distribuciones de probabilidad com-
patibles con el NPI-M no es convexo. Para abordar este punto, se propuso el
modelo aproximado no paramétrico de inferencia predictiva (A-NPI-M), que consis-
te en la envolvente convexa del conjunto de distribuciones de probabilidad
consistentes con el NPI-M.

Cuando surgen teorías y modelos basados en probabilidades imprecisas, se
hacen necesarias herramientas para cuantificar la información basada en incer-
tidumbre en tales teorías modelos. Dichas herramientas se conocen como me-
didas de incertidumbre. La entropía de Shannon es la medida de incertidumbre
bien establecida en la TP y es el punto de partida para medidas de incertidum-
bre en teorías más generales. En tales teorías, hay más tipos de incertidumbre
que en la TP y, por consiguiente, es más difícil encontrar una medida de incerti-
dumbre que satisfaga todas las propiedades esenciales. El estudio de medidas
de incertidumbre en las teorías de probabilidades imprecisas más generales
toma como referencia el estudio de medidas de incertidumbre en la TE. En
esa teoría, la información puede representarse por una asignación básica de pro-
babilidad (BPA) o, alternativamente, por una función de creencia. Hasta ahora,
la entropía máxima en el conjunto de distribuciones de probabilidad compa-
tibles con una función de creencia es la única medida de incertidumbre en la
TE que satisface todas las propiedades y comportamientos requeridos. No obs-
tante, el algoritmo propuesto hasta ahora para el cómputo de tal medida de
incertidumbre es complejo. Por esta razón, se han propuesto muchas medidas
alternativas en la TE, pero ninguna de estas medidas verifica las propiedades
necesarias. Ha de señalarse que los intervalos de creencia para singletons, cu-
yas cotas inferior y superior son, respectivamente, los valores de probabilidad
inferior y superior para singletons según la función de creencia, son más fáci-
les de manejar que las funciones de creencia para cuantificar la información
basada en incertidumbre en la TE. De este modo, muchas de las alternativas
a la entropía máxima propuestas durante los últimos años se basan en los



intervalos de creencia para singletons. Sin embargo, cuando se usan los inter-
valos de creencia para singletons para representar la información basada en
incertidumbre en vez de la función de creencia, se puede perder información.
Con respecto a teorías generales basadas en probabilidades imprecisas, el má-
ximo de entropía en conjuntos credales es una medida de incertidumbre bien
establecida porque satisface las propiedades cruciales. Sin embargo, no hay
algoritmo hasta ahora para calcular la entropía máxima en un conjunto credal
general, aunque hay algoritmos para el cómputo de la entropía máxima en
algunas teorías específicas de probabilidades imprecisas, como intervalos de
probabilidad alcanzables y capacidades de Choquet de orden 2, una teoría bas-
tante general. También se han propuesto algoritmos para la entropía máxima
en modelos de probabilidad imprecisa como el IDM o el NPI-M.

Situaciones en las que se necesita representar la información sobre un con-
junto de alternativas proporcionada por un conjunto de datos surgen en cla-
sificación, un área esencial dentro de la Minería de Datos. Esta tarea consiste
en predecir, para una instancia descrita mediante un conjunto de atributos, el
valor de una variable bajo estudio llamada variable clase. Hoy en día, la clasifi-
cación se usa frecuentemente en muchas áreas. Los algoritmos de clasificación
suelen representar la información dada por el conjunto de datos sobre la va-
riable clase mediante un modelo matemático. Por lo tanto, en clasificación, a
menudo se requiere cuantificar la información basada en incertidumbre sobre
la variable clase.

Durante muchos años, la TP se ha empleado para representar la informa-
ción sobre la variable clase en clasificación, considerando que la información
dada por el conjunto de datos es suficiente para determinar la probabilidad
de los valores clase de forma precisa. En los últimos años se han puesto algo-
ritmos que representan la formación sobre la variable clase mediante modelos
de probabilidades imprecisas. Tales algoritmos consideran que la información
que hay en un conjunto de datos de clasificación es útil para aproximar la
probabilidad de cada valor clase, pero no es suficiente para determinarla de
forma precisa. Por medio de estudios experimentales, se ha mostrado que los
métodos de clasificación basados en probabilidades imprecisas rinden signifi-
cativamente mejor que los que utilizan la TP cuando hay ruido de la variable
clase2 en los datos.

Los clasificadores suelen intentar minimizar el número de predicciones in-
correctas. Este punto es óptimo cuando todos los errores de clasificación tie-
nen la misma importancia. No obstante, en aplicaciones prácticas, diferentes
errores de clasificación a menudo implican costes diferentes. Por ejemplo, en

2 En clasificación, el término ‘ruido’ se usa para referirse a errores en los datos.
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diagnóstico médico, las consecuencias de predecir incorrectamente que un pa-
ciente no tiene una enfermedad seria son probablemente mucho peores que
las consecuencias de predecir erróneamente que el paciente no tiene dicha en-
fermedad; en predicción de software defectuoso, el coste de módulos defectuosos
predichos como no defectuosos podría ser más alto que el coste de módulos
no defectuosos predichos como defectuosos; en detección de fraudes de crédito,
predecir que una tarjeta de crédito fraudulenta es legal probablemente cause
pérdidas económicas mucho mayores para bancos e instituciones financieras
que predecir una tarjeta de crédito normal como fraudulenta. Por consiguien-
te, se han desarrollado clasificadores que tienen en cuenta los costes de errores,
conocidos como clasificadores sensibles al coste.

Cuando se clasifica una instancia, los clasificadores sensibles e insensibles al
coste normalmente predicen un único valor de la variable clase. Sin embargo,
en algunas situaciones, la información dada por el conjunto de datos no es su-
ficiente para que un clasificador señale a un único valor clase. En estos casos,
es probablemente más lógico que los clasificadores predigan un conjunto de
valores de la variable clase, lo que se conoce como clasificación imprecisa. Por
ejemplo, supongamos que, en un conjunto de datos de clasificación para medi-
cina, hay cinco valores clase, correspondiente a cinco enfermedades que puede
tener un paciente. Es posible que, para predecir la enfermedad de un paciente,
la información dada por el conjunto de datos solo nos permita saber que el
paciente puede tener tres de las cinco enfermedades, pero no hay información
suficiente para determinar cuál de esas tres enfermedades tiene el paciente. En
esta situación, aunque la enfermedad de paciente no puede determinarse de
forma precisa, la información dada puede ser útil para conocer un tratamiento
adecuado para el paciente. No obstante, podría ser arriesgado predecir una de
esas tres enfermedades porque, en caso de error, el tratamiento podría tener
consecuencias negativas. Intuitivamente, una métrica de evaluación para un
algoritmo de clasificación imprecisa ha de considerar si las predicciones son
correctas (el valor clase real está entre los predichos), y cómo de informativas
son las predicciones, lo que se mide por el número medio de valores clase
predichos.

Para desarrollar métodos de clasificación imprecisa, las teorías basadas en
probabilidades imprecisas son más apropiadas que la TP. Hasta ahora se han
propuesto pocos algoritmos de clasificación imprecisa. El primero fue el Naïve
Credal Classifier (NCC), que combina el IDM con la suposición naïve (todos
los atributos son independientes dada la variable clase) para dar predicciones
imprecisas. Posteriormente, se propuso un algoritmo de clasificación impreci-
sa basado en árboles de decisión, llamado el Imprecise Credal Decision Tree



(ICDT). Tanto el NCC como el ICDT se adaptaron para clasificación sensible
al coste.

La clasificación tradicional (incluyendo clasificación imprecisa) supone que
cada instancia tiene único valor de una variable clase. No obstante, en algunos
dominios, esta tarea no encaja bien porque una instancia puede pertenecer a
múltiples etiquetas simultáneamente. Por ejemplo, en categorización de texto, si
un texto trata sobre la visita de Donald Trump a Francia, tiene sentido que
tal texto pertenezca a las etiquetas ‘Estados Unidos’ y‘Francia’; en biología,
una proteína puede tener múltiples funciones en el cuerpo humano; en una
imagen o fragmento de música pueden aparecer varias emociones. En estos
dominios, la tarea de Clasificación multi-etiqueta (MLC) es más adecuada que
la clasificación tradicional. La MLC trata de predecir el conjunto de etiquetas
asociadas a una instancia dada descrita mediante un conjunto de atributos.

Se han desarrollado hasta ahora muchos enfoques a MLC. Los métodos para
MLC pueden dividirse en dos grupos. Por un lado, los métodos de transforma-
ción del problema convierten la tarea de MLC en múltiples problemas de clasifi-
cación tradicional y combinan sus soluciones para dar una salida a la tarea de
MLC. Por otro lado, los métodos de adaptación de algoritmo adaptan directamen-
te los algoritmos existentes para clasificación tradicional a MLC. Muchos de
estos métodos representan la información dada por un conjunto de datos de
MLC sobre el conjunto de etiquetas mediante la TP. Dado que el número de
etiquetas en MLC suele ser muy grande, explotar correlaciones entre etiquetas
es un reto importante para los algoritmos de MLC. Hay algunos enfoques para
determinar correlaciones entre etiquetas en MLC basados en probabilidades
precisas. Las cadenas de clasificadores son considerados métodos simples y
efectivos para explotar correlaciones entre etiquetas en MLC. Estos métodos,
para cada etiqueta, tienen en cuenta las predicciones realizadas para las eti-
quetas anteriores según un orden establecido. Dicho orden influye mucho en
el rendimiento de una cadena de clasificadores. Además, en MLC, a menudo
muy pocas instancias pertenecen a una cierta etiqueta. En consecuencia, los
algoritmos para MLC suelen sufrir un problema de no balanceo de clases.

Objetivos

En esta tesis seguimos la línea de investigación de teorías y modelos de
probabilidades imprecisas y medidas de incertidumbre con probabilidades
imprecisas. También proponemos nuevos métodos de clasificación basados en
probabilidades imprecisas que obtienen mejor rendimiento que los del estado
del arte.
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Hay cinco objetivos principales de esta tesis doctoral, los cuales pueden
dividirse en objetivos específicos:

1. En primer lugar, tratamos de analizar las propiedades y relaciones entre
algunas teorías y modelos de probabilidades imprecisas. Este objetivo se
divide en dos:

a) Caracterizar los conjuntos credales representables mediante funcio-
nes de creencia e intervalos de probabilidad alcanzables, dos teorías
de probabilidades imprecisas tales que ninguna de ellas generaliza
la otra. Para esto, nuestro objetivo es dar un conjunto de condicio-
nes necesarias y suficientes bajo las cuales un conjunto de interva-
los de probabilidad alcanzables es representable por una función
de creencia, así como una caracterización de funciones de creencia
representables por intervalos de probabilidad alcanzables.

b) Analizar las propiedades principales de conjuntos credales asocia-
dos al A-NPI-M, comparándolas con las propiedades de conjuntos
credales correspondientes al IDM.

2. Con respecto a medidas de incertidumbre, nuestro objetivo principal es
analizar las propiedades de algunas medidas de incertidumbre en teo-
rías y modelos de probabilidades imprecisas y proponer medidas de
incertidumbre en probabilidades imprecisas que presenten algunas ven-
tajas sobre las existentes. Específicamente, hay cuatro objetivos relacio-
nados con medidas de incertidumbre:

a) Hacer un análisis crítico de alternativas recientes a la entropía má-
xima en la TE mediante sus propiedades y comportamientos.

b) Estudiar las propiedades matemáticas y requisitos de comporta-
miento esenciales para medidas de incertidumbre en intervalos de
creencia para singletons. También tratamos de analizar cuáles de
esas propiedades matemáticas y requisitos de comportamiento sa-
tisfacen cada una de las medidas de incertidumbre en intervalos de
creencia para singletons propuestas hasta ahora.

c) Presentar una medida de incertidumbre en intervalos de creencia
para singletons que, a diferencia de las propuestas hasta ahora, sa-
tisfaga todas las propiedades matemáticas y requisitos de compor-
tamiento fundamentales para este tipo de medida. Además, preten-
demos que, en aplicaciones prácticas, la medida propuesta sea más
fácil de manejar que la entropía máxima en una BPA, la medida de
incertidumbre bien establecida en la TE.



d) Proponer procedimientos para el cómputo de las principales medi-
das de incertidumbre en conjuntos credales derivados del A-NPI-
M.

3. Tratamos de desarrollar un nuevo método de clasificación tradicional
basado en modelos de probabilidades imprecisas que logre mejores re-
sultados que la versión existente de tal algoritmo basada en la TP, espe-
cialmente cuando hay ruido de la variable clase en los datos.

4. En cuanto a la clasificación imprecisa, tratamos de desarrollar mejoras so-
bre los algoritmos propuestos hasta ahora en este campo. Concretamen-
te, los objetivos vinculados a clasificación imprecisa pueden resumirse
como sigue:

a) Presentar un nuevo Imprecise Credal Decision Tree que use el A-
NPI-M, a diferencia del ya existente, que emplea el IDM. Nuestra
idea es mostrar que el A-NPI-M obtiene resultados estadísticamente
equivalentes al IDM con la mejor elección del parámetro cuando se
emplean ambos modelos en el Imprecise Credal Decision Tree.

b) Proponer una nueva versión del algoritmo NCC que lleve a predic-
ciones mucho más informativas que el NCC existente.

c) Desarrollar el primer método ensemble para clasificación imprecisa.
Hemos de remarcar que, como los clasificadores imprecisos suelen
proporcionar como salida un conjunto de valores clase, no es tri-
vial combinar múltiples predicciones imprecisas. Esta puede ser la
razón por la que no se ha propuesto hasta ahora ningún método
ensemble para clasificación imprecisa. Por lo tanto, para desarrollar
un ensemble de clasificadores imprecisos tenemos que proponer
una técnica para combinar múltiples predicciones imprecisas.

d) Con respecto a clasificación imprecisa sensible al coste, nuestro obje-
tivo es proponer un nuevo Imprecise Credal Decision Tree sensible
al coste que presente algunas ventajas y logre mejores resultados
que el ya existente.

5. Nuestro último objetivo es presentar nuevos métodos para MLC basados
en modelos de probabilidades imprecisas que rindan mejor que los exis-
tentes basados en probabilidades precisas, siendo la mejora más notable
conforme hay más ruido en las etiquetas. Este objetivo se divide en los
cuatro siguientes:
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a) Analizar el uso de probabilidades imprecisas en dos métodos para
MLC de transformación del problema, señalando que supone una
mejora sobre la TP, especialmente con ruido en las etiquetas.

b) Proponer una nueva adaptación de árboles de decisión para MLC
que use probabilidades imprecisas, a diferencia de la ya existente,
basada en la TP. Nuestro objetivo es mostrar que nuestra adapta-
ción propuesta es menos sensible al ruido en las etiquetas que la
propuesta hasta ahora.

c) Presentar nuevos algoritmos lazy para MLC que empleen probabili-
dades imprecisas, a diferencia de algunos métodos lazy para MLC
desarrollados hasta ahora, que usan la TP. Tratamos de demostrar
teórica y empíricamente que nuestros métodos lazy para MLC pro-
puestos son más adecuados que los métodos lazy para MLC exis-
tentes basados en la TP para abordar en problema de no balanceo
de clases que aparece frecuentemente en MLC, especialmente con
ruido en las etiquetas.

d) Proponer un nuevo método para explotar correlaciones entre etique-
tas en MLC basado en modelos de probabilidades imprecisas. Tra-
tamos de ilustrar que nuestro método propuesto presenta algunas
ventajas sobre otros algoritmos existentes para explotar correlacio-
nes entre etiquetas en MLC basados en la TP. La idea es corroborar
este punto mediante un análisis experimental.

Finalmente, también tratamos de aplicar modelos de probabilidades impre-
cisas a dominios importantes como análisis de riesgo de crédito y análisis de acci-
dentes de tráfico para extraer conocimiento útil en tales dominios.

Estructura de la tesis

Esta tesis doctoral se divide en cuatro partes más un apéndice. Cada parte
se subdivide en capítulos.

• En la primera parte contextualizamos nuestro trabajo y establecemos
nuestros objetivos principales (capítulo 1).

• La parte ii describe el conocimiento previo necesario para nuestro tra-
bajo de tesis. Esta parte se divide en cinco capítulos. En el capítulo 2

se describen las principales teorías y modelos de probabilidades impre-
cisas usados en este trabajo. El capítulo 3 da una visión general de las



principales medidas de incertidumbre en probabilidades imprecisas pro-
puestas hasta ahora. En el capítulo 4 exponemos la tarea de clasificación,
así como los enfoques a esta tarea considerados en este trabajo de tesis.
La tarea de clasificación imprecisa y los métodos propuestos hasta ahora
para tal tarea se detallan en el capítulo 5. El capítulo 6 describe la tarea
de clasificación multi-etiqueta y los enfoques principales a este ámbito.

• Las contribuciones de esta tesis se presentan en la parte iii. Dicha parte
se divide en cinco capítulos. Algunas teorías y modelos de probabilida-
des imprecisas se analizan en el capítulo 7, el cual se corresponde con
el primer objetivo. En el capítulo 8, que se asocia con el segundo objeti-
vo, analizamos algunas medidas de incertidumbre en teorías y modelos
de probabilidades imprecisas y proponemos medidas de incertidumbre
en tales teorías y modelos. En el capítulo 9 se presenta un nuevo méto-
do de clasificación tradicional basado en probabilidades imprecisas. Tal
capítulo se asocia con el tercer objetivo. El capítulo 10, correspondiente
al cuarto objetivo, detalla nuestros algoritmos propuestos para clasifica-
ción imprecisa. Nuestros métodos propuestos para clasificación multi-
etiqueta basados en modelos de probabilidades imprecisas se presentan
en el capítulo 11, el cual se asocia con el quinto objetivo.

• Las conclusiones e ideas para trabajo futuro se dan en la parte iv (capí-
tulo 12).

Finalmente, en el apéndice A, mostramos la aplicación de algunos modelos
de probabilidad imprecisa para extraer conocimiento útil en algunos dominios
importantes como análisis de riesgo de crédito y análisis de accidentes de
tráfico.

Conclusiones

A continuación describimos las contribuciones principales de este trabajo
de tesis.

• Se han caracterizado los conjuntos credales representables por funcio-
nes de creencia e intervalos de probabilidad alcanzables: hemos dado un
conjunto de condiciones necesarias y suficientes que ha de cumplir un
conjunto de intervalos de probabilidad alcanzables para ser representa-
ble mediante una función de creencia. Se ha demostrado que, para com-
probar dichas condiciones, se requiere considerar varios subconjuntos y
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comprobar algunas desigualdades simples con las sumas de las proba-
bilidades inferiores y superiores en dichos subconjuntos. Los conjuntos
se obtienen también de forma fácil y rápida. También hemos dado una
caracterización de funciones de creencia representables por medio de in-
tervalos de probabilidad alcanzables. En concreto, se ha demostrado que
la condición necesaria y suficiente para que una función de creencia sea
representable por un conjunto de intervalos de probabilidad alcanzables
es la siguiente: la diferencia entre cualquier par de elementos focales
de la correspondiente asignación básica de probabilidad de cardinalidad
mayor o igual que 2 tiene una cardinalidad menor o igual a uno. Usan-
do nuestra condición dada, hemos caracterizado algunos tipos especia-
les de funciones de creencia, como p-boxes o medidas de necesidad, que
pueden representable mediante conjuntos de intervalos de probabilidad
alcanzables.

• Con respecto a modelos de probabilidades imprecisas, hemos analizado
las propiedades principales de los conjuntos credales derivados del A-
NPI-M, comparándolas con conjuntos credales asociados al IDM. Se ha
mostrado que, al igual que con el IDM, a medida que el tamaño muestral
converge a infinito, los conjuntos credales relacionados con el A-NPI-M
convergen a una única distribución de probabilidad, que se obtiene me-
diante frecuencias relativas; el A-NPI-M es un modelo más impreciso
que el IDM con el valor más utilizado del parámetro, el recomendado
en la literatura; una de las propiedades más remarcables de los conjun-
tos credales correspondientes al A-NPI-M es que no siempre pueden
representarse por una función de creencia, a diferencia de los conjuntos
credales derivados del IDM. El cálculo de la inversa de Möbius para el
A-NPI-M es más complejo que para el IDM. Lo mismo ocurre con el con-
junto de puntos extremos del conjunto credal. Por lo tanto, el A-NPI-M
es un modelo más complejo que el IDM. No obstante, ha de remarcar
que el IDM supone conocimiento previo de los datos mediante un pará-
metro, a diferencia del A-NPI-M.

• En cuanto a medidas de incertidumbre, hemos hecho un análisis crítico
de dos alternativas a la entropía máxima en la TE propuestas hace unos
años. Se ha probado que dichas medidas no satisfacen muchas de las
propiedades matemáticas cruciales para medidas de incertidumbre en la
TE, y su comportamiento en algunos escenarios es también cuestionable.
Además, hemos realizado un estudio sobre las propiedades matemáticas
y requisitos de comportamiento esenciales para medidas de incertidum-
bre en intervalos de creencia para singletons. Dicho estudio se ha basa-



do en el llevado a cabo previamente para medidas de incertidumbre en
BPAs. Hemos mostrado que ninguna de las medidas de incertidumbre
en intervalos de creencia para singletons propuestas hasta ahora verifi-
ca todas las propiedades matemáticas y requisitos de comportamiento
fundamentales para este tipo de medida. También hemos propuesto una
medida de incertidumbre en intervalos de creencia para singletons que
consiste en la entropía máxima en el conjunto credal asociado a dichos in-
tervalos. Hemos demostrado que, pese a que nuestra medida propuesta
requiere un cómputo más complejo que las otras medidas de incertidum-
bre en intervalos de creencia para singletons propuestas hasta ahora, es
la única que satisface todas las propiedades matemáticas y requisitos de
comportamiento cruciales para medidas de incertidumbre en intervalos
de creencia para singletons. También hemos señalado que nuestra medi-
da propuesta da una cota superior de la entropía máxima en el conjunto
credal compatible con una BPA, la medida de incertidumbre bien esta-
blecida en la TE, siendo el cómputo de la primera medida notablemente
más rápido que el de la segunda. Además, hemos mostrado cómo calcu-
lar las medidas de incertidumbre más importantes en conjuntos credales
asociados con el A-NPI-M. Esto hace que el A-NPI-M sea muy útil para
aplicaciones prácticas.

• Dentro de la clasificación tradicional, hemos presentado una nueva ver-
sión del algoritmo Naïve Bayes (NB), llamado el Imprecise m-probability
estimation Naïve Bayes (ImNB), que considera las probabilidades a prior
de los valores clase para estimar las probabilidades condicionales, como
una versión del NB propuesta hace unos años. Sin embargo, ImNB usa
la medida de incertidumbre bien establecida en conjuntos credales pa-
ra estimar las probabilidades a priori, a diferencia de modelos previos,
que usan frecuencias relativas con corrección de Laplace para estimar
tales probabilidades. Por consiguiente, nuestro ImNB propuesto es más
robusto al ruido en la variable clase que las versiones del algoritmo NB
propuestas previamente. Un estudio experimental con varios niveles de
ruido ha puesto de manifiesto que ImNB obtiene mejor rendimiento que
las versiones del algoritmo NB que usan estimaciones clásicas de las
probabilidades, con y sin ruido en los datos.

• Se han propuesto mejoras sobre los métodos de clasificación imprecisa
desarrollados hasta ahora. Específicamente, podemos resumir las contri-
buciones de esta tesis vinculadas a clasificación imprecisa en los siguien-
tes puntos:
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– Hemos propuesto una nueva versión del algoritmo ICDT que em-
plea el A-NPI-M para el criterio de ramificación y para los interva-
los de probabilidad en los nodos hoja (ICDT-ANPI), mientras que el
ICDT existente usa el IDM. Resultados experimentales han mostra-
do que el ICDT-ANPI obtiene un rendimiento equivalente al ICDT
con la mejor elección del parámetro para el IDM. En consecuencia,
el A-NPI-M es más apropiado que el IDM para árboles de decisión
para clasificación imprecisa porque el primer modelo no supone
conocimiento previo sobre los datos mediante un parámetro, a dife-
rencia del segundo.

– Se ha desarrollado una nueva versión del algoritmo NCC llamada
Extreme Prior Naïve Credal Classifier (EP-NCC). A diferencia de
NCC, EP-NCC tiene en cuenta las probabilidades a prior inferior
y superior de los valores clase para estimar las probabilidades con-
dicionales inferior y superior. Se ha mostrado que las predicciones
hechas por EP-NCC son probablemente más informativas que las
realizadas por NCC, no siendo el riesgo de predicciones incorrectas
mucho más alto con EP-NCC. Un análisis experimental ha revelado
que EP-NCC rinde significativamente mejor que NCC dado que el
primer método es mucho más informativo que el segundo, mien-
tras que la diferencia entre el rendimiento de ambos algoritmos es
acierto no es estadísticamente significativa. El análisis experimental
también ha puesto de manifiesto que EP-NCC e ICDT obtienen ren-
dimiento equivalente, pero ICDT requiere un tiempo computacio-
nal mucho más alto que EP-NCC. Así, debido al buen rendimiento
y al bajo tiempo computacional, EP-NCC es más adecuado para
grandes conjuntos de datos de clasificación imprecisa que los algo-
ritmos existentes para tal tarea. Este es un punto importante a favor
de nuestro algoritmo propuesto EP-NCC a causa de la creciente
cantidad de datos en cualquier área.

– En este trabajo de tesis se ha presentado el primer método ensemble
para clasificación imprecisa. Se ha tenido en cuenta que el esquema
Bagging ha obtenido buen rendimiento en clasificación precisa, es-
pecialmente cuando se usa con árboles de decisión credales (CDTs),
lo que fomenta diversidad. Así, nuestro método ensemble propues-
to para clasificación imprecisa consiste en un esquema Bagging que
usa el algoritmo ICDT (la adaptación de CDT a clasificación im-
precisa) como clasificador base (Bagging-ICDT). La clave es cómo
combinar las predicciones realizadas por múltiples clasificadores



imprecisos. Esto no es trivial, ya que, si las predicciones impreci-
sas no se combinan adecuadamente, el ensemble podría no rendir
mejor que un clasificador individual porque puede producirse una
reducción de información excesiva. Nuestra técnica de combinación
propuesta intenta que el clasificador Bagging impreciso sea lo más
informativo posible. Dicha técnica consiste en predecir como no do-
minados solo aquellos valores clase con el valor mínimo posible de
dominancia, lo que implica que no es muy conservativa. Median-
te un análisis experimental, hemos mostrado que el Bagging-ICDT
con nuestra técnica de combinación propuesta obtiene mejor rendi-
miento que el método ICDT; Bagging-ICDT es más informativo que
ICDT, mientras que la diferencia entre el rendimiento de ambos
algoritmos en hacer predicciones correctas no es significativa.

– Con respecto a la clasificación sensible al coste, hemos propues-
to un nuevo Imprecise Credal Decision Tree sensible al coste que
pondera las instancias considerando el coste de clasificar errónea-
mente el valor clase correspondiente. Nuestro método propuesto
tiene en cuenta los costes de errores en el proceso de construcción
del árbol, a diferencia del cost-sensitive Imprecise Credal Decision
Tree existente, que solo considera los costes de errores al clasificar
instancias en nodos hoja. Hemos mostrado que el criterio que usa
nuestro Imprecise Credal Decision Tree sensible al coste propuesto
para clasificar instancias en nodos hoja es probablemente más efec-
tivo que el empleado por el Imprecise Credal Decision Tree sensible
al coste existente porque las predicciones son posiblemente más in-
formativas. Un estudio experimental ha puesto de manifiesto que
nuestro Imprecise Credal Decision Tree sensible al coste propuesto
rinde significativamente mejor que el ya existente; aunque el coste
de clasificación incorrecta de nuestro método propuesto es más al-
to, nuestro algoritmo propuesto es mucho más informativo y logra
un mejor compromiso entre bajo coste de predicciones erróneas y
predicciones informativas. De este modo, concluimos que nuestro
Imprecise Credal Decision Tree sensible al coste propuesto es más
apropiado que el ya existente para aplicaciones prácticas donde los
costes de errores son diferentes y la información disponible no es
suficiente para que los clasificadores predigan un único valor clase.

• También hemos propuesto nuevos algoritmos para MLC basados en mo-
delos de probabilidad imprecisa. Hemos mostrado que el ruido intrínse-
co de etiquetas en MLC es probablemente más alto que el ruido intrín-
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seco de clase en clasificación tradicional. En consecuencia, puesto que
los algoritmos que usan probabilidades imprecisas obtienen mejor ren-
dimiento que los basados en la TP cuando hay ruido de clase en los
datos, nuestros métodos propuestos para MLC son probablemente más
adecuados que los desarrollados hasta ahora basados en probabilidades
precisas. Hemos comprobado este punto mediante estudios experimen-
tales. En concreto, las contribuciones de esta tesis con respecto a MLC
pueden resumirse en los siguientes puntos:

– En primer lugar, hemos analizado el uso de CC4.5 en dos métodos
de transformación del problema: Binary Relevance (BR) y Calibra-
ted Label Ranking (CLR). BR es un método de MLC muy simple
que ha obtenido buen rendimiento en la práctica, y CLR explota
correlaciones entre etiquetas por pares y alivia el problema de no
balanceo de clases que suele aparecer en MLC. Hemos mostrado
que, como CC4.5 es más robusto al ruido de clase que C4.5, BR y
CLR son menos sensibles al ruido en las etiquetas con CC4.5 que
con C4.5. Así, puesto que el ruido intrínseco de etiquetas en MLC
es probablemente mayor que el ruido intrínseco de clase en clasifi-
cación tradicional, CC4.5 es probablemente más adecuado que C4.5
para abordar los problemas de clasificación binaria en BR y CLR.
Resultados experimentales han mostrado que tanto BR como CLR
obtienen mejor rendimiento con CC4.5 que con C4.5, siendo la me-
jora más notable a medida que el ruido en las etiquetas es mayor.

– Hemos propuesto una nueva adaptación de árboles de decisión pa-
ra MLC que emplea el A-NPI-M para el criterio de ramificación y
para predecir las probabilidades sobre la relevancia de las etiquetas
para las instancias en los nodos hoja. Hemos mostrado que nuestra
adaptación propuesta es menos sensible al ruido en las etiquetas
que la propuesta hasta ahora, la cual se basa en la TP. Resultados
experimentales han señalado que nuestra adaptación propuesta ob-
tiene mejor rendimiento que la existente, siendo la mejora más no-
table a medida que hay más ruido en las etiquetas. Por lo tanto, el
A-NPI-M es más apropiado que la TP para usarse en las adapta-
ciones de árboles de decisión para MLC, especialmente cuando hay
ruido en las etiquetas.

– También hemos presentado dos algoritmos lazy para MLC que, pa-
ra clasificar una instancia, emplean estimadores estadísticos basa-
dos en las instancias vecinas, de forma similar a algunos algorit-
mos lazy existentes para MLC. Sin embargo, nuestros métodos lazy



propuestos usan el A-NPI-M para dichos estimadores estadísticos,
a diferencia de los existentes, que utilizan frecuencias relativas con
corrección de Laplace. Hemos mostrado que nuestros algoritmos
lazy propuestos para predicen que una etiqueta es relevante para
una instancia más frecuentemente que los existentes, y este hecho
se enfatiza con ruido en las etiquetas. Un estudio experimental ha
revelado que nuestros métodos lazy propuestos para MLC son más
apropiados que los existentes basados en probabilidades precisas
para tratar el problema de no balanceo de clases que suele surgir
en MLC, especialmente con ruido en las etiquetas.

– Finalmente, hemos propuesto un procedimiento de ordenación de
etiquetas en cadenas de clasificadores que estima la correlación en-
tre cada par de etiquetas mediante el A-NPI-M y ordena las eti-
quetas con un procedimiento greedy. En dicho procedimiento, para
cada etiqueta candidata, se considera la correlación media entre esa
etiqueta y las ya insertadas, así como la correlación media entre esa
etiqueta y las no insertadas aún. Se ha mostrado que nuestro pro-
cedimiento propuesto presenta algunas ventajas sobre los desarro-
llados hasta ahora basados en correlaciones entre etiquetas; emplea
un modelo de probabilidades imprecisas para estimar correlaciones
entre etiquetas, que es más apropiado que probabilidades precisas;
nuestro método propuesto, para cada etiqueta candidata, tiene en
cuenta la correlación de ella con las etiquetas ya insertadas y la
correlación de las etiquetas no insertadas con la etiqueta candida-
ta, mientras que alguno de los métodos de ordenación propuestos
hasta ahora solo consideran las correlaciones entre la etiqueta can-
didata y las no insertadas aún. Un estudio experimental ha mos-
trado que nuestro método propuesto de ordenación obtiene mejor
rendimiento que los basados en correlaciones entre etiquetas desa-
rrollados hasta ahora.
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1 I N T R O D U C T I O N A N D O B J E C T I V E S

1.1 Overview

When there is information about a finite set of possible alternatives pro-
vided by an expert or dataset, a mathematical model is often employed to
represent such information. This is very useful for inferences and decision-
making in the set of alternatives. Classical probability theory (PT) is the stan-
dard way of representing the information involved in the set of alternatives.
In PT, the probability of each event can be precisely determined. This classical
approach is suitable in many situations where there is sufficient information
to determine the probability of each alternative in an exact way.

Nevertheless, in some cases, there is not enough information available to
precisely determine the probability of each alternative. Hence, in such situ-
ations, a single probability distribution is not sufficient for representing the
information available in the set of alternatives. This can be due to imprecision
or errors in the extraction of the data. For example, suppose that we have an
urn with ten balls, four with the color white, four with the color black, and
the other two with unknown color. In this case, if we randomly extract a ball
from the urn, we know that the probability of such a ball being black is lower
or equal to 0.6 and greater or equal to 0.4, but we cannot precisely determine
the probability of such an event since we do not know how many of the other
two balls are black.

For this reason, many mathematical theories based on imprecise probabilities
have been developed in the literature to represent the available information.
Examples are credal sets, coherent lower and upper probabilities, Choquet capacities,
evidence theory (ET), and reachable probability intervals. All these theories gen-
eralize PT. Some imprecise probability theories are more general than others,
and there are also pairs of imprecise probability theories such that any of them
generalizes the other. One of the most general imprecise probability theories
is the one based on credal sets1. As each imprecise probability theory has spe-
cific mathematical properties, some theories are more appropriate than others
in specific situations. A detailed description of these theories can be found in
[208].

1 A credal set is a closed and convex set of probability distributions.
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In order to represent the information involved in a sample of observations
about the set of alternatives, specific mathematical models based on imprecise
probability theories have been developed in the literature. One of the most
remarkable is the parametric Imprecise Dirichlet Model (IDM) [209]. This model
satisfies some principles that were claimed to be desirable for inference. After-
wards, the Non-Parametric Predictive Inference Model (NPI-M) was proposed [58,
59]. Unlike the IDM, the NPI-M is a non-parametric approach that does not
assume previous knowledge about the data. Moreover, inferences made with
the NPI-M tend to produce intuitively more coherent results than inferences
made with the IDM [59]. Even so, the NPI-M needs to deal with difficult con-
straints due to the representation of the data used in this model. In fact, the
set of probability distributions compatible with the NPI-M is not convex. In
order to handle this issue, the Approximate Non-Parametric Predictive Inference
Model (A-NPI-M) was developed in [5], which consists of the convex hull of
the set of probability distributions consistent with the NPI-M.

When imprecise probability theories and models arise, tools for quantifying
the uncertainty-based information in such theories and models are needed.
Such tools are known as uncertainty measures. The Shannon entropy [189] is
the well-established uncertainty measure in PT and is the starting point for
uncertainty measures in more general theories than PT. In such theories, there
are more types of uncertainty than in PT and, thus, it is more difficult to find
an uncertainty measure that satisfies all essential properties. The study of un-
certainty measures in the most general imprecise probability theories takes the
study of uncertainty measures in ET as a reference. In that theory, the informa-
tion can be represented by a basic probability assignment (BPA) or, alternatively,
by a belief function. So far, the maximum entropy on the set of probability dis-
tributions compatible with a belief function is the only uncertainty measure
in ET that satisfies all required mathematical properties and behaviors [21].
Nonetheless, the algorithm proposed so far to compute such an uncertainty
measure is complex. For this reason, many alternative measures have been
proposed in ET, but none of these measures verifies the necessary properties.
It must be remarked that the belief intervals for singletons, whose lower and
upper bounds are, respectively, the lower and upper probability values for
the singletons according to the belief function, are easier to manage than be-
lief functions for quantifying uncertainty-based information in ET. In this way,
many alternative measures to the maximum entropy proposed during the last
years are based on belief intervals for singletons. However, when belief in-
tervals for singletons are used to represent the uncertainty-based information
instead of the belief function, some information may be lost. Concerning gen-
eral imprecise probability theories, the maximum entropy on credal sets is a
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well-established uncertainty measure because it satisfies the crucial properties.
Nonetheless, there is no algorithm so far to compute the maximum entropy
on a general credal set, even though there are algorithms for computing the
maximum entropy in some specific imprecise probability theories, such as
reachable probability intervals [13] or Choquet capacities of order 2 [16], a
quite general imprecise probability theory. Algorithms for the maximum en-
tropy in imprecise probability models such as the IDM or the NPI-M have also
been proposed [2, 5].

Situations in which it is necessary to represent the information about a finite
set of possible alternatives provided by a dataset arise in classification [107], an
essential area within Data Mining. This well-known task consists of predicting,
for a given instance described via a set of attributes or features, the value of a
variable under study called the class variable. Nowadays, classification is com-
monly used in many domains. For example, in medicine, this task is widely
employed to predict whether a patient has a disease by using a set of features
of such a patient; in credit fraud detection, classification is suitable for detecting
whether a card is fraudulent by utilizing a set of attributes of the card. Clas-
sification algorithms usually represent the information provided by a dataset
about the class variable by means of a mathematical model. Thereby, in classi-
fication, it is often needed to quantify the uncertainty-based information about
the class variable involved in a dataset.

For many years, in order to represent the information about the class vari-
able in classification, PT has been employed, considering that the information
provided by the dataset is sufficient for precisely determining the probabili-
ties of the class values. In the last years, classification algorithms that repre-
sent the information about the class variable via imprecise probability models
have been developed. Examples can be found in [148–150]. Such algorithms
consider that the information involved in a classification dataset is useful for
approximating the probability of each class value, but it is not sufficient for
precisely determining it. Via experimental studies, it has been shown that clas-
sification methods based on imprecise probabilities significantly outperform
the ones that utilize PT when data contain class noise.2

Classifiers often aim to minimize the number of misclassifications. This
point is optimal when all classification errors have the same importance. How-
ever, in practical applications, different classification errors usually yield dif-
ferent costs. For instance, in medical diagnosis, the consequences of incorrectly
predicting that a patient does not have a serious disease might be far worse
than the consequences of erroneously predicting that the patient does not have

2 In classification, the term ‘noise’ is used to refer to errors in the data.
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such a disease [140, 171, 183]; in software defect prediction, the cost of defective
modules predicted as non-defective is probably higher than the cost of non-
defective modules predicted as defective [26, 142, 191]; in credit fraud detection,
predicting that a fraudulent credit card is legal may cause much higher eco-
nomical losses for banks and financial institutions than predicting a normal
credit card as fraudulent [24, 166, 182]. Thus, classifiers that take the error
costs into account, known as cost-sensitive classifiers, have been developed.

When classifying an instance, cost-sensitive and cost-insensitive classifiers
normally predict a single value of the class variable. Nevertheless, in some
situations, the information provided by the dataset is not sufficient for a clas-
sifier to point out a unique class value. In these cases, it may be more logical
that classifiers predict a set of values of the class variable, which is known
as Imprecise Classification [227]. For example, suppose that, in a classification
dataset for medicine, there are five class values, corresponding to five diseases
that a patient can have. It is possible that, for predicting the disease of a
given patient, the information provided by the dataset only allows us to know
that the patient can have three of the five diseases, but there is not sufficient
information for determining which of the three diseases the patient has. In
this situation, even though the disease of the patient cannot be precisely de-
termined, the information provided might be useful for knowing a suitable
treatment for the patient. Nonetheless, it might be risky to predict one of
the three diseases because, in case of error, the treatment could have negative
consequences. Intuitively, an evaluation metric for an Imprecise Classification
algorithm has to consider whether the predictions are correct (the real class
value is between the predicted ones) and how informative the predictions are,
which is measured by the average number of predicted class values.

In order to develop Imprecise Classification methods, imprecise probability
theories are more appropriate than classical PT [227]. Few Imprecise Classi-
fication algorithms have been proposed so far. The first one was the Naïve
Credal Classifier (NCC) [62, 227], which combines the IDM with the naïve
assumption (all attributes are independent given the class variable) to out-
put imprecise predictions. Afterwards, an Imprecise Classification algorithm
based on Decision Trees, called the Imprecise Credal Decision Tree (ICDT),
was proposed in [10]. Both NCC and ICDT were adapted for cost-sensitive
classification [10].

Traditional classification (including Imprecise Classification) assumes that
each instance has a unique value of a class variable. Nevertheless, in some
domains, this task does not fit well since each instance may belong to multiple
labels simultaneously. For example, in text categorization, if a text treats about
the visit of Donald Trump to France, it makes sense that such a text belongs
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to the labels the ‘United States’ and ‘France’; within biology, a protein may
have multiple functions in the human body; several emotions can appear in
an image or music fragment. In these domains, the Multi-Label Classification task
(MLC) is more suitable than traditional classification. MLC aims to predict the
set of labels associated with a given instance described via an attribute set.

Many approaches to MLC have been developed so far. A review of the main
MLC algorithms can be seen in [97]. MLC methods can be divided into two
groups. On the one hand, the problem transformation methods convert the MLC
task into multiple traditional classification problems and then combine their
solutions to provide an output for the MLC task. On the other hand, the algo-
rithm adaptation methods directly adapt the existing algorithms for traditional
classification to MLC. Most of these methods represent the information pro-
vided by an MLC dataset about the set of labels via classical PT. As the num-
ber of labels in MLC tends to be very high, exploiting label correlations is an
important challenge for MLC algorithms. There are some approaches for de-
termining label correlations in MLC based on precise probabilities. Moreover,
in MLC, very few instances often belong to a certain label. In consequence,
MLC algorithms usually suffer from a class-imbalance problem.

1.2 Objectives

In this thesis work, we follow the research lines of imprecise probability
theories and models and uncertainty measures within imprecise probabilities.
We also propose new classification methods based on imprecise probability
models that outperform the ones of the state-of-the-art.

There are five main aims of this thesis work, which can be divided into
specific objectives:

1. Firstly, we aim to analyze the properties and relations between some
imprecise probability theories and models. This objective is divided into
two aims:

a) Characterize the credal sets representable through belief functions
and reachable probability intervals, two imprecise probability theo-
ries such that any of them generalizes the other. For this purpose,
our goal is to give a set of necessary and sufficient conditions un-
der which a reachable set of probability intervals is representable
by a belief function, as well as a characterization of belief functions
representable via reachable probability intervals.
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b) Analyze the main properties of credal sets associated with the A-
NPI-M, comparing them with the properties of IDM credal sets.

2. With regard to uncertainty measures, our main goal is to analyze the
properties of some uncertainty measures in imprecise probability the-
ories and models and propose uncertainty measures within imprecise
probabilities that present some advantages over the existing ones. Specif-
ically, there are four objectives concerning uncertainty measures:

a) Make a critical analysis of recent alternatives to the maximum en-
tropy in ET via its properties and behaviors.

b) Study the essential mathematical properties and behavioral require-
ments for uncertainty measures on belief intervals for singletons.
We also aim to analyze which of these properties and behavioral
requirements are satisfied by each one of the uncertainty measures
on belief intervals for singletons proposed so far.

c) Introduce an uncertainty measure on belief intervals for singletons
that, unlike the ones proposed so far, satisfies all the fundamental
mathematical properties and behavioral requirements for this type
of measure. Furthermore, we aim that, in practical applications, the
proposed measure is easier to manage than the maximum entropy
on a BPA, the well-established uncertainty measure in ET.

d) Propose procedures to compute the main uncertainty measures on
A-NPI-M credal sets.

3. We aim to develop a traditional classification method based on imprecise
probability models that achieves better results than the existing versions
of this algorithm based on classical PT, especially with class noise in the
data.

4. Concerning Imprecise Classification, we aim to develop improvements
over the Imprecise Classification algorithms proposed so far. Specifically,
the objectives regarding Imprecise Classification can be summarized as
follows:

a) Introduce a version of the Imprecise Credal Decision Tree algorithm
that uses the A-NPI-M, unlike the existing one, which utilizes the
IDM. Our idea is to show that the A-NPI-M achieves statistically
equivalent results to the IDM with the best choice of the parameter
when both models are employed in the Imprecise Credal Decision
Tree method.
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b) Propose a new version of the NCC algorithm that leads to far more
informative predictions than the existing NCC.

c) Develop the first ensemble method for Imprecise Classification. We
must remark that, as imprecise classifiers tend to output a set of
class values, it is not trivial to combine multiple imprecise predic-
tions. This might be the reason why no ensemble algorithm for Im-
precise Classification has been proposed so far. Therefore, in order
to develop an ensemble of imprecise classifiers, we must propose a
technique for combining multiple imprecise predictions.

d) Regarding cost-sensitive Imprecise Classification, our goal is to pro-
pose a new cost-sensitive Imprecise Credal Decision Tree that presents
some advantages and achieves better results than the existing one.

5. Our last goal is to introduce new MLC algorithms based on imprecise
probability models that perform better than the existing ones based on
precise probabilities, the improvement being more notable as there is
more noise in the labels. This aim is divided into the following four
objectives:

a) Analyze the use of imprecise probabilities in two problem transfor-
mation methods for MLC, highlighting that it supposes an improve-
ment over precise probabilities, especially with noise in the labels.

b) Propose a new adaptation of Decision Trees for MLC that uses im-
precise probabilities, unlike the existing one, which is based on clas-
sical PT. Our goal is to show that our proposed adaptation is less
sensitive to noise in the labels than the one proposed so far. We
aim to show, via experiments, that our proposed adaptation signif-
icantly outperforms the existing one, the improvement being more
notable as there is more noise in the labels.

c) Introduce new lazy MLC algorithms that employ imprecise prob-
ability models, unlike some lazy MLC methods developed so far,
which use classical PT. Our goal is to show theoretically and exper-
imentally that our proposed lazy MLC methods are more suitable
than the existing lazy MLC algorithms based on precise probabili-
ties to handle the class-imbalance problem that frequently appears
in MLC, especially with noise in the labels.

d) Propose a new method to exploit label correlations in MLC based
on imprecise probability models. We aim to show that our pro-
posed method has some advantages over other existing algorithms
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for exploiting label correlations in MLC based on classical PT. The
idea is to corroborate this issue via an experimental analysis.

Finally, we also aim to apply imprecise probability models to some impor-
tant domains such as credit risk analysis and traffic accident analysis to extract
useful knowledge in such domains.

1.3 Organization of this thesis

This thesis work is structured into four parts plus an appendix. Each part
is subdivided into chapters.

• In the first part, we contextualize our work and establish our main aims
(Chapter 1).

• Part ii describes the previous knowledge necessary for our thesis work.
This part is divided into five chapters. In Chapter 2, the main imprecise
probability theories and models used in this work are described. Chapter
3 provides an overview of the main uncertainty measures on imprecise
probabilities proposed so far. In Chapter 4, we expose the classification
task, as well as the classification approaches considered in this thesis
work. The Imprecise Classification task and the methods proposed so
far for such a task are detailed in Chapter 5. Chapter 6 describes the
Multi-Label Classification task and the main approaches to this field.

• The contributions of this thesis work are presented in Part iii. Such
a part is divided into five chapters. Some imprecise probability theo-
ries and models are analyzed in Chapter 7, which corresponds to the
first objective. In Chapter 8, which is associated with the second aim,
we analyze some uncertainty measures within imprecise probability the-
ories and models and propose uncertainty measures in such theories
and models. A new traditional classification method based on imprecise
probabilities is presented in Chapter 9. Such a chapter is associated with
the third objective. Chapter 10, corresponding to the fourth aim, details
our proposed Imprecise Classification algorithms. Our proposed Multi-
Label Classification methods based on imprecise probability models are
introduced in Chapter 11, which is associated with the fifth objective.

• Conclusions and ideas for future research are given in Part iv (Chapter
12).
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Finally, in Appendix A, we show the application of some imprecise prob-
ability models to extract useful knowledge in some important domains,
such as credit risk analysis and traffic accident analysis.

1.4 Contributions

The content of Part iii, which corresponds to the contributions of this thesis
work, has appeared previously in the following publications, divided into
journal articles and conference papers:
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B AC KG R O U N D





2 I M P R E C I S E P R O B A B I L I T I E S

2.1 Introduction

For making decisions, we usually need to represent the probabilistic knowl-
edge about a finite set of possible alternatives provided by an expert or a set
of observations about that set. Classical probability theory (PT) is the stan-
dard way of representing such knowledge. In many cases, this representation
might be suitable. Nevertheless, in a large number of situations, a unique
probability distribution may not be sufficient to represent the probabilistic
knowledge involved in the set because there is not enough information avail-
able to precisely determine the probability of each alternative. For this reason,
mathematical theories based on imprecise probabilities have been developed in
the literature. All these theories generalize PT and provide some information
about the probability of each alternative without determining it precisely.

Some imprecise probability theories are more suitable than others in specific
situations, depending on the source of information about the set of alterna-
tives. We must remark that, within theories based on imprecise probabilities,
some of them are subsumed into others, and there are also pairs of imprecise
probability theories such that any of them generalizes the other.1 We show be-
low the imprecise probabilities theories considered in this thesis work. Each
one of these theories has specific mathematical properties.

1. Credal sets [137]: In this theory, the probabilistic knowledge is rep-
resented via a closed and convex set of probability distributions, also
called credal set. Such a set is composed of all probability distributions
compatible with the information available about the set of alternatives.

2. Lower and upper probabilities [195]: It uses a lower probability func-
tion and an upper probability function to determine, respectively, for
each subset of alternatives, the lower and upper probability that the true
alternative belongs to such a subset.

1 The most general imprecise probability theory is coherent lower and upper previsions [208], but
we do not consider it in this work thesis.
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3. Dempster-Shafer theory or Evidence theory [74, 186]: It represents the
probabilistic knowledge about the set of alternatives via a basic probabil-
ity assignment, which assigns a mass probability to each subset of alter-
natives. Alternatively, in this theory, the probabilistic knowledge can be
represented via a belief function, a well-known type of lower probability
function. Evidence theory has been successfully used in the literature to
deal with uncertainty-based information in practical applications such as
statistical classification [78], target identification [41], medical diagnosis [34],
or face recognition [120].

4. Probability intervals [70]: This theory employs a probability interval for
each alternative whose lower and upper bounds indicate, respectively,
the lower and upper probability of that alternative. Probability intervals
have high expressive power and can be efficiently computed. For these
reasons, this theory has been commonly used in practical applications
such as classification [3, 11, 13, 150].

We describe these theories in detail in Section 2.2.
Moreover, in Section 2.3, we describe two imprecise probability models that

allow us to make probabilistic inferences about a finite set of possible alter-
natives (or discrete variable) based on a set of observations about that set (or
variable): The Imprecise Dirichlet Model [209] and the Non-Parametric Predictive
Inference Model for multinomial data [58, 59]. These models are based on some
of the aforementioned imprecise probability theories.

2.2 Imprecise probabil ity theories

Let X = {x1, . . . , xt} be a finite set of possible alternatives2 and ℘(X) the
power set of X. Let P(X) denote the set of all probability distributions on X.

For each probability distribution p, there is an associated probability mea-
sure that will be denoted by uppercase P.

2.2.1 Credal sets

Before defining a credal set, some previous concepts are necessary.

2 or, alternatively, a discrete variable whose set of possible values is {x1, . . . , xt}.
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Given two probability distributions on X p and q, the Euclidean distance
between such probability distributions can be considered:

dist(p,q) =

√√√√ t∑
i=1

(p (xi) − q (xi))
2. (2.1)

Taking this distance function as a reference, for each probability distribution
p on X and ϵ ∈ R+, we can consider the ball with center p and radius ϵ, that is,
the set of probability distributions on X whose distance between p and them
is lower than ϵ:

B(p, ϵ) = {q ∈ P(X) | dist(p,q) < ϵ} . (2.2)

Let us consider now a set of probability distributions on X P.
The frontier of P can be defined as the set of probability distributions such

that there is no ball centered on that probability distribution contained in P or
its complement:

Fr(P) =
{
p ∈ P | B(p, ϵ)∩P ̸= ∅∧B(p, ϵ)∩P ̸= ∅, ∀ϵ ∈ R+

}
, (2.3)

where P denotes the complement of P.

Definition 2.2.1 A set of probability distributions on X, P, is said to be closed if it
contains its frontier, i.e, Fr(P) ⊆ P.

Also, it is said that a set of probability distributions, P, is convex if any
convex combination of probability distributions in P also belongs to P:

Definition 2.2.2 A set of probability distributions on X, P, is said to be convex if
∀p,q ∈ P and λ ∈ (0, 1), it holds that λp+ (1− λ)q ∈ P.

Now, a credal set is defined in the following way [137]:

Definition 2.2.3 A credal set on X is a closed and convex set of probability distribu-
tions on X.

In a credal set, there are some probability distributions that cannot be rep-
resented as a convex combination of other probability distributions belonging
to such a set. They are called the extreme points of the credal set.

Definition 2.2.4 Let P be a credal set on X. A probability distribution p ∈ P is said
to be an extreme point of P if ∄p1,p2 ∈ P and λ ∈ (0, 1) such that p1 ̸= p2 and
p = λp1 + (1− λ)p2.
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Given a credal set P, let Ext(P) denote its set of extreme points. Though
Ext(P) can be infinite, all the cases considered on this thesis will correspond
to convex polytope, with a finite set of extreme points, that is, Ext(P) < ∞.

A credal set can be geometrically represented in Rt, which can be specified
through a finite set of linear constraints or via its set of extreme points. Dif-
ferent sets of linear constraints can lead to the same credal set. In contrast,
the representation of a credal set through its set of extreme points is always
unique.

For characterizing a credal set, the set of extreme points is commonly em-
ployed. Indeed, extreme points of credal sets play an important for some
purposes, such as performing inference [65, 67] or computing bounds of some
uncertainty measures [14]. Hence, many works have been developed in the
literature for computing the set of extreme points in some types of credal sets.
For example, Miranda and Destercke [156] characterized the set of extreme
points of a credal set determined by comparative probabilities on singletons.

2.2.1.1 Udpating on credal sets

Let P be a credal set on X. Let us assume now that we know that the true
alternative belongs to a certain subset B ⊆ X. The aim now is to obtain a new
credal set from P with this new information, namely P | B. Three cases are
distinguished.

• When all the probability measures on P take a positive value on B, P | B

is obtained by conditioning the probability distributions on P on B:

P | B = {p(. | B) | p ∈ P} . (2.4)

• If P(B) = 0 ∀p ∈ P, then P | B is undetermined.

• The most interesting case arises when ∃p1,p2 ∈ P satisfying p1(B) =

0 < p2(B). In this situation, there are several ways of obtaining P | B.
The most informative is the regular conditioning [208], which considers
the probability distributions in P that takes a positive value on B and
conditions them on B:

P | B = {p(. | B) | p ∈ P∧ P(B) > 0} . (2.5)

Definition 2.2.5 [208] In general, the regular conditioning of P on B is defined as
follows:

P | B =


{p(. | B) | p ∈ P∧ P(B) > 0} if ∃p ∈ P | P(B) > 0

undetermined if P(B) = 0 ∀p ∈ P
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2.2.1.2 Marginalization of credal sets

Suppose now that we have two finite sets X = {x1, x2, . . . , xt} and Y =

{y1,y2, . . . ,yt ′}. Let P be a credal set on the product space X× Y.
We can define the marginal credal set of P on X as follows:

Definition 2.2.6 Let P be a credal set on X× Y and P(X) the set of all probability
distributions on X. The set given by:

P↓X =

pX ∈ P(X) | ∃p ∈ P : pX (xi) =

t ′∑
j=1

p
(
xi,yj

)
, ∀i = 1, 2, . . . , t


(2.6)

is called the marginal credal set of P on X.

We may note that the marginal credal set on X is composed of the marginal
probability distributions on X of the probability distributions belonging to P.

The definition of the marginal credal set of P on Y is analogous:

P↓Y =

{
pY ∈ P(Y) | ∃p ∈ P : pY

(
yj

)
=

t∑
i=1

p
(
xi,yj

)
, ∀j = 1, 2, . . . , t ′

}
,

(2.7)
where P(Y) denotes the set of all probability distributions on Y.

2.2.1.3 Independence on credal sets

Let X = {x1, x2, . . . , xt} and Y = {y1,y2, . . . ,yt ′} be two finite sets. Let p

be a probability distribution on the product space X× Y. In classical PT, the
stochastic independence is the standard definition of independence.

Definition 2.2.7 It is said that p verifies stochastic independence when

p(xi,yj) = p↓X (xi)× p↓Y (yj

)
, ∀i = 1, 2, . . . , t, j = 1, 2, . . . , t ′, (2.8)

where p↓X and p↓Y are the marginal probability distributions of p on X and Y, respec-
tively.

The definition of independence is quite simple in classical probability the-
ory. Nevertheless, when the probabilistic knowledge about X and Y is given
through a credal set, the concept of independence is much more complicated.
Indeed, six definitions of independence on credal sets have been proposed.
They are described in detail in [63].

Between these concepts, the strong independence is one of the most utilized
in practice [66, 68, 225]. There are alternative definitions of independence in
imprecise probabilities. For more details, see [63, 71].
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Definition 2.2.8 Let P be a credal set on X× Y. Let P↓X and P↓Y denote, respec-
tively, the marginal credal sets of P on X and Y, determined via Equations (2.6) and
(2.7). It is said that there is strong independence under P if P is the convex hull of
the set of probability distributions resulting from making product probabilities on the
marginal credal sets. Formally:

P = CH
(
P↓X ×P↓Y

)
, (2.9)

where
P↓X ×P↓Y =

{
pX × pY | pX ∈ P↓X ∧ pY ∈ P↓Y

}
(2.10)

and CH denotes the convex hull of a set of probability distributions.

2.2.2 Coherent lower and upper probability functions

Definition 2.2.9 [55] A capacity is a mapping P : ℘(X) → [0, 1] that satisfies the
following conditions:

P(∅) = 0 and P(X) = 1 (normalization)

P(A) ⩽ P(B), ∀A,B ⊆ X such that A ⊆ B (monotonicity)

Then, a lower probability function is a capacity whose values are interpreted as
lower bounds of probability. Likewise, an upper probability function is a capacity
whose values are interpreted as upper bounds of probability [195].

Given a lower probability function P, it is possible to define an upper prob-
ability function in the following way:

P(A) = 1− P(A), (2.11)

where A is the complement of A, ∀A ⊆ X.

Definition 2.2.10 The upper probability function given in Equation (2.11) is called
the dual or conjugate of P.

Given a lower probability function and an upper probability function, for
each subset A ⊆ X, the lower probability of A can be interpreted as the max-
imum price that you are willing to pay for the subset A, supposing that you
receive 1 unit if the real alternative is in A. Analogously, the upper probability
of A can be interpreted as your minimum selling price of a gamble that pays
you 1 unit if the true alternative belongs to A [208].

The set of probability distributions compatible with a lower probability func-
tion P (really, credal set) is determined as follows:

P (P) = {p ∈ P(X) | P(A) ⩽ P(A), ∀A ⊆ X} . (2.12)
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The first condition that needs to be imposed is P (P) ̸= ∅. When a lower
probability function verifies such a condition it is said that it avoids sure loss
[208].

An essential concept for lower and upper probability functions is coherence
[208]. This concept means that a lower probability function provides realistic
probability bounds for betting in the sense that they can not be improved ac-
cording to the available information. In this way, a lower probability function
is coherent if, for each subset, there is a probability distribution on X with
the same value on that subset as the lower probability function and with a
value greater or equal on the remaining subsets. Analogously for an upper
probability function. Formally:

Definition 2.2.11 A lower probability function P : ℘(X)→ [0, 1] is said to be coher-
ent if, ∀A ∈ ℘(X), ∃pA ∈ P(X) such that PA(A) = P(A) and PA(B) ⩾ P(B) ∀B ⊆
X with B ̸= A.

Likewise, an upper probability function P : ℘(X) → [0, 1] is said to be coherent if,
∀A ∈ ℘(X), ∃pA ∈ P(X) such that PA(A) = P(A) and PA(B) ⩽ P(B) ∀B ⊆ X

with B ̸= A.

We may note that a lower probability function P is coherent if, and only if,

P(A) = inf
p∈P(P)

P(A), ∀A ⊆ X. (2.13)

If P is a not-coherent lower probability function and P (P) ̸= ∅ is the credal
set associated with P, then it is possible to transform P into a coherent lower
probability function. Such a transformation is defined in the following way:

EP(A) = inf
p∈P(P)

P(A), ∀A ⊆ X. (2.14)

Definition 2.2.12 The set function given by Equation (2.14) is called the natural
extension of P.

Given a coherent lower probability function P and its conjugate coherent
upper probability function P, the following properties hold [208]:

1. P(A) ⩽ P(A), ∀A ⊆ X.

2.
∑t

i=1 P ({xi}) ⩽ 1 ⩽
∑t

i=1 P ({xi}).

3. P is superadditive and P is subadditive, that is, it is satisfied that:

P(A∪B) ⩾ P(A) + P(B)

P(A∪B) ⩽ P(A) + P(B), ∀A,B ⊆ X | A∩B = ∅.
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4.
P(A) + P(B) ⩽ 1+ P(A∩B), ∀A,B ⊆ X.

If A∪B = X, then

P(A) + P(B) ⩾ 1+ P(A∩B), ∀A,B ⊆ X.

5. For each A,B ⊆ X:

P(A) + P(B) ⩽ P(A∪B) + P(A∩B) ⩽ P(A) + P(B),

P(A) + P(B) ⩽ P(A∪B) + P(A∩B) ⩽ P(A) + P(B),

P(A∪B) + P(A∩B) ⩽ P(A) + P(B) ⩽ P(A∪B) + P(A∩B).

It can be observed that P and its conjugate P capture the same probabilistic
knowledge about X. In consequence, P is sufficient for representing such
knowledge and tends to be used for this purpose.

Suppose now that there is a credal set on X, P. Coherent lower and upper
probability functions can be extracted from P as follows:

P(A) = inf
p∈P

∑
xi∈A

p (xi) , P(A) = sup
p∈P

∑
xi∈A

p (xi) , ∀A ⊆ X. (2.15)

If P (P) is the credal set consistent with the lower probability function de-
fined in Equation (2.15), which is determined via Equation (2.12), then it holds
that P ⊆ P (P). However, it is not always satisfied that P (P) ⊆ P [208]. Thereby,
the coherent lower probability function involves less probabilistic knowledge
about X than the original credal set P.

Any coherent lower probability function P is uniquely represented by a set-
valued function m, which satisfies:

• m(∅) = 0,

•
∑

A∈℘(X)m(A) = 1.

This function is obtained via the Möbius transform [51, 104]:

m (A) =
∑
B⊆A

(−1)|A\B| P (B) ∀A ⊆ X. (2.16)

Definition 2.2.13 The function m is known as the Möbius inverse or mass function
of P.

Definition 2.2.14 If A ⊆ X satisfies m(A) ̸= 0, it is said that A is a focal element of
m.
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The inverse transformation is calculated as follows:

P (A) =
∑
B⊆A

m (B) , ∀A ⊆ X. (2.17)

If P is the coherent upper probability function dual of P, then it holds that:

P (A) =
∑

B|B∩A ̸=∅

m (B) , ∀A ⊆ X. (2.18)

2.2.2.1 Choquet capacities

Choquet capacities of order k [55], also called k-monotone capacities, with k ⩾ 2,
are particular cases of coherent lower and upper probability functions.

Definition 2.2.15 Let P be a lower probability function on X. P is said to be a
Choquet capacity of order k if it satisfies that

P
(
∪kj=1Aj

)
⩾

∑
Ij⊆Nk

(−1)|Ij|+1P
(
∩j∈IjAj

)
, (2.19)

where Nk = {1, 2, . . . ,k} and Aj ⊆ X, ∀j = 1, 2, . . . ,k.

Choquet capacities of order 2 are always coherent lower probability func-
tions [117].

It is easy to deduce that, if P is a Choquet capacity of order k and P its
conjugate coherent upper probability function, then, due to duality:

P
(
∩kj=1Aj

)
⩽

∑
Ij⊆Nk

(−1)|Ij|+1P
(
∪j∈IjAj

)
.

Choquet capacities of order k can be characterized via the Möbius inverse.
The following result, proved in [51], shows the necessary and sufficient con-
dition that the Möbius inverse of a coherent lower probability function has to
satisfy to be a Choquet capacity of order k:

Proposition 2.2.1 Let P be a coherent lower probability function on X and m its
Möbius inverse. It holds that P is a Choquet capacity or order k if, and only if,∑

B⊆∪k
i=1Ai,B ̸⊂Ai∀i

m(B) ⩾ 0, ∀Ai ⊂ X, 1 ⩽ i ⩽ k.
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As a consequence of the previous result, if a lower probability function
is a Choquet capacity of order k, then the Möbius inverse of a subset with
cardinality lower or equal than k is not lower than 0. In addition, a lower
probability function is a Choquet capacity or order infinity if, and only if, its
corresponding Möbius inverse is non-negative. These two issues are expressed
in the following corollary [51]:

Corollary 2.2.1 Let P be a coherent lower probability on X and m its associated
Möbius inverse. It is satisfied that:

1. If P is a Choquet capacity of order k, then m(A) ⩾ 0, ∀A ⊆ X such that
|A| ⩽ k.

2. P is a Choquet capacity of order infinity if, and only if m(A) ⩾ 0, ∀A ⊆ X.

Obviously, if k ′ > k, then the theory corresponding to Choquet capacities
of order k is more general than the theory associated with Choquet capacities
of order k ′. Therefore, the most general of all these theories is the one based
on Choquet capacities of order 2.

Credal sets associated with Choquet capacities of order 2 are easier to han-
dle than arbitrary credal sets in terms of extreme points. According to the
results proved in [72], if P is a Choquet capacity of order 2 on X and P (P)

the credal set compatible with it, then there is a correspondence between the
permutations of the elements of X and the extreme points of P (P). Specifically,
each permutation σ of {1, 2, . . . , t} gives rise to an extreme point pσ of P (P),
determined as follows:

pσ
(
xσ(i)

)
= P

({
xσ(i), . . . , xσ(t)

})
− P

({
xσ(i+1), . . . , xσ(t)

})
, ∀i = 1, . . . , t.

(2.20)

We must remark that it is possible that two distinct permutations lead to
the same extreme point, i.e, pσ1 = pσ2 , σ1 and σ2 being two permutations of
{1, 2, . . . , t} such that σ1 ̸= σ2. The maximal number of extreme points of P (P)

is equal to t!, the number of permutations of {1, 2, . . . , t}.

2.2.3 Updating coherent lower probability functions

Let P be a coherent lower probability function on X and P its conjugate
coherent upper probability function. Suppose that it is known that the true
alternative belongs to a certain subset B ⊆ X. Now, the goal is to determine
from P an updated lower probability function on X with this new information.
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We consider the credal set associated with P, P(P), computed by means of
Equation (2.12). Let P(P) | B denoted the conditional credal set of P(P) on B

obtained via regular conditioning (Definition 2.2.5). Our aim is to determine
a lower probability function from P(P) | B.

Since P(P) | B is undetermined when P(B) = 0∀p ∈ P(P), if P = 0, then the
conditional lower probability function of P on B is also undetermined.

According to the results proved in [155, 158], the set of conditional lower
probability functions on B that derive from P(P) | B is bounded by the regular
extension:

Definition 2.2.16 [155, 158] The function defined, for each A ⊆ X, by:

EP (A | B) =


infp∈P(P)∧p(B)>0 {P(A | B)} if P(B) > 0

1 if P(B) = 0∧B ⊆ A

0 if P(B) = 0∧B ̸⊆ A

(2.21)

is called the regular extension of P conditioned on B.

The following result, demonstrated by Miranda and Montes [157], indicates
how to determine the regular extension of P given B when P is a Choquet
Capacity of order 2:

Proposition 2.2.2 Let P be a Choquet capacity of order 2 on X and B ⊆ X. Then, the
regular extension of P conditioned on B is determined by

EP (A | B) =


P(A∩B)

P(A∩B)+P(A∩B)
if P(A∩B) > 0

1 otherwise

Moreover, EP (. | B) is also a Choquet capacity of order 2.

2.2.3.1 Marginalization of coherent lower probability functions

Let now X and Y be two finite sets and P a coherent lower probability func-
tion on the product space X× Y.

Definition 2.2.17 [43] The marginal coherent lower probability function of P on X

can be defined in the following way:

P↓X = P(A× Y), ∀A ⊆ X. (2.22)

The definition of the marginal coherent lower probability function of P on Y is
analogous:

P↓Y = P(X×B), ∀B ⊆ Y. (2.23)
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As shown in [43], for a given k ⩾ 2, the marginalization of a Choquet capac-
ity of order k is also a Choquet capacity of order k. Indeed, the marginaliza-
tion is a closed operation for most of the types of coherent lower probability
functions [43].

2.2.4 Dempster-Shafer theory of evidence

The basis of Dempster-Shafer theory, also known as Evidence theory (ET)
[74, 186], is the concept of basic probability assignment (BPA).

Definition 2.2.18 A basic probability assignment is a mapping m : ℘(X) → [0, 1]
such that:

• m(∅) = 0,

•
∑

A∈℘(X)m(A) = 1.

For each A ⊆ X, the value m(A) is the probability mass assigned by m to A.
It expresses the degree of belief that the true alternative belongs to A but not
to any particular subset of A.

Definition 2.2.19 If A ⊆ X satisfies that m(A) > 0, it is said that A is a focal
element of m.

Definition 2.2.20 Let m be a BPA on X. The support of m is defined as the union of
all focal elements of m:

supp(m) = ∪A⊆X|m(A)>0A.

When all focal elements of m are singletons, m is equivalent to a probability
distribution. Consequently, the concept of BPA is an extension of the concept
of probability distribution in probability theory.

A given BPA has associated with it a lower probability function and an up-
per probability function. They are called, respectively, belief and plausibility
functions.

Definition 2.2.21 The function given by:

Belm(A) =
∑
B⊆A

m(B), ∀A ⊆ X (2.24)

is known as the belief function corresponding to m. The function determined by:

Plm(A) =
∑

B|A∩B ̸=∅

m(B), ∀A ⊆ X (2.25)

is called the plausibility function associated with m.
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For each A ⊆ X, Belm(A) indicates the degree of belief that the true alter-
native is in A or in any subset of A, whereas Plm(A) expresses the degree
of belief that the real alternative is in a subset whose intersection with A is
not empty. Thus, Belm(A) indicates the minimum degree of belief in A and
Plm(A) the maximum degree of belief in A.

Clearly, Belm(A) ⩽ Plm(A), ∀A ⊆ X.

Definition 2.2.22 For each A ⊆ X, the interval [Belm(A),Plm(A)] is called the
belief interval for A.

Belief and plausibility functions are always coherent [208]. It is easy to
deduce that, ∀A ⊆ X,

Plm(A) = 1−Belm(A), (2.26)

where A denotes the complement of A.
Hence, Plm is the coherent upper probability function dual or conjugate of

the coherent lower probability function Belm.
Belief functions are Choquet capacities of order infinity. It means that, for

each k ∈N and A1,A2, . . . ,Ak, the following inequalities are satisfied:

Belm
(
∪kj=1Aj

)
⩾

∑
Ij⊆Nk

(−1)|Ij|+1Belm
(
∩j∈IjAj

)
,

Plm
(
∩kj=1Aj

)
⩽

∑
Ij⊆Nk

(−1)|Ij|+1Plm
(
∪j∈IjAj

)
,

where Nk = {1, 2, . . . ,k}.
The BPA m can be obtained from the belief function Belm as follows:

m(A) =
∑
B⊆A

(−1)|A\B|Belm(B), ∀A ⊆ X. (2.27)

In this way, m is the Möbius inverse of Belm. Therefore, in ET, there is a one-
to-one correspondence between BPAs and belief functions. For this reason, in
ET, the probabilistic knowledge about X can be expressed by a BPA, via its
corresponding belief function, or through its associated plausibility function.

Alternatively, each BPA m in DST can be represented by the following func-
tion:

Qm(A) =
∑
B⊇A

m(B), ∀A ⊆ X. (2.28)

Definition 2.2.23 The function determined via Equation (2.28) is called the common-
ality function corresponding to m.
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Again, there is a one-to-one correspondence between BPAs and commonal-
ity functions. From each commonality function, the associated BPA is deter-
mined by:

m(A) =
∑
B⊇A

(−1)|B−A|Qm(B), ∀A ⊆ X. (2.29)

In addition, each BPA m has associated with it a probability measure known
as the pignistic transformation of m. It is defined as follows:

BetPm(A) =
∑
B⊆X

m(B)
|A∩B|
|B|

, ∀A ⊂ X. (2.30)

We may deduce that, for singletons, it holds that:

BetPm({xi}) =
∑

A⊆X|xi∈A

m(A)

|A|
, ∀i = 1, 2, . . . , t. (2.31)

A given BPA m on X has associated with it the following credal set, com-
posed of all probability distributions compatible with the corresponding belief
function Belm:

Pm = {p ∈ P(X) | Belm(A) ⩽ P(A), ∀A ⊆ X} . (2.32)

We may note that, due to the duality relation expressed in Equation (2.26),
the condition Belm(A) ⩽ P(A), ∀A ⊆ X is equivalent to Belm(A) ⩽ P(A) ⩽
Plm(A), ∀A ⊆ X.

2.2.4.1 Extreme points of belief functions

Let m be a BPA on X and let Belm denote its associated belief function. We
will say that a probability distribution is an extreme point of Belm if it is an
extreme point of Pm, the credal set corresponding to m.

Since belief functions are particular cases of Choquet capacities of order 2,
the extreme points of belief functions can be determined as the extreme points
of Choquet capacities of order 2. Thus, each permutation σ of {1, 2, . . . , t} gives
rise to the following extreme point pσ

m of Belm:

pσ
m(xσ(i)) = Belm

({
xσ(i), . . . , xσ(t)

})
−Belm

({
xσ(i+1), . . . , xσ(t)

})
=

∑
A⊆{xσ(i),...,xσ(t)}

m(A) −
∑

A⊆{xσ(i+1),...,xσ(t)}

m(A)

=
∑

A|xσ(i)∈A,∧A∩{xσ(1),...,xσ(i−1)}=∅

m(A), ∀i = 1, 2, . . . , t.

(2.33)
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Equation (2.33) determines the procedure to obtain the extreme point as-
sociated with the permutation σ: assign the focal elements containing xσ(1)
to p

(
xσ(1)

)
, remove such focal elements and iterate until reaching xσ(t) or

until there are no more focal elements. The described procedure is given in
Algorithm 1 [161], where Fm denotes the set of focal elements of m.

Algorithm 1: Procedure to compute the extreme point pσ
m associated

with the permutation σ.
Procedure Determine extreme point corresponding to
permutation(BPA m, permutation of {1, 2, . . . , t} σ)
for i = 1 to t do

pσ
m

(
xσ(i)

)
← 0

i← 1

while Fm ̸= ∅ ∧ i ⩽ t do
for Ai ∈ Fm such that xσ(i) ∈ Ai do

pσ
m

(
xσ(i)

)
← pσ

m

(
xσ(i)

)
+m(Ai)

Fm ← Fm \ {Ai}

i← i+ 1
return pσ

m

As in Choquet capacities or order 2, two distinct permutations can lead to
the same extreme point, i.e, pσ1

m = pσ2
m , σ1 and σ2 being two permutations of

{1, 2, . . . , t} such that σ1 ̸= σ2. Again, the maximal number of extreme points
of Belm is equal to the number of permutations of {1, 2, . . . , t}, i.e, t!.

Montes and Destercke [161] proved that Belm has t! extreme points if, and
only if, all subsets of cardinality two are focal elements of m:

Proposition 2.2.3 Let m be a BPA on X and Belm its associated belief function.
Then, Belm has t! extreme points if, and only if, m(A) > 0 ∀A ⊆ X such that
|A| = 2.

Another remarkable property, also proved by Montes and Destercke [161],
is that the number of extreme points of a belief function does not decrease as
the number of focal elements of the corresponding BPA increases. Formally:

Proposition 2.2.4 Let m1 and m2 two BPAs on X and F1 and F2 their respective
sets of focal elements. Let Belmi

denote the belief function associated with the BPA
mi, for i = 1, 2. If F1 ⊂ F2, then the number of extreme points of Belm2

is higher or
equal than the number of extreme points of Belm1

.
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According to the previous proposition, if m1 and m2 are two BPAs on X

such that F1 ⊂ F2, where Fi is the set of focal elements of mi, for i = 1, 2,
then the number of extreme points of m2 is not lower than the number of
extreme points of m1. However, in this case, it is possible that both BPAs have
the same number of extreme points.

2.2.4.2 Marginalization of basic probability assignments

Suppose now that we have two finite sets X and Y. Let m be a BPA defined
on the product space X× Y.

We can consider, for each R ⊆ X× Y, the projections of R on X and Y:

RX =
{
xi ∈ X | ∃yj ∈ Y : (xi,yj) ∈ R

}
, (2.34)

RY =
{
yj ∈ Y | ∃xi ∈ X : (xi,yj) ∈ R

}
. (2.35)

For each subset A of X, the sum of the mass probabilities of the subsets of
X× Y whose projection on X coincides with A can be considered:

m↓X(A) =
∑

R|A=RX

m(R), ∀A ⊆ X, (2.36)

where, for each R ⊆ X × Y, RX is the projection of R on X, computed via
Equation (2.34).

Definition 2.2.24 The BPA determined by means of Equation (2.36) is called the
marginal BPA of m on X.

Analogously, the marginal BPA of m on Y, m↓Y , can be defined:

m↓Y(B) =
∑

R|B=RY

m(R), ∀B ⊆ Y, (2.37)

RY being the projection of R on Y, ∀R ⊆ X× Y

When all focal elements of m are “rectangles", it is said that the marginal
BPAs, m↓X and m↓Y , are non-interactive. Formally:

Definition 2.2.25 Let m be a BPA on X× Y and m↓X and m↓Y its marginal BPAs
on X and Y, respectively. It is said that m↓X and m↓Y are non-interactive if it is
satisfied that

• m(A×B) = m↓X(A)m↓Y(B), ∀A ⊆ X, B ⊆ Y.

• m(C) = 0 if C does not take the form C = A×B, with A ⊆ X, B ⊆ Y.
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Given a BPA m on X× Y, its marginal BPAs on X and Y can also be obtained
by means of the corresponding marginal belief functions. Formally, let Belm
be the belief function associated with m and Bel

↓X
m and Bel

↓Y
m the marginal

belief functions of Belm on X and Y, determined, respectively, via Equations
(2.22) and (2.23):

Bel↓Xm (A) = Belm(A× Y), ∀A ⊆ X.

Bel↓Ym (B) = Belm(X×B), ∀B ⊆ Y.
(2.38)

Now, the marginal BPAs of m can be computed in the following way:

m(A)↓X =
∑
B⊆A

(−1)|A\B|Bel↓Xm (B), ∀A ⊆ X.

m(C)↓Y =
∑
B⊆C

(−1)|C\B|Bel↓Ym (B), ∀C ⊆ Y.
(2.39)

2.2.4.3 Updating belief functions

Let m be a BPA on X. Let Belm and Plm denote, respectively, the belief and
plausibility functions associated with m. Suppose that we know that the true
alternative belongs to a certain subset B ⊆ X.

Dempster’s rule of conditioning [74, 186] is a very important rule in ET
for updating plausibility functions. According to that rule, the plausibility
function conditioned on B derived from Plm is defined as follows:

Plm(A | B) =
Plm(A∩B)
Plm(B)

, ∀A ⊆ X. (2.40)

Nonetheless, the conditional plausibility function given by Equation (2.40)
might not make sense from the perspective of conditioning of lower previ-
sions [217]. Thus, it makes more sense to consider the regular extension of
Belm conditioned on B, which bounds the set of conditional belief functions
obtained from the credal set consistent with Belm conditioned on B.

Since belief functions are particular cases of Choquet capacities of order 2,
the regular extension of a belief function conditioned on B can be determined
through Proposition 2.2.2.

However, following the results proved by Miranda and Montes [157], in the
particular case of belief functions, the regular extension can be obtained via
the following proposition.
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Proposition 2.2.5 Let m be a BPA on X and B ⊂ X. Let supp(m) denote the
support of m and Belm its corresponding belief function. Then, the regular extension
of Belm conditioned on B can be computed in the following way:

EBelm (A | B) =


1 if B∩ supp(m) ⊆ A

0 otherwise

2.2.4.4 Belief intervals for singletons

Given a BPA m on X, the set of belief intervals for singletons corresponding
to m can be considered:

Im = {[Belm ({xi}) ,Plm ({xi})] , i = 1, 2, . . . , t} , (2.41)

where Belm and Plm denote, respectively, the belief and plausibility functions
associated with m.

The set of intervals Im leads to the following credal set [70]:

P (Im) = {p ∈ P(X) | Belm ({xi}) ⩽ p (xi) ⩽ Plm ({xi}) , ∀i = 1, 2, . . . , t} .
(2.42)

This set is composed of all probability distributions consistent with the be-
lief intervals for singletons.

Clearly, if a probability distribution is compatible with Belm, then it belongs
to P (Im), i.e, Pm ⊆ P (Im).

Nonetheless, there might be some probability distributions in P (Im) that
are not consistent with Belm. This point is shown in Example 2.2.1 [2].

Example 2.2.1 Let X = {x1, x2, x3, x4} be a finite set. We consider the following
BPA m on X:

m ({x1, x2}) = 0.5, m ({x3, x4}) = 0.5.

Let Belm and Plm denote, respectively, the belief and plausibility functions associated
with m.

We have the following set of belief intervals for singletons:

{[Belm ({xi}) ,Plm ({xi})] = [0, 0.5], i ∈ {1, 2, 3, 4}} .

The probability distribution p = (p (x1) ,p (x2) ,p (x3) ,p (x4)) =

(0, 0, 0.5, 0.5) is consistent with the belief intervals for singletons as p (xi) ∈ [0, 0.5],
∀i = 1, 2, 3, 4. However, p is not compatible with m since

P ({x1, x2}) = 0 < 0.5 = Belm ({x1, x2}) .

Thereby, the set of belief intervals for singletons may involve less probabilis-
tic knowledge about X than the associated BPA.
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2.2.4.5 p-boxes

Let X = {x1, x2, . . . , xt} be a finite set that is also totally ordered, i.e, i.e
x1 < x2 < . . . < xt.

Definition 2.2.26 A subset A ⊆ X is said to be an interval if any element between
two elements belonging to A is also in A.

For intervals, the following notation is used: [xi, xi+k] = {xi, xi+1, . . . , xi+k}.

Definition 2.2.27 [90] A p-box
(
F, F
)

is a pair of functions F, F : X → [0, 1] satisfy-
ing

• F(xt) = F(xt) = 1.

• F(xi) ⩽ F(xi), ∀i = 1, 2, . . . , t.

• Both F and F are increasing, i.e, F(xi) ⩽ F(xj) ∧ F(xi) ⩽ F(xj), ∀i, j ∈
{1, 2, . . . , t} such that i ⩽ j.

P-boxes can be interpreted as lower and upper bounds of imprecisely de-
fined cumulative distribution functions. In consequence, the following credal
set corresponds to the p-box

(
F, F
)
:

P
(
F, F
)
=

{
p ∈ P(X) | F(xi) ⩽ Fp(xi) = P([x1, xi]) ⩽ F(xi), ∀i = 1, . . . , t

}
,

(2.43)
where Fp denotes the cumulative distribution function corresponding to the
probability distribution p.

Each p-box
(
F, F
)

on X corresponds to a belief function on X, which is deter-
mined in the following way [79]:

BelF(A) = min
{
p(A) | F(xi) ⩽ Fp(xi) ⩽ F(xi), ∀i = 1, . . . , t

}
, ∀A ⊆ X.

(2.44)
Belief functions equivalent to a p-box were been characterized in [79], (that

is, belief functions Bel for which there exists a p-box
(
F, F
)

such that P
(
F, F
)
=

P (Bel), P (Bel) being the credal set consistent with Bel).
Let Bel be a belief function on X. Let mBel be the BPA associated with Bel,

which is computed via Equation (2.27).
We consider the following interval order:

[a1,a2] ⪯ [b1,b2]⇔ a1 ⩽ b1 ∧ a2 ⩽ b2. (2.45)

The belief function Bel is equivalent to a p-box if, and only if, its focal
elements A1,A2, . . . ,Ak are intervals ordered with A1 ⪯ A2 ⪯ . . . ⪯ Ak. In
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that case, a subset is said to be a focal element of the p-box if it is a focal
element of the corresponding belief function.

Montes and Destercke [161] developed a procedure to compute the set of
extreme points of a belief function equivalent to a p-box.

2.2.4.6 Possibility measures

Definition 2.2.28 [187] A possibility measure on X is a mapping Poss : ℘(X) →
[0, 1] such that

Poss(A) = max
xi∈A

{Poss ({xi})} , ∀A ⊆ X.

The function Nec determined by

Nec(A) = 1− Poss(A), ∀A ⊆ X

is called the necessity measure corresponding to Poss.

A possibility measure is always a plausibility function, and its associated ne-
cessity measure is always a belief function. Consequently, possibility measures
inherit all mathematical properties and characteristics of belief and plausibility
functions.

As shown in [187], the focal elements of a necessity measure are always
nested, that is, if A1,A2, . . . ,Ak are the focal elements of Nec, then A1 ⊂
A2 ⊂ . . . ⊂ Ak.

2.2.5 Reachable probability intervals

In probability intervals theory [70], the probabilistic knowledge about X is
represented by a set of probability intervals on singletons

I = {[li,ui], i = 1, 2, . . . , t} , (2.46)

where 0 ⩽ li ⩽ ui ⩽ 1, ∀i = 1, 2, . . . , t.
For each i ∈ {1, 2, . . . , t}, li and ui represent, respectively, the lower and up-

per bounds of the probability of xi. Therefore, the set of probability intervals
I has associated with it the following credal set, composed of the probability
distributions on X compatible with such intervals [70]:

P (I) = {p ∈ P(X) | li ⩽ p (xi) ⩽ ui, ∀i = 1, 2, . . . , t} . (2.47)

For the credal set given by Equation (2.47) not to be empty (in such a case,
there would not be any probability distribution consistent with the intervals),
it is necessary to impose the following condition to the set of probability inter-
vals I [70]:
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Definition 2.2.29 A given set of probability intervals I = {[li,ui], i = 1, 2, . . . , t}
is said to be proper if the sum of the lower bounds is lower or equal than 1 and the
sum of the upper bounds is greater or equal than 1:

t∑
i=1

li ⩽ 1 ⩽
t∑

i=1

ui. (2.48)

It is easy to deduce that P (I) ̸= ∅, i.e, the set of intervals avoids sure loss if,
and only if, the condition given in Equation (2.48) is satisfied.

Let us consider the coherent lower probability function associated with
P (I):

P(A) = inf
p∈P(I)

P(A), ∀A ⊆ X. (2.49)

Definition 2.2.30 The coherent lower probability function defined in Equation (2.49)
is called the natural extension of I.

Let P be the coherent upper probability function conjugate of P. Clearly,
P ({xi}) ⩾ li and P ({xi}) ⩽ ui, ∀i = 1, 2, . . . , t. For a proper set of probability
intervals to be coherent, the reachability condition has to be imposed [70].

Definition 2.2.31 It is said that a proper set of probability intervals
I = {[li,ui], i = 1, 2, . . . , t} is reachable if

P ({xi}) = li ∧ P ({xi}) = ui, ∀i = 1, 2, . . . , t.

If the reachability condition is violated, then there might be some values
of the intervals in I that do not correspond to any probability distribution
belonging to P (I). In these situations, the intervals are unnecessarily broad.

The following result, which was demonstrated in [70], allows quickly check-
ing the reachability of a given proper set of probability intervals:

Proposition 2.2.6 Let I = {[li,ui], i = 1, 2, . . . , t} be a proper set of probability
intervals. I is reachable if, and only if,

t∑
j=1,j̸=i

uj + li ⩾ 1 ⩾
t∑

j=1,j̸=i

lj + ui, ∀i = 1, 2, . . . , t.

Given a non-reachable proper set of probability intervals
I = {[li,ui], i = 1, 2, . . . , t}, it is possible to transform it into the following
reachable set of probability intervals

I ′ =
{
[l ′i,u

′
i], i = 1, 2, . . . , t

}
,
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where

l ′i = max

li, 1−
t∑

j=1,j̸=i

ui

 , u ′
i = min

ui, 1−
t∑

j=1,j̸=i

li

 , ∀i = 1, 2, . . . , t.

Indeed, in [70], it was shown that I ′ is reachable and the set of probability
distributions compatible with I coincides with the set of probability distribu-
tions consistent with I ′.

The following proposition, which was proved in [70], lets us obtain the nat-
ural extension of a reachable set of probability intervals and its corresponding
coherent upper probability function:

Proposition 2.2.7 If I = {[li,ui], i = 1, 2, . . . , t} is a reachable set of probability
intervals, then its natural extension P and its associated coherent upper probability
function P are determined, for each A ⊆ X, by:

P(A) = max

∑
xi∈A

li, 1−
∑
xi/∈A

ui

 , P(A) = min

∑
xi∈A

ui, 1−
∑
xi/∈A

li

 .

As demonstrated in [70], natural extensions of reachable probability inter-
vals are Choquet capacities of order 2. It means that, if P is the natural ex-
tension of a reachable set of probability intervals and P its conjugate coherent
upper probability function, then the following inequalities hold ∀A,B ⊆ X.

P(A∪B) + P(A∩B) ⩾ P(A) + P(B),

P(A∪B) + P(A∩B) ⩽ P(A) + P(B).

Nevertheless, the natural extension of a reachable set of probability intervals
is not always a belief function (Choquet capacity of order infinity). In Example
2.2.2 [2], we show a case in which the Möbius inverse of the natural extension
of a reachable set of probability intervals is not non-negative.

Example 2.2.2 Suppose that we have a finite set X = {x1, x2, x3}. Let us consider
the following reachable set of probability intervals on X:

I = {[0, 0.5] ; [0, 0.5] ; [0, 0.5]} .

Let P denote the natural extension of I and m its Möbius inverse.
For singletons,

m ({xi}) = P ({xi}) = li = 0, ∀i = 1, 2, 3.
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Concerning the subsets of cardinality two:

P
({

xi, xj
})

= max(li + lj, 1− uk) = 1− uk = 0.5,

m
({

xi, xj
})

= 1− uk − li − lj = 0.5, ∀1 ⩽ i < j ⩽ 3, k ̸= i, k ̸= j.

So,

m ({x1, x2, x3}) = 1−
∑
A⊂X

m(A)

= 1−m ({x1, x2}) −m ({x1, x3}) −m ({x2, x3})−

m ({x1}) −m ({x2}) −m ({x3})

= 1− 0.5− 0.5− 0.5 = −0.5 < 0.

Reachable probability intervals are neither generalizations of belief func-
tions. Actually, in Example 2.2.1, we have shown a situation in which a belief
function and its corresponding set of belief intervals for singletons do not
represent the same uncertainty-based information about X.

2.2.5.1 Extreme points of reachable probability intervals

The credal set compatible with a reachable set of probability intervals is
often represented through linear constraints. An alternative representation of
such a credal set is its set of extreme points. The set of extreme points of the
credal set corresponding to a reachable set of probability intervals can be vary
large. As demonstrated in [197], the maximal number of extreme points of a
reachable set of probability intervals on X is equal to

e(t) =


(

t+1
(t+1)/2

)
× t+1

4 if t is odd

(
n+1
t/2

)
× t

2 if t is even

(2.50)

Thereby, the representation via linear constraints is probably more efficient
than the one corresponding to extreme points [70]. However, as explained
before, the set of extreme points is usually needed for making inferences.

In [70], a recursive procedure for obtaining the set of extreme points of a
reachable set of probability intervals was proposed. That algorithm maintains
a global set Ext (P(I)), which contains the extreme points of P(Im) found in
each moment. The procedure utilizes an implicit tree search in which each
node corresponds to a partial probability distribution p (“partial" means that
li ⩽ p(xi) ⩽ ui ∀i = 1, 2, . . . , t but it might hold that

∑t
i=1 p(xi) < 1). At

the root node, p (xi) = li ∀i = 1, 2, . . . , t. Each child node is a refinement
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of its parent node in which one component is incremented. The leaf nodes
of the tree correspond to the extreme points. In each node, there are two
local variables: Expl, which contains the indices i whose component cannot
be incremented as p (xi) = ui, i ∈ {1, 2, . . . , t}, and a real value λ, which
indicates the remaining probability mass to distribute among the components
(λ = 1−

∑t
i=1 p (xi)).

Hence, the procedure for determining the set of extreme points of the credal
set consistent with a reachable set of probability intervals is given in Algo-
rithm 2 [70]. At the end of this procedure, Ext (P(I)) contains all extreme
points of P(I).

Algorithm 2: Procedure to compute the set of extreme points of P (I).
Ext (P(I)) = ∅
for i = 1 to t do

p (xi) = li

Expl = ∅
λ = 1−

∑t
i=1 li

GetExtremePoints(p,λ,Expl)
for i = 1 to t do

if i /∈ Expl then
aux← p (xi)

if λ ⩽ ui then
p (xi)← p (xi) + λ

if p /∈ Ext (P(I)) then
Ext (P(I)← Ext (P(I))∪ {p}

else
p (xi)← ui

λ ′ ← λ+ ui − aux

GetExtremePoints(p, λ ′,Expl∪ {i})
p (xi)← aux

2.2.6 Marginalization of reachable probability intervals

Suppose now that we have two finite sets X = {x1, x2, . . . , xt} and Y =

{y1,y2, . . . ,yt ′}. Let I =
{
[lij,uij], i = 1, 2, . . . , t, j = 1, 2, . . . , t ′

}
be a reach-

able set of probability intervals on X× Y. Let P(I) denote the credal set corre-
sponding to I. Let P be the natural extension of I and P its dual coherent upper
probability function. Let P↓X and P↓Y denote, respectively, the marginal lower
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probability functions of P on X and Y. Analogously, let P↓X and P
↓Y denote

the marginal upper probability functions of P on X and Y, respectively.
In these cases, projecting on the credal set associated with I is equivalent to

projecting on the natural extension or its associated coherent upper probability
function. It is expressed in the following proposition [70]:

Proposition 2.2.8 With the previous notation, it holds that

P↓X(A) = min
p∈P↓X

P(A), P
↓X

(A) = max
p∈P↓X

P(A), ∀A ⊆ X,

P↓Y(B) = min
p∈P↓Y

P(B), P
↓Y

(B) = max
p∈P↓Y

P(B), ∀B ⊆ Y,

where P↓X and P↓Y are the marginal credal sets of P on X and Y, respectively.

The following result, proved in [70], shows how to obtain the marginal
reachable sets of probability intervals from the reachable set of probability
intervals defined on X× Y:

Proposition 2.2.9 Let I =
{
[lij,uij], i = 1, 2, . . . , t, j = 1, 2, . . . , t ′

}
be a reach-

able set of probability intervals on X× Y and P its natural extension. The marginal
lower probability function of P on X is associated with the following reachable set of
probability intervals on X

I↓X = {[li,ui], i = 1, 2, . . . , t} ,

where

li = max

 t ′∑
j=1

lij, 1−
∑
k̸=i

t ′∑
j=1

ukj

 ,

ui = min

 t ′∑
j=1

uij, 1−
∑
k̸=i

t ′∑
j=1

lkj

 , ∀i = 1, 2, . . . , t.

The determination of the marginal reachable set of probability intervals of I on Y is
analogous.

2.2.7 Conditioning on reachable probability intervals

Let I = {[li,ui], i = 1, 2, . . . , t, } be a reachable set of probability intervals
on X. Suppose that we know that the true alternative belongs to a subset
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B ⊆ X. Let P denote the natural extension of I and P its conjugate coherent
upper probability function. The aim is to obtain the set of probability intervals
on X, I | B =

{
[li|B,ui|B], i = 1, 2, . . . , t

}
, with this new information. For this

purpose, we aim to obtain a conditional lower probability function from P on
B, P | B and use the following equalities for singletons:

li|B = P ({xi} | B) , ui|B = P ({xi} | B) , ∀i = 1, 2, . . . , t. (2.51)

Clearly, if P(B) = 0, which happens if, and only if, ui = 0 ∀xi ∈ B, then
I | B is undetermined. So, hereon, we suppose that

∑
xi∈B ui > 0.

Since natural extensions of reachable sets of probability intervals are always
Choquet capacities of order 2, Proposition 2.2.2 can be used for obtaining P | B.
For each singleton {xi}, i ∈ {1, 2, . . . , t}, we distinguish two cases:

• If ui = 0 or xi /∈ B then, clearly, li|B = ui|B = 0.

• If ui > 0 ∧ xi ∈ B then, {xi} ∩ B = B \ {xi}. If P(B \ {xi}) = 0, i.e,∑
xj∈B\{xi}

uj = 0, then li|B = ui|B = 1. Otherwise, it holds that:

li|B = P ({xi} | B) =
P({xi ∩B})

P({xi ∩B}) + P
(
{xi}∩B

) =
li

li + P (B \ {xi})
,

ui|B = P ({xi} | B) = 1− P
(
{xi} | B

)
= 1−

P
(
{xi}∩B

)
P
(
{xi}∩B

)
+ P ({xi}∩B)

= 1−
P(B \ {xi})

P(B \ {xi}) + ui
=

ui

ui + P (B \ {xi})
.

Moreover, as P is the natural extension of a reachable set of probability
intervals, Proposition 2.2.7 let us deduce that, for each i ∈ {1, 2, . . . , t}:

P (B \ {xi}) = max

∑
xj∈B

lj − li, 1− ui −
∑
xj/∈B

uj

 ,

P (B \ {xi}) = min

∑
xj∈B

uj − ui, 1− li −
∑
xj/∈B

lj

 (2.52)

Hence, we have the following conditional set of probability intervals of I on
B: {[

li|B,ui|B

]
, i = 1, 2, . . . , t]

}
, (2.53)

where
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li|B =


0 if ui = 0∨ xi /∈ B

1 if ui > 0, xi ∈ B∧
∑

xj∈B\{xi}
uj = 0

li
li+P(B\{xi})

if ui > 0, xi ∈ B∧
∑

xj∈B\{xi}
uj > 0

ui|B =


0 if ui = 0∨ xi /∈ B

1 if ui > 0, xi ∈ B∧
∑

xj∈B\{xi}
uj = 0

ui

ui+P(B\{xi})
if ui > 0, xi ∈ B∧

∑
xj∈B\{xi}

uj > 0

where P (B \ {xi}) and P (B \ {xi}) are computed by means of Equation (2.52),
∀i = 1, 2, . . . , t.

As demonstrated in [157], the regular extension of a Choquet capacity of
order 2 is always a Choquet capacity of order 2. Therefore, the conditional set
of probability intervals on B, I | B, is always reachable.

2.2.8 Relationships among imprecise probabilities theories

Among the theories based on imprecise probabilities considered in this the-
sis work, the most general is the one based on credal sets. In fact, in all these
theories, the probabilistic knowledge can be represented via a credal set.

The second-most general theory is coherent lower probability functions. A
lower probability function always determines a credal set. Nevertheless, a
credal set is not always representable by a lower probability function.

Choquet capacities of order k are an important family of coherent lower
probability functions. If k ′ > k, then the theory based on Choquet capacities
of order k ′ is less general than the theory based on Choquet capacities of order
k. The less general theory of Choquet capacities is the one of order infinity.
Such a theory is known as Evidence theory or Dempster-Shafer theory. In it,
coherent lower probability functions are called belief functions.

Reachable probability intervals are Choquet capacities of order 2. However,
they are not always representable by means of a belief function. Also, reach-
able probabilities intervals do not extend belief functions. In consequence, be-
lief functions and reachable probability intervals are not comparable in terms
of generalities.

Figure 2.1 shows an order of the imprecise probability theories considered
in this thesis work concerning generalities.
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Figure 2.1: Order of the imprecise probabilities theory considered in this thesis work
regarding generalities. Arrows are directed towards a more general theory.
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2.3 Special models based on imprecise probabil it ies

Let X be a discrete variable that takes values in a finite set {x1, x2, . . . , xt}3.
Suppose that we have a sample D of N independent and identically dis-
tributed observations about X.

For each i = 1, 2, . . . , t, let n(xi) denote the number of occurrences of the xi
value in the sample. Likewise, for each A ⊆ {x1, x2, . . . , xt}, let n(A) denote
the number of observations in the sample for which the value of X belongs to
A. Let P(X) be the set of all probability distributions on X.

Suppose that we want to make inferences about
pN+1 = (pN+1 (x1) ,pN+1 (x2) , . . . ,pN+1 (xt)), where pN+1 (xi) indicates the
probability that the next observation takes the xi value, ∀i = 1, 2, . . . , t.

2.3.1 Imprecise Dirichlet Model

For making probabilistic inferences from a set of observations about a dis-
crete variable, Bayesian approaches [33] are commonly employed. Bayesian
inferential methods tend to assume a prior distribution about pN+1 based on
some parameters. Then, they take the posterior expectation of the parameters
given the sample.

Specifically, Bayesian approaches usually assume a prior Dirichlet distribu-
tion for pN+1. Such a distribution depends on a parameter s > 0 (real number)
and a t-dimensional vector of non-negative real numbers α = (α1,α2, . . . ,αt)

satisfying
∑t

i=1 αi = 1. The density function of the Dirichlet distribution
takes the form:

f(pN+1) =
Γ(s)∏t

i=1 Γ(sαi)

t∏
i=1

pN+1 (xi)
sαi−1 , (2.54)

Γ being the gamma function, which, for real numbers, is defined as follows:

Γ(z) =

∫∞
0

yz−1e−ydy, ∀z ∈ R+. (2.55)

In Bayesian inferential methods, the likelihood function of pN+1 given the
sample D, L(pN+1 | D), is also considered:

L(pN+1 | D) =

t∏
i=1

pN+1 (xi)
ni . (2.56)

3 or, alternatively, a finite set of possible alternatives {x1, x2, . . . , xt}.



46 Imprecise probabil it ies

Then, the prior Dirichlet Distribution is combined with the likelihood func-
tion via the Bayes’s theorem to obtain the posterior expectation of pN+1 given
the sample. For each xi, the posterior expectation of pN+1 (xi) is given by:

pN+1 (xi) =
n(xi) + sαi

N+ s
, ∀i = 1, 2, . . . , t. (2.57)

The Imprecise Dirichlet Model (IDM), proposed by Walley [209], assumes a
set of prior Dirichlet distributions, unlike the Bayesian approaches commented
above, which assume a single prior distribution.

Specifically, the IDM assumes a fixed s and all possible values of the pa-
rameter vector α, i.e, all possible combinations of values αi ∈ [0, 1] verifying∑t

i=1 αi = 1. Therefore, the IDM estimations for pN+1 are given by a set of
probability intervals:

pN+1 (xi) ∈
[
n(xi)

N+ s
,
n(xi) + s

N+ s

]
, ∀i = 1, 2, . . . , t. (2.58)

Hence, we have the following set of IDM probability intervals:

IIDM =

{[
n(xi)

N+ s
,
n(xi) + s

N+ s

]
, i = 1, 2, . . . , t

}
. (2.59)

It can be deduced that, for each A ⊂ {x1, x2, . . . , xt}, the IDM predicts that
the probability that the value of the next observation is in A belongs to the
following interval:

PN+1(A) ∈
[
n(A)

N+ s
,
n(A) + s

N+ s

]
. (2.60)

In this way, the IDM is also determined by the following coherent lower
probability function:

PIDM(A) =

{
n(A)
N+s if A ⊂ {x1, x2, . . . , xt}
1 if A = {x1, x2, . . . , xt}

(2.61)

Its dual coherent upper probability function is determined, for each A ⊆
{x1, x2, . . . , xt}, in the following way:

PIDM(A) =

{
n(A)+s
N+s if A ⊆ {x1, x2, . . . , xt} , A ̸= ∅

0 if A = ∅
(2.62)

The choice of the parameter s is an essential issue in the inferences as it
determines the imprecision degree [32]. Indeed, it is easy to observe that IDM
probability intervals are wider as the s value is larger. Walley [209] does not
give an absolute recommendation about the parameter s, but he suggests two
values: s = 1 and s = 2.
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2.3.1.1 Inference principles with the IDM

As argued in [32], inferences with the IDM satisfy the following principles,
which were established as suitable for inference:

• Symmetry principle (SP): The prior probability assumed for pN+1 do not
depend on the permutations of the values of X.

• Likelihood principle (LP): Inferences about the posterior probabilities given
the observations depend on the sample only through the likelihood func-
tion, defined in Equation (2.56).

• Representation invariance principle (RIP) [209]: Coarsening or refinements
of the set of possible values of X do not affect inferences about a certain
subset A ⊆ X because such inferences only depend on the sample size
(N), the parameter s, and the number of observations in the sample
whose value of X belongs to A (n(A)).

2.3.1.2 IDM credal sets

As shown by Abellán [2], the set of IDM probability intervals determined by
Equation (2.59) is reachable and has the following credal set associated with
it, composed of all probability distributions consistent with such intervals:

P (IIDM) =

{
p ∈ P(X) | p (xi) ∈

[
n(xi)

N+ s
,
n(xi) + s

N+ s

]
, ∀i = 1, 2, . . . , t

}
.

(2.63)
We may note that the credal set defined in Equation (2.63) is also the one

compatible with the IDM coherent lower probability function, determined via
Equation (2.61).

Abellán [2] proved that the IDM credal set P (IIDM), defined in Equation
(2.63), has the following properties:

• When s = 0, P (IIDM) has a single probability distribution p determined
by relative frequencies, i.e, p (xi) =

n(xi)
N , ∀i = 1, 2, . . . , t. P (IIDM) is

larger as the s value increases.

• P (IIDM) has t extreme points e1, e2, . . . , et, where ei =

(ei (x1) , ei (x2) , . . . , ei (xt)), is determined in the following way:

ei =

(
n(x1)

N+ s
, . . . ,

n(xi) + s

N+ s
, . . . ,

n(xt)

N+ s

)
, ∀i = 1, 2, . . . , t. (2.64)
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• The credal set P (IIDM) is also representable by a belief function. Such a
belief function coincides with the IDM coherent lower probability func-
tion defined in Equation (2.61). Its corresponding BPA (Möbius inverse),
mIDM, is given by:

mIDM ({xi}) =
n(xi)

N+ s
, ∀i = 1, 2, . . . , t,

mIDM(A) = 0, ∀A ⊆ {x1, x2, . . . , xt} , | 2 ⩽ |A| < t,

mIDM ({x1, x2, . . . , xt}) =
s

N+ s
.

(2.65)

IDM credal sets are representable by belief functions and reachable prob-
ability intervals. However, as shown by Abellán [2], they are not the only
credal sets that belong to both imprecise probability theories.

2.3.2 Non-Parametric Predictive Inference Model for multinomial data

The basis of the Non-Parametric Predictive Inference Model (NPI) [27] is
Hill’s assumption A(N) [113], defined as follows:

Definition 2.3.1 Suppose that there are N observations y1,y2, . . . ,yN, where yi ∈
R ∀i = 1, 2, . . . ,N. Let us assume that there are no ties, that is, yi ̸= yj ∀i ̸= j.
Suppose that the observations are ordered so that y1 < y2 < . . . < yN, partitioning
the real line into N+1 open intervals Ii = (yi,yi+1), for i = 0, 1, . . . ,N, where y0 =

−∞ and yN+1 = ∞. Hill’s assumption A(N) establishes that the next observation
falls into any of these intervals with equal probability 1

N+1 .

The previous assumption is useful when working with real-valued data.
Nonetheless, in this thesis work, we focus on the Non-Parametric Predictive
Inference Model for multinomial data (NPI-M) [58, 59]. Such a model employs
an adaptation of Hill’s assumption A(N) for multinomial data. This assump-
tion is called circular A(N) [58].

Definition 2.3.2 Suppose that we have N observations y1,y2, . . . ,yN that create
N intervals on a circle, denoted by Ij = (yj,yj+1) ∀j = 1, . . . ,N− 1 and IN =

(yN,y1). The circular assumption A(N) states that the probability that the next
observation falls into any of these intervals is equal to 1

N .

The circular assumption A(N) is a post-data assumption related to exchange-
ability [58]. The same occurs with the original Hill’s assumption.

In the NPI-M, a probability wheel is employed for representing the observed
data, where each observation is represented via a line from the center of the
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wheel to its boundary, called radial line. The wheel is partitioned into N

equally-sized slices. The NPI-M assumes that each possible value of the X

variable can only be represented by a unique segment, where a segment is
an area between two radial lines. Consequently, lines representing the same
value must be positioned next to each other on the wheel. It has to be decided
which value of X represents each slice. For this purpose, the following criteria
are used:

• When two lines that represent the same value of X border to a slice, such
a value must be assigned to that slice.

• If a slice is bordered by two lines that represent distinct values, then any
of these two values or anyone not observed can be assigned to that slice.

• Also, more than one value can be assigned to a slice.

Suppose that we want to make inference about the probability that the value
of the next observation belongs to a given subset A ⊆ {x1, x2, . . . , xt}. The idea
of the NPI-M for this inference is the following one [59]: an arrow, fixed at
the center of the wheel, spins around the wheel. According to the circular
assumption A(N), the arrow has the same probability 1

N of stopping in each
slice. Thus, for a given configuration of the probability wheel, the NPI-M
predicts that the probability that the value of the next observation is in A

is equal to the proportion of slices assigned to a value belonging to A in that
configuration of the probability wheel. In this way, the NPI-M predicts a lower
probability and an upper probability for A, determined, respectively, by the
minimum and maximum proportion of slices that can be assigned to a value
in A, among all possible configurations of the probability wheel.

Let tobs be the number of values of X that have been observed and tunobs

the number of unobserved values of X:

tobs = |{xi | n(xi) > 0, i = 1, 2, . . . , t}| ,

tunobs = |{xi | n(xi) = 0, i = 1, 2, . . . , t}| .

Clearly, it holds that t = tobs + tunobs. Let tAobs and tAunobs denote, respec-
tively, the number of observed and unobserved values in A. Let n(A) be the
number of observations in A:

n(A) =
∑
xi∈A

n(xi),

tAobs = |{xi ∈ A | n(xi) > 0}| ,

tAunobs = |{xi ∈ A | n(xi) = 0}| .
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In [59], the following theorem was proven, which indicates how the NPI-M
lower and upper probabilities for a given subset of possible values of X are
obtained:

Theorem 2.3.1 For each A ⊆ {x1, x2, . . . , xt}, the NPI-M lower and upper probabil-
ities, based on the probability wheel described above from the N observations and the
circular assumption A(N), are determined by:

PNPI(A) =
n(A) − min

(
t−
∣∣A∣∣ , tAobs)

N
,

PNPI(A) =
n(A) + min

(
|A| , tobs − tAobs

)
N

,

(2.66)

where A denotes the complement of A.

The idea of the NPI-M is illustrated in Example 2.3.1 [59]:

Example 2.3.1 Suppose that we have a discrete variable called Color whose set of pos-
sible values is {Blue(B),Red(R), Yellow(Y),Green(G),White(W),Orange(O)}.

Let us assume that there are N = 9 observations about Color, with the following
observed frequencies for each value:

n(B) = 3, n(R) = 1, n(Y) = 2, n(G) = 3, n(W) = n(O) = 0.

Suppose that we want to compute the NPI-M lower probability of {B} and {B,R}.
For this purpose, we aim to find a configuration of the probability wheel that assigns
as least slices as possible to B and R. In this case, we can assign to B only those
slices bordered by two lines representing B, and we do not need to assign to R any
slice. Thereby, Figure 2.2 shows a configuration of the probability wheel suitable for
the NPI-M lower probability of {B} and {B,R}, where the color drawn in each slice
corresponds to the color assigned to that slice. In that configuration, only two slices
are assigned to B and none to R.

B
BB

R

Y

Y G
G

G

Figure 2.2: First configuration of the probability wheel of Example 2.3.1.
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According to Theorem 2.3.1, it is satisfied that

PNPI ({B}) =
2

9
= PNPI ({B,R}) .

These lower probabilities are consistent with the configuration of the probability wheel
illustrated in Figure 2.2.

Let us assume now that it is needed to compute the upper probability of {B} and
{B,R}. In this situation, we try to find a configuration of the probability wheel that
assigns slices bordered by a line representing B to B and slices bordered by a line
associated with R to R. Furthermore, it is possible to separate the lines corresponding
to R and B by lines representing another color in order to assign as many slices as
possible to B and R. A configuration that verifies the previous conditions can be seen
in Figure 2.3. From that configuration, it can be deduced that the upper probability of
{B} is equal to 4

9 and the upper probability of {B,R} is equal to 6
9 . Indeed, according

to Theorem 2.3.1, it holds that:

PNPI ({B}) =
4

9
, PNPI ({B,R}) =

6

9
.

B
BB

G

G

G R
Y

Y

Figure 2.3: Second configuration of the probability wheel of Example 2.3.1.

2.3.2.1 Properties of the NPI-M lower and upper probabilities

The following essential properties of the NPI-M lower and upper probabili-
ties were demonstrated in [59]:

1. PNPI(A) = 1− PNPI(A), ∀A ⊆ {x1, x2, . . . , xt}.

2. Probabilities determined by relative frequencies are always consistent
with the NPI-M lower and upper probabilities:

PNPI(A) ⩽
n(A)

N
⩽ PNPI(A), ∀A ⊆ {x1, x2, . . . , xt} .
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3. The NPI-M lower and upper probabilities, determined via Theorem 2.3.1,
are, respectively, coherent lower and upper probability functions. Fur-
thermore, due to the first property, they are dual or conjugate.

4. As the number of observations diverges to infinity, the NPI-M lower
probability converges to the NPI-M upper probability.

2.3.3 Comparison with the IDM

The IDM assumes a set of prior Dirichlet distributions about the data through
a parameter. In contrast, the NPI-M does not make previous assumptions
about the data. The only assumption made by the NPI-M is the circular A(N),
which is a post-data assumption. NPI-M is a non-parametric approach.

As pointed in [59], the NPI-M do not satisfy the RIP, unlike the IDM. Even
though the RIP was established as a crucial principle for inference by Walley
[209], in [59], it was claimed that the fact that the NPI-M violates the RIP is
not a shortcoming. What is more, since the NPI-M does not satisfy the RIP,
inferences made with the NPI-M might produce intuitively more coherent
results than inferences with the IDM.

The differences between the results of inferences about the next observation
with the IDM and with the NPI-M were analyzed in [59]. The most relevant
conclusions from such an analysis can be summarized in the following points:

• For inferences on a singleton {xi}, with i ∈ {1, 2, . . . , t}, the NPI-M lower
probability is greater than 0 if, and only if, there are at least two obser-
vations for which X = xi. In contrast, if the xi value has been observed
only once, then the IDM lower probability is strictly greater than 0. It
can be stated that, in that sense, the inferences made with the NPI-M are
more conservative than the inferences made with the IDM.

• The number of non-observed values does not influence the IDM lower
and upper probabilities. Moreover, the computation of the IDM lower
and upper probabilities does not depend on the number of non-observed
values included in the inference subset. It does not happen with the NPI-
M since the number of observed and unobserved values and how many
are included in the inference subset influence the determination of the
NPI-M lower and upper probabilities.

• When the inference subset just contains non-observed values, the IDM
upper probability only depends on the parameter s and the total number
of observations N, while the NPI-M upper probability is influenced by



2.3 Special models based on imprecise probabil it ies 53

the number of observed and unobserved values and the cardinality of
the inference subset.

• In IDM inferences, the imprecision (the difference between the upper
and lower probabilities) does not change when the cardinality of the
inference subset varies. In contrast, with the NPI-M, the imprecision
in an inference increases as the inference subset is larger. Intuitively,
it makes sense that the imprecision is higher as the cardinality of the
inference subset increases.

To sum up, it can be stated that NPI-M inferences may provide more intu-
itive results than IDM inferences.

2.3.4 Approximate Non-Parametric Predictive Inference Model

We may note that, for singletons {xi}, with i ∈ {1, 2, . . . , t}, the NPI-M lower
and upper probabilities are given by:

PNPI ({xi}) = max
(
n(xi) − 1

N
, 0
)

, PNPI ({xi}) = min
(
n(xi) + 1

N
, 1
)

.

(2.67)
Hence, we have the following set of NPI-M probability intervals for singletons:

INPI =

{[
max

(
n(xi) − 1

N
, 0
)

, min
(
n(xi) + 1

N
, 1
)]

, i = 1, 2, . . . , t
}

.

(2.68)
As demonstrated in [5], the set of probability intervals given in Equation

(2.68) is reachable and has associated with it the following credal set:

P (INPI) = {p ∈ P(X) | p (xi) ∈[
max

(
n(xi) − 1

N
, 0
)

, min
(
n(xi) + 1

N
, 1
)]

, ∀i = 1, 2, . . . , t
}

.
(2.69)

Moreover, the following result was proven in [5]:

Proposition 2.3.1 The natural extension of the set of NPI-M probability intervals
for singletons, defined in Equation (2.68), coincides with the NPI-M coherent lower
probability function, determined by Theorem 2.3.1.

In consequence, the NPI-M lower and upper probabilities of each A ⊆
{x1, x2, . . . , xt} can be obtained from the NPI-M lower and upper probabili-
ties for singletons. However, there may be some probability distributions in
the credal set corresponding to the NPI-M probability intervals for singletons,
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defined in Equation (2.69), that do not satisfy the constraints imposed by the
NPI-M probability wheel representation of the data. In fact, the set of proba-
bility distributions compatible with the NPI-M is not convex. This was shown
with an example in [5].

By considering the set of probability distributions belonging to the credal set
associated with the NPI-M probability intervals for singletons, an approximate
model, called Approximate Non-Parametric Predictive Inference Model for
multinomial data (A-NPI-M), is obtained [5]. It corresponds to the convex hull
of the set of probability distributions compatible with the NPI-M. Therefore,
the A-NPI-M simplifies the exact model as it avoids some constraints imposed
by the NPI-M probability wheel representation of the data.



3 Q UA N T I F I C AT I O N O F T H E
U N C E RTA I N T Y- B A S E D I N F O R M AT I O N
W I T H I M P R E C I S E P R O B A B I L I T I E S

3.1 Introduction

When mathematical theories based on imprecise probabilities arise, new
tools for quantifying the uncertainty-based information in such theories are
needed. These tools are often called uncertainty measures. The study of uncer-
tainty measures in imprecise probability theories has its origin in the uncer-
tainty measures in classical information theories.

On the one hand, in classical possibility theory, the Hartley measure [110] was
established as suitable for quantifying uncertainty-based information. Such a
measure consists of a function that depends on the cardinality of the subset
to which the real alternative belongs. The type of uncertainty captured by the
Hartley measure is known as non-specificity.

On the other hand, the uncertainty in classical probability theory is well-
measured via the Shannon entropy [189], which quantifies the uncertainty-
based information involved in a probability distribution. The type of uncer-
tainty measured by the Shannon entropy is called conflict or discord.

In some imprecise probability theories, uncertainty measures have been de-
veloped, where it has been assumed that both conflict and non-specificity co-
exist. Thereby, both the Hartley measure and the Shannon entropy must be
properly extended to such theories. The study of uncertainty measures in
Evidence theory (ET) is the basis of uncertainty measures in more general
imprecise probability theories. In fact, the uncertainty measures in imprecise
probabilities proposed so far consist of extensions of uncertainty measures
initially developed in ET.

This chapter is structured as follows: Section 3.2 details the study of un-
certainty in classical theories (possibility and probability theories). The re-
search carried out so far concerning uncertainty measures in Evidence theory
is described in Section 3.3. In Section 3.4, we present the main uncertainty
measures proposed so far in more general imprecise probability theories.
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Within this chapter, it is assumed that X = {x1, x2, . . . , xt} is a finite set1, with
|X| = t. ℘(X) will denote the power set of X and P(X) the set of all probability
distributions on X.

3.2 Uncertainty in classical information theories

3.2.1 Uncertainty in possibility theory

Definition 3.2.1 [110] The function given by:

H(A) = log2(|A|), ∀A ∈ ℘(X) (3.1)

is called Hartley measure.

The type of uncertainty captured by H is usually known as non-specificity.
The Hartley measure is the most suitable uncertainty measure in classical pos-
sibility theory. Indeed, as demonstrated by Hartley [110], it is the only function
defined in terms of the cardinality of a subset that satisfies the three following
desirable properties:

1. Normalization: If A ⊂ X verifies that |A| = 2, then H(A) = 1.

2. Monotonicity: H(B) ⩽ H(A) ∀A,B ∈ ℘(X) such that B ⊆ A.

3. Additivity: Let X and Y be two finite sets, A ⊆ X, and B ⊆ Y. Then,
H(A×B) = H(A) +H(B).

Also, it can be easily deduced that the maximum value of the Hartley mea-
sure is equal to log2(|X|). It is reached when A = X.

3.2.2 Uncertainty in probability theory

Definition 3.2.2 [189] Let p be a probability distribution on X. The function deter-
mined by:

S(p) = −

t∑
i=1

p (xi) log2(p(xi)) (3.2)

is known as the Shannon entropy on p.

1 Or a discrete variable that takes values in {x1, x2, . . . , xt}.
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The Shannon entropy is the well-established uncertainty measure in classi-
cal probability theory. It captures a type of uncertainty often called conflict or
discord. This type of uncertainty is different from the one quantified by the
Hartley measure.

As proved in [189], the Shannon entropy is derived by using the three fol-
lowing axioms:

1. Continuity: Little variations in p(xi), for a certain i ∈ {1, 2, . . . , t}, must
lead to small changes in S(p).

2. Monotonicity: For uniform probability distributions, S must be an in-
creasing function of the number of alternatives.

Formally, let X = {x1, x2, . . . , xt} and Y = {y1,y2, . . . ,yt ′} be two finite
sets such that t ⩽ t ′. Let pX

u and pY
u be the uniform probability distribu-

tions on X and Y, respectively, that is,

pX
u(xi) =

1

t
, ∀i = 1, 2, . . . , t,

pY
u(yj) =

1

t ′
, ∀j = 1, 2, . . . , t ′

Then, it must hold that S(pX
u) ⩽ S(pY

u).

3. Additivity: Let X and Y be two finite sets and p a probability distribu-
tion on the product space X× Y. Let p↓X and p↓Y denote the marginal
probability distributions of p on X and Y, respectively:

p↓X(x) =
∑
y∈Y

p(x,y), ∀x ∈ X,

p↓Y(y) =
∑
x∈X

p(x,y), ∀y ∈ Y.

Suppose that the marginal probability distributions are independent.
Then, S must verify that

S(p) = S(p↓X) + S(p↓Y).

The Shannon entropy also satisfies the following desirable properties:

• S does not depend on the arrangement of the elements of X, only on
their probabilities.

• S(p) ⩾ 0, with equality if, and only if, p (xi) = 1 for some i ∈ {1, 2, . . . , t}.

• The maximum value of S, which is equal to log2(|X|), is attained when
p is the uniform probability distribution on X, i.e, p(xi) = 1

t , ∀i =

1, 2, . . . , t.
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3.3 Uncertainty measures in Evidence theory

According to Yager [222], in Evidence theory (ET), both conflict and non-
specificity coexist. Conflict appears when the uncertainty-based information
resides in subsets with empty intersection, while non-specificity arises when
the uncertainty-based information focuses on subsets with cardinality greater
than one. Therefore, both the Hartley measure (the well-established non-
specificity measure in classical possibility theory) and the Shannon entropy
(the suitable conflict measure in classical probability theory) must be properly
generalized to ET.

3.3.1 Essential mathematical properties and behavioral requirements for
uncertainty measures in Evidence theory

Klir and Wierman [127] carried out a study about the crucial mathematical
properties that have to be satisfied by total uncertainty measures in ET. Ac-
cording to such a study, a total uncertainty measure in ET, UM, that jointly
quantifies conflict and non-specificity should satisfy the following five funda-
mental properties:

1. Probabilistic consistency: If m is a BPA on X such that all its focal ele-
ments are singletons, then UM must coincide with the Shannon entropy,
that is:

UM(m) = −

t∑
i=1

m ({xi}) log2(m ({xi})).

2. Set Consistency: Let m be a BPA on X. Suppose that there exists a
subset A ⊆ X such that m(A) = 1. Then, UM must collapse to the
Hartley measure:

UM(m) = log2(|A|).

3. Range: The range of UM has to be equal to [0, log2(t)].

4. Subadditivity: Let X and Y be two finite sets and m a BPA on the prod-
uct space X× Y. Let m↓X and m↓Y denote the respective marginal BPAs
of m on X and Y, determined via Equations (2.36) and (2.37), respectively.
Then, UM must verify the following inequality:

UM(m) ⩽ UM(m↓X) +UM(m↓Y).

The idea of this property is that, when a BPA defined on a joint space is
decomposed, the uncertainty-based information must not be increased.
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5. Additivity: Let m be a BPA defined on a product space X× Y, X and Y

being two finite sets. Let m↓X and m↓Y be the respective marginal BPAs
of m on X and Y. Suppose that the marginal BPAs are non-interactive.
Then, it must hold that

UM(m) = UM(m↓X) +UM(m↓Y).

This means that, when a BPA defined on a product space such that the
marginal BPAs are independent is decomposed, the uncertainty-based
information has to be preserved.

In some cases, depending on the form of the uncertainty measure, it makes
more sense to consider the submultiplicativity and multiplicativity properties
than subadditivity and additivity. Such properties are defined in the following
way taking into account the definitions of additivity and subadditivity:

• Submultiplicativity: Let X and Y be two finite sets and m a BPA on the
product space X× Y. Let m↓X and m↓Y denote the respective marginal
BPAs of m on X and Y. Then, UM must verify that:

UM(m) ⩽ UM(m↓X)×UM(m↓Y).

• Multiplicativity: Let m be a BPA defined on a product space X × Y,
where X and Y are two finite sets. Let m↓X and m↓Y denote the marginal
BPAs of m on X and Y, respectively. Suppose that the marginal BPAs are
non-interactive. Then, it must hold that

UM(m) = UM(m↓X)×UM(m↓Y).

Submultiplicativity and multiplicativity are essentially equivalent to subad-
ditivity and additivity [224].

We may note that the properties described above are based on the essen-
tial mathematical properties satisfied by the Hartey measure and the Shannon
entropy in classical information theories. Since ET is more general than possi-
bility and probability theories, in ET, situations that never happen in classical
theories can arise.

The study carried out by Klir and Wierman was extended by Abellán and
Masegosa [21] by taking the following point into consideration: in probability
theory, a probability distribution can never be contained in another probability
distribution. In contrast, in ET, the uncertainty-based information involved in
a BPA can contain the uncertainty-based information involved in another BPA.
This issue must be taken into account by every total uncertainty measure in
ET. Thus, the following property is also considered as crucial [21]:
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• Monotonicity: Let m1 and m2 be two BPAs on X. Let Pmi
denote the

credal set consistent with the BPA mi, for i = 1, 2. Suppose that Pm1
⊆

Pm2
. Then, it must hold that:

UM(m1) ⩽ UM(m2).

An uncertainty measure in ET not only has to satisfy the crucial mathemat-
ical properties but its behavior in different situations must be desirable. In
this way, Abellán and Masegosa [21] also claimed that every total uncertainty
measure in ET, UM, must satisfy the following behavioral requirements:

1. Computational complexity: The calculation of UM must not be too com-
plex.

2. Coherent disaggregation: UM must not conceal the two types of uncer-
tainty that appear in ET: conflict and non-specificity. Consequently, it
has to be possible to decompose UM into two measures that coherently
quantify conflict and non-specificity, respectively.

3. Sensitivity to changes in the BPA: UM has to be sensitive to changes
in the BPA. However, it must be considered that, sometimes, an increase
of conflict might produce a decrease of non-specificity and vice-versa.
Hence, there can be similar values of UM with different values of con-
flict and non-specificity. For this reason, UM has not to be sensitive to
changes in the BPA directly, it can also be sensitive through its parts of
conflict and non-specificity.

In some situations, it is more appropriate to mathematically quantify the
available information through more general theories than ET [127]. In these
cases, the principle of uncertainty invariance must be taken into account, which
establishes that when a representation of uncertainty in a mathematical theory
is transformed into its counterpart in another theory, the amount of informa-
tion must be preserved. Thereby, every uncertainty measure in ET, UM, must
satisfy the following behavioral requirement:

• Generalization: The extension of UM to more general theories than ET
must be possible.
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3.3.2 Main approaches for quantifying uncertainty in Evidence theory

The Hartley measure was extended to ET by Dubois and Prade [83]. Given
a BPA m on X, the Generalized Hartley Measure is defined in the following
way:

GH(m) =
∑

A∈℘(X)

m(A) log2(|A|). (3.3)

When m is a probability distribution (all its focal elements are singletons),
GH reaches its minimum value, which is equal to 0. The maximum value
of GH is equal to log2(|X|). It is attained when m(X) = 1. As shown in
[84], GH is a suitable non-specificity measure in ET as it satisfies the essential
mathematical properties. In addition, it is possible to extend it to more general
imprecise probability theories [12].

There were several attempts to generalize the Shannon entropy to ET. One of
the most remarkable was the Dissonance measure of Yager [222]. It is defined,
for a given BPA m on X, as follows:

E(m) = −
∑

A∈℘(X)

m(A) log2 Plm(A), (3.4)

where Plm is the plausibility function corresponding to m.
However, none of the proposed extensions of the Shannon entropy to ET

satisfies the essential subadditivity property [127]. It would have been accept-
able if this requirement had been satisfied by the total uncertainty measure
resulting from summing GH and the generalized Shannon entropy, but it did
not happen for any of the proposed extensions of the Shannon entropy.

At the middle of 90’s, these unsuccessful attempts of generalizing the Shan-
non entropy were replaced by a total uncertainty measure that captures both
conflict and non-specificity. That measure, presented by Harmanec and Klir
[109], consists of the maximum entropy on the credal set compatible with a
BPA. Formally, for a given BPA m on X, the maximum entropy is determined
as follows:

S∗ (P(Belm)) = max
p∈P(Belm)

S(p), (3.5)

Belm being the belief function associated with m and P(Belm) the credal set
consistent with Belm, computed via Equation (2.32).

As pointed out by Abellán and Masegosa [21], S∗ satisfies all required math-
ematical properties for uncertainty measures in ET. Furthermore, this measure
can be easily extended to more general imprecise probability theories [1].
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When the maximum entropy was proposed, it did not separate conflict and
non-specificity. As we have shown, this is a fundamental behavioral require-
ment for total uncertainty measures in ET. Smith [192] proposed the following
disaggregation of S∗ (P(Belm)):

S∗ (P(Belm)) = GH+ (S∗ (P(Belm)) −GH). (3.6)

The first term of Equation (3.6) quantifies non-specificity whereas the sec-
ond term captures conflict. It always holds that S∗ (P(Belm)) −GH ⩾ 0 and,
thus, it is meaningful to consider S∗ (P(Belm)) −GH as the generalization of
the Shannon entropy to ET [192].

This decomposition of S∗ is not unique. Indeed, Abellán and Moral [15]
proposed the following disagreggation of S∗2:

S∗ (P(Belm)) = S∗ (P(Belm)) + (S∗ (P(Belm)) − S∗ (P(Belm))) , (3.7)

where S∗ (P(Belm)) is the minimum entropy on P(Belm):

S∗ (P(Belm)) = minp∈P(Belm)S(p). (3.8)

In the expression given by Equation (3.7), the first term captures conflict
while the second term quantifies non-specificity. Abellán and Moral [15]
demonstrated that (S∗ (P(Belm)) − S∗ (P(Belm))) is a suitable non-specificity
measure. Indeed, it does not satisfy the subadditivity property, but it does not
matter since the total uncertainty measure S∗ verifies this requirement.

Some works in the literature, such as [123, 211], criticised that the maxi-
mum entropy is not sensitive to changes in the BPA. Indeed, it is not directly
sensitive. Nonetheless, Abellán and Masegosa [21] showed that the maxi-
mum entropy is sensitive to changes in a BPA via its parts of conflict and
non-specificity. As commented before, it makes sense because an increase (de-
crease) of conflict may lead to a decrease (increase) of non-specificity even
though the total uncertainty value does not vary.

Despite the previous points, the algorithms proposed so far for the compu-
tation of the maximum entropy (see [109, 118, 145, 154]) are notably complex.
This supposes a drawback for using such a measure in practical applications.
For this reason, many alternative measures to the maximum entropy have
been developed during the last years.

• Jousselme et. al [123] proposed a total uncertainty measure that consists
of the Shannon entropy of the pignistic transformation of a BPA. That

2 The decomposition was proposed for the generalization of the maximum entropy for credal
sets, but the decomposition is also useful in ET.
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measure is called ambiguity measure (AM). Formally, for a given BPA m

on X, the ambiguity measure is defined as follows:

AM(m) =

t∑
i=1

BetPm ({xi}) log2 (BetPm ({xi})) , (3.9)

where BetPm is the pignistic transformation of the BPA m, computed by
means of Equation (2.31).

Klir and Lewis [129] found some drawbacks on this ambiguity measure.
In order to solve such shortcomings, Shahpari and Seyedin [188] pre-
sented a modified ambiguity measure (MAM). On 1-D space, MAM and
AM coincide. Nonetheless, for a 2-D space, Shahpari and Seyedin uti-
lized a different definition for the pignistic transformation and they did
not substantially justified it.

Formally, let X = {x1, x2, . . . , xt} and Y = {y1,y2, . . . ,yt ′} be two finite
sets and m a BPA defined on the product space X× Y. On X× Y, AM
coincides with MAM. Now, for the marginal BPA of m on X, Shahpari
and Seyedin [188] employed the following probability distribution:

MBetmX ({xi}) =
∑

A⊆X×Y|xi∈A↓X

m(A)#(xi ∈ A)

|A|
, ∀i = 1, 2, . . . , t,

(3.10)
A↓X being the projection of A on X and #(xi ∈ A) the number of occur-
rences of xi in A, ∀i ∈ {1, 2, . . . , t} , A ⊆ X× Y.

Analogously, Shahpari and Seyedin [188] used the following probability
distribution for the marginal BPA of m on Y:

MBetmY

({
yj

})
=

∑
A⊆X×Y|yj∈A↓Y

m(A)#(yj ∈ A)

|A|
, ∀j = 1, 2, . . . , t ′,

(3.11)
where A↓Y is the projection of A on Y and #(yj ∈ A) the number of
occurrences of yj in A, ∀j ∈ {1, 2, . . . , t ′} , A ⊆ X× Y.

In this way, on the marginal BPAs of m on X and Y, Shahpari and Seyedin
[188] considered the Shannon entropy on the probability distributions on
X and Y determined by Equations (3.10) and (3.11), respectively.

Abellán and Bossé [7] pointed out that both AM and MAM satisfy prob-
abilistic consistency, set consistency, and range; both AM and MAM vi-
olate additivity and monotonicity; AM does not verify subadditivity;
MAM satisfies the subadditivity property in a controversial way because
of the definition of MAM for marginal BPAs.



64 Quantif ication of the uncertainty-based information with imprecise probabil it ies

• One of the most frequently used uncertainty measures proposed in the
last years is the Deng entropy [77]. Given a BPA m on X, the Deng entropy
is defined in the following way:

EDeng(m) = −
∑

A∈℘(X)

m(A) log2

(
m(A)

2|A| − 1

)
=

∑
A∈℘(X)

m(A) log2

(
2|A| − 1

)
−

∑
A∈℘(X)

m(A) log2 (m(A)).
(3.12)

In Equation (3.12), the first term indicates non-specificity whereas the
second term quantifies conflict. The idea of this measure is that the un-
certainty must be considerably increased as there are more alternatives.

The Deng entropy has been commonly employed in the literature [69,
125, 237]. However, Abellán [4] demonstrated that this measure violates
most of the essential mathematical properties for total uncertainty mea-
sures in ET. Actually, among the crucial mathematical properties for total
uncertainty measures in ET, detailed in Section 3.3.1, only the probabilis-
tic consistency is satisfied by the Deng entropy. Moreover, the behavior
of this uncertainty measure in some situations is questionable. For ex-
ample, when all focal elements share an element, the conflict part of the
Deng entropy might not be equal to 0. This is a shortcoming because,
in these cases, there is no conflict [4]. Also, the extension of the Deng
entropy to more general theories than ET is still an open question.

In [236], a modification of the Deng entropy, known as Zhou entropy,
was proposed. It is defined, for a given BPA m on X, as follows:

EZhou(m) = −
∑

A∈℘(X)

m(A) log2

(
m(A)

2|A| − 1
exp

(
|A|− 1

|X|

))
=

∑
A∈℘(X)

m(A) log2(2
|A| − 1)−

∑
A∈℘(X)

m(A) log2

(
exp

(
|A|− 1

|X|

))
−

∑
A∈℘(X)

m(A) log2m(A).

(3.13)

It could be considered that the first two terms in Equation (3.13) quan-
tify the non-specificity part in a BPA since both of them are equal to 0

when m is a probability distribution. The third one might measure the
conflict part, which is the same as in the original Deng entropy. It can
be observed that EZhou is also based on the idea of the Deng entropy as
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it gives a higher total uncertainty value when the number of alternatives
increases. However, due to the second term, with the modification, this
increase is better controlled.

Afterwards, Cui, Liu, Zhang, and Kang [69] proposed a new version of
the Deng entropy that takes the intersections between the focal elements
into consideration. It is defined in the following way:

ECui(m) = −
∑

A∈℘(X)

m(A) log2

( m(A)

2|A| − 1

)
exp

 ∑
B ̸=A∧m(B)>0

|A∩B|
2|X|−1


=

∑
A∈℘(X)

m(A) log2

(
2|A| − 1

)

−
∑

A∈℘(X)

m(A) log2

m(A)× exp

 ∑
B ̸=A∧m(B)>0

|A∩B|
2|X|−1

.

(3.14)

• Jirousek and Shenoy [122] presented a total uncertainty measure based
on the plausibility transformation of a BPA [57, 207]. Given a BPA m on X,
the mentioned transformation is defined as follows:

Ptm ({xi}) =
Plm ({xi})∑t

j=1 Plm
({

xj
}) , ∀i = 1, 2, . . . , t. (3.15)

For a given BPA m on X, the uncertainty measure proposed by Jirousek
and Shenoy is determined by the sum of GH(m) and the Shannon en-
tropy of the plausibility transformation of m [122]:

EJS(m) = GH(m) −

t∑
i=1

Ptm ({xi}) log2 (Ptm ({xi})). (3.16)

The first term of Equation (3.16) is associated with non-specificity, whereas
the second term captures conflict.

As demonstrated in [122], EJS satisfies probabilistic consistency, additiv-
ity, and monotonicity, but it violates set consistency and subadditivity.
The range of EJS is equal to [0, 2 log2(t)] and, thus, EJS does not satisfy
the range property [122].

The computation of this EJS is fast. It separates conflict and non-specificity.
However, we can observe that the conflict value of EJS may not be equal
to 0 when all focal elements are not disjunct. As explained before, it is an
undesirable behavior. In addition, the extension of EJS to more general
theories than ET is still an open problem.
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• An uncertainty measure that also uses the plausibility transformation
was proposed in [170]. It is defined in the following way:

EPQ(m) = −
∑
A⊆X

m(A) log2 (Pm(A)) +GH(m), (3.17)

where Pm(A) =
∑

xi∈A Ptm ({xi}) , ∀A ⊆ X. The first term captures
conflict, and the second one corresponds to non-specificity.

EPQ satisfies probabilistic consistency, monotonicity, and additivity. Nev-
ertheless, it does not verify neither range nor subadditivity [170]. When
m(A) = 1 for some A ⊆ X, we may note that EPQ(m) = log2(Pm(A)) +

log2(|A|). Consequently, EPQ does not satisfy set consistency.

It can be observed that EPQ separates conflict and non-specificity.
Nonetheless, we may note that, when all focal elements have an element
in common, the conflict part of EPQ might be greater than 0, which is not
desirable. Furthermore, the extension of EPQ to more general theories
than ET is still an open problem.

• Zhao et. al [235] proposed a total uncertainty measure that combines the
Deng entropy with the belief intervals for singletons. It is defined, for a
given BPA m on X, as follows:

Einter(m) = −

t∑
i=1

Belm ({xi}) + Plm ({xi})

2

× log2

[
Belm ({xi}) + Plm ({xi})

2
× exp(−(Plm({xi}) −Belm({xi})

]
−

∑
A⊆X||A|⩾2

m(A)× log2

[
m(A)

2|A| − 1
exp(−(Plm(A) −Belm(A)))

]
.

(3.18)

In the previous expression, the first term corresponds to conflict, while
the second one indicates non-specificity.

This total uncertainty measure verifies probabilistic consistency, but it
violates set consistency, range, subadditivity, and additivity [235]. Al-
though the monotonicity property was not formally proved in [235],
in that work, it was illustrated via numerical examples that Einter(m)

might satisfy this requirement.

Einter(m) separates conflict and non-specificity. Nevertheless, when all
focal elements of m share an element, the conflict part of Einter(m)

might not be equal to 0, which is an undesirable behavior. In addition,
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it must be remarked that the extension of Einter(m) to more general
theories than ET is still an open problem.

Table 3.1: Summary of the essential mathematical properties verified by the uncer-
tainty measures proposed so far in ET. UM = uncertainty measure, Prob
con = Probabilistic consistency, Set con = Set consistency, Subadd = subad-
ditivity, and Mon = monotonicity.

UM Prob con Set con Range Subadd Add Mon
S∗ Yes Yes Yes Yes Yes Yes
AM Yes Yes Yes No No No

MAM Yes Yes Yes Controversial No No
EDeng Yes No No No No No
EJS Yes No No No Yes Yes
EPQ Yes No No No Yes Yes
Einter Yes No No No No Not proved

Table 3.1 summarizes which of the essential mathematical properties for un-
certainty measures in ET, described in Section 3.3.1, are verified by each one of
the uncertainty measure proposed so far in ET. A summary of the behavioral
requirements satisfied by the uncertainty measures proposed so far in ET can
be seen in Table 3.2. It can be deduced that, even though the maximum en-
tropy involves a higher computational complexity than the other uncertainty
measures, it is the only one that satisfies all essential mathematical proper-
ties, is coherently disaggregated into two measures that quantify conflict and
non-specificity, and can be extended to more general theories than ET.

3.3.3 Uncertainty measures on belief intervals for singletons

Belief intervals for singletons have received considerable attention for quan-
tifying the uncertainty-based information in ET in the last years. As pointed
out in Section 2.2.4.4, the credal set associated with a BPA is always contained
in the credal set compatible with the corresponding set of belief intervals for
singletons. However, as shown in Example 2.2.1, there may be probability dis-
tributions consistent with the belief intervals for singletons but not with the
BPA.

Nevertheless, belief intervals for singletons are more manageable than BPAs
for representing uncertainty-based information. It is because, with the belief
intervals for singletons, it is possible to know the uncertain area associated
with each alternative, as shown in Figure 3.1. It does not happen directly
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Table 3.2: Summary of the crucial behavioral requirements satisfied by the uncer-
tainty measures proposed so far in ET. Complexity = computational com-
plexity of the uncertainty measure; Disaggregation = whether the uncer-
tainty measure is disaggregated into two measures that quantify conflict
and non-specificity and the disggregation is coherent; Sensitivity = whether
the uncertainty measure is sensitive to changes in the evidence, directly or
via its parts of conflict and non-specificity; Extensible = whether there ex-
ists extension of the uncertainty measure to more general theories than ET.

UM Complexity Disaggregation Sensitivity Extensible
S∗ High Coherent Yes Yes
AM Low No Yes No

MAM Low No Yes No
EDeng Low Not very coherent Yes No
EJS Low Not very coherent Yes No
EPQ Low Not very coherent Yes No
Einter Low Not very coherent Yes No

Figure 3.1: Uncertainty-based-information with belief intervals for singletons.

using the BPA. When employing the BPA, it is necessary to deal with the
belief value of each subset, and we must remark that the number of subsets
exponentially grows as the number of alternatives increases. Hence, several
uncertainty measures on the belief intervals for singletons in ET have been
proposed during the last years.

Let m be a BPA on X and Belm and Plm the belief and plausibility functions
corresponding to m, respectively. Let Im denote the set of belief intervals for
singletons associated with m, determined via Equation (2.41). As demon-
strated by Wang and Song [212], Im is always reachable. Therefore, belief
intervals for singletons are particular cases of reachable probability intervals.

We show below the total uncertainty measures proposed so far on Im.
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• The total uncertainty measure defined by Yang and Han [223], TUMI(Im),
utilizes the following distance measure for intervals:

dI ([a1,b1], [a2,b2]) =

√[
a1 + b1

2
−

a2 + b2

2

]2
+

1

3

[
b1 − a1

2
−

b2 − a2

2

]2
.

(3.19)

TUMI is defined as follows:

TUMI(Im) = 1−

√
3

t

t∑
i=1

dI ([Belm ({xi}) ,Plm ({xi})], [0, 1]) . (3.20)

In the previous expression,
√
3 is a normalization factor. The idea of

this uncertainty measure is that a belief interval for a certain singleton
is more uncertain as its distance to the interval [0, 1], the one associated
with total uncertainty, is lower.

Yang and Han [223] showed that the range of TUMI is [0, 1]; it satisfies
the monotonicity property; even though TUMI(Im) is neither probabilis-
tic nor set consistent, it has a rational behavior in many cases.

• In [220], a total uncertainty measure on belief intervals for singletons
was developed to solve some drawbacks of the previous one. Such a
measure employs the following distance function for intervals:

dI
E ([a1,b1], [a2,b2]) =

√
(a1 − a2)2 + (b1 − b2)2. (3.21)

The uncertainty measure introduced in [220] is defined in the following
way:

TUMI
E(Im) =

t∑
i=1

[
1− dI

E ([Belm ({xi}) ,Plm ({xi})], [0, 1])
]

. (3.22)

In [220], it was shown via numerical examples that, when there are two
identical BPAs on sets of alternatives with different cardinality, TUMI

may produce identical results, which implies a drawback. It does not
occur with TUMI

E.
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• The total uncertainty measure proposed by Wang and Song [212] is de-
fined as follows:

SU (Im) =

t∑
i=1

[
−
Belm ({xi}) + Plm ({xi})

2
log2

Belm ({xi}) + Plm ({xi})

2

]

+

t∑
i=1

[
Plm ({xi}) −Belm ({xi})

2

]
.

(3.23)

In Equation (3.23), the first term quantifies conflict, whereas the second
term indicates non-specificity. In this way, the conflict value is quantified
by means of the relation between the central values of the belief intervals
for singletons, and the non-specificity value is determined by the span
of such intervals [212].

As shown by Wang and Song [212], SU satisfies probabilistic consistency.
When there exists A ⊆ X such that m(A) = 1, then SU (Im) = |A|. Con-
sequently, SU does not verify set consistency. However, the uncertainty
of a classical set is determined by its cardinality. Therefore, SU satisfies
a weak version of the set consistency property as, when m(A) = 1 for
some A ⊆ X, it takes the form of an increasing function of |A|. The range
of SU is equal to [0, 1]. Moreover, in [212], it was shown through nu-
merical examples that SU might lead to more intuitive results than other
uncertainty measures such as AM.

3.4 Uncertainty measures in more general imprecise
probabil ity theories

In addition to ET, the only imprecise probability theory in which uncertainty
measures have been developed is credal sets. Hence, in this section, we focus
on uncertainty measures on credal sets. The study of uncertainty measures in
credal sets has its origin in the study of uncertainty measures in ET. Remark
that, in most of the general imprecise probability theories, the uncertainty-
based information can be represented by means of a credal set. The start
point is that, in general credal sets, there also exists two types of uncertainty:
conflict and non-specificity [13, 40].

Let P be a credal set on X and P the coherent lower probability function
extracted from P, computed via Equation (2.15).
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The generalized Hartley measure GH, which is the well-established non-
specificity measure in ET, can be extended to general credal sets. Such an
extension is defined as follows [12]:

GH(P) =
∑
A⊆X

m(A) log2(|A|), (3.24)

where m is the Möbius inverse of P.
Abellán and Moral [12] demonstrated that GH satisfies the following desir-

able properties for a non-specificity measure on credal sets:

1. It always holds that GH(P) ⩾ 0. Thus, GH is well-defined as a non-
specificity measure.

2. If P contains a unique probability distribution, then GH(P) = 0.

3. Monotonicity: If P1 and P2 are two credal sets on X such that P1 ⊆ P2,
then GH(P1) ⩽ GH(P2).

4. The range of GH is equal to [0, log2(t)]. It reaches its maximum value,
log2(t), when P contains all probability distributions on X.

5. Additivity: Let X and X be two finite sets and P a credal set on the
product space X× Y. Let P↓X and P↓Y denote the marginal credal sets
of P on X and Y, determined via Equations (2.6) and (2.7), respectively.
Suppose that there is strong independence under P (See Definition 2.2.8).
Then, the following equality is verified:

GH(P) = GH(P↓X) +GH(P↓Y).

The maximum entropy on P, proposed by Abellán and Moral [13], is the
well-established total uncertainty measure on a credal set. Such a measure is
defined in the following way:

S∗ (P) = max
p∈P

S(p), (3.25)

S(p) being the Shannon entropy of the probability distribution p, determined
via Equation (3.2).

As pointed out in [40, 128], S∗ is a well-established total uncertainty mea-
sure on credal sets since it satisfies a set of desirable properties. Specifically,
Abellán and Moral [13] showed that S∗ satisfies the following required prop-
erties for uncertainty measures on credal sets:

1. It is well-defined as it is always satisfied that S∗ (P) ⩾ 0.
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2. The range of S∗ is equal to [0, log2(t)]. S∗(P) reaches the value 0 if, and
only if, P only contains a probability distribution p such that p(xi) =

1 for some i ∈ {1, 2, . . . , t}. When P contains the uniform probability
distribution on X, the maximum value of S∗, log2(t), is attained.

3. Monotonicity: Let P1 and P2 be two credal sets on X satisfying P1 ⊆ P2.
Then, it always holds that S∗(P1) ⩽ S∗(P2).

4. Subadditivity: Let X and Y be two finite sets and P a credal set on the
product space X× Y. Let P↓X and P↓Y denote, respectively, the marginal
credal sets of P on X and Y. It is always satisfied that:

S∗ (P) ⩽ S∗
(
P↓X

)
+ S∗

(
P↓Y

)
.

5. Additivity: If P is a credal set defined on a product space X× Y such
that its marginal credal sets on X and Y, denoted respectively by P↓X

and P↓Y , are strongly independent under P, then the following equality
holds:

S∗ (P) = S∗
(
P↓X

)
+ S∗

(
P↓Y

)
.

Since it is supposed that in credal sets there are also two types of uncertainty,
conflict and non-specificity, it must be possible to decompose S∗ into two
measures that respectively quantify conflict and non-specificity.

Abellán and Moral [15] proposed the following disaggregation for S∗:

S∗ (P) = S∗ (P) + [S∗ (P) − S∗ (P)] , (3.26)

where S∗ (P) is the minimum entropy on P:

S∗ (P) = min
p∈P

S(p). (3.27)

In Equation (3.26), the first term indicates conflict while the second one
captures non-specificity.

The conflict measure S∗ satisfies the following properties [15]:

1. The range of S∗ is equal to [0, log2(|X|)]. S∗ (P) is equal to 0 if, and only
if, ∃p ∈ P such that p(xi) = 1 for some i ∈ {1, 2, . . . , t}. S∗ (P) attains its
maximum value, log2(|X|), when P just contains the uniform probability
distribution.

2. S∗ is monotonously decreasing. Formally, if P1 and P2 are two credal
sets on X such that P1 ⊆ P2, then S∗ (P2) ⩽ S∗ (P1).
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3. Continuity: Small changes in P produce small changes in S∗ (P).

4. Additivity: Let P be a credal set on a product space X×Y, X and Y being
two finite sets. Let P↓X and P↓Y denote the marginal credal sets of P on
X and Y, respectively. Suppose that there is strong independence under
P. Then, the following equality is satisfied:

S∗ (P) = S∗

(
P↓X

)
+ S∗

(
P↓Y

)
.

Regarding the non-specificity measure S∗ − S∗, it verifies the following cru-
cial properties for non-specificity measures on credal sets [15]:

1. The range of S∗ − S∗ is equal to [0, log2(|X|)]. Its minimum value is at-
tained when P is composed of a single probability distribution. When all
probability distributions on X belongs to P, S∗−S∗ reaches its maximum
value, log2(|X|).

2. S∗ − S∗ is a continuous function, i.e, small changes in P lead to small
changes in S∗ − S∗.

3. It is additive as both S∗ and S∗ are additive.

4. S∗−S∗ is increasing monotonous. This means that, if P1 and P2 are two
credal sets on X such that P1 ⊆ P2, then (S∗ − S∗) (P1) ⩽ (S∗ − S∗) (P2).

Indeed, it is also possible to decompose S∗ as follows:

S∗(P) = GH(P) + [S∗(P) −GH(P)] . (3.28)

The first term of Equation (3.28) captures non-specificity while the second one
quantifies conflict. As demonstrated in [130], it always holds that S∗(P) −

GH(P) ⩾ 0 and, thus, S∗ −GH makes sense as a conflict measure.
Abellán and Moral [15] argued that S∗ − S∗ and GH have a different behav-

ior as non-specificity measures: GH just measures absolute imprecision. In
contrast, S∗ − S∗ quantifies the imprecision by also taking the extreme prob-
abilities into account. In this sense, S∗ − S∗ has a more intuitive behavior
than GH since the same absolute difference in probability values might be
more important for probability distributions close to a degenerate one than
for probability distributions close to the uniform distribution [15].
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3.4.0.1 Computation of the uncertainty measures in imprecise probabilities

We have argued that the maximum entropy is a well-established total un-
certainty measure on credal sets as it satisfies a set of required properties for
this kind of measure. Moreover, this measure can be decomposed into two
measures that coherently quantify conflict and non-specificity. Nonetheless,
the calculation of the maximum entropy on a credal set might be very com-
plex. Indeed, there is no an algorithm to compute the maximum entropy on
an arbitrary credal set so far.

Some procedures have been proposed so far for computing the maximum
entropy on special types of credal sets. For instance, several algorithms were
developed to compute the maximum entropy on the credal set compatible
with a BPA in ET [109, 118, 145, 154]. Abellán and Moral [16] proposed a
procedure to compute the maximum entropy for Choquet capacities of order
2. Also, algorithms for obtaining the probability distribution of maximum
entropy on reachable probability intervals and in some particular imprecise
probability models have been proposed in the literature, which we describe
below.

Regarding the non-specificity measures, the computation of GH tends to be
pretty simple. In contrast, the computation of the minimum entropy is not
trivial at all and, so far, there is no an algorithm for obtaining the minimum
entropy on a general credal set. An algorithm to compute the minimum en-
tropy on Choquet capacities of order 2 was proposed by Abellán and Moral
[15]. We must remark that the computational complexity of such an algorithm
is pretty high. Abellán [2] demonstrated a result that allows quickly obtain-
ing the probability distribution that reaches the minimum entropy on an IDM
credal set, which we detail below.

Maximum entropy on a reachable set of probability intervals Abel-
lán and Moral [13] presented an algorithm for obtaining the probability dis-
tribution that reaches the maximum entropy on a reachable set of probability
intervals. Such an algorithm have been widely used in practical applications
where the uncertainty-based information is represented by means of probabil-
ity intervals.

The mentioned algorithm aims to find a probability distribution consistent
with the given set of intervals as close as possible to the uniform probability
distribution. For this purpose, it starts by assigning, to each value of X, the
lowest probability according to the given intervals. Then, a iterative proce-
dure is carried out where, in each iteration, the probability of the values with
the lowest probability is uniformly incremented considering the constraints
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imposed by the intervals and the second lowest probability value. The proce-
dure finishes when the sum of all probability values is equal to 1 (a probability
distribution is obtained).

Algorithm 3 exhaustively describes the procedure to obtain the probability
distribution that attains the maximum entropy on a reachable set of probability
intervals, where sec_min indicates the second minimum value. If such a
second minimum value does not exist, then sec_min = −1.

Algorithm 3: Procedure to compute the probability distribution of max-
imum entropy on a reachable set of probability intervals.
Procedure Determine probability distribution of maximum entropy
on a reachable set of probability intervals(Reachable set of probability
intervals on X {[li,ui], i = 1, 2, . . . , t})
for i = 1 to t do

p̂(xi)← li

sum←
∑t

i=1 p̂(xi)

while sum < 1 do
min_prob← mini∈{1,2,...,t}|p̂(xi)<ui

p̂(xi)

index_min_prob← {i ∈ {1, 2, . . . , t} | p̂(xi) = min_prob}
num_min← |index_min_prob|
sec_min_prob← sec _mini∈{1,2,...,t}|p̂(xi)<ui

p̂(xi)

for i ∈ index_min_prob do
if sec_min_prob = −1 then

p̂(xi)← p̂(xi) + min
(
ui − p̂(xi), 1−sum

num_min , 1
)

else
p̂(xi)← p̂(xi) +

min
(
ui − p̂(xi), sec_min_prob−min_prob, 1−sum

num_min

)
sum←

∑t
i=1 p̂(xi)

return p̂

Uncertainty measures on the Imprecise Dirichlet Model As pointed
out in Section 2.3.1, a set of IDM probability intervals is always reachable.
Hence, the maximum entropy on a set of IDM probability intervals can be
computed by using Algorithm 3. Also, as said previously, Walley [209] sug-
gests two values for the s parameter: s = 1 and s = 2. For s ∈ [1, 2], Abellán
[2] proposed a quick way of obtaining the maximum entropy on a set of IDM
probability intervals.
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Suppose that we have a sample of N independent and identically distributed
outcomes of X. Let n(xi) denote the number of observations of xi in the sam-
ple, ∀i = 1, 2, . . . , t. Let us consider the set of values that have the minimum
observed frequency:

min_observed_IDM =
{
xi | n(xi) = minj=1,2,...,tn(xj)

}
. (3.29)

Let num_min_IDM denote the number of elements of X that have the min-
imum observed frequency, i.e, num_min_IDM = |min_observed_IDM|. In
order to obtain the probability distribution that attains the maximum entropy
with the IDM, p̂IDM, for s ∈ [1, 2], two cases are distinguished [2]:

• Case 1: num_min_IDM > 1 or s = 1:

In this case, for each i = 1, 2, . . . , t, the value of the probability distribu-
tion of maximum entropy with the IDM is determined by:

p̂IDM(xi) =


n(xi)+

s
num_min_IDM

N+s if xi ∈ min_observed_IDM

n(xi)
N+s if xi /∈ min_observed_IDM

• Case 2: num_min_IDM = 1 and s > 1:

It implies that min_observed_IDM = {xi}, for some i ∈ {1, 2, . . . , t}. In
this situation, we assign n(xi) ← n(xi) + 1, s ← s− 1, recalculate the
subset min_observed_IDM, and obtain p̂IDM similarly to Case 1.

For obtaining the minimum entropy, since IDM probability intervals are
reachable probability intervals and, therefore, Choquet capacities of order 2,
the algorithm proposed by Abellán and Moral [15] to compute the minimum
entropy in Choquet capacities of order 2 could be employed. However, Abel-
lán [2] showed that, due to the special structure of IDM probability intervals,
the minimum entropy with the IDM can be obtained in a straight way through
the following result:

Theorem 3.4.1 Let (n(x1),n(x2), . . . ,n(xt)) be the array of observed frequencies in
the sample. Let (n∗

1,n∗
2, . . . ,n∗

t) denote the array of observed frequencies decreasingly
ordered. Let p =

(
p(x1),p(x2), . . . ,p(xt)

)
be the probability distribution of mini-

mum entropy with the IDM and p∗ =
(
p∗
1

,p∗
2

, . . . ,p∗
t

)
the same array decreasingly

ordered. Such a probability distribution is determined as follows:

p∗ =

(
n∗
1 + s

N+ s
,

n∗
2

N+ s
, . . . ,

n∗
t

N+ s

)
.
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The computation of the Hartley measure with the IDM is immediate, as the
following result shows [2]:

Theorem 3.4.2 Let P (IIDM) be the IDM credal set associated with the sample, de-
termined by means of Equation (2.63). The Hartley measure on such a credal set is
obtained in the following way:

GH (P (IIDM)) =
s

N+ s
log2(t).

Maximum entropy on the NPI-M As said in Section 2.3.2, the set of prob-
ability distributions compatible with the NPI-M is not convex. Thereby, the
NPI-M is not representable via a credal set. In order to compute the maximum
entropy with the NPI-M, it is necessary to manage with difficult constraints
imposed by the probability wheel representation of the data employed in the
NPI-M. The procedure to obtain the maximum entropy with the NPI-M was
presented in [5]. As the mentioned procedure is notably complex, we do not
detail it here.

In contrast, the approximate model A-NPI-M is representable by a reach-
able set of probability intervals. In consequence, for obtaining the maximum
entropy with the A-NPI-M, Algorithm 3 can be utilized. Based on that algo-
rithm, a more efficient procedure to compute the probability distribution of
maximum entropy with the A-NPI-M was proposed in [5].

Suppose that there is a sample of N independent and identically distributed
outcomes of X. Let n(xi) denote the number of observations in the sample for
which X = xi, ∀i = 1, 2, . . . , t. Let tunobs be number of unobserved values
of X in the sample. Let t1 denote the number of values of X observed once
and t ′ the number of values observed at least twice. We shall denote T(i) the
number of values of X observed i times:

T(i) =
∣∣{xj | n(xj) = i, 1 ⩽ j ⩽ t

}∣∣ . (3.30)

Algorithm 4 [5] shows the procedure to obtain the probability distribution that
attains the maximum entropy with the A-NPI-M.
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Algorithm 4: Procedure to compute the probability distribution of max-
imum entropy with the A-NPI-M.
Procedure Determine probability distribution of maximum entropy
with the A-NPI-M(Observed frequencies in the sample
(n(x1),n(x2), . . . ,n(xt)))
if t ′ < tunobs then

for j = 1 to t do
if n(xj) ⩽ 1 then

p̂A−NPI−M(xj)← t ′+t1
N(tunobs+t1)

else
p̂A−NPI−M(xj)←

n(xj)−1

N

else
for j = 1 to t do

if n(xj) ⩽ 1 then
p̂A−NPI−M(xj)← 1

N

else
p̂A−NPI−M(xj)←

n(xj)−1

N

i← 1

mass← t ′ − tunobs

while mass > 0 do
if T(i) + T(i+ 1) < mass then

for j = 1 to t do
p̂A−NPI−M(xj)← p̂A−NPI−M(xj) +

1
N

mass← mass− 1

else
for j = 1 to t do

p̂A−NPI−M(xj)← p̂A−NPI−M(xj) +
mass

N(T(i)+T(i+1))

mass← 0
i← i+ 1

return p̂A−NPI−M



4 T R A D I T I O N A L C L A S S I F I C AT I O N

4.1 Introduction

Nowadays, in many domains, it is needed to deal with large amounts of
data to make decisions. For this reason, Data Science [44] is essential. It is
an interdisciplinary field that involves methods, processes, and systems from
extracting knowledge for data and understanding better them.

Within Data Science, classification [107] is considered as an essential area. It
consists of learning a model that , for a given instance described via a set of
attributes or predictive features, predicts the value of a variable under study,
also called the class variable. Classification has been widely employed in many
domains. For example, in medicine, it is commonly used to predict whether a
patient has a disease from a set of attributes of that patient; in credit scoring,
it makes much sense to predict whether a loan should be given to a client
from a set of features of that client; in marketing, given a set of attributes of
a customer, classification is usually employed for predicting a preference of
such a customer.

Many approaches to classification have been developed so far. Among
such approaches, we can mention Decision Trees [177], Nearest Neighbors [232],
Bayesian Networks [172], or Artificial Neural Networks (ANN) [229]. One of the
most simple classification methods is the Naïve Bayes algorithm [85], which as-
sumes that all predictive attributes are independent given the class variable.
Despite this unrealistic assumption, Naïve Bayes has achieved good results in
practice, often comparable with more sophisticated classification algorithms,
especially when the predictive attributes are not highly correlated [82, 93, 133].
Also, Decision Trees are known to be very simple, efficient, transparent, and
interpretable models. Moreover, ensembles of classifiers, which consider many
individual classifiers and combine their predictions to give a final one, often
perform better than single classifiers even though the computational complex-
ity of ensemble methods is much higher. In this thesis work, we consider
Nearest Neighbors, Naïve Bayes, Decision Trees, and ensemble algorithms.

The mentioned classification algorithms often use a mathematical model to
represent the uncertainty-based information about the class variable involved
in a classification dataset. Most of the classification algorithms proposed so
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far employ classical probability theory for this purpose. Decision Trees based
on imprecise probabilities were proposed few years ago, which are known
as Credal Decision Trees (CDTs) [1]. CDTs have obtained better results than
Decision Trees that use precise probabilities, the improvement being more
notable as there is more class noise1 in the data [148–150].

Classifiers usually aim to minimize the number of instances incorrectly clas-
sified. This issue would be optimal if all classification errors had the same
importance. Nevertheless, in practical applications, classification errors often
have different costs. For example, in medical diagnosis, the cost of incorrectly
predicting that a patient does not have a serious disease may be much higher
than the cost of erroneously predicting that the patient is ill [140, 171, 183];
in credit fraud detection, predicting that a credit card is legal when it is fraud-
ulent is likely to cause far higher economical losses for banks and financial
institutions than predicting a normal credit card as fraudulent [24, 166, 182];
in software defect prediction, the cost of non-defective modules predicted as de-
fective is probably far lower than the cost of defective modules predicted as
non-defective [26, 142, 191]. For this reason, classifiers that take the costs of
errors into account, called cost-sensitive classifiers, have been developed [89].

This chapter is organised as follows: Section 4.2 describes the classification
problem in detail. In Section 4.3, the Nearest-Neighbors algorithm is detailed.
The Naive Bayes algorithm is explained in Section 4.4. Classical Decision Trees
and Decision Trees based on imprecise probabilities are described in Sections
4.5 and 4.6, respectively. In Section 4.7, ensembles of classifiers are introduced.
The cost-sensitive classification problem is summarized in Section 4.8.

4.2 Classif ication paradigm

The classification task consists of learning a model which, for a given in-
stance described by means of a set of predictive attributes or features, predicts
the value of the class variable corresponding to such an instance.

Formally, the classification problem starts from the following issues:

• A set of d predictive attributes
{
X1,X2, . . . ,Xd

}
. Let Dom(Xi) denote

the domain of the Xi attribute, ∀i = 1, 2, . . . ,d.

• A class variable C whose set of possible values is ΩC = {c1, c2, . . . , cK},
with K ⩾ 2.

1 The term ‘noise’ is used to indicate that there are errors in the data. In particular, ‘class noise’
corresponds to errors in the class value for some instances.
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The goal of classification is to learn a function
h :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ ΩC that, for a given instance

whose attribute vector is x =
(
x1r1 , x2r2 , . . . , xdrd

)
, where xiri ∈ Dom(Xi) ∀i =

1, 2, . . . ,d, returns the predicted class value for that instance, namely h (x). The
learned model can also be determined by a real-valued function f :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
×

ΩC → R which, for a given instance an a class value cj ∈ ΩC, returns the pre-
dicted posterior probability that the class value of the instance is cj.

For learning the classification model, a training set Dtr is usually employed,
where each instance in Dtr is described by a set of attribute values and has a
unique value of the class variable.

4.2.1 Evaluation of a classifier

To evaluate the performance of a classification algorithm described by means
of a model h :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ C, a test set different

from the set utilized for training, Dtest, is commonly used.
The most common evaluation measure in Classification is Accuracy. It con-

sists of the proportion of test instances correctly classified.
Formally, let Ntest = |Dtest| be the number of test instances. Let xirij ∈

Dom(Xi) denote the value of the ith attribute for the jth test instance, ∀j =

1, 2, . . . ,Ntest, i = 1, 2, . . . ,d, xj =
(
x1r1j , x

2
r2j

, . . . , xdrdj
)

, and cj the class value

of the jth test instance, with cj ∈ {c1, c2, . . . , cK} , ∀j = 1, 2, . . . ,Ntest. Accu-
racy is determined as follows:

Accuracy(h) =
1

Ntest

Ntest∑
j=1

[[
h(xj) = cj

]]
, (4.1)

[[·]] being an indicator function, which takes the value 1 if the condition is
satisfied and 0 otherwise.

We may note that this metric assumes that all classification errors have the
same importance. However, when the class variable is binary, i.e, it takes
values in {0, 1}, there are usually much more instances satisfying C = 0 than
instances for which C = 1 but the cost of incorrectly classifying instances be-
longing to the latter group tends to be higher than the cost of erroneously
classifying instances that belong to the former group. In these cases, the Ac-
curacy measure is not the best one and, instead, other evaluation metrics are
often utilized [95].

Assuming that C is binary, let TP(h) and TN(h) denote the number of test
instances correctly classified via h that satisfy C = 1 and C = 0, respectively.
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Likewise, let FP and FN be the number of misclassified instances through h

for which C = 1 and C = 0, respectively. The following evaluation measures
are commonly employed in binary classification:

• Precision: It indicates, between the test instances for which C = 1 is
predicted, the proportion of them correctly classified:

Precision(h) =
TP(h)

TP(h) + FP(h)
. (4.2)

• Recall: It is the proportion of positive test instances correctly classified:

Recall(h) =
TP(h)

TP(h) + FN(h)
. (4.3)

• F1: It is the harmonic mean between Precision and Recall:

F1(h) =
2 · Precision(h) · Recall(h)
Precision(h) + Recall(h)

. (4.4)

For binary classification problems where the number of positive instances
is much higher than the number of negative instances but the cost of missclas-
sifying positive instances is considerably higher than the cost of incorrectly
classifying negative instances, F1 is an appropriate evaluation metric as it mea-
sures a trade-off between recognizing positive instances and not predicting too
many instances as positive.

In the mentioned binary classification problems, the Receiver Operator
Characteristic (ROC) curve is also frequently employed to measure the per-
formance of a binary classifier. The ROC curve represents the TP rate against
the FP rate under different threshold values used in the real-valued function
f to separate instances classified as positive and negative. The Area Under
ROC curve (AUC) summarizes a ROC curve and is a useful evaluation met-
ric for unbalanced binary classification problems where false negatives have
worse consequences than false positives or vice-versa. Such an evaluation
metric measures the ability of a classifier to distinguish between positive from
negative instances.

4.2.1.1 Cross-validation

When it is wanted to validate the performance of a classifier in a dataset
through evaluation metrics, a cross-validation procedure is commonly used in
the literature for the results do not depend on the data utilized for training
and testing.
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A cross-validation procedure divides the given dataset into a fixed number
of partitions, usually called the number of folds. For each partition, it does an
iteration in which the corresponding partition is used as the test set and the
rest of the data as the training set. In each iteration, the evaluation metrics are
extracted with the test set. Finally, for each metric, the average value across
all iterations is computed.

4.2.1.2 Sensitivity to noise

In order to test the sensitivity to noise2 of a classifier, the Equalized Loss
Accuracy metric (ELA) [181] is suitable to be employed. Such a metric, for
given noise level in the data, measures how differ the accuracy a classifier
with that noise level from the total accuracy, normalizing by the accuracy of
the classifier without noise in the data.

Formally, let nois_lev be the level of noise in the data. Let h denote the
learned classification model and Acc0(h) and Accnois_lev the accuracy of the
classifier without noise and with nois_lev% of noise, respectively. For the
level noise nois_lev, ELA is defined as follows:

ELAnois_lev(h) =
1−Accnois_lev

Acc0(h)
. (4.5)

This metric presents some advantages over other measures of sensitivity of
classifiers to noise. For more details, see [181].

4.2.1.3 Statistical comparisons between classification methods

To compare the performance of multiple classification methods on many
datasets according to any of the metrics described above, the recommenda-
tions given by Demšar [75] tend to be used. Such recommendations can be
summarized in the following way:

• When there are only two algorithms to compare, the Wilcoxon test [216]
should be used. It is a non-parametric test that ranks the absolute val-
ues of the differences in the performance of the algorithms across all
datasets. Then, it computes the sum of the ranks of the positive and neg-
ative differences. The null hypothesis of this test is that both algorithms
perform equivalently.

Formally, let val1i and val2i be, respectively the values obtained by the
first and the second classifier in the ith dataset, ∀i = 1, 2, . . . ,n_dat,

2 Here, we only consider class noise.
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n_dat being the number of datasets used in the statistical comparison.
Let di be the normalized difference between the values obtained by both
algorithms in the ith dataset:

di =
val1i − val2i

val1i
, ∀i = 1, 2, . . . ,n_dat.

Let rank(di) denote the rank of the absolute value of di,
∀i = 1, 2, . . . ,n_dat. The Wilcoxon test is based on the following statistic:

W =

n_dat∑
i=1

sign(val1i − val2i )rank(di),

where, ∀i = 1, 2, . . . ,n_dat:

sign(val1i − val2i ) =


1 if val1i > val2i
−1 if val1i < val2i
0 otherwise

According to the Wilcoxon test, W has a distribution of mean 0 and
variance n_dat(n_dat+1)(2n_dat+1)

6 .

• For comparing the results obtained by three or more algorithms, it is
recommended to employ the Friedman test [92]. Such a test is non-
parametric and separately ranks the algorithms for each dataset. Let
rank

j
i be the rank obtained by the jth algorithm for the ith dataset,

∀i = 1, 2, . . . ,n_dat, j = 1, 2, . . . ,n_alg, n_alg being the number of al-
gorithms to compare. Let Rank(j) denote the sum of the ranks obtained
by the jth algorithm across all datasets:

Rank(j) =

n_dat∑
i=1

rank
j
i, ∀j = 1, 2, . . . ,n_alg.

The Friedman test is based on the following statistic:

χ2F =
12n_dat

n_alg (n_alg+ 1)

n_alg∑
j=1

Rank(j)2 −
n_alg (n_alg+ 1)2

4

 .

χ2F has a chi square distribution with n_alg - 1 degrees of freedom. The
null hypothesis of the Friedman test is that all algorithms perform equiv-
alently.

When the null hypothesis of the Friedman test is rejected, the following
tests are commonly used for comparing the algorithms pairwise.
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– Nemenyi test [167]: According to this test, there are statistically
significant differences between two algorithms if, and only if, the
difference between their average Friedman ranks is lower than the
following critical distance:

CD = qα

√
n_alg (n_alg+ 1)

6n_dat
, (4.6)

where qα is a critical value based on the Studentized ranged di-
vided by

√
2. The level of significance considered for the critical

distance is equal to the original level of significance, α, divided by
the number of pairwise comparisons, n_comp = n_alg(n_alg−1)

2 ,
that is, α

n_comp .

– Holm test [115]: This test decreasingly orders the differences be-
tween the Friedman ranks between pairs of algorithms. As the Ne-
menyi test, the Holm test is also based on critical distances between
pair of algorithms, computed via Equation (4.6). However, while
the Nemenyi test uses the same level of significance for all pairs
of algorithms, the Holm test carries out the following iterative pro-
cedure: The level of significance considered for the critical distance
between the algorithms that have the highest difference of Friedman
ranks is equal to α

n_comp . If the difference of the Friedman ranks
is lower than such a critical distance, then all pairs of algorithms
perform equivalently. Otherwise, there are statistically significant
differences between that pair of algorithms, and the critical distance
for the algorithms with the second-highest difference of Friedman
ranks is computed with a level of significance of α

n_comp−1 . If the
difference is lower than the critical distance, then there are no sta-
tistically significant differences between these two algorithms. Oth-
erwise, the algorithm with the lower Friedman rank significantly
outperforms the other one, and the process is iteratively repeated
until a pair of algorithms that perform equivalently is found, or all
pairs of algorithms are checked.

In order to represent the results of the Friedman and Nemenyi (Holm)
tests, critical diagrams [75] tend to be used. A critical diagram utilizes
an enumerated axis for drawing the average Friedman ranks of the clas-
sifiers. The algorithms are arranged so that the ones with the highest
rank are placed at the right-most side. Segments are used to connect
the algorithms for which there are no statistically significant differences
according to the Nemenyi (Holm) test.
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Moreover, the Paired t-test is sometimes used for comparing the perfor-
mance of two algorithms over a cross-validation procedure repeated several
times over a single dataset. The null hypothesis of this test is that the differ-
ence between the means values obtained by both algorithms is equal to 0.

Formally, let n_tests be the number of test sets obtained in a cross-validation
procedure repeated several times on a dataset. Let val1i and val2i denote, re-
spectively, the results obtained by the first and second algorithm in the ith
test set. Let diffi be the difference between the results obtained by the first
and second algorithm in the ith dataset, that is, diffi = val1i − val2i , ∀i =

1, 2, . . . ,n_tests. Let avg(diff) and sigma(diff) be, respectively, the mean and
standard deviation of such differences. The following t-statistic is considered
in the Paired t-test:

t_statistic =
avg(diff)

sigma(diff)
.

According to the Paired t-test, t_statistic is distributed with a Student dis-
tribution with n_tests− 1 degrees of freedom.

4.3 Nearest-Neighbors algorithm

The Nearest Nearest Neighbors algorithm (NN) [64] is a lazy approach to
classification in the sense that it does not carry out a training phase.

Suppose that it is required to classify an instance whose attribute vector is
x =

(
x1r1 , x2r2 , . . . , xdrd

)
, where xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d. NN computes

the nun_neighbors-nearest neighbors of the instance by using a distance func-
tion on the attribute space. For each class value cj ∈ ΩC, let Kj(x) denote the
number of neighbors of x (among the num_neighbors-nearest ones) whose
class value is cj. NN predicts for x the class value with the highest number of
neighboring instances associated with it, that is,

hNN(x) = arg _maxj∈{1,2,...,K}Kj(x). (4.7)

4.4 Naive Bayes

Hereon, we suppose that the domain of each attribute Xi attribute is a finite
set, namely Dom(Xi) =

{
xi1, xi2, . . . , xiti

}
, ∀i = 1, 2, . . . ,d.
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The Naive Bayes algorithm (NB) [85] is based on the naive assumption [85],
which states that all attributes are independent given the class variable. This
means that, ∀j = 1, 2, . . . ,K, ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d:

P(X1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd | C = cj) =

d∏
i=1

P(Xi = xiri | C = cj). (4.8)

Suppose that it is required to classify an instance for which Xi = xiri , with
ri ∈ {1, 2, . . . , ti} ∀i = 1, 2, . . . ,d. The NB model predicts the class value
ck ∈ ΩC that verifies:

ck = arg max
j=1,2,...,K

P(C = cj | X
1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd). (4.9)

Bayes theorem leads to:

P(C = cj | X
1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd) =

P(C = cj,X1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd)

P(X1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd)
=

P(C = cj)P(X
1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd | C = cj)

P(X1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd)
, ∀j = 1, 2, . . . ,K.

In this way, we may deduce that

arg max
j=1,2,...,K

P(C = cj | X
1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd) =

arg max
j=1,2,...,K

P(C = cj)P(X
1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd | C = cj) =

arg max
j=1,2,...,K

P(C = cj)

d∏
i=1

P(Xi = xiri | C = cj),

where the last equality is a consequence of the naive assumption (Equation
(4.8)).

In addition, due to Bayes theorem, it holds that:

P(Xi = xiri | C = cj) =
P(Xi = xiri ,C = cj)

P(C = cj)
=

P(C = cj | X
i = xiri)P(X

i = xiri)

P(C = cj)
,

∀i = 1, 2, . . . ,d, j = 1, 2, . . . ,K.

Consequently, to classify an instance whose attribute vector is x =(
x1r1 , x2r2 , . . . , xdrd

)
, with ri ∈ {1, 2, . . . , ti} , ∀i = 1, 2, . . . ,d, the NB algorithm

predicts the following class value:

hNB(x) = arg max
cj∈{c1,c2,...,cK}

P(C = cj)

d∏
i=1

P(C = cj | X
i = xiri)

P(C = cj)
. (4.10)
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4.4.1 Estimation of the probabilities in Naive Bayes

The key issue of the NB algorithm is the estimation of the probabilities
P̂(C = cj) and the conditional probabilities P̂(C = cj | Xi = xiri), ∀j =

1, 2, . . . ,K, ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d. Let Ntr be the number of in-
stances in the training set. Let ntr(cj) denote the number of training in-
stances that satisfy C = cj, ntr(x

i
ri
) the number of training instances for

which Xi = xiri , and ntr(x
i
ri,j) the number of training instances that verify

Xi = ri ∧C = cj, ∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d, j = 1, 2, . . . ,K.
The main approaches proposed so far to estimate the aforementioned prob-

abilities in NB can be summarized as follows:

• Classical estimations are determined through relative frequencies in the
training set:

P̂cla(C = cj) =
ntr(cj)

Ntr
, P̂cla(C = cj | X

i = xiri) =
ntr(x

i
ri,j)

ntr(xiri)
,

∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d, j = 1, 2, . . . ,K.

The main problem of classical estimators arises when ntr(x
i
ri,j) = 0 for

some i ∈ {1, 2, . . . ,d}. In this case, P̂cla(C = cj | Xi = xiri) = 0, which

implies that P̂cla(C = cj)
∏d

i=1

P̂cla(C=cj|X
i=xi

ri
)

Pcla(C=cj)
= 0. Thus, in this sit-

uation, the value of P̂cla(C = cj | Xi = xiri) decisively influences the
probability value estimated for cj since such a value can be equal to
0 even though P̂cla(C = cj and P̂cla(C = cj | Xi ′

ri ′
) are pretty high

∀i ′ ∈ {1, 2, . . . ,d} \ {i}. Furthermore, when ntr(x
i
ri
) is very small, the esti-

mation of P(C = cj | X
i = xiri) might be quite unstable, ∀i = 1, 2, . . . ,d.

• Laplace law of succession [103] was introduced to solve the problem that
appears in classical estimators when the frequency of an attribute value
is equal to 0 or very small. It assumes an uniform prior distribution of
all class values. Given the training set, the Laplace’s estimations of the
aforementioned probabilities are determined in the following way:

P̂Lap(C = cj) =
ntr(cj) + 1

Ntr +K
, P̂Lap(C = cj | X

i = xiri) =
ntr(x

i
ri,j) + 1

ntr(xiri) +K
,

∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d, j = 1, 2, . . . ,K.

In spite of alleviating the main drawback of classical estimators, Laplace’s
estimation also presents two shortcomings:
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1. If ntr(x
i
ri
) = 0 for some i ∈ {1, 2, . . . ,d}, then

P̂Lap(C=cj|X
i=xi

ri
)

P̂Lap(C=cj)
=

1
KP̂Lap(C=Cj)

. Thereby, the estimation of the conditional probability

increases as P̂Lap(C = cj) decreases and vice-versa.

2. When ntr(x
i
ri,j) = 0 for some i ∈ {1, 2, . . . ,d} , j ∈ {1, 2, . . . ,K},

it holds that
P̂Lap(C=cj|X

i=xi
ri
)

P̂Lap(C=cj)
= 1(

K+ntr(xi
ri
)
)
P̂Lap(C=cj)

. Hence, in

this situation, the estimation of the conditional probability is in-
versely proportional to P̂Lap(C = Cj). This can be considered as a
strange behavior due to the assumption of uniformity for the prior
distribution of the class values.

• m-probability estimation model: In order to correct the questionable
behavior of Laplace’s estimation in the above-mentioned situations, a
more appropriate and flexible set of prior probabilities was proposed in
[102]. According to it, after succ successes in N trials, the probability of
getting a success in the next trial is equal to:

P̂(succ,N) =
succ+ a

N+ a+ b
, (4.11)

where a > 0 and b > 0. We may note that Laplace’s estimation is a
particular case of Equation (4.11) where a = 1 and b = K− 1. Cestnik
[47, 48] made the following choice of these parameters: a = mP(C = cj)

and b = m− a, m being a parameter of the model. This estimation is
called the m-probability estimation.

In this way, Cestnik [47] proposed the following estimation for the con-
ditional probabilities:

P̂Ces(C = cj | X
i = xiri) =

ntr(x
i
ri,j) +mP̂Lap(C = cj)

ntr(xiri) +m
,

∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d, j = 1, 2, . . . ,K.

(4.12)

It can be observed that, for the estimation of the probabilities of the class
values, P(C = cj) ∀j = 1, 2, . . . ,K, the NB model developed by Cestnik
[47] employs the Laplace’s law of succession. We may note that, in such a
model, the probability estimated for the class value without the attribute
values influences the estimation of the conditional probabilities.

As pointed out by Cestnik [47], the value of the m parameter should be
higher as there is more noise in the data.
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4.5 Classical Decision Trees

Decision Trees [176] are based on a recursive partition procedure which,
at each level, splits the training data according to the possible values of an
attribute. Such an attribute is selected via a criterion based on the uncertainty-
based information about the class variable at that level. In this way, in a
Decision Tree, each node corresponds to an attribute and has a branch for
each possible value of that attribute. When selecting an attribute to split at
a level does not provide more uncertainty-based information about the class
variable, or there are no more attributes to insert according to an established
criterion, a leaf or terminal node is obtained. A class value is assigned to such
a terminal node. Algorithm 5 summarizes the procedure to build a generic
Decision Tree. The representation of the data involved in a Decision Tree is
quite simple, transparent, and interpretable.

Algorithm 5: Generic procedure to build a Decision Tree.
Procedure Build_DT(Node N)
Let D be the dataset associated with N

if There are more attributes to insert then
Select Xi the attribute that leads to the maximum gain of
information about the class variable on D according to a criterion.

for xiri possible value of Xi do
Make a node Nri child of N
Build_DT(Nri)

else
Make N a leaf node
Assing a class value to N

When a Decision Tree built from a training set is very large, it tends to over-
fit the training data. For this reason, a post-pruning process is often utilized
to remove branches that do not contribute to the generalization accuracy [147].
Several experimental studies have highlighted that post-pruning methods im-
prove the performance of a Decision Tree, especially when there is noise in the
data. Examples can be found in [52, 159].

Hence, the building process of a Decision Tree is principally determined by
the following issues:

1. The criterion employed for selecting the attribute to split in each node,
also known as the split criterion.
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2. The conditions under which it is stopped branching the tree.

3. The criterion used to assign a class value to each terminal node.

4. The post-pruning process of the tree.

Among the previous points, the most important might be the split criterion.
Let D be the subset of the training set associated with a certain node. The

split criteria employed in classical Decision Trees are based on one of the two
following uncertainty measures of class variable on D:

• Gini index [39]: It measures the diversity of the class variable in D:

GiniD(C) = 1−

K∑
j=1

PD(C = cj)
2, (4.13)

PD(C = cj) being the probability that C = cj in D, estimated via the
proportion of instances in D for which C = cj, ∀j = 1, 2, . . . ,K.

• Shannon entropy [189]:

SD(C) = −

K∑
j=1

PD(C = cj) log2

(
PD(C = cj)

)
. (4.14)

Among the split criteria utilized in classical Decision Trees, the following
ones are remarkable:

• Gain Gini Index: It is the split criterion used in the CART algorithm
proposed by Breiman [39]. For each attribute Xi, it is determined by3:

GGID(C,Xi) = GiniD(C) −

ti∑
ri=1

PD(Xi = xiri)GiniD(C | Xi = xiri),

(4.15)
where PD(Xi = xiri) is the probability that Xi = xiri in D, estimated
through relative frequencies, and GiniD(C | Xi = xiri) is the Gini index
of C on the subset of D composed of those instances for which Xi =

xiri , ∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d.

3 Within this section, for presenting the split criteria, as in the previous section, we assume that
the domain of each attribute is finite, that is, Dom(Xi) =

{
xi1, xi2, . . . , xiti

}
, ∀i = 1, 2, . . . ,d.

However, most Decision Trees can handle continuous attributes with particular methods.
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• Info-Gain (IG): It was proposed by Quilan [176] for ID3, the first Deci-
sion Tree developed. For each attribute Xi, IG is defined as follows:

IGD(C,Xi) = SD(C) −

ti∑
ri=1

PD(Xi = xiri)S
D(C | Xi = xiri), (4.16)

SD(C | Xi = xiri) being the Shannon entropy of C on the subset of D com-
posed of those instances for which Xi = xiri , ∀ri = 1, 2, . . . , ti, i =

1, 2, . . . ,d.

• Info-Gain Ratio (IGR): It was introduced by Quilan [177]. For each
attribute Xi, IGR is defined in the following way:

IGRD(C,Xi) =
IGD(C,Xi)

SD(Xi)
, (4.17)

where SD(Xi) is the Shannon entropy of Xi on D:

SD(Xi) = −

ti∑
ri=1

PD(Xi = xiri) log2

(
PD(Xi = xiri)

)
. (4.18)

For classifying an instance with a Decision Tree, a path from the root node
to a leaf node is made by using the attribute values of that instance. Then, the
class value predicted for that instance is the one assigned to that terminal node.
The procedure to classify an instance with a Decision Tree is summarized in
Algorithm 6.

Algorithm 6: Procedure to classify an instance with a generic Decision
Tree.

Procedure Classify_DT(Tree T, instance with attribute vector
x =

(
x1r1 , x2r2 , . . . , xdrd

)
)

1. Follow a path in T from the root node to a leaf one L using the
attribute values x1r1 , x2r2 , . . . , xdrd .

2. Assign the predicted class value at L to hDT (x).
return hDT (x)

4.5.1 C4.5 Decision Tree

The first Decision Tree algorithm was ID3, introduced by Quinlan [176].
ID3 uses IG as the split criterion. This split criterion facilitates the selection of
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attributes with many possible values. It must also be remarked that ID3 does
not use any post-pruning process, which may lead to over-fitting. Moreover,
ID3 works with neither continuous attributes nor missing values.

In order to solve these shortcomings, Quinlan [177] presented the C4.5 algo-
rithm. This is probably the most-known classical Decision Tree. C4.5 is based
on the following points:

• Split criterion: C4.5 uses IGR, unlike ID3, which employs IG. The lat-
ter split criterion boosts attributes with more possible values. However,
IGR normalizes IG by the entropy of the attribute. Thus, IGR penalizes
attributes with many possible values. For this reason, it can be stated
that the split criterion of C4.5 is more suitable than the one of ID3. C4.5
selects the attribute with the highest IGR value whenever that value is
higher than the average IGR value between the attributes that are nu-
meric or whose number of possible values is lower than 0.3 times the
number of instances in the corresponding branch.

• Stop branching criterion: C4.5 stops branching the tree when there is
no attribute for which the IGR value is not equal to 0, or there are no
attributes that are numeric or whose number of possible values is lower
than 0.3 times the number of instances in the associated branch. Also,
the stop branching criterion of C4.5 considers that there is a minimum
number of instances per leaf, which is often set to 2. Consequently, C4.5
does not split the dataset via an attribute if there is a value such that the
number of instances going down the corresponding branch it is lower
than the established minimum.

• Criterion for assigning class values to leaf nodes: At each leaf node,
C4.5 assigns the most frequent class value between the instances at that
terminal node. Formally, at a leaf node L, let nL(cj) denote the fre-
quency of cj at L, ∀j = 1, 2, . . . ,K. The class value assigned to that leaf
node is determined by:

ck | k = arg max
j=1,2,...,K

nL(cj). (4.19)

If there is a tie between two class values, namely ci and cj, then the first
one of then is chosen, that is, ci if i < j and cj if j < i. Ties between three
or more class values are also broken by choosing the first one of them.

• Numeric attributes: For a numeric attribute, C4.5 just considers binary
splits. It considers each split point, and chooses the one that gives rise
to the maximum IGR value.
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• Missing values: In order to deal with missing values, C4.5 considers
instance weights. The initial weight of an instance is always equal to 1.
When the value of the attribute corresponding to a node is missing for
an instance, that instance goes down each branch with a weight equal
to the proportion of instances at the branch. In these cases, it is neces-
sary to adapt the IGR split criterion (Equation (4.17)) for working with
proportions of weights rather than proportions of instances.

• Post-pruning process: C4.5 employs a technique known as Pessimistic
Error Pruning. It computes, for a given sub-tree, an upper bound of the
estimated error rate by means of a continuous correction of the Binomial
distribution. The sub-tree hanging from a certain node is pruned if its
upper bound is higher than the upper bound of the errors produced by
the estimations of that node supposing that it acts as a terminal node.

4.6 Decision Trees based on imprecise probabil it ies

Credal Decision Tree (CDT) was introduced by Abellán and Moral [1]. The
main difference between classical Decision Trees and CDT resides in the split
criterion; while classical Decision Trees use classical probability theory, CDT
employs imprecise probabilities.

Specifically, CDT uses the IDM to represent the information about the class
variable from data at each node. Let D be the partition of the training set
corresponding to a certain node and ND the total number of instances in
D, i.e, ND = |D|. For each j = 1, 2, . . . ,K, let nD(cj) denote the number of
instances in D that satisfy C = cj. CDT considers the IDM credal set on C

corresponding to D, determined via Equation (2.63):

PD
IDM(C) =

{
p ∈ P(C) | p(cj) ∈

[
nD(cj)

ND + s
,
nD(cj) + s

ND + s

]
, ∀j = 1, 2, . . . ,K

}
,

(4.20)
s being the IDM parameter and P(C) the set of all probability distributions on
C.

Uncertainty measures can be applied on the credal set PD
IDM(C). The pro-

cedure to build a CDT considers the maximum entropy on PD
IDM(C):

S∗(PD
IDM(C)) = max

p∈PD
IDM(C)

S(p), (4.21)

where S(p) is the Shannon entropy of the probability distribution p, deter-
mined by means of Equation (3.2).
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As argued in Section 3.4, the maximum entropy is the well-established un-
certainty measure on credal sets because it satisfies the required properties.

The split criterion employed in CDT is based on the Imprecise Information
Gain (IIG) [1]. For each attribute Xi, the IIG value on D is computed as follows:

IIGD(C,Xi) = S∗(PD
IDM(C)) −

ti∑
ri=1

p̂D(xiri)S
∗(PD

IDM(C | Xi = xiri)), (4.22)

where S∗(PD
IDM(C | X = xiri)) is the maximum entropy on the IDM credal set

on C on the subset of D composed of those instances for which Xi = xiri and
p̂D is the probability distribution that attains the maximum entropy on the
IDM credal set on Xi corresponding to D, PD

IDM(Xi), ∀ti = 1, 2, . . . , ri, i =

1, 2, . . . ,d.
We may note that IIG differs from IG in that the latter criterion is based

on the Shannon entropy on C while the former is based on the maximum en-
tropy on the IDM credal set on C. Therefore, IIG uses the same idea as IG of
measuring the gain in uncertainty-based information about the class variable.
Nonetheless, whereas IG quantifies such information through precise proba-
bilities, IIG employs the maximum entropy on credal sets for this purpose.
It should be noted that, unlike IG, the value of IIG for an attribute can be
negative [148].

4.6.1 IDM parameter in Credal Decision Trees

As commented in Section 2.3.1, Walley [209] recommends two values for
the s parameter: s = 1 and s = 2. In addition, the procedure to compute
S∗(PD

IDM(C)) reaches its lowest computational cost when s = 1. Indeed, in
Section 3.4.0.1, we have shown the procedure to obtain the probability distri-
bution of maximum entropy on PD

IDM(C) for such a value. For these reasons,
the value s = 1 is usually employed to build a CDT.

In Section 2.3.1, we have pointed out that IDM probability intervals are
wider as the s value is higher. Thereby, in CDTs, the s value indicates the esti-
mated imprecision degree in a certain node. Mantas, Abellán, and Castellano
[150] showed both theoretically and experimentally that the s value should
be higher as the level of class noise in the data is higher. It is because the
over-fitting in a CDT decreases as the s value increases and vice-versa. In fact,
each dataset has associated with it an optimal value of the IDM parameter in
classification [18].

The original CDT method proposed by Abellán and Moral [1] uses the IDM
for the split criterion. An experimental study carried out in [6] showed that
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the NPI-M and the A-NPI-M obtain statistically equivalent results to the IDM
with the best choice of the s parameter when these models are used in CDTs
for representing the uncertainty-based information about the class variable.

4.6.2 Credal C4.5

Within CDTs, a new version of the well-known C4.5 algorithm was proposed
by Mantas and Abellán [149]. Such a version is called Credal C4.5 (CC4.5). The
main difference between C4.5 and CC4.5 is that the former method quantifies
the uncertainty-based information about the class variable via classical proba-
bility theory, while the latter uses the IDM for quantifying such information.

The basis of the split criterion of CC4.5 is IIG, defined in Equation (4.22).
Similarly to C4.5, the split criterion of CC4.5 normalizes the IIG measure by
dividing by the uncertainty-based information about the attribute. Hence, as
C4.5, CC4.5 penalizes attributes with many values. For each attribute Xi, the
split criterion of CC4.5, called Imprecise Information Gain Ratio (IIGR), is defined
as follows:

IIGRD(C,Xi) =
IGRD(C,Xi)

S∗
(
PD
IDM(Xi)

) , (4.23)

where PD
IDM(Xi) is the IDM credal set on Xi associated with D and

S∗
(
PD
IDM(Xi)

)
is the maximum entropy on PD

IDM(Xi), ∀i = 1, 2, . . . ,d.
In this way, the main points of CC4.5 can be summarized as follows:

• Split criterion: At each node, CC4.5 selects the attribute the highest
IIGR value whenever such a value is higher than the average IIGR value
between the valid split attributes. As in C4.5, these valid split attributes
are those whose number of possible values is lower than 0.3 times the
number of instances in that branch or are numeric.

• Stop branching criterion: Similarly to C4.5, CC4.5 stops branching the
tree when there is no attribute for which the IIGR value is positive, or
there are no attributes that are numeric or whose number of possible val-
ues is lower than 0.3 times the number of instances in the corresponding
branch. The stop branching criterion of CC4.5 also uses the criterion of
minimum instances per leaf of C4.5.

• Criterion for assigning class values to leaf nodes: At each leaf node,
as C4.5, CC4.5 assigns the most frequent class value in the subset of the
training set corresponding to that terminal node (See Equation (4.19)).
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• Numeric attributes: CC4.5 and C4.5 handle continuous attributes sim-
ilarly. The only difference is that CC4.5 uses IIGR while C4.5 employs
IGR.

• Missing values: The procedure of dealing with missing values of CC4.5
is similar to the one of C4.5. Again, the only difference is the use of IIGR
by CC4.5 versus the use of IGR by C4.5.

• Post-pruning process: C4.5 and CC4.5 use the same post-pruning tech-
nique: the Pessimistic Error Pruning.

4.6.3 Credal Decision Trees versus classical Decision Trees

The main differences between the behavior of classical Decision Trees and
CDTs can be summarized in the following points:

• Size of the dataset: It should be noted that, when s = 0, IDM credal
sets only contain the probability distribution associated with relative
frequencies and, consequently, classical Decision Trees are identical to
CDTs. Nevertheless, when s > 0, IDM probability intervals are narrower
as the size of the dataset is larger. Thus, at the upper levels of the tree,
where there are often many instances, the values of IG and IIG might be
similar as the probability distribution corresponding to relative frequen-
cies is likely to be close to the one that attains the maximum entropy on
the IDM credal set. In contrast, at the lower levels of the tree, where the
number of instances tends to be small, the IDM credal set may contain
many probability distributions quite different from the one estimated
via relative frequencies and, therefore, the values of IG and IIG might
not be close. In consequence, classical Decision Trees and CDTs might
have a similar behavior at the upper levels of the tree but they probably
behave very differently at the lower levels [148].

• Negative values of the split criterion: Unlike IG, the value of IIG can
be negative for a certain attribute [149]. For this reason, CDTs avoid
choosing attributes that worsen the uncertainty-based information about
the class variable. Therefore, CDTs may stop branching the tree before
classical Decision Trees and, thus, they probably over-fit less the data. It
does not mean that CDTs under-fit the data since they select an attribute
if it produces a gain of information about the class variable [149].

• Robustness to noise: Mantas, Abellán, and Castellano [150] showed that
the maximum entropy on an IDM credal set is less sensitive to noise than
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the classical Shannon entropy. Hence, as the main difference between
classical Decision Trees and CDTs is the use of the mentioned measures,
it can be stated that the former models are more sensitive to noise than
the latter models. Indeed, experimental studies carried out in [148, 149]
revealed that CDTs perform better than classical Decision Trees, the im-
provement being more significant as there is more class noise in the data.

Classical Decision Trees also handle noisy data through pruning pro-
cesses. Indeed, such pruning processes can consider that the dataset
in a certain node is not very reliable by removing the hanging sub-tree.
Nevertheless, pruning processes can only deal with the noisy data by
removing the sub-tree, whereas CDTs may be capable of handling such
noisy data by adjusting the generated sub-tree in detail via uncertainty
measures on credal sets for the split criterion [149].

4.7 Ensembles of classif iers

In many areas of science, such as finances or medicine, it is very common
to take several opinions into account before making a decision. This idea has
also been applied in classification by means of ensembles. Ensemble schemes
learn multiple classifiers through individual classification algorithms. For clas-
sifying a new instance, predictions are made in the individual classifiers, and
such predictions are combined to give a final prediction for that instance. The
combination of the predictions tends to be made via a majority voting scheme.

The use of ensemble schemes might improve the results obtained by an indi-
vidual classifier. Indeed, ensembles are usually more accurate and robust than
individual classifiers [80]. For example, in credit scoring, the use of ensemble
schemes has obtained better results than the use of individual classifiers. In
consequence, if banks and financial institutions use ensembles instead of in-
dividual classifiers to make decisions about granting loans, then they might
obtain considerable benefits [8, 151, 210].

We show below the main ensemble schemes developed so far for classifica-
tion:

• Bagging [37]: This method, for each individual classifier, considers a
bootstrap sample randomly drawn from the original training set with
replacement. The size of each sample is equal to the size of the original
training set. Hence, in each sample, some instances might appear more
than once, while other instances may not appear. A classification model
is learned from each one of these bootstrapped samples. Since the clas-
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sifiers are built with different training sets, they are often different from
each other. When classifying a new instance, the predictions made by
the individual classifiers are combined via a majority vote.

• Boosting [184]: It also considers a bootstrap sample for each individual
classifier. However, unlike Bagging, in Boosting, the re-sampling is di-
rected to obtain the most informative data for each consecutive learner.
When a new instance is required to be classified, the predictions of the
individual classifiers, weighted by their accuracy, are combined.

The most known Boosting method is Adaboost [91]. In such a method,
the successive samples are obtained by re-weighting the training in-
stances. Initially, the same weight is assigned to all instances. In each
iteration, these weights are adjusted depending on the classification er-
rors made by the individual classifier in such a way that instances erro-
neously classified are more likely to appear in the next sample.

• Random Subspace [114]: This approach, for each individual classifier,
considers all training instances but only n_att features from the original
attribute space, where n_att is a fixed parameter of the algorithm. Em-
pirical studies have shown that a standard value of n_att that obtains
good results is equal to half of the total number of attributes. In order
to classify a new instance, the predictions are combined via the majority
vote.

• DECORATE (Diverse Ensemble Creation by Oppositional Relabelling
of Artificial Training Examples) [153]: It generates an ensemble by learn-
ing a new classifier in each iteration. The first classifier is built with the
original training set. The remaining classifiers are built with an artifi-
cial training set resulting from the union of the original set and artificial
instances, obtained by probabilistically estimating the value of each at-
tribute from the data distribution [153]. The class values of the artificial
instances are selected in such a way that they maximally differ from the
current predictions to encourage diversity. For maintaining the training
accuracy, the classifier is added to the ensemble scheme if, and only if, its
incorporation does not decrease the performance of the ensemble. When
a new instance is required to be classified, the predictions made by the
classifiers of the ensemble are combined by means of a majority vote.

• Rotation Forest [180]: This ensemble approach, for each individual clas-
sifier, separates the features into NF non-overlapping subsets equally
sized and, as Bagging, randomly draws a bootstrap sample from the
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original training set with replacement. Then, a Principal Component
Analysis4 is run separately in each subset of features, and a new set of
attributes is obtained to build the classifier. In order to classify a new
instance, a majority vote is carried out on the predictions made by the
individual classifiers.

• Random Forest [38]: This algorithm learns multiple Decision Trees. For
each one of these trees, similarly to Bagging, Random Forest considers
a bootstrap sample randomly drawn from the original training set with
replacement. In each node of each tree of the ensemble, only n_att at-
tributes are considered candidates for splitting the data. For classifying
an instance, Random Forest combines the predictions made by the indi-
vidual Decision Trees through a majority vote.

We may observe that, in Bagging, Adaboost, Random Subspace, DECO-
RATE, and Rotation Forest, any classification algorithm can be employed to
build the individual classifiers. In contrast, Random Forest only works with
Decision Trees.

4.7.1 Diversity in ensembles

Breiman [37] argued that, for an ensemble to be successful, it is essential
that the individual classifiers are not only accurate but also diverse or unstable.
Actually, if the individual classifiers are very similar, then the performance of
an ensemble of them might not be significantly better than the performance
of any of these individual classifiers.

It is known that, in Decision Trees, small changes in the training set might
produce considerable variations in the learned model. Hence, Decision Trees
are very suitable for ensembles as they encourage diversity. In fact, in en-
semble schemes, Decision Trees often achieve better results than more com-
plex methods that perform better as individual classifiers [20, 151]. Also, we
must remark that CDTs have supposed an improvement over classical Deci-
sion Trees when they are utilized in ensembles [8, 20, 22, 23].

Other ways for increasing diversity in an ensemble of classifiers are:

• Random choice of instances from the original training set with replace-
ments to build each classifier. Examples of ensemble methods that use
this procedure are Bagging, Random Forest, and Rotation forest. Some

4 Principal Component Analysis is a procedure to obtain, for a dataset, a set of non-correlated
attributes from the original attribute space of such a dataset. It is useful to reduce the dimen-
sionality of the original dataset.
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areas of the instance space may not be studied by individual classifiers
because they are hidden by the more frequent instances. With the ran-
dom selection of instances for each individual classifier, some of these
classifiers can study these zones with less frequent instances and, thus,
exploit some interesting characteristics for improving the accuracy and
robustness of the ensemble method.

• Random selection of features from the original attribute set for each clas-
sifier. Examples of ensemble schemes with this property are Random
Subspace and Random Forest. Some attributes might not be used by the
individual classifiers because they are hidden by other more important
attributes according to the criteria established by the algorithms. How-
ever, these hidden attributes can provide interesting information for the
ensemble. In this way, the random selection of attributes can give an
opportunity to the hidden attributes for providing their knowledge to
the ensemble method. Thereby, the mentioned procedure can improve
the performance of the ensemble.

4.8 Cost-sensitive classif ication

Standard classifiers aim to minimize the number of instances incorrectly
classified, which is optimal when all classification errors have the same impor-
tance. In contrast, cost-sensitive classifiers takes the missclassification costs
into account by attempting to minimize the total cost of instances incorrectly
classified.

There are three main approaches for cost-sensitive classification [89]:

• Direct approach: It consists of directly considering the misclassification
costs when training a classifier. For example, in [141], a Decision Tree
whose split criterion directly takes the error costs into consideration was
proposed.

• Preprocessing the training data: Cost-sensitive classification algorithms
within this approach transform the training set by considering the mis-
classification costs. A well-known example is the MetaCost algorithm
[81]. It is a wrapper method that uses an ensemble of classifiers with
bootstrapped samples of the original training set. Then, it re-assigns the
values of the class variable for the training instances so that the risk of
the predictions made by the ensemble for them is minimized. Finally, a
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standard classifier is learned using this preprocessed training set. An-
other example is the Decision Tree proposed in [199], which considers
weights for the training instances depending on their error costs.

• Output adaptation: The cost-sensitive classification methods belonging
to this category utilize a standard classification algorithm for learning
the model and, to classify a new instance, adapt the output by taking the
error costs into account. An example of this approach is the adaptation
of the Nearest Neighbors algorithm for cost-sensitive classification [108,
174].

In this work thesis, we only consider the Decision Tree that weights in-
stances using the error costs, which we expose in Section 4.8.1.

4.8.1 Weighted Decision Tree

Let M be the matrix of errors costs of dimension K×K, where the mij value
indicates the cost of predicting, for an instance, the value ci when the real class
value is cj, ∀i, j ∈ {1, 2, . . . ,K}. It always holds that mii = 0, ∀i = 1, 2, . . . ,K.

For each class value cj, with j = 1, 2, . . . ,K, Weighted Decision Tree (Weighted-
DT) [199] estimates the cost of incorrectly classifying an instance whose true
class value is cj. For this purpose, it employs the following conversion:

Cost(j) =

K∑
i=1

mij, ∀j = 1, 2, . . . ,K. (4.24)

Using these costs, Weighted-DT computes weights for the training instances
depending on their class values. Specifically, the weight of a training instance
whose real class value is cj is computed as follows:

wj = Cost(j)× Ntr∑K
i=1 ntr(ci)×Cost(i)

, ∀j = 1, 2, . . . ,K, (4.25)

where Ntr is the total number of instances in the training set and ntr(ci) is
the number of training instances for which C = ci, ∀i = 1, 2, . . . ,K. We may
note that the sum of all instance weights is equal to

∑K
j=1wj ×ntr(cj) = Ntr.

Let D be the subset of the training set corresponding to a certain node. Let
nD(cj) denote the number of instances in D for which C = cj and WD

j the
sum of weights of such instances:

WD
j = nD(cj)×wj, ∀j = 1, 2, . . . ,K. (4.26)
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Let WD be the total sum of weights in the node:

WD =

K∑
j=1

nD(cj)×wj. (4.27)

Weighted-DT estimates the probability of each class value in the node as
follows:

pD(cj) =
WD

j

WD
, ∀j = 1, 2, . . . ,K. (4.28)

In this way, for the estimation of the probability distribution of C on D, an
instance has more importance as the misclassification cost of its corresponding
class value is higher.

The basis of the split criterion of Weighted-DT is the Shannon entropy of
pD:

SD(C) = −

K∑
j=1

pD(cj) log2(p
D(cj)). (4.29)

Remark that the Shannon entropy is the well-established uncertainty mea-
sure for probability distributions.

The split criterion of Weighted-DT is called Weighted Information Gain (WIG).
It is defined, for an attribute Xi whose set of possible values is{
xi1, xi2, . . . , xiti

}
, as follows:

WIG(C,Xi) = SD(C) −

ti∑
ri=1

PD(Xi = xiri)S
D(C | Xi = xiri), (4.30)

where SD(C | Xi = xiri) is the Shannon entropy on C on the partition of
D composed of those instances for which Xi = xiri , computed similarly to
SD(C), and PD(Xi = xiri) is the probability that Xi = xiri on D, estimated via
proportion of weights, ∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d.

For classifying an instance at a leaf node, Weighted-DT predicts the class
value with the highest sum of weights. Formally, let nL(cj) denote the number
of instances at a leaf node L for which C = cj, ∀j = 1, 2, . . . ,K. Weighted-DT
predicts at L the class value ck that satisfies:

k = arg max
j=1,2,...,K

nL(cj)×wj. (4.31)

Consequently, at each terminal node, the instances whose class value has a
higher misclassification cost have more importance.





5 I M P R E C I S E C L A S S I F I C AT I O N

5.1 Introduction

In order to classify an instance, classifiers often predict a single value of the
class variable. Nevertheless, in many cases, there is not enough information
available for classifiers to point out a unique class value. In these cases, it
makes more sense that classifiers predict a set of class values. This type of
prediction is called imprecise prediction, and classifiers that make imprecise
predictions are called imprecise classifiers [227].

When an imprecise classifier is employed, a set of values of the class variable
may be obtained, known as the non-dominated states set. It is composed of those
class values that are not “defeated" by another one according to an established
criterion, usually called the dominance criterion. Several dominance criteria
have been proposed so far for Imprecise Classification. A comparative study
of them can be found in [17].

An evaluation metric for an imprecise classifier has to consider whether
the predictions are correct, i.e, whether the real class values belong to the
non-dominated states sets and how informative the predictions are, which is
measured by the cardinalities of the predicted sets of class values. If an impre-
cise classifier also takes the error costs into account, then an evaluation metric
must consider the costs of instances incorrectly classified and the number of
predicted class values (how informative the predictions are).

Few Imprecise Classification methods have been developed so far. All of
them use imprecise probability models because imprecise probabilities are
more appropriate than classical probability theory for Imprecise Classification
algorithms [10]. The first Imprecise Classification method was the Naïve Credal
Classifier (NCC) [62, 227]. It combines the IDM with the naïve assumption
to make imprecise predictions. Afterwards, Abellán and Masegosa [10] pro-
posed the first Imprecise Classification algorithm based on Decision Trees. It
uses the same tree-building process as the Credal Decision Tree algorithm and
utilizes a dominance criterion at leaf nodes for making imprecise predictions.
The mentioned algorithms were also adapted for considering error costs by
Abellán and Masegosa [10].
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The remainder of this chapter is structured as follows: Section 5.2 explains
the Imprecise Classification paradigm. The main evaluation metrics proposed
so far for Imprecise Classification are exposed in Section 5.3. In Section 5.4,
we describe the main dominance criteria proposed so far for Imprecise Classi-
fication. Section 5.5 details the Naïve Credal Classifier. The Imprecise Classifi-
cation algorithm based on Decision Trees is described in Section 5.6.

5.2 Imprecise Classif ication problem

As traditional classification, the Imprecise Classification task starts from the
following issues:

• A set of d predictive attributes
{
X1,X2, . . . ,Xd

}
. Let Dom(Xi) denote

the domain of the Xi attribute, ∀i = 1, 2, . . . ,d.

• A class variable C, whose set of possible values is ΩC = {c1, c2, . . . , cK}.
Let 2ΩC denote the power set of ΩC.

Imprecise Classification aims to learn a model
h :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ 2ΩC which, for a new instance

whose attribute vector is x =
(
x1r1 , x2r2 , . . . , xdrd

)
, where xiri ∈ Dom(Xi) ∀i =

1, 2, . . . ,d, returns the predicted non-dominated states set for that instance,
namely h(x).

Similarly to traditional classification, for learning the Imprecise Classifica-
tion model h, a training set Dtrain is often utilized, where each instance is
described via a set of attribute values and has a unique value of the class
variable.

Within this section, we assume that each attribute Xi takes values in a finite
set, that is, Dom(Xi) =

{
xi1, x22, . . . , xiti

}
, ∀i = 1, 2, . . . ,d.

5.3 Evaluation metrics for Imprecise Classif ication

In order to evaluate the performance of an imprecise classifier described by
a function h :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ 2ΩC , a test set Dtest

is frequently used, as in traditional classification. Let xirij denote the value
of the ith attribute for the jth test instance, where rij ∈ {1, 2, . . . , ti}, xj =(
x1r1j , x

2
r2j

, . . . , xdrdj
)

, and cj ∈ ΩC the class value of the jth test instance, ∀i =
1, 2, . . . ,d, j = 1, 2, . . . ,Ntest.
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As commented before, an evaluation metric for an imprecise classifier must
take into account two issues: Accuracy (whether the real class value belongs
to the non-dominated states set) and informativeness (number of predicted
class values).

The following two metrics, proposed by Corani and Zaffalon [62], are useful
to evaluate how informative the predictions are:

• Determinacy: The proportion of test instances for which a single class
value is predicted:

Determinacy(h) =
1

Ntest

Ntest∑
j=1

[[∣∣h(xj)
∣∣ = 1

]]
. (5.1)

• Indeterminacy size: The average number of predicted class values be-
tween the test instances with two or more non-dominated states:

Indeterminacy_size(h) =
1

Nimpr

Ntest∑
j=1,|h(xj)|>1

∣∣h(xj)
∣∣ , (5.2)

where Nimpr =
∣∣{j ∈ {1, 2, . . . ,Ntest} :

∣∣h(xj)
∣∣ > 1

}∣∣.
Regarding correct predictions, Corani and Zaffalon [62] introduced the fol-

lowing evaluation measures:

• Single Accuracy: The accuracy between the test instances precisely clas-
sified:

Single_Accuracy(h) =
1

Nprec

Ntest∑
j=1,|h(xj)|=1

[[
h(xj) =

{
cj
}]]

, (5.3)

where Nprec =
∣∣{j ∈ {1, 2, . . . ,Ntest} :

∣∣h(xj)
∣∣ = 1

}∣∣.
• Set Accuracy: It indicates, between the test instances indeterminately

classified, the proportion of them for which the real class value belongs
to the predicted non-dominated states set:

Set_Accuracy(h) =
1

Nimpr

Ntest∑
j=1,|h(xj)|>1

[[
cj ∈ h(xj)

]]
. (5.4)
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For evaluating the whole performance of an imprecise classifier, that is, its
trade-off between Accuracy and informative predictions, Corani and Zaffalon
[62] proposed the Discounted Accuracy metric (DACC). It is defined in the fol-
lowing way:

DACC(h) =
1

Ntest

Ntest∑
j=1

[[
cj ∈ h(xj)

]]∣∣h(xj)
∣∣ . (5.5)

We may note that DACC is an accuracy measure that penalizes the right
predictions by dividing by the number of predicted class values. It reaches
its maximum value, which is equal to 1, when all predictions are correct and
precise. The minimum value of DACC, 0, is attained when all predictions are
incorrect. If an imprecise classifier always predicts all class values, then the
DACC value is equal to 1

K . This might be a drawback of the DACC measure
since, in this situation, the classifier is not informative.

5.3.1 Evaluating cost-sensitive imprecise classifiers

The DACC measure does not penalize errors in a strict sense as it does not
add any negative value when an instance is misclassified; it is only an accuracy
measure. Thereby, DACC is not sufficient for checking the performance of an
imprecise classifier when different classification errors yield different costs.

In order to solve this issue, Abellán and Masegosa [10] proposed a new
evaluation metric called the Measure for Imprecise Classifiers (MIC). Such an
evaluation metric considers two points:

• If the prediction made for the jth test instance is correct, then a positive
value has to be added, which must be inversely proportional to the num-
ber of predicted non-dominated states. Hence, in this case, MIC adds

the value − log2

(
|h(xj)|

K

)
.

• When the real class value of the jth test instance does not belong to the
non-dominated states set predicted for such an instance, the maximum
cost of predicting a class value belonging to the non-dominated states
set is considered. As pointed out in [10], it makes sense to take the
maximum cost because, in practical applications, an user sometimes has
to choose a class value among the predicted ones. In this way, when
the prediction made for the jth test instance is not correct, MIC adds the
negative value −αjlog2(K), where:

αj = max
ck∈h(xj)

m(ck, cj), (5.6)
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m(ck, cj) being the cost of predicting the ck value when the real class
value is cj, ∀k = 1, 2, . . . ,K, j = 1, 2, . . . ,Ntest.

Then, MIC is defined in the following way:

MIC(h) =

Ntest∑
j=1,cj∈h(xj)

− log2

(∣∣h(xj)
∣∣

K

)
−

1

K− 1

Ntest∑
j=1,cj/∈h(xj)

αj log2 K. (5.7)

We may observe that the maximum value of MIC, which is equal to log2(K),
is attained when all test instances are correctly and precisely classified. In

addition, if
∣∣h(xj)

∣∣ = K, then log2

(
|h(xj)|

K

)
= 0. Thus, when an imprecise

classifier always predicts all class values, the MIC value is equal to 0. It makes
sense as, in such a situation, the classifier is not informative.

MIC is also useful when all classification errors have the same cost (1) [10].
In this case, MIC is determined in the following way:

MIC0/1(h) = −

Ntest∑
j=1,cj∈h(xj)

− log2

(∣∣h(xj)
∣∣

K

)
−

1

K− 1

Ntest∑
j=1,cj/∈h(xj)

log2 K. (5.8)

As in traditional classification, a cross-validation procedure tends to be used
to estimate the performance of an imprecise classifier via the evaluation met-
rics explained above. Moreover, the same statistical tests are employed for
comparing the results obtained by two or more imprecise classifiers in the
cross-validation procedure.

5.4 Dominance criteria in Imprecise Classif ication

For classifying an instance, an Imprecise Classification algorithm needs to
select one or more alternatives among the possible values of the class variable.
In order to make such a decision, it must use the probabilistic knowledge
about the class variable for the instance to classify, which is usually deter-
mined by means of an imprecise probability model. Several works have been
carried out in the literature concerning decision-making with imprecise proba-
bilities [105, 162, 163, 200].

In classification, the decision-making process with imprecise probabilities
can be made by directly using the lower and upper probabilities of the class
values [17]. Suppose that the probabilistic knowledge about the class variable
C for a given instance is determined via a credal set on C, namely PC. The
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first dominance criterion, called the stochastic dominance, was introduced by
Luce and Raiffa [143]. That criterion establishes that a class value dominates
another one if the lower probability of the former class value is greater than
the upper probability of the latter class value. Formally:

Definition 5.4.1 Let P
(
PC
)

and P
(
PC
)

denote, respectively, the coherent lower and
upper probability functions derived from PC, computed through Equation (2.15). It
is said that there is stochastic dominance of cj on ck under PC if

P
(
PC
) ({

cj
})

> P
(
PC
)
({ck}) , ∀j,k ∈ {1, 2, . . . ,K} .

It should be noted that stochastic dominance is a very strict dominance
criterion. Zaffalon [227] showed that it is possible that the probability of a
class value is always greater than the probability of another class value even
though the upper probability of the latter class value is greater than the lower
probability of the former. In these cases, it makes sense that the former class
value dominates the latter. For this reason, Zaffalon [227] defined the credal
dominance criterion, according to which a class value dominates another one if,
and only if, for all probability distribution on PC, the probability of the former
class value is greater than the probability of the latter. Formally:

Definition 5.4.2 It is said that there is credal dominance of cj on ck under PC if
p(cj) > p(ck) ∀p ∈ PC.

According to the results proved by Abellán [17], stochastic dominance al-
ways implies credal dominance, but the converse is not true. In consequence,
credal dominance is a more informative criterion than stochastic dominance.
However, the latter criterion is normally far softer to check than the former
and, thus, it is more practical [17].

5.4.1 Dominance criterion on reachable probability intervals

Let us assume now that probabilistic knowledge about C is represented by
a reachable set of probability intervals on C, namely
I(C) =

{[
lj,uj

]
, j = 1, 2, . . . ,K

}
. Let P (I(C)) denote the credal set asso-

ciated with I(C), computed by means of Equation (2.47). The following re-
sult, demonstrated by Abellán [17], highlights that, in this case, stochastic and
credal dominance are equivalent.

Proposition 5.4.1 For each {j,k} ⊆ {1, 2, . . . ,K}, it holds that lj > uk ⇔ p(cj) >

p(ck) ∀p ∈ P (I(C)).
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Therefore, when the probabilistic knowledge about C is represented via
a reachable set of probability intervals on C, to obtain the cases of credal
dominance (the most informative dominance criterion), it is just necessary to
consider the bounds of the intervals for the class values.

5.4.2 Dominance criterion for cost-sensitive imprecise classifiers

So far, the only algorithms for cost-sensitive Imprecise Classification, intro-
duced by Abellán and Masegosa [10], compute the non-dominated states set
for an instance via a dominance criterion on the risk intervals on the class
values for that instance.

Let R =
{[
R(cj),R(cj)

]
, j = 1, 2, . . . ,K

}
be the set of risk intervals on the

class variable for an instance. In the algorithms for cost-sensitive Imprecise
Classification proposed in [10], the stochastic dominance criterion is applied to
R for obtaining the non-dominated states set.

Definition 5.4.3 It is said that there is stochastic dominance of cj on ck under R if
R(cj) < R(ck), ∀j,k ∈ {1, 2, . . . ,K}.

We may note that this concept is quite intuitive and is based on the concept
of stochastic dominance for probability intervals. Since we are working on
risk intervals and not on credal sets, the credal dominance criterion does not
make sense here [10].

5.5 The Naive Credal Classif ier

The basis of the Naïve Credal Classifier (NCC) [62, 227] is the naïve assump-
tion (given the class variable, all attributes are independent):

P
(
C = cj | X

1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd
)
=

P
(
C = cj,X1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd

)
P
(
X1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd

) ∼

P
(
C = cj,X1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd

)
=

P
(
C = cj

)
P
(
X1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd | C = cj

)
=

P
(
C = cj

) d∏
i=1

P
(
Xi = xiri | C = cj

)
,

∀j = 1, 2, . . . ,K, ri = 1, 2 . . . , ti, i = 1, 2, . . . ,d.

(5.9)
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The proportionality relation indicated via the symbol ∼ is because

arg maxj=1,2,...,K

(
P
(
C=cj,X1=x1

r1
,X2=x2

r2
,...,Xd=xd

rd

)
P
(
X1=x1

r1
,X2=x2

r2
,...,Xd=xd

rd

)
)

=

arg maxj=1,2,...,K
(
P
(
C = cj,X1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd

))
.

Let PNCC (C) be a credal set on the class variable C. For each i = 1, 2, . . . ,d,
k = 1, 2, . . . ,K, let PNCC

(
Xi | ck

)
be a credal set on the attribute Xi condi-

tioned on C = ck.

Definition 5.5.1 [227] The aforementioned credal sets are called local credal sets.

The NCC algorithm considers, for each k = 1, 2, . . . ,K, the set of joint proba-
bility distributions PNCC

(
ck,X1,X2, . . . ,Xd

)
obtained from the naïve assump-

tion and making every possible combination of probability distributions on
the local credal sets:

PNCC

(
ck,X1,X2, . . . ,Xd

)
=

{
pc(ck)

d∏
i=1

pik

| pc ∈ PNCC (C) , pik ∈ PNCC

(
Xi | ck

)}
.

(5.10)

Hence, in order to build the NCC, only the local credal sets are required.
Let Ntr be the number of training instances. Let ntr(cj) denote the num-

ber of training instances that satisfy C = cj, ntr(x
i
ri
) the number of train-

ing instances for which Xi = xiri , and ntr(x
i
ri

, cj) the number of training in-
stances that verify C = cj ∧ Xi = ri, ∀j = 1, 2, . . . ,K, ri = 1, 2, . . . , ti, i =

1, 2, . . . ,d.
For obtaining the local credal sets, the IDM is usually employed in the liter-

ature. We have the following set of IDM probability intervals on C:

IIDM(C) =

{
IIDM(ck) =

[
ntr(ck)

Ntr + s
,
ntr(ck) + s

Ntr + s

]
, k = 1, 2, . . . ,K

}
. (5.11)

In NCC, the local credal set on C is the credal set consistent with the inter-
vals given in Equation (5.11):

PNCC (C) = {p ∈ P(C) | p(ck) ∈ IIDM(ck), ∀k = 1, 2, . . . ,K} , (5.12)

P(C) being the set of all probability distributions on C.
Likewise, for PNCC

(
Xi | ck

)
, NCC considers the credal set associated with

the IDM probability intervals on Xi conditioned on C = ck:

PNCC

(
Xi | ck

)
=

{
p ∈ P(Xi | ck) | p(x

i
ri

| ck) ∈ IIDM(xiri | ck), ∀ri = 1, . . . , ti
}

,
(5.13)
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where IIDM(xiri | ck) =

[
ntr(x

i
ri

,cj)

ntr(ck)+s ,
ntr(x

i
ri

,cj)+s

ntr(ck)+s

]
and P(Xi | ck) is the set of

all probability distributions on Xi conditioned on C = ck, ∀ri = 1, 2, . . . , ti,
i = 1, 2, . . . ,d, k = 1, 2, . . . ,K.

For obtaining the non-dominated states set for an instance such that Xi =

xiri , with ri ∈ {1, 2, . . . , ti} ∀i = 1, 2, . . . ,d, NCC considers, for each class
value, the lower and upper probabilities on the set of joint probability distri-
butions determined by Equation (5.10).

We shall denote, for each k = 1, 2, . . . ,K, ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d:

p(ck) = min
p∈PNCC(C)

p(ck), p(ck) = max
p∈PNCC(C)

p(ck),

p(xiri | ck) = min
pik∈PNCC(Xi|ck)

pik(x
i
ri

| ck),

p(xiri | ck) = max
pik∈PNCC(Xi|ck)

pik(x
i
ri

| ck).

(5.14)

It is easy to deduce that, ∀k = 1, 2, . . . ,K:

min
pc∈PNCC(C),pik∈PNCC(Xi|ck)

{
pc(ck)

d∏
i=1

pik(x
i
ri

| ck)

}
= p(ck)

d∏
i=1

p(xiri | ck),

max
pc∈PNCC(C),pik∈PNCC(Xi|ck)

{
pc(ck)

d∏
i=1

pik(x
i
ri

| ck)

}
= p(ck)

d∏
i=1

p(xiri | ck).

Since IDM probability intervals are always reachable, under this model, the
stochastic and credal dominance criteria are equivalent. In this way, under
NCC, ck dominates cj if, and only if,

p(ck)

d∏
i=1

p(xiri | ck) ⩾ p(cj)

d∏
i=1

p(xiri | cj), ∀j,k = 1, 2, . . . ,K.

Under the IDM:

p(ck) =
ntr(ck)

Ntr + s
, p(ck) =

ntr(ck) + s

Ntr + s
,

p(xiri | ck) =
ntr(x

i
ri

, ck)
ntr(ck) + s

, p(xiri | ck) =
ntr(x

i
ri

, ck) + s

ntr(ck) + s
,

∀k = 1, 2, . . . ,K.

(5.15)
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Consequently, in NCC, ck dominates cj if, and only if:

ntr(ck)

Ntr + s

d∏
i=1

ntr(x
i
ri

, ck)
ntr(ck) + s

⩾
ntr(cj) + s

Ntr + s

d∏
i=1

ntr(x
i
ri

, cj) + s

ntr(cj) + s
⇔

ntr(ck)

d∏
i=1

ntr(x
i
ri

, ck)
ntr(ck) + s

⩾
(
ntr(cj) + s

) d∏
i=1

ntr(x
i
ri

, cj) + s

ntr(cj) + s
,

∀j,k = 1, 2, . . . ,K.

Therefore, given an instance whose attribute vector is x =
(
x1r1 , x2r2 , . . . , xdrd

)
,

with ri ∈ {1, 2, . . . , ti} ∀i = 1, 2, . . . ,d, the non-dominated states set predicted
by NCC is determined in the following way:

hNCC(x) =

{
cj | (ntr(cj) + s)

d∏
i=1

ntr(x
i
ri

, cj) + s

ntr(cj) + s
>

ntr(ck)

d∏
i=1

ntr(x
i
ri

, ck)
ntr(ck) + s

, ∀k = 1, 2, . . . ,K

}
.

(5.16)

5.5.1 Adaptation for cost-sensitive scenarios

NCC was also adapted for cost-sensitive classification by Abellán and
Masegosa [10]. Such an adaptation, called the cost-sensitive Naive Credal
Classifier (CS-NCC), to classify an instance, computes the lower and upper
probabilities as NCC and obtains a risk interval for each class value from
these lower and upper probabilities and the error costs. Finally, it applies
the stochastic dominance criterion on these risk intervals to obtain the non-
dominated states set for the instance to classify.

Formally, suppose that it is required to classify an instance for which Xi =

xiri , with ri ∈ {1, 2, . . . , ti} ∀i = 1, 2, . . . ,d. Let PNCC(cj) and PNCC(cj) de-
note, respectively, the lower and upper probabilities estimated by NCC for the
cj value:

PNCC(cj) = p(cj)

d∏
i=1

p(xiri | cj), PNCC(cj) = p(cj)

d∏
i=1

p(xiri | cj), (5.17)

where p(cj), p(cj), p(xiri | cj), and p(xiri | cj) are computed through Equation
(5.15), ∀j = 1, 2, . . . ,K, i = 1, 2, . . . ,d.

Let M be the matrix of error costs defined in Section 4.8.1. From the probabil-
ity intervals determined via Equation (5.17), CS-NCC computes a risk interval
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for each class value, where the lower (upper) risk is computed by considering
the costs of predicting that class value when the real class value is another one
and the lower (upper) probabilities of the remaining class values:

RNCC(cj) =

K∑
k=1

mjkPNCC(ck), RNCC(cj) =

K∑
k=11

mjkPNCC(ck),

∀j = 1, 2, . . . ,K.

(5.18)

CS-NCC determines the non-dominated states set for the instance via the
stochastic dominance criterion on the risk intervals given by Equation (5.18),
according to which a class value cj dominates another one ck if, only if,
RNCC(cj) < RNCC(ck), ∀j,k ∈ {1, 2, . . . ,K}.

Thus, the non-dominated states set predicted by CS-NCC for an instance
with attribute vector x =

(
x1r1 , x2r2 , . . . , xdrd

)
, where ri ∈ {1, 2, . . . , ti} ∀i =

1, 2, . . . ,d, is determined by:

hCS_NCC(x) =
{
cj | RNCC(cj) ⩾ RNCC(ck), ∀j = 1, 2, . . . ,K

}
, (5.19)

where RNCC(cj) and RNCC(cj) are computed by means of Equation (5.18),
∀j = 1, 2, . . . ,K.

5.6 Imprecise Credal Decision Tree

The Imprecise Credal Decision Tree method (ICDT), developed by Abellán
and Masegosa [10], is an adaptation of the CDT algorithm for Imprecise Clas-
sification. Both methods use the same tree-building process.

Hence, at each node, the attribute with the highest Imprecise Information
Gain value, computed by means of Equation (4.22), is selected.

CDT and ICDT differ in the procedure to classify instances at leaf nodes:
while CDT predicts the most frequent class value at a leaf node, ICDT com-
putes a probability interval for each possible value of the class variable and
then applies a dominance criterion on these intervals to obtain the
non-dominated states set. Formally, at a leaf node L, let nL(cj) denote the
number of instances in L that satisfy C = cj, ∀j = 1, 2, . . . ,K, and NL the
total number of instances in L. ICDT considers the set of IDM probability
intervals on C on L:

ILIDM(C) =

{[
nL(cj)

NL + s
,
nL(cj) + s

NL + s

]
, j = 1, 2, . . . ,K

}
. (5.20)
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As argued in Section 5.4, the most informative dominance criterion is credal
dominance and, as IDM probability intervals are always reachable, under this
model, the stochastic and credal dominance criteria are equivalent. Thereby,
in ICDT, a class value cj dominates another one ck at L if, and only if,

nL(cj)

NL + s
>

nL(ck) + s

NL + s
⇔ nL(cj) > nL(ck) + s, ∀j,k ∈ {1, 2, . . . ,K} .

In consequence, at the leaf node L, the non-dominated states set predicted
by ICDT is determined as follows:

ndsLICDT =
{
ck | nL(ck) + s ⩾ nL(cj), ∀j = 1, 2, . . . ,K

}
. (5.21)

Similar to Decision Trees for precise classification, for classifying an instance
via ICDT, a path from the root node to a leaf one is made by using the attribute
values of that instance. Then, the stochastic dominance is applied to the prob-
ability intervals at that leaf node to obtain the non-dominated states set for
the instance. Algorithm 7 summarizes the procedure to classify an instance
with ICDT.

Algorithm 7: Procedure to classify an instance with ICDT.
Procedure Classify_ICDT(ICDT T, instance with attribute vector
x =

(
x1r1 , x2r2 , . . . , xdrd

)
)

1. Follow a path in T from the root node to a leaf one L using the
attribute values x1r1 , x2r2 , . . . , xdrd .

2. Consider the set of IDM probability intervals on C at L, ILIDM(C),
computed through Equation (5.20).

3. Obtain the non-dominated states set at L via the stochastic
dominance criterion on ILIDM(C):

hICDT (x) = ndsLICDT ,

where ndsLICDT is determined via Equation (5.21).
return hICDT (x)

5.6.1 Adaptation for cost-sensitive classification

The ICDT algorithm was also adapted for cost-sensitive classification by
Abellán and Masegosa [10]. We call such an adaptation the cost-sensitive
Imprecise Credal Decision Tree (CS-ICDT). CDT, ICDT, and CS-ICDT employ
the same procedure to build the tree.
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CS-ICDT differs from ICDT in the criterion utilized to classify instances at
leaf nodes: ICDT uses the stochastic dominance criterion on the IDM probabil-
ity intervals on C at a leaf node, whereas CS-ICDT considers the risk intervals
on the class values at that leaf node.

Formally, let M be the matrix of error costs defined in Section 4.8.1. Let
PL
IDM(cj) and P

L

IDM(cj) denote, respectively the IDM lower and upper prob-
abilities for the cj value at L:

PL
IDM(cj) =

nL(cj)

NL + s
, P

L

IDM(cj) =
nL(cj) + s

NL + s
, ∀j = 1, 2, . . . ,K. (5.22)

From these probability intervals, a risk interval is computed for each class
value, where the lower (upper risk) is computed by considering the costs of
predicting that class value when the real class value is another one and the
lower (upper) probabilities of the remaining class values:

RCS−ICDT (cj) =

K∑
k=1

mjkP
L
IDM(ck),

RCS−ICDT (cj) =

K∑
k=1

mjkP
L

IDM(ck), ∀j = 1, 2, . . . ,K.

(5.23)

CS-ICDT applies the stochastic dominance criterion on these risk intervals
for obtaining the non-dominated states set at that leaf node. According to that
criterion, a class value cj dominates another one ck if, and only if,
RCS−ICDT (cj) < RCS−ICDT (ck), ∀j,k = 1, 2, . . . ,K. Therefore, the non-
dominated states set predicted by CS-ICDT at that terminal node is deter-
mined as follows:

ndsLCS−ICDT =
{
cj | RCS−ICDT (cj) ⩽ RCS−ICDT (ck), ∀k = 1, 2, . . . ,K

}
,

(5.24)
where RCS−ICDT (cj) and RCS−ICDT (cj) are computed through Equation (5.23).

The procedure to classify an instance with CS-ICDT is summarized in Algo-
rithm 8.

5.6.2 Naive Credal Classifier versus Imprecise Credal Decision Tree

An experimental analysis carried out by Abellán and Masegosa [10] showed
that ICDT performs better than NCC since it achieves a better trade-off be-
tween informative and accurate predictions; even though ICDT makes more
incorrect predictions than NCC, the former algorithm is much more informa-
tive than the latter.
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Algorithm 8: Procedure to classify an instance with CS-ICDT.
Procedure Classify_CS-ICDT(ICDT T, instance with attribute vector
x =

(
x1r1 , x2r2 , . . . , xdrd

)
).

1. Follow a path in T from the root node to a leaf one L using the
attribute values x1r1 , x2r2 , . . . , xdrd .

2. Compute the IDM probability intervals at L,{[
PL
IDM(cj),P

L
IDM(cj)

]
, j = 1, 2, . . . ,K

}
, through Equation (5.22).

3. Obtain the risk intervals from these probability intervals by means of
Equation (5.23),

{[
RCS−ICDT (cj),RCS−ICDT (cj)

]
, j = 1, 2, . . . ,K

}
.

4. Use the stochastic dominance criterion on the risk intervals for
obtaining the non-dominated states set at L:

hCS−ICDT (x) = ndsLCS−ICDT ,

where ndsLCS−ICDT is determined via Equation (5.24).
return hCS−ICDT (x)

The same conclusions were derived for the adaptations of NCC and ICDT
for cost-sensitive scenarios (CS-NCC and CS-ICDT). Indeed, for all the error
costs matrices considered in [10], CS-ICDT achieves a better trade-off between
low misclassification cost and informative predictions than CS-NCC [10].



6 M U LT I - L A B E L C L A S S I F I C AT I O N

6.1 Introduction

Traditional classification assumes that each instance has a single value of
a class variable. This task has been successfully employed in practical appli-
cations. Nevertheless, there are domains where traditional classification does
not fit well. For example, in text categorization [152, 185], a text can cover mul-
tiple topics simultaneously, such as sports, Olympic Games, and France1; within
biology, both gens and proteins can have more than one function simultane-
ously [25, 29]; several emotions can appear in a music fragment [201]. In these
domains, where each instance may have multiple labels simultaneously, the
Multi-Label Classification task (MLC) is more suitable to be used.

MLC aims to learn a model that, for an instance described via a set of
attributes or features, predicts the set of labels to which that instance belongs.
The learned MLC model can also predict the posterior probability that a given
instance belongs to each label, which leads to a label ranking for such an
instance.

It should be noted that traditional classification is a particular case of MLC
in which each instance only belongs to a unique label. Consequently, MLC is
a much more complex task to solve than traditional classification. Indeed, in
MLC, the number of label sets exponentially grows as there are more labels.
In order to handle this issue, it is important that multi-label classifiers exploit
label correlations. For this reason, many works have been carried out during
the last years for exploiting correlations between labels in MLC. Examples can
be found in [116, 138, 233, 234]. Moreover, in MLC, very few instances have
often associated a certain label. Hence, many MLC datasets may suffer from a
class-imbalance problem [50, 175]. For this reason, for many MLC algorithms,
it might be difficult to predict that certain instances belong to some labels.

Evaluating the performance of a traditional classification method is direct,
as we have shown in Section 4.2.1. However, in MLC, the evaluation is far
more complicated because each instance might be associated with multiple

1 In this context, “sports" means that the text is related to sports, “Olympic Games" indicates
that the text is associated with the Olympic Games and “France" means that the text covers
news in France.
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labels simultaneously and, thus, an MLC evaluation metric can focus on the
predicted label sets or the performance of the algorithm in each one of the
labels. The MLC evaluation metrics that focus on the former issue are known
as instance-based metrics [96, 99, 185] and the MLC evaluation metrics that focus
on the latter issue are called label-based metrics [203].

Many MLC algorithms have been developed so far. Essentially, they can be
divided into two groups [230]. On the one hand, the problem transformation
methods convert the MLC task into multiple traditional classification problems
and then combine the outputs of such problems to provide an output for the
MLC task. On the other hand, the algorithm adaptation methods directly adapt
the existing traditional classification algorithms for MLC.

The remainder of this chapter is structured as follows: Section 6.2 describes
the Multi-Label Classification paradigm. The main evaluation metrics for
Multi-Label Classification are exposed in Section 6.3. Sections 6.4 and 6.5
detail, respectively, the problem transformation methods and algorithm adap-
tation methods for Multi-Label Classification considered in this thesis work.

6.2 Multi-Label Classif ication

The Multi-Label Classification task (MLC) aims to predict, for an instance
described by a set of attributes or features, the set of labels associated with
such an instance.

Formally, the MLC problem starts from the following issues:

• A set of d predictive attributes
{
X1,X2, . . . ,Xd

}
. Let Dom(Xi) denote

the domain of the Xi attribute, ∀i = 1, 2, . . . ,d.

• A label set Y = {y1,y2, . . . ,ynL
}, where nL > 1.

Definition 6.2.1 When an instance belongs to a label yj, with j ∈ {1, 2, . . . ,nL}, it is
said that yj is relevant for such an instance. Otherwise, it is said that yj is irrelevant
for that instance.

MLC aims to learn a model h :
(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ 2Y

that, for a given instance whose attribute vector is x =
(
x1r1 , x2r2 , . . . , xdrd

)
,

where xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, returns the set of labels that are pre-
dicted to be associated with such an instance, namely h (x).

Similarly to traditional classification, in MLC, a training set
Dtrain =

{
(xj, Yj), j = 1, 2, . . . ,Ntr

}
is used for learning the model. For the
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jth training instance, xj = (x1r1j , x
2
r2j

, . . . , xdrdj) denotes its attribute vector, with
xirij ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, and Yj ⊆ Y its label set, ∀j = 1, 2, . . . ,Ntr.

There are four measures for characterizing the properties of Dtr
2:

• Label Cardinality: The average number of labels per instance:

L_Card (Dtrain) =
1

Ntr

Ntr∑
j=1

∣∣Yj

∣∣ . (6.1)

• Label Density: It indicates the average proportion of labels per instance
and is obtained by normalizing the label cardinality by the number of
labels:

L_Dens (Dtrain) =
L_Card (Dtrain)

nL
. (6.2)

• Label diversity: The number of distinct labels sets that appear in the set:

L_Div (Dtrain) =
∣∣Y ⊆ Y | ∃j ∈ {1, 2, . . . ,Ntr} s.t Y = Yj

∣∣ . (6.3)

• Proportion label diversity: It is the number of different label sets di-
vided by the number of instances:

PL_Div (Dtrain) =
L_Div (Dtrain)

Ntr
. (6.4)

Alternatively, in many cases, the learned model is described by means of a
real-valued function f :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
× Y → R which,

for a given instance with attribute vector x =
(
x1r1 , x2r2 , . . . , xdrd

)
, where xiri ∈

Dom(Xi) ∀i = 1, 2, . . . ,d, and a label yj ∈ Y, returns the predicted posterior
probability that yj is relevant for that instance, namely f(x,yj).

For an instance whose attribute vector is x =
(
x1r1 , x2r2 , . . . , xdrd

)
, where

xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, the real-valued function f yields a ranking
function rankf(x) : Y → {1, 2, . . . ,nL}. It represents the predicted ranking of
labels for the instance and is implicitly determined satisfying rankf(x)(yj) <

rankf(x)(yk) ∀yj, yk such that f(x,yj) > f(x,yk).
A threshold function thr :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ R can be

used to obtain the predicted set of relevant labels for an instance given the real-
valued function f. For an instance with attribute vector x =

(
x1r1 , x2r2 , . . . , xdrd

)
,

where xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, such a label set is extracted from f and
thr in the following way:

h(x) =
{
yj ∈ Y | f(x,yj) > thr(x)

}
. (6.5)

There are three main options to calibrate the threshold function [230]:

2 Such measures are also useful to characterize the properties of any multi-label dataset.
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• Sometimes, the threshold function is fixed to a constant value, which is
normally equal to 0.5. When all unseen test instances are available, the
constant value can be set in such a way that the difference between the
label cardinalities in the training and test sets is minimized [178].

• The second option consists of inducing the threshold function from the
training instances [119]. For example, in some cases, the function t is
assumed to be a linear model [86, 231].

• Finally, some algorithms have their own mechanism for determining the
predicted set of relevant labels for an instance from the label ranking
predicted for that instance. An example can be found in [94].

6.3 Evaluation metrics in Multi-Label Classif ication

Similarly to standard classification, in order to evaluate the performance of
a multi-label classifier described through a set-valued function
h :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ 2Y and a real-valued function f :(

Dom(X1),Dom(X2), . . . ,Dom(Xd)
)
× Y → R, a test set Dtest tends to be

employed.

The evaluation metrics proposed so far for MLC can be divided into two
groups: instance-based metrics [96, 99, 185] and label-based metrics [203]. The
metrics of the former group evaluate the performance of a classifier in each
test instance and then compute the average value across all test instances,
whereas label-based metrics evaluate the performance of a classifier in each
label similarly to binary classification and then compute the average value
across all labels (macro averaging) or all instance/label pairs (micro averag-
ing). Furthermore, both instance-based and label-based metrics can be divided
into classification-based measures, which focus on the predicted label sets (set-
valued function h), and ranking-based metrics, which focus on the predicted
label rankings (real-valued function f).

Let Ntest = |Dtest| be the number of test instances. Let xirij denote the
value of the jth test instance for the ith attribute, ∀i = 1, 2, . . . ,d, xj =(
x1r1j , x

2
r2j

, . . . , xdrdj
)

its attribute vector, and Yj ⊆ Y its label set,
∀j = 1, 2, . . . ,Ntest. We show below the main evaluation metrics in each one
of the groups described above.
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6.3.1 Instance-based metrics

1. Classification

• Subset Accuracy: The proportion of instances for which the pre-
dicted label set coincides with the set of relevant labels:

Subset_Accuracy(h) =
1

Ntest

Ntest∑
i=1

[[h(xi) = Yi]] , (6.6)

where [[h(xi) = Yi]] is equal to 1 if h(xi) = Yi and 0 otherwise,
∀i = 1, 2, . . . ,Ntest. This metric can be regarded as the extension of
the Accuracy metric to MLC and is normally very strict, especially
when the number of labels is very large.

• Hamming Loss: It indicates the proportion of pairs of label-instance
incorrectly classified:

Hamming_Loss(h) =
1

Ntest

Ntest∑
i=1

|h(xi)△Yi| , (6.7)

△ being the symmetric difference between two sets, i.e, the ele-
ments belonging to one set but not to the other one.

• Accuracy: It consists of the average Jaccard similarity coefficient
between the predicted label sets and the sets of relevant labels:

Accuracy(h) =
1

Ntest

Ntest∑
i=1

|h(xi)∩Yi|

|h(xi)∪Yi|
. (6.8)

• Precision: It indicates, between the labels predicted as relevant for
an instance, the average proportion of them that are actually rele-
vant for such an instance:

Precision(h) =
1

Ntest

Ntest∑
i=1

|h(xi)∩Yi|

|h(xi)|
. (6.9)

• Recall: It measures, between the labels that are associated with
an instance, the average proportion of them that are predicted as
relevant for that instance:

Recall(h) =
1

Ntest

Ntest∑
i=1

|h(xi)∩Yi|

|Yi|
. (6.10)
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• F1: The harmonic mean between Precision and Recall:

F1(h) =
2× Precision(h)× Recall(h)

Precision(h) + Recall(h)
. (6.11)

2. Ranking

• One Error: It measures the proportion of instances for which the
label with the highest predicted posterior probability is irrelevant:

One_Error(f) =
1

NTest

NTest∑
i=1

arg max
j=1,2,...,nL

f(xi,yj) /∈ Yi. (6.12)

• Coverage: It consists of the average number of steps that are re-
quired to go down the label ranking for covering all relevant labels
for an instance:

Coverage(f) =
1

NTest

NTest∑
i=1

max
yj∈Yi

rankf(xi)(yj) − 1. (6.13)

• Ranking Loss: It indicates the average proportion of pairs of relevant-
irrelevant labels reversely ordered:

Ranking_Loss(f) =
1

NTest

NTest∑
i=1

|Zi|

|Yi|×
∣∣Yi

∣∣ , (6.14)

where Yi is the complement of Yi and
Zi =

{
(yj,yk) | rankf(xi)(yj) > rankf(xi)(yk), yj ∈ Yi,yk ∈ Yi

}
,

∀i = 1, 2, . . . ,Ntest.

• Average Precision: The average proportion of labels with a higher
predicted posterior probability than a relevant label:

Formally, for each i = 1, 2, . . . ,NTest, and yj ∈ Yi, let us consider
Λi,j =

{
yk | rankf(xi)(yk) ⩽ rankf(xi)(yj), 1 ⩽ k ⩽ nL

}
, rankf(xi)

being the ranking function derived from f for the ith test instance.
Average Precision is defined as follows:

Average_Precision =
1

NTest

NTest∑
i=1

1

|Yi|

∑
yj∈Yi

∣∣Λi,j
∣∣

rankf(xi)(yj)
. (6.15)
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6.3.2 Label-based metrics

1. Classification

For each label yj ∈ Y, the number of true positives (TPj), true negatives
(TNj), false positives, (FPj), and false negatives (FNj), are considered for
the evaluation measures based on label classification:

TPj(h) =
∣∣{i ∈ {1, 2, . . . ,Ntest} : yj ∈ Yi ∧ yj ∈ h(xi)

}∣∣ ,
TNj(h) =

∣∣{i ∈ {1, 2, . . . ,Ntest} : yj /∈ Yi ∧ yj /∈ h(xi)
}∣∣ ,

FPj(h) =
∣∣{i ∈ {1, 2, . . . ,Ntest} : yj /∈ Yi ∧ yj ∈ h(xi)

}∣∣ ,
FNj(h) =

∣∣{i ∈ {1, 2, . . . ,Ntest} : yj ∈ Yi ∧ yj /∈ h(xi)
}∣∣ .

(6.16)

The label classification-based evaluation measures proposed so far are
based on the micro/macro averaging of the evaluation metrics for binary
classification based on the previous indicators. As explained before, mi-
cro averaging consists of averaging across all instance-label pairs, while
macro averaging consists of averaging overall labels.

Let Accj, Precj, Recj and F1j denote, respectively, the Accuracy, Preci-
sion, Recall, and F1 for the label yj:

Accj(h) =
TPj(h) + TNj(h)

TPj(h) + TNj(h) + FPj(h) + FNj(h)
,

Precj(h) =
TPj(h)

TPj(h) + FPj(h)
, Recj(h) =

TPj(h)

TPj(h) + FNj(h)
,

F1j(h) =
2× Precj(h)× Recj(h)

Precj(h) + Recj(h)
, ∀j = 1, 2, . . . ,nL.

(6.17)

We show below the main label classification-based evaluation metrics:

• Micro Accuracy: It corresponds to the Accuracy averaged overall
instance-label pairs:

Micro_Accuracy(h) =

∑nL

j=1

(
TPj(h) + TNj(h)

)∑nL

j=1

(
TPj(h) + TNj(h) + FPj(h) + FNj(h)

) .

(6.18)

• Macro Accuracy: The Accuracy averaged across all labels:

Macro_Accuracy(h) =
1

nL

nL∑
j=1

Accj(h). (6.19)
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• Micro Precision: It consists of the average Precision overall instance-
label pairs:

Micro_Precision(h) =

∑nL

j=1 TPj(h)∑nL

j=1

(
TPj(h) + FPj(h)

) . (6.20)

• Macro Precision: The average Precision across all labels:

Macro_Precision(h) =
1

nL

nL∑
j=1

Precj(h). (6.21)

• Micro Recall: It indicates the Recall averaged across all instance-
label pairs:

Micro_Recall(h) =

∑nL

j=1 TPj(h)(∑nL

j=1 TPj(h) + FNj(h)
) . (6.22)

• Macro Recall: The average Recall across all labels:

Macro_Recall(h) =
1

nL

nL∑
j=1

Recj(h). (6.23)

• Micro F1: It is the harmonic mean between Micro Precision and
Micro Recall:

Micro_F1(h) =
2×Micro_Precision(h)×Micro_Recall(h)
Micro_Precision(h) +Micro_Recall(h)

.

(6.24)

• Macro F1: The F1 averaged across all labels:

Macro_F1(h) =
1

nL

nL∑
j=1

F1j(h). (6.25)

2. Ranking

• Micro AUC: It corresponds to the AUC measure across all instance-
label pairs. Let S+ and S− denote, respectively, the sets of pairs of
instance-relevant label and instance-irrelevant label in the test set:

S+ = {(xi,y) | y ∈ Yi, i ∈ {1, 2, . . . ,Ntest}} ,

S− = {(xi,y) | y /∈ Yi, i ∈ {1, 2, . . . ,Ntest}} ,
(6.26)
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Micro AUC is defined in the following way:

Micro_AUC(f) =
|Z(f)|

|S+| |S−|
, (6.27)

where

Z(f) =
{
(x ′, x ′′,y ′,y ′′) | f(x ′,y ′) > f(x ′′,y ′′),

(x ′,y ′) ∈ S+ ∧ (x ′′,y ′′) ∈ S−)
}

.

• Macro AUC: The average AUC overall labels. Formally, for each
yj ∈ Y, let Zj (Zj) be the set of test instances for which yj is relevant
(irrelevant):

Zj =
{
i ∈ {1, 2, . . . ,Ntest} | yj ∈ Yi

}
,

Zj =
{
i ∈ {1, 2, . . . ,Ntest} | yj /∈ Yi

}
.

(6.28)

For each label yj ∈ Y, the AUC is determined by:

AUCj(f) =

∣∣{(i,k) : f(xi,yj) ⩾ f(xk,yj), i ∈ Zj ∧ k ∈ Zj

}∣∣∣∣Zj

∣∣ ∣∣Zj

∣∣ .

(6.29)
Then, Macro AUC is computed as follows:

Macro_AUC(f) =
1

nL

nL∑
j=1

AUCj(f). (6.30)

6.4 Problem transformation methods

As said previously, the problem transformation methods convert the MLC
task into multiple traditional classification problems and combine their out-
comes to provide an outcome for the MLC problem. In this work thesis, we
consider three algorithms belonging to this category. Two of them consider
a binary classification task per label, and the other one a binary classification
problem for each pair of labels. We detail all these methods below.

6.4.1 Binary Relevance

The Binary Relevance method (BR) [36] is probably the simplest approach to
MLC. It decomposes this task into multiple independent binary classification
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problems, one per label. For classifying a new instance, its predicted set of rel-
evant labels, as well as the predicted posterior probabilities of the relevance of
the labels for that instance, are directly obtained from such learned classifiers.

Formally, for each label yj ∈ Y, BR learns a binary classifier hBR
j :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→

{0, 1}. Such a classifier uses the same predictive attributes as the original MLC
problem. The class variable indicates whether yj is relevant or irrelevant for
an instance. In order to learn the classifier hBR

j , the following training set is
considered:

DBR
j =

{
(xi,ϕ

(
Yi,yj

)
), i = 1, 2, . . . ,Ntr

}
, (6.31)

where ϕ
(
Yi,yj

)
indicates the relevance of yj for the ith training instance, i.e,

ϕ
(
Yi,yj

)
=


1 if yj ∈ Yi

0 if yj /∈ Yi

 , (6.32)

∀i = 1, 2, . . . ,Ntr, j = 1, 2, . . . ,nL.
The classifier hBR

j is learned by employing a binary classification algorithm
B on DBR

j (hBR
j ← B(DBR

j )). The algorithm B is known as the base classifier
of BR. In addition, the binary classifier can also return a real-valued function
fBR
j :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ R, which, for a given instance,

returns the predicted posterior probability that yj is relevant for that instance.
In order to classify an instance with attribute vector x =

(
x1r1 , x2r2 , . . . , xdrd

)
,

where xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, the predicted set of relevant labels for
that instance is composed of those labels predicted as relevant by the corre-
sponding binary classifier:

hBR(x) =
{
yj | h

BR
j (x) = 1, j ∈ {1, 2, . . . ,nL}

}
. (6.33)

The predicted posterior probabilities about the relevance of the labels for the
instance are also directly obtained from the posterior probabilities predicted
by the binary classifiers:

fBR(x,yj) = fBR
j (x), ∀j = 1, 2, . . . ,nL. (6.34)

We must remark the following issues about BR:

• Despite being very simple, BR has achieved good results in practice,
comparable with more sophisticated MLC algorithms [144].

• However, BR has an important drawback: as it assumes that all labels
are independent, BR ignores correlations among the labels, which are
quite common.
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• Furthermore, the binary classifiers of BR tend to suffer from a class-
imbalance problem because, as explained before, very few instances have
often associated a label in MLC.

6.4.2 Classifier Chains

The Classifier Chain algorithm (CC) [178] also considers a binary classifier
per label. Nonetheless, unlike BR, in CC, the previous labels according to an
established order are used as additional predictive attributes. Also, in order to
classify an instance, for each classifier, the predictions made by the predecessor
classifiers according to the established order are taken into account.

Formally, let σ : {1, . . . ,nL} → {1, . . . ,nL} be a permutation that leads to a
label order yσ(1) ≻ yσ(2) ≻ . . . ≻ yσ(nL). For the jth label, yσ(j), a binary
classifier
hCC
σ(j) :

((
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
, {0, 1}× j−1. . . × {0, 1}

)
→ {0, 1} is

learned. Such a classifier uses, as the predictive attributes, the original at-
tribute space and the predecessor labels to yσ(j) according to σ. The class
variable indicates the relevance of yσ(j) for an instance. In order to learn the
classifier hCC

σ(j), the following training set is considered:

DCC
σ(j) =

{(
[xi,predi(σ(j))] ,ϕ

(
Yi,yσ(j)

))
, i = 1, 2, . . . ,Ntr

}
, (6.35)

where, for each i = 1, 2, . . . ,Ntr, j = 1, 2, . . . ,nL,
predi(σ(j)) =

(
ϕ
(
Yi,yσ(1)

)
,ϕ
(
Yi,yσ(2)

)
, . . . ,ϕ

(
Yi,yσ(j−1)

))
and

ϕ
(
Yi,yσ(j)

)
is determined via Equation (6.32).

In this way, hCC
σ(j) utilizes the original training instances considering, for each

one of them, its attribute values and the relevance of the predecessor labels
to yσ(j) for it. The class value corresponds to the relevance of yσ(j), ∀j =
1, 2, . . . ,nL.

Similarly to BR, a binary classification algorithm B is employed on DCC
σ(j) to

learn the classifier hCC
σ(j) (hCC

σ(j) ← B(DCC
σ(j))). The algorithm B is also called

the base classifier of CC. As in BR, the classifier can also return a real-valued
function
fCC
σ(j) :

((
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
, {0, 1}× j−1. . . × {0, 1}

)
→ {0, 1} that,

for a given instance, outputs the predicted posterior probability about the rel-
evance of yσ(j) for that instance, ∀j = 1, 2, . . . ,nL.

Given an instance to classify whose attribute vector is x =
(
x1r1 , x2r2 , . . . , xdrd

)
,

where xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, the predictions on the binary classi-
fiers are made by following the order established by the permutation σ. Each
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classifier takes into account the predictions made by the predecessor classifiers
according to σ:

λyσ(1)
(x) = hCC

σ(1)(x),

λyσ(j)
(x) = hCC

σ(j)

(
x, λyσ(1)

(x), . . . , λyσ(j−1)
(x)
)

, ∀j = 2, . . . ,nL.
(6.36)

The set of labels predicted as relevant for the instance is composed of those
labels predicted as relevant by the corresponding binary classifier:

hCC(x) =
{
yσ(j) | λyσ(j)

(x) = 1, 1 ⩽ j ⩽ nL

}
. (6.37)

The predicted posterior probabilities about the relevance of the labels for the
instance are derived in a straightforward way from the posterior probabilities
predicted by the binary classifiers:

fCC
σ(1)(x,yσ(1)) = fCC

σ(1)(x),

fCC
σ(j)(x,yσ(j)) = fCC

σ(j)

(
x, λyσ(1)

(x), . . . , λyσ(j−1)
(x)
)

, ∀j = 2, . . . ,nL.
(6.38)

We must remark the following points about CC:

• Unlike BR, CC exploits correlations among labels as, for making predic-
tions about a label, it considers other labels. Indeed, CC is considered a
simple and effective method to exploit label correlations in MLC.

• Moreover, CC is one of the methods that achieved the best results in a
comparative experimental study about MLC algorithms carried out in
[144].

• Nevertheless, the label order strongly influences the performance of CC,
and there is no way to determine the optimal label order so far.

• As in BR, the binary classifiers of CC also tend to suffer from a class-
imbalance problem.

6.4.2.1 Label order in Classifier Chain

Several approaches have been developed during the last years for determin-
ing a suitable label order in CC. Since the number of possible label orders
enormously increases as the number of labels is higher (the factorial of nL), it
is not viable to exhaustively explore the complete search space of the possible
label orders.
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• Genetic algorithms for label ordering were developed in [100, 101]. We
must remark that such algorithms use a wrapper approach to evaluate
the goodness of each candidate order, which implies that they train a
CC for evaluating each candidate. Thus, the computational cost of these
methods is enormous.

• Most of the label ordering procedures developed during the last years
previously estimate correlations between labels. For instance, in [124],
several greedy procedures to insert the labels in the chain were proposed.
They are based on the entropies of the candidate labels conditioned on
the ones not inserted yet. Specifically, for each pair of labels

{
yj,yk

}
⊆ Y,

they consider the entropy of yj conditioned on yk:

S(yj | yk) =
ntr(yk)

Ntr
S(yj | yk = 1) +

ntr(yk)

Ntr
S(yj | yk = 0), (6.39)

where ntr(yk) and ntr(yk) are the number of training instances for
which yk is relevant and irrelevant, respectively, and S(yj | yk = 1)

(S(yj | yk = 0)) is the entropy of yj on the subset of the training set
composed of those instances for which yj is relevant (irrelevant):

S(yj | yk = 1) = −
ntr(yj,yk)

ntr(yk)
log2

(
ntr(yj,yk)

ntr(yk)

)
−

ntr(yj,yk)

ntr(yk)
log2

(
ntr(yj,yk)

ntr(yk)

)
,

S(yj | yk = 0) = −
ntr(yj,yk)

ntr(yk)
log2

(
ntr(yj,yk)

ntr(yk)

)
−

ntr(yj,yk)

ntr(yk)
log2

(
ntr(yj,yk)

ntr(yk)

)
,

(6.40)

ntr(yj,yk) being the number of training instances that have associated
both yj and yk, ntr(yj,yk) the number of training instances that have
associated yk but not yj, ntr(yj,yk) the number of training instances
for which yj is relevant but yk irrelevant, and ntr(yj,yk) the number
of training instances for which both yj and yk are irrelevant, ∀j,k =

1, 2, . . . ,nL.

The greedy procedures proposed in [124] are based on the following
idea: If S(yj | yk) ⩽ S(yk | yj), then yj should be placed before yk in the
chain, ∀j,k = 1, 2, . . . ,nL. There are four greedy procedures based on
this issue. We summarize below how the labels are selected at each step
in each one of such procedures:
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1. Compute, for each candidate label to insert, the sum of the en-
tropies of the labels not inserted yet conditioned on the candidate
label. The label with the lowest sum is placed after the remaining
candidates.

2. For each candidate label to insert, compute the sum of the entropies
of the labels not inserted yet conditioned on the candidate label.
The label with the highest sum is placed before the remaining can-
didate labels.

3. Compute, for each candidate label, the sum of the entropies of that
label conditioned on the ones not inserted yet. The label with the
lowest sum is placed before the remaining candidates.

4. For each candidate label to insert, compute the sum of the entropies
of such a label conditioned on the ones not inserted yet. The label
with the highest sum is placed after the remaining candidates.

An experimental analysis carried out in [124] showed that CC with the
aforementioned greedy procedures outperform other generalizations of
CC that utilize more sophisticated methods to model label dependencies.
Among these methods, we can mention Probabilistic Classifier Chain
[73], which randomly determines the label order and, for classifying an
instance, the label combination with highest joint probability distribu-
tion is selected; or the algorithms proposed in [87, 134], where the chain
of classifiers is replaced by a Directed Acyclic Graph. Moreover, in [124],
it was shown that the procedure 1 generally achieves better results than
the other ones, although the differences are not statistically significant.
It was not found a reason for this point.

• Very recently, in [214], a new label ordering algorithm has been pro-
posed. It considers, for each pair of labels, a score about the correlation
among them based on the ReliefF method [126]. The idea of ReliefF
is that two labels are more correlated as they are more useful to sepa-
rate the instances for which other labels are relevant or irrelevant. Af-
terwards, a threshold is used to select, for each label, the set of labels
correlated with it. A greedy procedure is carried out to insert the labels
in the chain. At each step of such a procedure, among the labels corre-
lated with at least one label already inserted, the label with the highest
number of candidate labels correlated with it is chosen. If there is no
label correlated with the labels already inserted, the label with the high-
est number of candidate labels correlated with it is chosen. The selected
label is placed before the remaining candidates in the chain.
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A drawback of this method is that it is difficult to determine the thresh-
old for obtaining the set of labels correlated with each label. Moreover,
the developers of this method showed that, even though it improves the
original CC algorithm, their proposal is not very effective unless, for each
label, the features not correlated with it are removed. Hence, they pro-
posed a feature selection procedure, also based on the ReliefF method,
to eliminate, for each label, the labels and features not correlated with
it. Nevertheless, we must remark that such a feature selection algorithm
applied for each label implies a quite high computational time.

• Several methods that consider different label orders in CC have been
proposed in the literature. An example is the Ensemble of Classifier
Chains algorithm (EnsembleCC) [178], which we detail in Section 6.4.2.2.
In [228], the Bayesian Classifier Chains method (Bayesian CC) was pro-
posed. Such an algorithm uses a tree structure to model label dependen-
cies. For each label, it considers an order in which that label is employed
as the node of the dependencies tree. A CC is trained for each label or-
der. To classify an instance, Bayesian CC combines the predictions made
by the trained CCs by means of a majority vote. We must remark that,
as EnsembleCC and Bayesian CC train multiple CCs, the computational
times of these methods might be very high.

6.4.2.2 Ensemble of Classifier Chains

As the performance of the CC method is strongly influenced by the label
order, the same developers of CC proposed the Ensemble of Classifier Chains
algorithm (EnsembleCC) [178] to handle this issue.

EnsembleCC considers n_orders permutations σ1,σ2, . . . ,σn_orders, where
σi : {1, 2, . . . ,nL} → {1, 2, . . . ,nL} ∀i = 1, 2, . . . ,n_orders. For each permu-
tation σi, it considers a sample of the training set, Di

tr, with replacement
(
∣∣Di

tr

∣∣ = |Dtr|), or without replacement (
∣∣Di

tr

∣∣ = 2
3
|Dtr|). A multi-label classi-

fier hi :
(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ 2Y is learned using Di

tr as the
training set and the order established by the permutation σi via the building
procedure of CC. Such a classifier is often described via a real-valued function
fi :

((
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
,×Y

)
→ R that, given an instance

and a label, returns the predicted posterior probability that such a label is
relevant for that instance.

For classifying an instance whose attribute vector is x =
(
x1r1 , x2r2 , . . . , xdrd

)
,

where xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, the predicted posterior probability
that a label is relevant for that instance is computed through the average of
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the posterior probabilities about the relevance of such a label for the instance
predicted by the CCs of the ensemble:

fECC(x,yj) =
1

n_orders

n_orders∑
i=1

fi(x,yj), ∀j = 1, 2, . . . ,nL. (6.41)

The predicted set of relevant labels for the instance, namely hECC(x), can
be determined in two ways:

• Firstly, a label can be predicted as relevant if, and only if, it is predicted
as relevant by the majority of the CCs:

hECC(x) =

{
yj |

n_orders∑
i=1

[[
yj ∈ hi(x)

]]
>

n_orders∑
i=1

[[
yj /∈ hi(x)

]]
, j ∈ {1, 2, . . . ,nL}

}
.

(6.42)

• Secondly, a label can be predicted as relevant for the instance if, and only
if, the average of the posterior probabilities predicted by the CCs of the
ensemble is higher than 0.5:

hECC(x) =
{
yj | f

ECC(x,yj) > 0.5, j ∈ {1, 2, . . . ,nL}
}

. (6.43)

6.4.3 Calibrated Label Ranking

The Calibrated Label Ranking method (CLR) [94] transforms the MLC prob-
lem into a label ranking task. In order to determine the label ranking for an
instance, CLR computes a score for each label via pairwise comparisons.

Specifically, for each pair of labels
{
yj,yk

}
⊆ Y, CLR learns a binary clas-

sifier hCLR
jk :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ {0, 1}. Such a classifier

employs the same predictive attributes as the original MLC problem. The
class variable indicates which of yj and yk is more relevant for an instance,
that is, the relative relevance of yj versus yk for such an instance. For learning
the classifier hCLR

jk , the instances of the original training set that have associ-
ated one of the two labels but not the other one are considered, taking, for
each one of them, its attribute values and which of the two labels is relevant
for it. Hence, the following training set is considered for hCLR

jk :

DCLR
jk =

{(
xi,ϕ

(
Yi,yj

))
| ϕ
(
Yi,yj

)
) ̸= ϕ (Yi,yk)), 1 ⩽ i ⩽ Ntr

}
. (6.44)
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Similarly to the other problem transformation methods considered in this
work thesis, a binary classification algorithm B is utilized on DCLR

jk to learn
hCLR
jk (hCLR

jk ← B(DCLR
jk )). The algorithm B is called the base classifier of CLR.

When it is required to classify an instance with attribute vector x =(
x1r1 , x2r2 , . . . , xdrd

)
, where xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, the relative rele-

vances are predicted on the learned classifiers. For each label, the number of
votes in the classifiers that involve such a label is considered:

num_votx(yj) =

j−1∑
k=1

[[
hCLR
kj (x) = 0

]]
+

nL∑
k=j+1

[[
hCLR
jk (x)) = 1

]]
, ∀j = 1, 2, . . . ,nL.

(6.45)

This leads to a label ranking for the instance. For distinguishing between
relevant and irrelevant labels, CLR introduces a virtual label y0, in such a way
that the labels ranked above (below) y0 are predicted as relevant (irrelevant).
For each label yj, a binary classifier
hCLR
j0 :

(
Dom(X1),Dom(X2), . . . ,Dom(Xd)

)
→ {0, 1} is learned, which pre-

dicts whether an instance has associated yj or, equivalently, the relative rele-
vance of yj versus y0 for such an instance. In order to learn hCLR

j0 , all training
instances are considered, taking, for each one of them, its attribute values and
the relevance of yj for it. Formally, the following training set is used for hj0:

DCLR
j0 =

{(
xi,ϕ

(
Yi,yj

))
, i = 1, 2, . . . ,Ntr

}
. (6.46)

The binary classification algorithm B employed for the classifiers corre-
sponding to the pairwise comparisons is used to learn hCLR

j0 from DCLR
j0

(hCLR
j0 ← B(DCLR

j0 )).
CLR also considers the number of votes of the virtual label for the instance

to classify:

votes_virtual (x) =
nL∑
j=1

[[
hCLR
j0 (x) = 0

]]
. (6.47)

In addition, for each label, the number of votes is incremented in one if that
label is predicted to be more relevant than the virtual one for the instance:

final_votesx(yj) = num_votx(yj) +
[[
hCLR
j0 (x) = 1

]]
, ∀j = 1, 2, . . . ,nL.

(6.48)
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The posterior probability predicted by CLR about the relevance of the label
yj for the instance is obtained by dividing the final number of votes, deter-
mined through Equation (6.48), by the number of labels:

fCLR(x,yj) =
final_votesx(yj)

nL
, ∀j = 1, 2, . . . ,nL. (6.49)

Finally, the set of labels predicted by CLR as relevant for the instance is
composed of those labels for which the final number of votes is higher than
the number of votes of the virtual label:

hCLR(x) =
{
yj | final_votesx(yj) > votes_virtual (x) , 1 ⩽ j ⩽ nL

}
. (6.50)

We must remark the following points about CLR:

• Since CLR considers a binary classifier for each pair of labels, it allows
exploiting pairwise label correlations.

• Furthermore, for the binary classifiers of CLR associated with the pair-
wise comparisons, only the training instances for which one of the two
labels is relevant and the other one irrelevant are considered. Therefore,
CLR alleviates the class-imbalance problem that frequently appears in
MLC.

• Nonetheless, the number of classifiers learned by CLR quadratically
grows as there are more labels. In contrast, with BR and CC, the growing
of the number of learned classifiers with the number of labels is linear.
Consequently, the main drawback of the CLR method is the computa-
tional time.

6.5 Algorithm adaptation methods

Several traditional classification algorithms were adapted for MLC. In this
work thesis, we focus on the adaptations of Decision Trees [56] (Section 6.6)
and the Nearest Neighbors algorithm [232] (Section 6.7).

6.6 Multi-Label Decision Tree

Decision Trees were adapted for MLC by Clare and King [56]. Such an adap-
tation is known as Multi-Label Decision Tree (ML-DT). For the split criterion,
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in each node, ML-DT needs to represent the uncertainty-based information
about the label set, unlike Decision Trees for standard classification, which
represent the uncertainty-based information about the class variable in that
node. Furthermore, at leaf nodes, ML-DT must predict a set of labels, whereas
Decision Trees for traditional classification predict a single value of the class
variable.

Let D be the subset of the training set associated with a certain node. Let
ND denote the number of instances in D, i.e, ND = |D|. For each label yj ∈ Y,
the Shannon entropy of yj on D is considered:

SD(yj) = −
nD(yj)

ND
log2

(
nD(yj)

ND

)
−

nD(yj)

ND
log2

(
nD(yj)

ND

)
, (6.51)

nD(yj) being the number of instances in D that have associated yj and nD(yj)

the number of instances in D for which yj is irrelevant.
The split criterion of ML-DT is based on the entropy of the label set Y, which

is computed by means of the sum of the entropies of the labels:

SD(Y) =

nL∑
j=1

SD(yj). (6.52)

Similarly to most of the Decision Trees for standard classification, ML-DT
employs a split criterion that consists of the gain of information about the
label set given an attribute. Such a split criterion, for an attribute Xi whose
possible values are

{
xi1, . . . , xiti

}
, is defined as follows:

IGD(Y,Xi) = SD(Y) −

ti∑
ri=1

PD(Xi = xiri)S
D(Y | Xi = xiri), (6.53)

where PD(Xi = xiri) is the probability that Xi = xiri in D, estimated via relative
frequencies, and SD(Y | Xi = xiri) is the entropy of Y on the subset of D

composed of those instances for which Xi = xiri , ∀ri = 1, 2, . . . , ti, i =

1, 2, . . . ,d.
At a leaf node, a label is predicted as relevant if, and only if, it is relevant

for the majority of the instances at that leaf node. Formally, at a leaf node
L, let nL(yj) (nL(yj)) denote the number of instances in L for yj is relevant
(irrelevant), ∀j = 1, 2, . . . ,nL. The predicted set of relevant labels at L is
determined as follows:

hL
ML_DT =

{
yj | n

L(yj) > nL(yj), j ∈ {1, 2, . . . ,nL}
}

. (6.54)
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The posterior probability about the relevance of yj at L is predicted via
relative frequencies:

fLML_DT (yj) =
nL(yj)

NL
, (6.55)

NL being the total number of instances at L.
Algorithm 9 summarizes the building procedure of a ML-DT.

Algorithm 9: Procedure to build a Multi-Label Decision Tree.
Procedure Build_ML-DT(Node N)
Let D be the dataset associated with N

if There are more attributes to insert then
Select the attribute Xi that reaches the maximum value of IGD(Y,Xi)

for xiri possible value of Xi do
Make a node Nri child of N
Build_ML-DT(Nri)

else
Make N a leaf node
Assign a label set hN

ML_DT to N, computed through Equation (6.54)
for j = 1 to nL do

fNML_DT (yj) =
nD(yj)

ND

For classifying an instance via ML-DT, a path from the root node to a leaf
one is made by using the attribute values of the instance. The predicted label
set for the instance is the one assigned to such a terminal node. The same
happens with the predicted posterior probabilities about the relevance of the
labels for such an instance. The procedure to classify an instance with ML-DT
is summarized in Algorithm 10.

Algorithm 10: Procedure to classify an instance with ML-DT.
Procedure Classify_ML-DT(ML-DT T, instance with attribute vector
x =

(
x1r1 , x2r2 , . . . , xdrd

)
)

1. Follow a path in T from the root node to a leaf one L using the
attribute values x1r1 , x2r2 , . . . , xdrd .

2. Assign the predicted label set at L, hL, to hML_DT (x).
3. for j = 1 to nL do

fML_DT (x,yj) = fLML_DT (yj)
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ML-DT can handle continuous attributes similarly to Decision Trees for tra-
ditional classification, considering binary splits and choosing the split point
that produces the maximum gain of uncertainty-based information about the
label set. Concerning missing values, when an instance has a missing value
for an attribute, it can go down each branch hanging from the corresponding
node with a weight equal to the proportion of instances at such a branch, as
in Decision Trees for standard classification. In this case, it is necessary to
adapt the entropy of each label, computed via Equation (6.51), for working
with proportions of weights rather than proportions of instances.

Finally, ML-DT can use pruning processes based on the pruning processes
of Decision Trees for traditional classification but considering the number of
errors in all labels [56].

6.7 Multi-Label Nearest Neighbors

The Multi-Label Nearest Neighbor algorithm (ML-NN) [232], as the Nearest
Neighbors algorithm for traditional classification, described in Section 4.3, is
a lazy approach that does not carry out any training phase.

Suppose that it is wanted to classify an instance whose attribute vector is x =(
x1r1 , x2r2 , . . . , xdrd

)
, where xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d. ML-NN computes

the num_neighbors-nearest neighbors of the instance by using a distance
function on the attribute space. For each label yj ∈ Y, let Kj(x) be the number
of neighbors of the instance (among the num_neighbors-nearest ones) that
have associated yj.

Let PML−NN(yj) (PML−NN(yj)) denote the prior probability that yj is rel-
evant (irrelevant) for an instance, ∀j = 1, 2, . . . ,nL. Also, for each label
yj ∈ Y, let PML−NN(Kj(x) | yj) (PML−NN(Kj(x) | yj)) denote the probability
that an instance has Kj(x) neighbors that have associated yj conditioned on
yj is relevant (irrelevant) for such an instance.

ML-NN uses a Maximum a Posteriori Principle (MAP) to predict whether
each label yj ∈ Y is relevant for the instance. According to such a principle, yj

is predicted as relevant for the instance if, and only if,

PML−NN(yj)P
ML−NN(Kj(x) | yj) > PML−NN(yj)P

ML−NN(Kj(x) | yj).
(6.56)

Let Ntr be the total number of training instances. For each j = 1, 2, . . . ,nL,
let ntr(yj) (ntr(yj)) be the number of training instances for which yj is rele-
vant (irrelevant). Let δj(Kj(x)) denote the number of training instances that
have associated yj and have Kj(x) neighbors for which yj is relevant. Likewise,
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let δj(Kj(x)) denote the number of training instances for which yj is irrelevant
and have Kj(x) neighbors that have associated yj. ML-NN estimates the men-
tioned probabilities that appear in Equation (6.56) via relative frequencies with
Laplacian correction:

PML−NN(yj) =
ntr(yj) + 1

Ntr + 2
, PML−NN(yj) =

ntr(yj) + 1

Ntr + 2
, (6.57)

PML−NN(Kj(x) | yj) =
δj(Kj(x)) + 1

ntr(yj) +num_neighbors+ 1
,

PML−NN(Kj(x) | yj) =
δj(Kj(x)) + 1

ntr(yj) +num_neighbors+ 1
,

(6.58)

Hence, given an instance with attribute vector x =
(
x1r1 , x2r2 , . . . , xdrd

)
, where

xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, the set of labels predicted by ML-NN as
relevant for such an instance is determined in the following way:

hML_NN(x) =
{
yj | P

ML−NN(yj)P
ML−NN(Kj(x) | yj) >

PML−NN(yj)P
ML−NN(Kj(x) | yj), j ∈ {1, 2, . . . ,nL}

}
,

(6.59)

where PML−NN(yj) and PML−NN(yj) are computed by means of Equation
(6.57), and PML−NN(Kj(x) | yj) and PML−NN(Kj(x) | yj) via Equation (6.58).

For each label yj ∈ Y, the predicted posterior probability that the instance
has associated yj is determined by normalizing the probability that yj is rele-
vant for the instance estimated via MAP:

fML_NN(x,yj) =

PML−NN(yj)P
ML−NN(Kj(x) | yj)

PML−NN(yj)PML−NN(Kj(x) | yj) + PML−NN(yj)PML−NN(Kj(x) | yj)
.

(6.60)

6.7.1 Modifications of ML-KNN based on classical information theory

ML-NN was the first lazy approach to MLC. Many lazy MLC algorithms
have been developed since them. Most of them are based on classical proba-
bility theory. Among such methods, we can mention the following ones:

• The Binary Relevance Nearest Neighbors algorithm (BR-NN) was pro-
posed in [194]. To predict whether a label is relevant for an instance,
BR-NN uses a majority vote in the neighborhood of the instance3.

3 BR-NN is, indeed, a problem transformation method. Specifically, it is the Binary Relevance
method using the NN algorithm for traditional classification as the base classifier.
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Formally, suppose that it is wanted to classify an instance whose at-
tribute vector is x =

(
x1r1 , x2r2 , . . . , xdrd

)
, where xiri ∈ Dom(Xi) ∀i =

1, 2, . . . ,d. As ML-NN, BR-NN determines the num_neighbors-nearest
neighbors of the instance via a distance function on the attribute space.

For each label yj ∈ Y, let Kj(x) (Kj(x)) denote the number of neighbors
of the instance for which yj is relevant (irrelevant). The set of labels
predicted by BR-NN as relevant for the instance is the one given by:

hBR−NN(x) =
{
yj | Kj(x) > Kj(x), j ∈ {1, 2, . . . ,nL}

}
. (6.61)

The posterior probability that the instance has associated a label is pre-
dicted through relative frequencies with Laplacian correction in the neigh-
borhood:

fBR−NN(x,yj) =
Kj(x) + 1

num_neighbors+ 2
, ∀j = 1, 2, . . . ,nL. (6.62)

Two extensions of BR-NN were proposed in [194]. The first one is
known as BR-NN-α. It predicts, for an instance with attribute vector
x =

(
x1r1 , x2r2 , . . . , xdrd

)
, where xiri ∈ Dom(Xi) ∀i = 1, 2, . . . ,d, the la-

bel with the highest predicted posterior probability as relevant when
hBR−NN(x) = ∅. The second extension, called BR-NN-β, always pre-
dicts the β top-ranked labels as relevant, β being the average number of
relevant labels on the neighboring instances.

• A new version of the ML-NN algorithm called Dependent Multi-Label
Nearest Neighbors (DML-NN) was proposed in [226]. As ML-NN, it
predicts the set of relevant labels for an instance by utilizing the MAP
principle. Nonetheless, in order to predict whether a label is relevant for
an instance, DML-NN also takes into account the neighboring instances
for which each one of the rest of the labels is relevant, whereas ML-NN
only considers the number of neighboring instances that have associated
the label to predict. In this way, DML-NN aims to exploit correlations
between labels.

• In [54], an MLC algorithm that combines instance-based learning with
logistic regression (IBLR-ML) was proposed. It transforms the training
dataset by creating features using label information and considers a lo-
gistic regression classifier per label. Due to these transformations and
the logistic regression classifiers, IBLR-ML is computationally expensive.
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• The Multi-Label Classification Weighted Nearest Neighbors algorithm
(MLCW-NN) was developed in [221]. It consists of an instance-weighted
version of ML-NN in which, among the num_neighbors-nearest neigh-
bors, the nearest instances influence more than the most distant ones.
MLCW-NN uses a quadratic programming method to estimate the weight
of each neighboring instance. Thereby, the computational cost of MLCW-
NN is also notably high.
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7 A N A LYS I S O F I M P R E C I S E P R O B A B I L I T Y
T H E O R I E S A N D M O D E L S

7.1 Introduction

The use of classical probability theory is the standard way of representing
the probabilistic knowledge about a discrete variable or finite set. This rep-
resentation may be suitable in many cases. However, as explained before,
in some situations, a single probability distribution might not be appropri-
ate since the available information is not sufficient. For this reason, several
mathematical theories and models based on imprecise probabilities have been
developed in the literature. We described most of them in Chapter 2.

Regarding imprecise probability theories, one of the most general is the
one based on credal sets. In fact, in most imprecise probability theories, the
available information can be represented via a credal set. Nonetheless, as
these theories have specific mathematical properties, some theories are more
suitable than others in specific situations.

On the one hand, Evidence theory (ET) has been commonly used in the
literature to deal with uncertainty-based information. It has been successfully
applied to several domains such as statistical classification [78], target identifica-
tion [41], medical diagnosis [34], and face recognition [120]. Moreover, this theory
has been frequently employed for the fusion of information provided by dif-
ferent sources, which is very important for decision making [30, 53, 165]. In
ET, the available information can1 be represented by a belief function.

On the other hand, reachable probability intervals are easy to understand
and manage. They have high expressive power and can be efficiently com-
puted. For these reasons, reachable probability intervals have been frequently
employed in practical applications such as classification. Examples of this
point can be found in Chapters 4 and 5.

As we highlighted in Section 2.2.8, ET does not generalize reachable proba-
bility intervals, and the converse is also not satisfied (See Figure 2.1). Abellán
[2] demonstrated that a reachable set of probability intervals is not necessarily
associated with a belief function, and a belief function cannot always be repre-
sented by means of a reachable set of probability intervals. A characterization
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of reachable probability intervals that can be represented via belief functions
was given in [135]. Nevertheless, we show with a counterexample that the con-
dition given in that study is not sufficient because the belief function found
under that condition does not always represent the same information as the
corresponding set of probability intervals.

In this chapter, as a novelty, we study the necessary and sufficient conditions
under which a reachable set of probability intervals corresponds to a belief
function. Also, we analyze the properties that a belief function must satisfy
to be representable via a reachable set of probability intervals. In this way,
we describe the credal sets that belong to both belief functions and reachable
probability intervals. The credal sets corresponding to the Imprecise Dirichlet
Model (IDM) are illustrative examples of this type of credal set [2].

Concerning imprecise probability models, as shown in Section 2.3.1, the
IDM is based on reachable probability intervals and has been frequently used
in the literature. It satisfies some principles that were claimed to be desirable
for inference such as the Representation Invariance Principle (RIP). However, as
pointed out before, the IDM assumes previous knowledge about the data via
a parameter. In classification, small changes in the IDM parameter lead to im-
portant variations in the results, and each classification dataset has associated
with it an optimal value of the IDM parameter [18, 150].

The Non-Parametric Predictive Inference Model for Multinomial data (NPI-
M) was developed in [58, 59]. It is a non-parametric approach that does not
make prior assumptions about the data before observing them. In Section
2.3.2, we showed that, in many situations, inferences with the NPI-M yield
intuitively more coherent results than inferences with the IDM. The NPI-M has
been successfully used in practical applications during the last years, such as
credit scoring [60], European option pricing [111], or extraction of knowledge
in traffic accident databases [9]. The NPI-M has equivalent performance to the
IDM with the best selection of the parameter when both models are utilized
in classification [6].

Despite the previous points, it should be noted that the set of probability dis-
tributions compatible with the NPI-M is not convex. Thus, when the NPI-M is
employed, it is needed to handle difficult constraints, as highlighted in Section
2.3.2. For this reason, the Approximate Non-Parametric Predictive Inference
Model for Multinomial data (A-NPI-M) was proposed in [5]. It corresponds to
the convex hull of the set of probability distributions compatible with the NPI-
M. The A-NPI-M belongs to reachable probability intervals theory and avoids
many difficult constraints of the exact model. In classification, the NPI-M and
the A-NPI-M have obtained equivalent results [6].
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As a novelty, in this chapter, we analyze the properties of credal sets asso-
ciated with the A-NPI-M, comparing them with the properties of IDM credal
sets. One of the most remarkable properties is that A-NPI-M credal sets are
not always representable via belief functions, unlike IDM credal sets. We show
that the A-NPI-M is a more complex model than the IDM. Nevertheless, we
must remark that the latter model assumes previous knowledge about the
data via a parameter, unlike the former.

This chapter is organized in the following way: Credal sets representable
through reachable sets of probability intervals and belief functions are charac-
terized in Section 7.2. In Section 7.3, we analyze the properties of credal sets
associated with the A-NPI-M. Concluding remarks are given in Section 7.4.

7.2 Reachable probabil ity intervals and belief func-
tions

Let X = {x1, . . . , xt} be a finite set of possible alternatives1.
In Example 2.2.2, we have illustrated a case in which the Möbius inverse

of the natural extension of a reachable set of probability intervals on X is not
non-negative. Also, Example 2.2.1 has shown a case in which the credal set
associated with a belief function on X does not coincide with the credal set
compatible with the corresponding set of belief intervals for singletons. There-
fore, a reachable set of probability intervals on X cannot always be represented
by means of a belief function on X, and a belief function on X is not always
representable via a reachable set of probability intervals on X.

7.2.1 Reachable probability intervals representable by belief functions

Let I = {[li,ui] , i = 1, 2, . . . , t} be a reachable set of probability intervals
on X.

According to the results proved in [135], I can be represented via a belief
function if, and only if,

t∑
i=1

li +

t∑
i=1

ui ⩾ 2. (7.1)

Indeed, this condition is necessary, but it is not sufficient, as the following
example shows:

1 or, alternatively, a discrete variable whose set of possible values is {x1, . . . , xt}.
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Example 7.2.1 Let X = {x1, x2, x3, x4} be a finite set. Let us consider the following
reachable set of probability intervals on X:

I = {[0, 0.5] ; [0, 0.5] ; [0, 0.6] ; [0, 0.7]} .

Let P denote the natural extension of I and m its corresponding Möbius inverse. We
have that:

4∑
i=1

li +

4∑
i=1

ui = 2.3 > 2.

Within this example, we use Proposition 2.2.7 to calculate P.

m ({xi}) = P ({xi}) = max

li, 1−
4∑

j=1,j̸=i

uj

 = li = 0, ∀i = 1, 2, 3, 4.

P
({

xi, xj
})

= max
(
li + lj, 1− uk − ul

)
= 0, ∀1 ⩽ i < j ⩽ 4,

where 1 ⩽ k < l ⩽ 4, with {i, j}∩ {k, l} = ∅.

m
({

xi, xj
})

= P
({

xi, xj
})

− P ({xi}) − P
({

xj
})

= 0, ∀1 ⩽ i < j ⩽ 4.

P ({x1, x2, x3}) = max (l1 + l2 + l3, 1− u4) = 0.3,

P ({x1, x2, x4}) = max (l1 + l2 + l4, 1− u3) = 0.4,

P ({x1, x3, x4}) = max (l1 + l3 + l4, 1− u2) = 0.5,

P ({x2, x3, x4}) = max (l2 + l3 + l4, 1− u1) = 0.5.

Since m(A) = 0 ∀A ⊆ X such that |A| ⩽ 2, it holds that

m ({x1, x2, x3}) = P ({x1, x2, x3}) = 0.3,

m ({x1, x2, x4}) = P ({x1, x2, x4}) = 0.4,

m ({x1, x3, x4}) = P ({x1, x3, x4}) = 0.5,

m ({x2, x3, x4}) = P ({x2, x3, x4}) = 0.5.

m(X) = 1−
∑
A⊂X

m(A)

= 1−m ({x1, x2, x3}) −m ({x1, x2, x4})

−m ({x1, x3, x4}) −m ({x2, x3, x4})

= 1− 0.3− 0.4− 0.5− 0.5 = −0.7 < 0.

Consequently, even though
∑4

i=1 li +
∑4

i=1 ui ⩾ 2, the Möbius inverse m is not
non-negative and, thus, I cannot be represented via a belief function.
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In [135], it was shown that, if the inequality given in Equation (7.1) is satis-
fied, then it is possible to find a BPA associated with I. However, such a BPA
does not always coincide with the Möbius inverse corresponding to the nat-
ural extension of I and, consequently, it does not always represent the same
information.

Let P denote the natural extension of I and m its associated Möbius inverse.
In this section, we aim to analyze in which cases P is a belief function. For
this purpose, we need to study the properties that have to be satisfied by the
extreme values of the intervals for m to be non-negative.

The Möbius inverse for singletons is clearly greater or equal than 0:

m ({xi}) = P ({xi}) = li ⩾ 0, ∀i = 1, 2, . . . , t.

We use the following lemma for posterior results:

Lemma 7.2.1
n∑

i=0

(−1)i
(
n

i

)
= (1− 1)n = 0, ∀n ∈N, n ⩾ 1.

We present a property that, if it is satisfied by a set with cardinality greater
or equal than 2, then the Möbius inverse for that set is equal to 0. The follow-
ing proposition is useful for it:

Proposition 7.2.1 ∀A ⊆ X such that |A| ⩾ 2, it holds that:∑
B⊆A

(−1)|A\B|
∑
xi∈B

li = 0.

Proof:
In order to determine the number of subsets of A with a certain cardinality

that contain xi, we think in the following way: for a subset B ⊆ A containing
xi, there can be j elements of A that do not belong to B, with 0 ⩽ j ⩽ |A|− 1.
The j elements can be chosen in

(
|A|−1

j

)
different ways. Hence,

∑
B⊆A

(−1)|A\B|
∑
xi∈B

li =
∑
xi∈A

li ×

|A|−1∑
j=0

(−1)j
(
|A|− 1

j

)
=

∑
xi∈A

li × 0 = 0,

where we have used Lemma 7.2.1 in the penultimate equality taking into ac-
count that |A|− 1 ⩾ 1.

□
Now, we have the following result:
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Proposition 7.2.2 If A ⊆ X, with |A| ⩾ 2, satisfies that∑
xi∈A

li ⩾ 1−
∑
xi/∈A

ui,

then P (B) =
∑

xi∈B li ∀B ⊆ A and m (A) = 0.

Proof:
Under our hypothesis, if B ⊆ A:∑

xi∈B

li =
∑
xi∈A

li −
∑

xi∈A\B

li ⩾ 1−
∑
xi/∈A

ui −
∑

xi∈A\B

li

⩾ 1−
∑
xi/∈A

ui −
∑

xi∈A\B

ui

= 1−
∑
xi/∈B

ui.

In consequence,
P (B) =

∑
xi∈B

li, ∀B ⊆ A.

Proposition 7.2.1 allows concluding that:

m (A) =
∑
B⊆A

(−1)|A\B| P (B)

=
∑
B⊆A

(−1)|A\B|
∑
xi∈B

li = 0.

□
The inverse is not satisfied. A set with cardinality greater or equal than

2 that has a Möbius inverse equal to 0 might not verify the property of the
previous proposition, as shown in the following example.

Example 7.2.2 Suppose that we have a finite set X = {x1, x2, x3} and the following
set of probability intervals on X:

{[l1,u1] ; [l2,u2] ; [l3,u3]} = {[0, 1] ; [0, 0.1] ; [0, 0.9]}

.
It is easy to check that this set of probability intervals is reachable. Let P be the

natural extension of I and m its corresponding Möbius inverse. As in the previous
examples, we calculate P via Proposition 2.2.7.

For singletons, we have that:
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m ({xi}) = P ({xi}) = li = 0, ∀i = 1, 2, 3.

For sets with cardinality equal to 2:

P ({x1, x2}) = max(l1 + l2, 1− u3) = max(0, 0.1) = 0.1,

m ({x1, x2}) = P ({x1, x2}) − P ({x1}) − P ({x2}) = 0.1,

P ({x1, x3}) = max(l1 + l3, 1− u2) = max(0, 0.9) = 0.9,

m ({x1, x3}) = P ({x1, x3}) − P ({x1}) − P ({x3}) = 0.9,

P ({x2, x3}) = max(l2 + l3, 1− u1) = max(0, 0) = 0,

m ({x2, x3}) = P ({x2, x3}) − P ({x2}) − P ({x3}) = 0.

Now,

m ({x1, x2, x3}) = 1−m ({x1}) −m ({x2}) −m ({x3})−

m ({x1, x2}) −m ({x1, x3}) −m ({x2, x3})

= 1− 0− 0− 0− 0.1− 0.9− 0 = 0,

and l1 + l2 + l3 = 0 < 1.
So, even though m(X) = 0, it does not hold that

∑
xi∈X li ⩾ 1−

∑
xi/∈X ui.

As a consequence of Proposition 7.2.2, we have the three following results:

Corollary 7.2.1 If A is a subset of smallest cardinality that satisfies∑
xi∈A

li < 1−
∑
xi/∈A

ui,

then m (A) = 1−
∑

xi∈A li −
∑

xi/∈A ui > 0.

Proof:
Since I is proper, it holds that 0 ⩾ 1−

∑
xi∈X ui and, consequently, A cannot

be equal to the empty set. If |A| = 1, due to the reachability condition, then, it
is not possible that

∑
xi∈A li < 1−

∑
xi/∈A ui. Thus, |A| ⩾ 2.

By hyphotesis,
P (A) = 1−

∑
xi/∈A

ui,

and ∑
xi∈B

li ⩾ 1−
∑
xi/∈B

ui, ∀B ⊂ A.
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From Proposition 7.2.2, it follows that

P (B) =
∑
xi∈B

li, ∀B ⊂ A : |B| ⩾ 2.

Furthermore, due to the reachability condition, P ({xi}) = li, ∀xi ∈ B. Thereby,

P (B) =
∑
xi∈B

li ∀B ⊂ A.

Hence,

m (A) =
∑
B⊆A

(−1)|A\B| P (B) = P (A) +
∑

B|B⊂A

(−1)|A\B| P (B)

= 1−
∑
xi/∈A

ui +
∑

B|B⊂A

(−1)|A\B|
∑
xi∈B

li.

Now, due to Proposition 7.2.1, it is satisfied that:

m (A) = m (A) − 0 = m (A) −
∑
B⊆A

(−1)|A\B|
∑
xi∈B

li

= 1−
∑
xi/∈A

ui +
∑

B|B⊂A

(−1)|A\B|
∑
xi∈B

li −
∑
B⊆A

(−1)|A\B|
∑
xi∈B

li

= 1−
∑
xi/∈A

ui −
∑
xi∈A

li > 0.

□

Corollary 7.2.2 If for each A ⊆ X such that |A| = t ′, with 1 ⩽ t ′ < t, it is satisfied
that ∑

xi∈A

li ⩾ 1−
∑
xi/∈A

ui,

then m(B) ⩾ 0 ∀B ⊆ X such that |B| = t ′ + 1.

Proof: Under our hypothesis, for each B ⊆ X such that |B| = t ′ + 1, it holds
that |B| ⩾ 2, and there are two possibilities:

1.
∑

xi∈B li ⩾ 1−
∑

xi/∈B ui.

In this case, Proposition 7.2.2 allows us to deduce that m(B) = 0.

2.
∑

xi∈B li < 1−
∑

xi/∈B ui.

Then, B is a subset with smallest cardinality that satisfies this condition.
From Corollary 7.2.1, it follows that m(B) > 0.
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□

Corollary 7.2.3 For each subset A ⊆ X such that |A| = 2, it holds that m (A) ⩾ 0.

Proof: It immediately follows from Corollary 7.2.2 and the reachability condi-
tion. Moreover, this result is a direct consequence of the fact that reachable
probability intervals are particular cases of Choquet capacities of order 2. □

Due to the proper condition, it is satisfied that
∑t

i=1 li ⩽ 1. It is easy
to observe that, if

∑t
i=1 li = 1, then li = ui ∀i = 1, 2, . . . , t because I is

reachable. In this case, there is a single probability distribution compatible
with I, and it is obvious that I can be represented via a belief function, which
coincides with the unique probability distribution consistent with I. For this
reason, hereon, we assume that

∑t
i=1 li < 1.

In order to determine the conditions under which m is non-negative, we
consider the following set of probability intervals on X:

I ′ =

{
[l ′i,u

′
i], l

′
i = 0, u ′

i =
ui − li
1− L

, i = 1, 2, . . . , t
}

, (7.2)

where L =
∑t

i=1 li < 1.

This set of probability intervals is reachable, as the following result shows:

Proposition 7.2.3 I ′ is a reachable set of probability intervals.

Proof: As I is a reachable set of probability intervals, due to Proposition
2.2.6, it holds that:

1.

ui +

t∑
j=1,j̸=i

lj ⩽ 1⇒ ui ⩽ 1− L+ li ⇒
ui − li
1− L

⩽ 1⇒
t∑

j=1,j̸=i

0+ u ′
i ⩽ 1

⇒
t∑

j=1,j̸=i

l ′j + u ′
i ⩽ 1, ∀i = 1, 2, . . . , t.
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2.

li +

t∑
j=1,j̸=i

uj ⩾ 1⇒
t∑

j=1

lj −

t∑
j=1,j̸=i

lj +

t∑
j=1,j̸=i

uj ⩾ 1

⇒
t∑

j=1,j̸=i

uj −

t∑
j=1,j̸=i

lj ⩾ 1− L

⇒
t∑

j=1,j̸=i

uj − lj

1− L
⩾ 1⇒

t∑
j=1,j̸=i

u ′
j ⩾ 1

⇒
t∑

j=1,j̸=i

u ′
j + l ′i =

t∑
j=1,j̸=i

u ′
j + 0 ⩾ 1, ∀i = 1, 2, . . . , t,

and Proposition 2.2.6 let us conclude that I ′ is reachable.
□

Let P1 denote the natural extension of I ′ and m1 its associated Möbius
inverse:

P1(A) = max

 ∑
xi∈A

l ′i, 1−
∑
xi/∈A

u ′
i

 = max

0, 1−
∑
xi/∈A

u ′
i

 ,

m1(A) =
∑
B⊆A

(−1)|A\B| P1(B), ∀A ⊆ X.

According to the following result, I can be represented by a belief function
if, and only if, P1 is a belief function.

Theorem 7.2.1 m is non-negative if, and only if, m1 is non-negative.

Proof: Since m is the Möbius inverse associated with P (the natural extension
of I), and m1 is the Möbius inverse corresponding to P1:

m(A) =
∑
B⊆A

(−1)|A\B|P1(B)

=
∑
B⊆A

(−1)|A\B| max

∑
xi∈B

li, 1−
∑
xi/∈B

ui

 , ∀A ⊆ X.
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m1(A) =
∑
B⊆A

(−1)|A\B|P(B) =
∑
B⊆A

(−1)|A\B| max

0, 1−
∑
xi/∈B

u ′
i


=

∑
B⊆A

(−1)|A\B| max

0, 1−
∑
xi/∈B

ui − li
1− L


=

1

1− L
×

∑
B⊆A

(−1)|A\B| max

0, 1− L+
∑
xi/∈B

li −
∑
xi/∈B

ui


=

1

1− L
×

∑
B⊆A

(−1)|A\B| max

0, 1−
∑
xi∈B

li −
∑
xi/∈B

ui

 , ∀A ⊆ X.

Now, due to Proposition 7.2.1, it holds that, for each A ⊆ X with |A| ⩾ 2:

m(A) = m(A) − 0

=
∑
B⊆A

(−1)|A\B| max

∑
xi∈B

li, 1−
∑
xi/∈B

ui

−
∑
B⊆A

(−1)|A\B|
∑
xi∈B

li

=
∑
B⊆A

(−1)|A\B| max

0, 1−
∑
xi∈B

li −
∑
xi/∈B

ui

 ,

and it is immediate that m(A) = (1− L)m1(A), ∀A ⊆ X with |A| ⩾ 2.
Furthermore, we must remark that, for singletons, m is non-negative and

m1 is equal to 0. Also, it is obvious that m (∅) = m1 (∅) = 0.
Therefore, it can be concluded that the Möbius inverse corresponding to the

natural extension of I is non-negative if, and only if, the one associated with
the natural extension of I ′ is non-negative. □

Hence, we will focus on studying when m ′ is non-negative.
We partition the set X as follows: X = X1 ∪X2, where:

X1 =
{
xi ∈ X | u ′

i = 1, 1 ⩽ i ⩽ t
}

, X2 =
{
xi ∈ X | u ′

i < 1, 1 ⩽ i ⩽ t
}

.

Clearly,

X1 =

xi ∈ X | ui +

t∑
j=1,j̸=i

lj = 1, 1 ⩽ i ⩽ t

 ,

X2 =

xi ∈ X | ui +

t∑
j=1,j̸=i

lj < 1, 1 ⩽ i ⩽ t

 .

As the following results show, the value of m1 for the subsets of X that do
not contain X1 is equal to 0.
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Proposition 7.2.4 If A ⊆ X satisfies that X1 ̸⊆ A, then P1(A) = 0.

Proof: Under our hypothesis:

P1(A) = max

 ∑
xi∈A

0, 1−
∑
xi/∈A

u ′
i


= max

0, 1−
∑

xi∈X1\A

u ′
i −

∑
xi/∈A∪X1

u ′
i

 = 0,

since X1 \A ̸= ∅ and u ′
i = 1 ∀xi ∈ X1.

□

Corollary 7.2.4 If A ⊆ X verifies that X1 ̸⊆ A, then P1(B) = 0 ∀B ⊆ A.

Proof: It is sufficient to observe that, if X1 ̸⊆ A and B ⊆ A, then X1 ̸⊆ B and
apply Proposition 7.2.4. □

Corollary 7.2.5 If A ⊆ X satisfies that X1 ̸⊆ A, then m1(A) = 0.

Now, we distinguish two cases:

• Case 1:
∑

xi∈X2
u ′
i ⩽ 1.

• Case 2:
∑

xi∈X2
u ′
i > 1.

We show that, in Case 1, the given reachable set of probability intervals can
be represented by a belief function.

Proposition 7.2.5 If
∑

xi∈X2
u ′
i ⩽ 1, then m1 is non-negative.

Proof: According to Corollary 7.2.5, m1(A) = 0 ∀A such that X1 ̸⊆ A.
Thereby, m1(A) ̸= 0 can only happen if X1 ⊆ A. In consequence, we only
need to check the sets A of the form A = X1 ∪ B, with B ⊆ X2, because these
are the only sets satisfying X1 ⊆ A.

m1(X1) = P1(X1) −
∑

A⊂X1

m1(A) = P1(X1) =

1−
∑

xi/∈X1

u ′
i = 1−

∑
xi∈X2

u ′
i ⩾ 0.
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1−
∑

xi∈X2

u ′
i ⩾ 0⇒ 1−

∑
xi/∈X1

u ′
i ⩾ 0⇒ 1−

∑
xi/∈X1∪{xj}

u ′
i ⩾ 0

⇒ P1(X1 ∪
{
xj
}
) = 1−

∑
xi/∈X1∪{xj}

u ′
i, ∀xj ∈ X2.

m1(X1 ∪
{
xj
}
) = P1(X1 ∪

{
xj
}
) −m1(X1)

= 1−
∑

xi/∈X1∪{xj}

u ′
i − (1−

∑
xi∈X2

u ′
i) =

∑
xi∈X2

u ′
i −

∑
xi∈X2\{xj}

u ′
i

= u ′
j ⩾ 0, ∀xj ∈ X2.

We prove that m1(X1 ∪A) = 0 ∀A ⊆ X2 such that |A| ⩾ 2 by induction on
|A|.

For |A| = 2, i.e A =
{
xj, xk

}
, with xj, xk ∈ X2, we have that:

m1(X1 ∪A) = m1(X1 ∪
{
xj, xk

}
) =

P1(X1 ∪
{
xj, xk

}
) −m1(X1 ∪

{
xj
}
) −m1(X1 ∪ {xk}) −m1(X1)

= 1−
∑

xi/∈X1∪{xj,xk}

u ′
i − u ′

j − u ′
k − (1−

∑
xi/∈X1

u ′
i)

=
∑

xi/∈X1

u ′
i −

∑
xi/∈X1∪{xj,xk}

u ′
i − u ′

j − u ′
k

= u ′
j + u ′

k − u ′
j − u ′

k = 0.

Suppose that it holds that m1(X1 ∪A) = 0 ∀A ⊆ X2 such that 2 ⩽ |A| ⩽ t ′,
for some t ′ < |X2|. Let us assume that B ⊆ X2 with |B| = t ′ + 1. Then:

m1(X1 ∪B) = P1(X1 ∪B) −
∑
C⊂B

m1(X1 ∪C).

By hypothesis of induction:

m1(X1 ∪B) = P1(X1 ∪B) −
∑
C⊂B

m1(X1 ∪C)

= P1(X1 ∪B) −
∑
xi∈B

m1(X1 ∪ {xi}) −m1(X1)

= 1−
∑

xi/∈X1∪B

u ′
i −

∑
xi∈B

u ′
i −

1−
∑

xi/∈X1

u ′
i


=

∑
xi/∈X1

u ′
i −

∑
xi/∈X1∪B

u ′
i −

∑
xi∈B

u ′
i

=
∑
xi∈B

u ′
i −

∑
xi∈B

u ′
i = 0.
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□
The following result is an immediate consequence of the previous proposi-

tion.

Corollary 7.2.6 If
∑

xi∈X1
li ⩽ 1−

∑
xi∈X2

ui, then I can be represented by a belief
function.

Proof: It is enough to observe that

∑
xi∈X2

u ′
i ⩽ 1⇔

∑
xi∈X2

ui − li
1− L

⩽ 1⇔
∑

xi∈X2

ui − li ⩽ 1− L

⇔
∑

xi∈X2

ui ⩽ 1−
∑

xi/∈X2

li = 1−
∑

xi∈X1

li

⇔
∑

xi∈X1

li ⩽ 1−
∑

xi∈X2

ui.

and apply the previous proposition and Theorem 7.2.1. □
We study Case 2:

∑
xi∈X2

u ′
i > 1.

Let I2 be the set of probability intervals on the subset of X2 composed of
those elements for which the upper probability is not equal to 0:

I2 =
{[
0,u ′

i

]
| xi ∈ X2 ∧ u ′

i > 0
}

. (7.3)

Let P2 denote the natural extension of I2, P2 its associated coherent upper
probability function, and m2 the corresponding Möbius inverse:

P2(A) = max

0, 1−
∑

xi∈X2\A

u ′
i

 , P2(A) = 1− P2(A),

m2(A) =
∑
B⊆A

(−1)|A\B| P2(B), ∀A ⊆ X2.

We consider X0 =
{
xi ∈ X2 | u ′

i = 0
}
= {xi ∈ X2 | li = ui}.

As shown in the following result, P1 is a belief function if, and only if, P2 is
a belief function.

Theorem 7.2.2 m1 is non-negative if, and only if, m2 is non-negative.

Proof:
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For each A ⊆ X2 \X0, B ⊆ X0, it holds that:

P1 (X1 ∪B∪A) = max

0, 1−
∑

xi/∈X1∪B∪A

u ′
i

 = max

0, 1−
∑

xi/∈X1∪A

u ′
i


= P1 (X1 ∪A) ,

since u ′
i = 0 ∀xi ∈ B.

In addition,

P1 (X1 ∪A) = max

0, 1−
∑

xi/∈X1∪A

u ′
i

 = max

0, 1−
∑

xi∈X2\A

u ′
i


= P2(A), ∀A ⊆ X2 \X0.

Consequently, as P1(C) = 0 ∀C such that X1 ̸⊆ C (Corollary 7.2.4), it holds
that:

m2(A) =
∑

A ′⊆A

(−1)|A\A ′| P2(A
′)

=
∑

A ′⊆A

(−1)|A\A ′| P1(X1 ∪A ′) = m1 (X1 ∪A) , ∀A ⊆ X2 \X0.

Let us consider now B ⊆ X0 with B ̸= ∅. For a given A ⊆ X2 \ X0, since
A ∩ B = ∅, it is satisfied that |A∪B \A ′ ∪B ′| = |A \A ′|+ |B \B ′| ∀A ′ ⊆ A,
B ′ ⊆ B. Taking into account this issue and that P1(C) = 0 ∀C such that X1 ̸⊆ C,
we have that:

m1 (X1 ∪A∪B) =
∑

A ′⊆A

∑
B ′⊆B

(−1)|(A∪B)\(A ′∪B ′)| P1(X1 ∪A ′ ∪B ′)

=
∑

A ′⊆A

(−1)|A\A ′|
∑
B ′⊆B

(−1)|B\B ′| P1(X1 ∪A ′ ∪B ′)

=
∑

A ′⊆A

(−1)|A\A ′|
∑
B ′⊆B

(−1)|B\B ′| P1(X1 ∪A ′)

=
∑

A ′⊆A

(−1)|A\A ′| P1(X1 ∪A ′)

|B|∑
j=0

(−1)j
(
|B|− j

j

)
= 0, ∀A ⊆ X2 \X0,

where we have utilized Lemma 7.2.1 in the last equality taking into account
that |B| ⩾ 1.
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To summarize, m1 (X1 ∪A) = m2(A) ∀A ⊆ X2 \ X0 and, if B ⊆ X0 with
|B| ̸= ∅, then m ′ (X1 ∪A∪B) = 0 ∀A ⊆ X2 \ X0. Our thesis follows from the
previous points. □

We now give a condition that has to be satisfied by m2 in Case 2 if it is
non-negative.

Proposition 7.2.6 If m2 is non-negative, then, ∀A1,A2 ⊆ X2 \X0 such that
m2(A1) > 0 and m2(A2) > 0, it must be satisfied that |A1 \A2| ⩽ 1.

Proof: Let B ⊆ X2 \X0 be a set with smallest cardinality such that m2(B) > 0

(B might not be unique). Then,

m2(B) = P2(B) −
∑
A⊂B

m2(A) = P2(B) = 1−
∑
xi/∈B

u ′
i

= 1−
∑
xi/∈B

∑
A|xi∈A

m2(A)⇒

m2(B) +
∑
xi/∈B

∑
A|xi∈A

m2(A) = 1.

Moreover, since m2(A) = 0 ∀A ⊂ B:

1 =
∑

A⊆X2\X0

m2(A) = m2(B) +
∑

A|A\B ̸=∅

m2(A).

Thus,

1 = m2(B) +
∑
xi/∈B

∑
A|xi∈A

m2(A) = m2(B) +
∑

A|A\B ̸=∅

m2(A)

⇒
∑

A|A\B ̸=∅

m2(A) =
∑
xi/∈B

∑
A|xi∈A

m2(A).

In consequence, since m2(A) ⩾ 0 ∀A ⊆ X2 \ X0, it is not possible that ∃A ⊆
X2 \X0, xi /∈ B, xj /∈ B with xi ̸= xj such that m2(A) > 0, xi ∈ A and xj ∈ A.

Therefore, if A is a focal element of m2, i.e, if m2(A) > 0, then there cannot
exist xi, xj ∈ A such that xi, xj /∈ B ⇒ |A \B| ⩽ 1 ∀A ⊆ X2 \ X0 such that
m2(A) > 0. As B is a focal element with minimum cardinality, it is immediate
to conclude that |A1 \A2| ⩽ 1 ∀A1,A2 ⊆ X2 \ X0 such that m2(A1) > 0 and
m2(A2) > 0. □

Hence, if the Möbius inverse associated with the natural extension of I2 is
greater or equal than 0, then the difference between two focal elements cannot
have a cardinality greater than 1. In the following result, we give a necessary
condition that the probability intervals of I2 have to satisfy for the Möbius
inverse to be non-negative: the sum of each pair of upper extremes of the
intervals must be greater than 1.
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Proposition 7.2.7 If m2 is non-negative, then

u ′
i + u ′

j > 1, ∀xi, xj ∈ X2 \X0.

Proof: Let us assume that m2 is non-negative. Let H ⊆ X2 \ X0 be a set of
maximum cardinality such that

∑
xo∈H u ′

o ⩽ 1. Suppose that our thesis does
not hold, which is equivalent to |H| ⩾ 2.

Since
∑

xj∈X2\X0
u ′
j > 1, ∃xk /∈ H, xk ∈ X2 \ X0. Now, due to Proposition

2.2.7,

P2(H∪ {xk}) = min

 ∑
xo∈H∪{xk}

u ′
o, 1

 = 1,

because H is a set of maximum cardinality that satisfies
∑

xo∈H u ′
o ⩽ 1.

Clearly, P2({xk}) = u ′
k, P2(H) = min

{∑
xo∈H u ′

o, 1
}
=

∑
xo∈H u ′

o.
In addition, u ′

k +
∑

xo∈H u ′
o > 1. Thus,

P2(H∪ {xk}) < P2(H) + P2({xk})⇒∑
A|A∩(H∪{xk}) ̸=∅

m2(A) <
∑

A|A∩H̸=∅

m2(A) +
∑

A|xk∈A

m2(A),

which implies that ∃ Cik ⊆ X2 \ X0 such that m2(Cik) > 0, xk ∈ Cik, and
xi ∈ Cik, for some xi ∈ H.

Since |H| ⩾ 2, ∃xj ∈ H such that xj ̸= xi. There exists a subset Cj ⊆ X2 \X0

satisfying xj ∈ Cj and m2(Cj) > 0 because u ′
j > 0.

Furthermore, m2(H) = P2(H) = 1 −
∑

xo∈H u ′
o because H is a subset of

maximum cardinality such that
∑

xo∈H u ′
o ⩽ 1. Two cases are distinguished:

1. If
∑

xo∈H u ′
o = 1, then:∑

xo∈H

∑
A|xo∈A

m2(A) =
∑

A⊆X2\X0

m2(A).

Consequently, it is not possible that ∃C ⊆ X2 \ X0 such that m2(C) > 0

and xo, xu ∈ C for some xo, xu ∈ H.

2. If
∑

xo∈H u ′
o < 1, then:

m2(H) = 1−
∑
xo∈H

u ′
o > 0,

which implies that there can not exist a focal element C with xo, xu ∈
C∩H as, in that case, xo, xu ∈ C \H, which contradicts Proposition 7.2.6.
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Therefore, a focal element can never contain two elements belonging to H.
In consequence, xi /∈ Cj. It implies that xk ∈ Cj since, otherwise, {xi, xk} ⊆
Cik \Cj.

Given a focal set C, we distinguish two cases:

1. If xi /∈ C, then xk ∈ C, because, else, {xi, xk} ⊆ Cik \C.

2. If xi ∈ C, then xj /∈ C. As xj ∈ Cj and xk ∈ Cj, it holds that xk ∈ C since,
otherwise,

{
xk, xj

}
⊆ Cj \C.

Hence, we have that xk ∈ C ∀C ⊆ X2 \ X0 such that m2(C) > 0, which
implies that u ′

k = 1. But u ′
o < 1 ∀xo ∈ X2 \ X0, and we get a contradiction.

Thereby, if m2 is non-negative, then |H| ⩽ 1⇒ u ′
i +u ′

j > 1, ∀xi, xj ∈ X2 \X0.
□

If the condition of Proposition 7.2.7 is satisfied, then all the subsets of X2 \X0

whose cardinality is lower or equal than |X2 \X0|− 2 have a Möbius inverse
equal to 0. The Möbius inverse for sets of cardinality equal to |X2 \X0| − 1

is non-negative (Corollary 7.2.2). Thus, the natural extension of I2 is a belief
function if, and only if, the Möbius inverse for X2 \X0 is greater or equal than
0. In the following proposition, we show the condition that the intervals of I2
must verify, assuming that they satisfy the property of Proposition 7.2.7, for
the corresponding Möbius inverse to be non-negative.

Proposition 7.2.8 If it is satisfied that

u ′
i + u ′

j > 1 ∀xi, xj ∈ X2 \X0,

then m2 in non-negative if, and only if,∑
xi∈X2\X0

u ′
i ⩾ |X2 \X0|− 1.

Proof:
Under our hypothesis,

m2 (A) = 0 ∀A ⊆ X2 \X0, |A| ⩽ |X2 \X0|− 2.

For sets of cardinality equal to |X2 \X0|− 1:

m2 (X2 \ {X0 ∪ {xi}}) = 1− u ′
i > 0, ∀xi ∈ X2 \X0.

Hence, m2(A) ⩾ 0 ∀A ⊂ X2 \X0. Now,

m2 (X2 \X0) = 1−
∑

A⊂X2⊂X0

m2(A) = 1−
∑

xi∈X2\X0

m2 (X2 \ {X0 ∪ {xi}})

= 1−
∑

xi∈X2\X0

(1− u ′
i) = 1− |X2 \X0|+

∑
xi∈X2\X0

u ′
i.
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Therefore, m2 is non-negative if, and only if,

m2 (X2 \X0) ⩾ 0⇔ 1− |X2 \X0|+
∑

xi∈X2\X0

u ′
i ⩾ 0

⇔
∑

xi∈X2\X0

u ′
i ⩾ |X2 \X0|− 1.

□
The following result summarizes the necessary and sufficient conditions

that a given reachable set of probability intervals has to satisfy to be repre-
sentable by a belief function.

Theorem 7.2.3 Let X = {x1, x2, . . . , xt} be a finite set and
I = {[li,ui] , i = 1, 2, . . . , t} a reachable set of probability intervals on X. Let us
consider:

L =

t∑
i=1

li, X0 = {xi ∈ X | li = ui, 1 ⩽ i ⩽ t} ,

X1 =

xi ∈ X | ui +

t∑
j=1,j̸=i

lj = 1, 1 ⩽ i ⩽ t

 ,

X2 =

xi ∈ X | ui +

t∑
j=1,j̸=i

lj < 1, 1 ⩽ i ⩽ t

 .

Then, I can be represented by a belief function if, and only if, one of the two following
conditions is satisfied:

1.
∑

xi∈X1
li ⩽ 1−

∑
xi∈X2

ui.

2.
∑

xi∈X1
li > 1−

∑
xi∈X2

ui, and the following two statements hold:

a) ui + uj > 1−
∑t

k=1,k̸=i,k̸=j lk, ∀xi, xj ∈ X2 \X0,

b)
∑

xi∈X2\X0
ui ⩾ (1− L) (|X2 \X0|− 1) +

∑
xi∈X2\X0

li.

Indeed, this theorem does not explicitly assume that L < 1, as the previous
results. Nevertheless, it is easy to observe that, when L = 1, X1 = X0 = X, and
X2 = ∅. Hence, if L = 1, then

∑
xi∈X1

li = 1−
∑

xi∈X2
ui and, consequently,

I can be represented by a belief function. Moreover, it holds that X0 ⊆ X2

whenever L < 1.
In this way, given a reachable set of probability intervals on a finite set, we

can divide the set into two subsets. The first one is composed of those ele-
ments whose upper probability is equal to one minus the sum of the lower
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probabilities of the remaining elements. The second subset is the complemen-
tary set of the first one. We also consider a subset composed of those elements
whose lower and upper probabilities coincide. Then, Theorem 7.2.3 gives the
necessary and sufficient conditions that the sums of the lower and upper prob-
ability values on these subsets have to satisfy for the Möbius inverse associated
with the natural extension of the set of intervals to be non-negative.

7.2.1.1 An example: The Imprecise Dirichlet Model

Let X be a discrete variable whose set of possible values is {x1, x2, . . . , xt}.
Suppose that we have a sample of N independent and identically distributed
observations about X. For each i = 1, 2, . . . , t, let n(xi) denote the number of
observations of the xi value in the sample. As shown in Section 2.3.1, we have
the following set of IDM probability intervals on X:

IIDM =
{[
lIDM
i ,uIDM

i

]
, i = 1, 2, . . . , t

}
,

where lIDM
i =

n(xi)
N+s and uIDM

i =
n(xi)+s
N+s , ∀i = 1, 2, . . . , t, s being the IDM

parameter.
As pointed out in Section 2.3.1, IIDM is reachable and can be represented

by a belief function.
Indeed, using Theorem 3, we have that X1 = X and X0 = X2 = ∅ since:

uIDM
i +

t∑
j=1,j̸=i

lIDM
j =

n(xi) + s

N+ s
+

t∑
j=1,j̸=i

n(xj)

N+ s

=
N+ s

N+ s
= 1, ∀i = 1, 2, . . . , t.

Consequently,

∑
xi∈X1

lIDM
i =

t∑
i=1

lIDM
i =

t∑
i=1

n(xi)

N+ s
=

N

N+ s
< 1 = 1−

∑
xi∈X2

ui.

7.2.2 Belief functions representable via reachable probability intervals

Let Bel be a belief function on X and Pl its associated plausibility func-
tion. Let m denote the BPA corresponding to Bel, computed through Equation
(2.27). Let us consider the set of belief intervals for singletons:

IBel = {[Bel ({xi}) ,Pl ({xi})] , i = 1, 2, . . . , t} . (7.4)
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Wang and Song [212] demonstrated that IBel is always reachable. The credal
set composed of all probability distributions consistent with IBel is given by:

P(IBel) = {p ∈ P(X) | Bel ({xi}) ⩽ p ({xi}) ⩽ Pl ({xi}) , ∀i = 1, 2, . . . , t} , (7.5)

P(X) being the set of all probability distributions on X.
Let PBel denote the credal set associated with Bel:

PBel = {p ∈ P(X) | Bel(A) ⩽ p(A) ∀A ⊆ X} . (7.6)

In this way, the belief function Bel can be represented by a reachable set of
probability intervals if, and only if, P(IBel) = PBel. It is easy to observe that
it always holds that PBel ⊆ P(IBel). However, it is not always satisfied that
P(IBel) ⊆ PBel, as can be observed in Example 2.2.1.

The following result shows that the belief function Bel is representable by
a reachable set of probability intervals if, and only if, it coincides with the
natural extension of IBel.

Theorem 7.2.4 P(IBel) = PBel ⇔
Bel(A) = max

{∑
xi∈A Bel ({xi}) , 1−

∑
xi/∈A Pl ({xi})

}
, ∀A ⊆ X.

Proof: It immediately follows from Proposition 2.2.7. □
We must remark that the condition given in Theorem 7.2.4 might be com-

putationally hard to check as it requires checking the equality for each A ⊆ X,
and the number of subsets exponentially grows as the number of alternatives
increases.

For this reason, in this section, we aim to provide a necessary and sufficient
condition for Bel to be representable via belief intervals for singletons in terms
of the relations between the focal elements of m.

We consider the following BPA on X, m ′:

m ′ ({xi}) = 0, ∀i = 1, 2, . . . , t,

m ′(A) =
m(A)

1−M
, ∀A ⊆ X, |A| ⩾ 2,

(7.7)

where M =
∑t

i=1m ({xi})
2.

The following proposition shows that m ′ is well-defined as a BPA on X.

Proposition 7.2.9 The set-function m ′, defined in Equation (7.7), is well-defined as
a BPA on X.

2 Here, we do not consider the case M = 1 because, in that situation, m is a probability distribu-
tion.
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Proof: As m is a BPA on X, it holds that:

(m(A) ⩾ 0)∧ (1−M ⩾ 0)⇒ m ′(A) ⩾ 0 ∀A ⊆ X, |A| ⩾ 2,

m(A) +M ⩽
∑
B⊆X

m(B) = 1⇒ m(A) ⩽ 1−M⇒

m ′(A) ⩽ 1 ∀A ⊆ X, |A| ⩾ 2,

∑
A⊆X

m ′(A) =
∑

A⊆X, |A|⩾2

m(A)

1−M
=

1−
∑t

i=1m ({xi})

1−M
= 1.

□

All focal elements of m ′ have a cardinality greater or equal than 2. Among
the non-singleton subsets, the focal elements of m ′ coincide with the ones of
m. It is expressed in the following result, whose proof is immediate.

Proposition 7.2.10 ∀A ⊆ X such that |A| ⩾ 2, m(A) > 0⇔ m ′(A) > 0.

Let Belm ′ and Plm ′ denote, respectively, the belief and plausibility func-
tions associated with m ′. Let P (Belm ′) denote the credal set corresponding
to Belm ′ and P

(
IBelm ′

)
the credal set consistent with the belief intervals for

singletons associated with m ′. The following proposition shows that Bel repre-
sents the same uncertainty-based information as its associated belief intervals
for singletons if, and only if, the same occurs with Belm ′ .

Proposition 7.2.11 P (Bel) = P(IBel)⇔ P (Belm ′) = P
(
IBelm ′

)
.
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Proof: For each A ⊆ X, it is satisfied that:

Belm ′(A) = max

 ∑
xi∈A

Belm ′ ({xi}) , 1−
∑
xi/∈A

Plm ′ ({xi})

⇔
∑
B⊆A

m ′(B) = max

 ∑
xi∈A

m ′ ({xi}) , 1−
∑
xi/∈A

∑
B|xi∈B

m ′(B)

⇔
∑

B⊆A, |B|⩾2

m(B)

1−M
= max

0, 1−
∑
xi/∈A

∑
B|xi∈B∧|B|⩾2

m(B)

1−M

⇔
∑

B⊆A, |B|⩾2

m(B) = max

0, 1−M−
∑
xi/∈A

∑
B|xi∈B∧|B|⩾2

m(B)

⇔
∑
xi∈A

m ({xi}) +
∑

B⊆A,|B|⩾2

m(B) = max

 ∑
xi∈A

m ({xi}) ,

1−M+
∑
xi∈A

m ({xi}) −
∑
xi/∈A

∑
B|xi∈B∧|B|⩾2

m(B)

⇔
∑
B⊆A

m(B) = max

 ∑
xi∈A

Bel ({xi}) , 1−

∑
xi/∈A

m ({xi}) +
∑

B|xi∈B∧|B|⩾2

m(B)

⇔
Bel(A) = max

 ∑
xi∈A

Bel ({xi}) , 1−
∑
xi/∈A

∑
B|xi∈B

m(B)

⇔
Bel(A) = max

 ∑
xi∈A

Bel ({xi}) , 1−
∑
xi/∈A

Pl ({xi})

 ,

and our thesis follows from Theorem 7.2.4.
□

Hence, we focus on studying when Belm ′ can be represented via its corre-
sponding set of belief intervals for singletons.

The following theorem gives the necessary and sufficient condition for Belm ′

to represent the same uncertainty-based information as its corresponding set
of belief intervals for singletons: the difference between each pair of focal
elements of m ′ has a cardinality lower than 2.
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Theorem 7.2.5 P
(
IBelm ′

)
= P (Belm ′) ⇔ |B1 \B2| ⩽ 1 ∀B1,B2 ⊆ X such that

m ′(B1) > 0 and m ′(B2) > 0.

Proof: Suppose that P
(
IBelm ′

)
= P (Belm ′). Let A be a focal element of m ′.

From Theorem 7.2.4, it follows that:

Belm ′(A) = max

 ∑
xi∈A

Belm ′ ({xi}) , 1−
∑
xi/∈A

Plm ′ ({xi})


= max

 ∑
xi∈A

m ′ ({xi}) , 1−
∑
xi/∈A

∑
B|xi∈B

m ′(B)


= max

0, 1−
∑
B⊆X

m ′(B) |B \A|

 = 1−
∑
B⊆X

m ′(B) |B \A| .

The last equality is because A is a focal element of m ′.

In consequence,
∑

B⊆Am ′(B) = 1−
∑

B⊆Xm ′(B) |B \A|.

Furthermore,

1 =
∑
B⊆X

m ′(B) =
∑
B⊆A

m ′(B) +
∑

B|B\A ̸=∅

m ′(B).

Therefore,

∑
B⊆A

m ′(B) = 1−
∑
B⊆X

m ′(B) |B \A|

=
∑
B⊆A

m ′(B) +
∑

B|B\A ̸=∅

m ′(B) −
∑
B⊆X

m ′(B) |B \A| ,

which implies that

∑
B|B\A ̸=∅

m ′(B) =
∑
B⊆X

m ′(B) |B \A| .

Thus, if m ′(B) > 0, then it is not possible that |B \A| ⩾ 2. It can be con-
cluded that |B1 \B2| ⩽ 1 ∀B1,B2 ⊆ X such that m ′(B1) > 0 and m ′(B2) > 0.
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Let us assume now that |B1 \B2| ⩽ 1 ∀B1,B2 ⊆ X such that m ′(B1) > 0

and m ′(B2) > 0. Let us consider A ⊆ X. We have that:

max

 ∑
xi∈A

Belm ′ ({xi}) , 1−
∑
xi/∈A

Plm ′ ({xi})

 =

max

 ∑
xi∈A

m ′ ({xi}) , 1−
∑
xi/∈A

∑
B|xi∈B

m ′(B)

 =

max

0, 1−
∑
B⊆X

m ′(B) |B \A|

 =

max

0,
∑
B⊆A

m ′(B) +
∑

B|B\A ̸=∅

m ′(B) −
∑
B⊆X

m ′(B) |B \A|

 .

We distinguish two cases:

• Case 1: ∃C ⊆ A such that m ′(C) > 0.

By hypothesis, it holds that, if B ⊆ X satisfies that |B \C| > 1, then
m ′(B) = 0. Hence, since C ⊆ A, m ′(B) = 0 ∀B ⊆ X such that |B \A| > 1.
Consequently, |B \A| ⩽ 1 ∀B ⊆ X such that m ′(B) > 0. Then,

max

 ∑
xi∈A

Belm ′ ({xi}) , 1−
∑
xi/∈A

Plm ′ ({xi})

 =

max

0,
∑
B⊆A

m ′(B) +
∑

B|B\A ̸=∅

m ′(B) −
∑
B⊆X

m ′(B) |B \A|

 =

max

0,
∑
B⊆A

m ′(B)

 =
∑
B⊆A

m ′(B) = Belm ′(A).

• Case 2: m ′(B) = 0 ∀B ⊆ A.
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In this case, Belm ′(A) = 0 and

max

 ∑
xi∈A

Belm ′ ({xi}) , 1−
∑
xi/∈A

Plm ′ ({xi})

 =

max

0,
∑
B⊆A

m ′(B) +
∑

B|B\A ̸=∅

m ′(B) −
∑
B⊆X

m ′(B) |B \A|

 =

max

0,
∑

B|B\A ̸=∅

m ′(B) (1− |B \A|)

 = 0 = Belm ′(A).

Thereby,

max

 ∑
xi∈A

Belm ′ ({xi}) , 1−
∑
xi/∈A

Plm ′ ({xi})

 = Belm ′(A), ∀A ⊆ X,

and, from Theorem 7.2.4, we conclude that P
(
IBelm ′

)
= P (Belm ′).

□
As a consequence of this theorem and Proposition 7.2.10, the necessary and

sufficient condition for a given belief function on X to be representable by a
reachable set of probability intervals is expressed in the following corollary:

Corollary 7.2.7 Let Bel be a belief function on a finite set X and m its associated
BPA. Let P (Bel) denote the credal set associated with Bel and P(IBel) the credal set
compatible with the belief intervals for singletons derived from Bel. It holds that
P (Bel) = P(IBel) ⇔ |B1 \B2| ⩽ 1 ∀B1,B2 ⊆ X such that m(Bi) > 0 and

|Bi| ⩾ 2, for i = 1, 2.

Hence, the belief function associated with the BPA m given in Example
2.2.1 cannot be represented via a reachable set of probability intervals because
{x1, x2} and {x3, x4} are focal elements of m and |{x3, x4} \ {x1, x2}| = 2.

We show below another example where the belief function represents the
same uncertainty-based information as its corresponding set of belief intervals
for singletons.

Example 7.2.3 Let X = {x1, x2, x3, x4} be a finite set and m the following BPA on
X:

m ({x3}) = 0.3, m ({x1, x2}) = 0.3,

m ({x1, x2, x3}) = 0.1, m ({x1, x2, x4}) = 0.3.
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The non-singleton focal elements of m are {x1, x2}, {x1, x2, x3}, and {x1, x2, x4}. We
can check that |{x1, x2} \ {x1, x2, xi}| = 0, |{x1, x2, xi} \ {x1, x2}| = 1, and∣∣{x1, x2, xi} \

{
x1, x2, xj

}∣∣ = 1, for i, j ∈ {3, 4}.
Thus, in this case, the set of probability distributions compatible with the belief func-

tion corresponding to m coincides with the set of probability distributions consistent
with the belief intervals for singletons.

If there is a unique non-singleton focal element of m, namely B, then
m ′(B) = 1 and, clearly, Bel y Belm ′ can be represented via reachable sets of
probability intervals. Also, if all the focal elements of m are singletons, then
m is a probability distribution.

For testing the condition given in Corollary 7.2.7, it is just necessary to
check whether there exists, among the non-singletons subsets, a focal element
of greatest cardinality such that its difference with another focal element of
smallest cardinality has a cardinality greater than one. Consequently, that
condition might be easier to check than the one given in Theorem 7.2.4.

From Corollary 7.2.7, it is easy to deduce that, if there are three or fewer
alternatives, then Bel always represents the same uncertainty-based informa-
tion as its associated set of belief intervals for singletons. Therefore, we have
the following result:

Corollary 7.2.8 Let Bel be a belief function on a finite set X = {x1, . . . , xt} with
t ⩽ 3. Let P(Bel) denote the credal set correspoding to Bel and P (IBel) the credal
set associated with the corresponding set of belief intervals for singletons. Then, it is
always satisfied that P (IBel) = P(Bel).

7.2.2.1 Particular cases of belief functions representable by reachable sets of
probability intervals

Within this subsection, we use the characterization given in Corollary 7.2.7
to describe some special types of belief functions representable by means of
reachable probability intervals.

p-boxes: Suppose that we have a finite set X = {x1, x2, . . . , xt} that is also
ordered, i.e, x1 < x2 < . . . < xt. Let

(
F, F
)

be a p-box on X. Let BelF be the
belief function derived from

(
F, F
)
, computed through Equation (2.44), and

mBelF the BPA corresponding to BelF, determined via Equation (2.27).
As pointed out in Section 2.2.4.5, the focal elements of the BPA associated

with a p-box are always intervals ordered, following the interval order given
by Equation (2.45).
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The result presented below demonstrates that, for a p-box to be repre-
sentable via reachable probability intervals, it is not possible that there are
more than three non-singleton focal elements of the corresponding BPA:

Proposition 7.2.12 If A1,A2, . . . ,Ak, with k ⩾ 4, are the non-singleton focal ele-
ments of BelF, then

(
F, F
)

is not representable via a rechable set of probability inter-
vals.

Proof: Since BelF is the belief function associated with a p-box, its non-
singleton focal elements are intervals ordered, that is, A1 ⪯ A2 ⪯ . . . ⪯ Ak.

Let us denote Ai = [ai,bi], with ai,bi ∈ X, ∀i = 1, 2, . . . ,k.
Three cases are distinguished:

1. If a4 > a1 + 1, then |A1 \A4| ⩾ 2. Likewise, |A4 \A1| ⩾ 2 whenever
b4 > b1 + 1.

2. If a4 = a1, then a1 = a2 = a3 = a4. Clearly, in this case, A1 ⊂ A2 ⊂
A3 ⊂ A4, and |A3 \A1| ⩾ 2.

3. Analogously, if b1 = b4 then, b1 = b2 = b3 = b4 and, obviously, A4 ⊂
A3 ⊂ A2 ⊂ A1. In consequence, |A2 \A4| ⩾ 2.

Let us prove that, under our hypothesis, these are the only possible situa-
tions. Indeed, if a4 = a1 + 1 and b4 = b1 + 1, then there are two possibilities:

1. If a1 = a2, then b2 = b1 + 1 = b3 = b4. In this case, it is not possible
that A2 ̸= A3 and A3 ̸= A4, and we get a contradiction.

2. If a2 = a1 + 1, then a2 = a3 = a4. This contradicts that A2 ̸= A3 and
A3 ̸= A4.

Therefore, under our hypothesis, there always exists Ai,Aj such that∣∣Ai \Aj

∣∣ ⩾ 2, with {i, j} ⊆ {1, 2, 3, 4}. Corollary 7.2.7 allows us to conclude
that BelF does not represent the same uncertainty-based information as its
associated set of belief intervals for singletons.

□
Hence, for a p-box to be representable via a reachable set of probability

intervals, it cannot have more than three non-singleton focal elements. The
following result shows the necessary and sufficient condition for a p-box with
three non-singleton focal elements to represent the same uncertainty-based
information as its corresponding set of belief intervals for singletons:
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Proposition 7.2.13 Suppose that the belief function BelF has three non-singleton
focal elements A1 ⪯ A2 ⪯ A3. Let us denote Ai = [ai,bi], for i = 1, 2, 3. BelF is
representable by a rechable set of probability intervals if, and only if, a3 = a1 + 1 and
b3 = b1 + 1.

Proof:

• If a3 > a1 + 1, then |A1 \A3| ⩾ 2. Analogously, |A3 \A1| ⩾ 2 whenever
b3 > b1 + 1.

• If a3 = a1 then, A1 ⊂ A2 ⊂ A3, which implies that |A3 \A1| ⩾ 2.
Likewise, if b3 = b1, then b1 = b2 = b3. In this case, A3 ⊂ A2 ⊂ A1 and
|A1 \A3| ⩾ 2.

Thereby, due to Corollary 7.2.7, for BelF to be representable via a rechable
set of probability intervals, it is necessary that a3 = a1 + 1 and b3 = b1 + 1.
Let us show that such a condition is sufficient.

In that situation, A1 \A3 = {a1} , A3 \A1 = {b3}, and two cases are distin-
guished:

1. If a1 = a2, then b2 = b1 + 1 = b3. It holds that A1 ⊂ A2 and A2 \A1 =

{b2}. Also, a3 = a2 + 1⇒ A3 ⊂ A2 and A2 \A3 = {a2}.

2. If a2 = a1 + 1, then a2 = a3 and b3 = b2 + 1⇒ b1 = b2, which implies
that A2 ⊂ A1 with A1 \A2 = {a1} and A2 ⊂ A3 with A3 \A2 = {b3}.

□
In this way, the characterization given by Corollary 7.2.7 lets us easily check

when the belief function corresponding to a p-box is representable via a reach-
able set of probability intervals. Indeed, we only need to check when there
are three or fewer non-singleton focal elements.

Possibility measures: Let X = {x1, x2, . . . , xt} be a finite set, Poss a pos-
sibility measure on X and Necc its associated necessity measure. Let mNecc

denote the BPA corresponding to Necc, computed through Equation (2.27).
As commented in Section 2.2.4.6, the focal elements of mNecc must be

nested. Therefore, it is very easy to deduce that, for a possibility measure
to be representable through a reachable set of probability intervals, it cannot
have more than two non-singleton focal elements. When we have only two
non-singleton focal elements, it is sufficient to check whether there are two or
more elements that belong to one of such sets but not to the other one.
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The Imprecise Dirichlet Model Let X be a discrete variable whose possi-
ble values are {x1, x2, . . . , xt}. Suppose that there is sample of N independent
and identically distributed observations about X. Let n(xi) denote the num-
ber of observations of the xi value in the sample, ∀i = 1, 2, . . . , t. As shown
in Section 2.3.1, the IDM can also be determined via the following BPA on
{x1, x2, . . . , xt}:

mIDM ({xi}) =
n(xi)

N+ s
, ∀i = 1, 2, . . . , t,

mIDM(A) = 0, ∀A ⊆ {x1, x2, . . . , xt} | 2 ⩽ |A| < t,

mIDM({x1, x2, . . . , xt}) =
s

N+ s
,

where s is the IDM parameter.
We may deduce that the only non-singleton focal element of mIDM is the

total set. In consequence, according to Corollary 7.2.7, the belief function as-
sociated with mIDM can be represented by means of a reachable set of proba-
bility intervals. Actually, such a set coincides with the set of IDM probability
intervals, defined in Equation (2.59).

7.3 Properties of A-NPI-M credal sets

Let X be a discrete variable and {x1, x2, . . . , xt} its set of possible values.
Suppose that we have a sample of N independent and identically distributed
outcomes of X. Let n(xi) denote the number of occurrences of xi in the sample,
∀i = 1, 2, . . . , t. Let tobs (tunobs) be the number of observed (unobserved)
values of X in the sample:

tobs = |{xi : n(xi) > 0, i = 1, 2, . . . , t}| ,

tunobs = |{xi : n(xi) = 0, i = 1, 2, . . . , t}| .

As shown in Section 2.3.4, we have the following set of A-NPI-M probability
intervals on X (See Equation (2.68)):

IANPI =

{[
max

(
n(xi) − 1

N
, 0
)

, min
(
n(xi) + 1

N
, 1
)]

, i = 1, 2, . . . , t
}

.

The set of A-NPI-M probability intervals gives rise to the following credal
set on X, determined via Equation (2.69):

P (IANPI) = {p ∈ P(X) | p (xi) ∈[
max

(
n(xi) − 1

N
, 0
)

, min
(
n(xi) + 1

N
, 1
)]

, ∀i = 1, 2, . . . , t
}

.
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For each A ⊆ {x1, x2, . . . , xt}, let n(A) denote the number of observations
in A, tAobs the number of observed values in A, and tAunobs the number of
unobserved values in A:

n(A) =
∑
xi∈A

n(xi),

tAobs = |{xi ∈ A | n(xi) > 0}| , tAunobs = |{xi ∈ A | n(xi) = 0}| .

Let PANPI denote the natural extension of INPI and mANPI the associated
Möbius inverse. According to Theorem 2.3.1, PANPI is determined in the
following way:

PANPI(A) =
n(A) − min

(
t−
∣∣A∣∣ , tAobs)

N
, ∀A ⊆ {x1, x2, . . . , xt} . (7.8)

The following properties are remarkable about the A-NPI-M credal set given
by Equation (2.69):

• Sample Size:

It is easy to observe that the A-NPI-M intervals
IANPI(xi) =

[
max

(
n(xi)−1

N , 0
)

, min
(
n(xi)+1

N , 1
)]

, with 1 ⩽ i ⩽ t, are
narrower as the sample size is higher. Indeed, it can be easily checked
that the width of IANPI(xi) is equal to 1

N if n(xi) = 0 or n(xi) = N, and
2
N otherwise, ∀i = 1, 2, . . . , t. Moreover, it always holds that n(xi)

N ∈
IANPI(xi), ∀i = 1, 2, . . . , t. Hence, as the sample size converges to
infinity, the A-NPI-M converges to a classical probability distribution,
estimated by relative frequencies. This also happens with the IDM (recall
that the width of an IDM probability interval is always equal to s

N+s , s
being the IDM parameter).

• Extreme points of the credal set: The set of extreme points of an IDM
credal set is quite simple to obtain. In fact, as shown in Section 2.3.1, it is
composed by only t extreme points, which are determined in a straight-
forward way. In contrast, the set of extreme points of an A-NPI-M credal
set is much more complex to obtain. For determining such a set, we em-
ploy Algorithm 2, which lets us obtain the set of extreme points of the
credal associated with a reachable set of probability intervals. Recall that
such a procedure is recursive and uses an implicit tree search where each
node corresponds to a partial probability distribution. At the root node,
the partial probability distribution is the one associated with the lower
probabilities. Under the A-NPI-M, such a partial probability distribution
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is determined by p(xi) = max
(
0, n(xi)−1

N

)
, ∀i = 1, 2, . . . , t. Each child

node is a refinement of its parent node in which one component is in-
cremented. The leaf nodes of the tree correspond to the extreme points.
The algorithm maintains a global set Ext (P (IANPI)), which contains
the extreme points of P (IANPI) found in each moment. At each node,
there are two local variables: Expl, which contains the indices i whose
component cannot be incremented as p (xi) = min

(
n(xi)+1

N , 1
)

, i ∈
{1, 2, . . . , t}, and a real value λ, which indicates the remaining probability
mass to distribute among the components (λ = 1−

∑t
i=1 p (xi)). Clearly,

at the root node, Expl = ∅ and λ = 1−
∑t

i=1 max
(
n(xi)−1

N , 0
)
= tobs

N .

Algorithm 11 presents the procedure to obtain the set of extreme points
of P (IANPI).

Algorithm 11: Procedure to compute the set of extreme points of an
A-NPI-M credal set.

Procedure Determine extreme point of an A-NPI-M credal
set(Observed frequencies in the sample (n(x1),n(x2), . . . ,n(xt)))
Ext (P (IANPI)) = ∅
Expl = ∅
λ = tobs

N

for i = 1 to t do

p (xi) = max
(
0, n(xi)−1

N

)
GetExtremePoints(p,λ,Expl)
for i = 1 to t do

if i /∈ Expl then
if n(xi) = 0 or n(xi) = t then

aux← 1
N

else
aux← 2

N

if λ ⩽ aux then
p ′ ← (p (x1) , . . . ,p (xi) + λ, . . . ,p (xt))

if p ′ /∈ Ext (P (IANPI)) then
Ext (P (IANPI))← Ext (P (IANPI))∪ {p ′}

else

p ′ ←
(
p (x1) , . . . , max

(
n(xi)+1

N , 1
)

, . . . ,p (xt)
)

GetExtremePoints(p ′, λ− aux, Expl∪ {i})
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We show below an example of how to obtain the set of extreme points
of an A-NPI-M credal set:

Example 7.3.1 Suppose that X is a variable that takes values in {x1, x2, x3},
n(x1) = 15, n(x2) = 10, and n(x3) = 20. In this case, N = 45, and we have
the following intervals associated with the A-NPI-M:

IANPI =

{[
14

45
,
16

45

]
,
[
9

45
,
11

45

]
,
[
19

45
,
21

45

]}
.

Let P (IANPI) denote the credal set corresponding to IANPI. If we apply Algo-
rithm 11, we obtain the following 6 extreme points of P (IANPI):

p1 =

(
16

45
,
10

45
,
19

45

)
, p2 =

(
16

45
,
9

45
,
20

45

)
, p3 =

(
15

45
,
11

45
,
19

45

)
,

p4 =

(
14

45
,
11

45
,
20

45

)
, p5 =

(
15

45
,
9

45
,
21

45

)
, p6 =

(
14

45
,
10

45
,
21

45

)
,

where pi = (pi (x1) ,pi (x2) ,pi (x3)) , ∀i = 1, 2 . . . , 6.

• Credal set associated with the IDM:

As said previously, the IDM strongly depends on the s parameter. IDM
intervals are broader as the s value is higher. The value of the s param-
eter in IDM intervals indicates the previous knowledge assumed about
the data; the higher is the s value, the more imprecise is assumed to be
the data. This dependence is quite notable when the sample size is small,
as happens at leaf nodes of Decision Trees for classification. Indeed, for
a fixed s value, IDM intervals are wider as N is lower.

In contrast, A-NPI-M intervals have no dependence on any parameter;
they only depend on the relative frequencies and the sample size. For
s = 1, one of the values recommended in [209], and the most used in
practical applications, IDM intervals are contained in A-NPI-M intervals:

0 ⩽
n(xj)

N+ 1
,

n(xj) ⩽ N+1⇒ Nn(xj)−1−N+n(xj) ⩽ Nn(xj)⇒
n(xj) − 1

N
⩽

n(xj)

N+ 1
,

1 ⩾
n(xj) + 1

N+ 1
,

n(xj) + 1

N
⩾

n(xj) + 1

N+ 1
.
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In this way,[
n(xj)

N+ 1
,
n(xj) + 1

N+ 1

]
⊆
[

max
(
n(xj) − 1

N
, 0
)

, min
(
n(xj) + 1

N
, 1
)]

,

∀j = 1, 2, . . . ,K.

Thus, the A-NPI-M is a more imprecise model than the IDM with s = 1.

• Möbius Inverse:

In [59], it was shown that, for a specific configuration of the probabil-
ity wheel in the NPI-M, the associated Möbius inverse is non-negative.
Nonetheless, a set of A-NPI-M probability intervals cannot always be
expressed by a belief function. The contrary happens with a set of IDM
intervals, as pointed out in Section 2.3.1. The following example shows
that the Möbius inverse corresponding to the A-NPI-M can have nega-
tive values.

Example 7.3.2 Suppose that we have a discrete variable X and that
{x1, x2, x3, x4} are its possible values. Let us assume that n(xj) > 0 ∀j =

1, 2, 3, 4, N = n(x1) +n(x2) +n(x3) +n(x4). It holds that:3

PANPI

({
xj
})

=
n(xj) − 1

N
= mANPI

({
xj
})

, ∀j = 1, 2, 3, 4,

PANPI

({
xi, xj

})
=

n(xi) +n(xj) − 2

N
, ∀1 ⩽ i < j ⩽ 4,

mANPI
({

xi, xj
})

=PANPI

({
xi, xj

})
− PANPI ({xi})−

PANPI

({
xj
})

= 0, ∀1 ⩽ i < j ⩽ 4,

PANPI

({
xi, xj, xk

})
=

n(xi) +n(xj) +n(xk) − 1

N
, ∀1 ⩽ i < j < k ⩽ 4,

mANPI
({

xi, xj, xk
})

= PANPI

({
xi, xj, xk

})
− PANPI

({
xi, xj

})
−

PANPI ({xi, xk}) − PANPI

({
xj, xk

})
+ PANPI ({xi})+

PANPI

({
xj
})

+ PANPI ({xk}) =
2

N
, ∀1 ⩽ i < j < k ⩽ 4,

mANPI ({x1, x2, x3, x4}) = 1−
∑

1⩽i<j<k⩽4

mANPI
({

xi, xj, xk
})

−

∑
1⩽i<j⩽4

mANPI
({

xi, xj
})

−

4∑
j=1

mANPI
({

xj
})

= −
4

N
< 0.

3 Within this example, we use Theorem 2.3.1 to compute PANPI.
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In addition, if we use Theorem 7.2.3 in the previous example, we have
that X0 = X1 = ∅, X2 = X,

∑
xi∈X2

ui > 1 ⇒ 0 =
∑

xi∈X1
li >

1−
∑

xi∈X2
ui, and

ui + uj = 1−

4∑
k=1,k̸=i,k̸=j

lk, ∀xi, xj ∈ X2 \X0,

∑
xi∈X2\X0

ui = 1+
4

N
< 1+

8

N
=

4

N
(4− 1) + 1−

4

N

= (1− L) (|X2 \X0|− 1) +
∑

xi∈X2\X0

li.

Therefore, the coherent lower probability function associated with an
A-NPI-M credal set is not always a belief function, and, consequently,
A-NPI-M credal sets do not belong to Evidence theory.

Clearly, for singletons, the Möbius inverse corresponding to the A-NPI-M
coincides with the A-NPI-M lower probability, i.e,

mANPI
({

xj
})

= PANPI

({
xj
})

= max
(
n(xj) − 1

N
, 0
)

, ∀j = 1, 2, . . . , t.

Let us analyze some properties of Möbius inverse associated with the A-
NPI-M for sets of cardinality greater or equal than 2.

In the following result, we show that the Möbius inverse for a set whose
cardinality is greater or equal than 2 does not depend on the observed fre-
quencies of the values in the set.

Proposition 7.3.1 If A ⊆ {x1, . . . , xt} with |A| ⩾ 2, then

mANPI(A) =
∑

B⊆A (−1)|A\B|+1 min(tBobs,|B|)
N .
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Proof: In order to determine the number of subsets of A with a certain cardi-
nality that contain xi, with 1 ⩽ i ⩽ t, we think in the same way as in the proof
of Proposition 7.2.1. Hence,

mANPI(A) =
∑
B⊆A

(−1)|A\B| PANPI(B) =
∑
B⊆A

(−1)|A\B| n(B) − min
(
tBobs,

∣∣B∣∣)
N

=
1

N
×

∑
B⊆A

(−1)|A\B|
∑
xj∈B

n(xj) −
∑
B⊆A

(−1)|A\B| min
(
tBobs,

∣∣B∣∣)


=
1

N
×

∑
xj∈A

n(xj)×

|A|−1∑
i=0

(−1)i
(
|A|− 1

i

)−

∑
B⊆A

(−1)|A\B| min
(
tBobs,

∣∣B∣∣)


∑
B⊆A

(−1)|A\B|+1 min
(
tBobs,

∣∣B∣∣)
N

.

We have used Lemma 7.2.1 in the last equality since, by hypothesis, |A|−1 ⩾
1.

□

The following proposition is very useful to simplify the calculation of the
Möbius inverse:

Proposition 7.3.2 It holds that

∑
B⊆A

(−1)|A\B|+1 tBobs = 0, ∀A ⊆ {x1, x2, . . . , xt} : |A| ⩾ 2.

Proof: If |A| = tAobs, then the result is obtained as in the proof of Proposition
7.3.1.

Suppose that tAobs < |A|. For determining the number of subsets of A that
have i observed values, with 0 ⩽ i ⩽ tAobs, we think in the following way: We
can choose the i values between the tAobs observed ones in

(tAobs
i

)
possible ways.

Now, the set A has |A|− tAobs non-observed values. Therefore, a subset of A
that has i observed values has j non-observed values, with 0 ⩽ j ⩽ |A|− tAobs.



7.3 Properties of A-NPI-M credal sets 181

The j non-observed values can be chosen in
(|A|−tAobs

j

)
possible ways. Clearly,

the cardinality of the corresponding subset is i+ j. Hence:∑
B⊆A

(−1)|A\B|+1 tBobs =

tAobs∑
i=1

i×
(
tAobs
i

)
×

|A|−tAobs∑
j=0

(
|A|− tAobs

j

)
(−1)|A|−i−j+1

 =

tAobs∑
i=1

i×
(
tAobs
i

)
× (−1)|A|−i+1 ×

|A|−tAobs∑
j=0

(
|A|− tAobs

j

)
(−1)j

 =

tAobs∑
i=1

i×
(
tAobs
i

)
× (−1)|A|−i+1 × 0 = 0.

The penultimate equality is due to Lemma 7.2.1 because |A|− tAobs ⩾ 1.
□

The following corollary allows us to know a condition under which the
Möbius inverse for a set of cardinality greater or equal than 2 is equal to 0: the
number of observed values in the set is not greater than the cardinality of the
complementary set.

Corollary 7.3.1 If A ⊆ {x1, x2, . . . , xt} with |A| ⩾ 2 satisfies tAobs ⩽
∣∣A∣∣, then

mANPI (A) = 0.

Proof: According to Proposition 7.3.1,

mANPI(A) =
∑
B⊆A

(−1)|A\B|+1 min
(
tBobs,

∣∣B∣∣)
N

.

Now, under our hypothesis, if B ⊆ A, then tBobs ⩽ tAobs ⩽
∣∣A∣∣ ⩽ ∣∣B∣∣. In

consequence, min
(
tBobs,

∣∣B∣∣) = tBobs ∀B ⊆ A.
Proposition 7.3.2 lets us conclude that:

mANPI(A) =
1

N
×

∑
B⊆A

(−1)|A\B|+1 tBobs = 0.

□
Thus, if the cardinality of a set is greater than 1 but lower or equal than the

half of the number of possible values of X, then the Möbius inverse for that
set is equal to 0. It is expressed in the following result:
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Corollary 7.3.2 If A ⊆ {x1, x2, . . . , xt} with 2 ⩽ |A| ⩽ t
2 , then mANPI (A) = 0.

Proof: Under our hypotesis, it is obvious that tAobs ⩽ |A| ⩽ t
2 ⩽

∣∣A∣∣, and, from
Corollary 7.3.1, it is concluded that mANPI(A) = 0. □

The following proposition lets us obtain a simpler expression for the calcu-
lation of the Möbius inverse for sets of cardinality greater than 1.

Proposition 7.3.3 ∀A ⊆ {x1, . . . , xt} with |A| ⩾ 2, it holds that

mANPI =
∑

B⊆A (−1)|A\B| max(tBobs−|B|,0)
N .

Proof: Due to Propositions 7.3.1 and 7.3.2:

mANPI(A) = mANPI(A) − 0 =∑
B⊆A

(−1)|A\B|+1 min
(
tBobs,

∣∣B∣∣)
N

−
∑
B⊆A

(−1)|A\B|+1 tBobs
N

=

∑
B⊆A

(−1)|A\B| t
B
obs

N
−

∑
B⊆A

(−1)|A\B| min
(
tBobs,

∣∣B∣∣)
N

=

∑
B⊆A

(−1)|A\B| max
(
tBobs −

∣∣B∣∣ , 0)
N

.

□
Finally, the following result allows us to obtain an expression of the Möbius

inverse for a non-singleton subset as a function of the sample size, the number
of values of X, the cardinality of the set, and the number of observed values
in the set.

Proposition 7.3.4 If A ⊆ {x1, . . . , xt} with |A| ⩾ 2, then

mANPI(A) =
1

N
×

tAobs∑
i=1

(
tAobs
i

)
×|A|−tAobs∑

j=0

(
|A|− tAobs

j

)
× (−1)|A|−i−j ×max (2i− t+ j, 0)

 .

Proof: The result is obtained by applying Proposition 7.3.3 and thinking as in
the first step of the proof of Proposition 7.3.2. □

Therefore, we can conclude that the calculation of the Mobius inverse for
the A-NPI-M is far more complex than for the IDM.
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7.3.1 A-NPI-M credal sets vs IDM credal sets

We can summarize the results of the comparison between credal sets corre-
sponding to the A-NPI-M and IDM credal sets as follows:

1. Credal sets associated with the A-NPI-M converge to probability distri-
butions estimated by means of relative frequencies as the sample size
converges to infinity, as IDM credal sets.

2. The set of extreme points of an A-NPI-M credal set is much more com-
plex to obtain than the set of extreme points of an IDM credal set.

3. The A-NPI-M is more imprecise than the IDM with the most utilized
value of the s parameter.

4. A-NPI-M credal sets cannot always be represented via belief functions,
unlike IDM credal sets.

5. The Möbius inverse is far more difficult to calculate with the A-NPI-M
than with the IDM.

6. We must remark that, unlike the A-NPI-M, the IDM assumes previous
knowledge about the data, strongly depending on a parameter.

7.4 Conclusions

Sometimes, a single probability distribution is not suitable for representing
the probabilistic knowledge about a finite set or a discrete variable because
the available information is not sufficient. For this reason, several imprecise
probability theories and models have been developed in the literature. In this
chapter, we have analyzed some relations between such theories and models.

On the one hand, belief functions and reachable probability intervals are
imprecise probability theories that have been frequently used in practical ap-
plications to deal with uncertainty. It is known that, in general, belief functions
are not generalizations of reachable probability intervals, and the converse is
also not satisfied. In this chapter, we have described credal sets belonging to
both belief functions and reachable probability intervals.

Specifically, we have given a set of necessary and sufficient conditions for
a reachable set of probability intervals on a finite set to be representable by a
belief function. For checking such conditions, it is needed to consider three
subsets and test some simple inequalities with the sums of the lower and
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upper probabilities on these subsets. The computation of the subsets is also
simple and fast.

A characterization of belief functions representable via reachable probabil-
ity intervals has also been provided. In concrete, it has been demonstrated
that a belief function can be represented by its associated set of belief intervals
for singletons if, and only if, the difference between any pair of non-singleton
focal elements of the corresponding BPA has a cardinality lower or equal than
one. Using this condition, we have characterized some special types of be-
lief functions, such as p-boxes or necessity measures, representable through
reachable sets of probability intervals.

On the other hand, the Non-Parametric Predictive Inference Model (NPI-
M) presents some advantages over the Imprecise Dirichlet Model (IDM) as
its inferences often give more intuitively coherent results. Moreover, the NPI-
M, unlike the IDM, does not assume previous knowledge about the data via
a parameter. The Approximate Non-Parametric Predictive Inference Model
(A-NPI-M) starts from the NPI-M and considers the convex hull of the set
of probability distributions compatible with this model. In consequence, the
A-NPI-M is easier to manage than the NPI-M since it considers a credal set
associated with a reachable set of probability intervals. In this chapter, we
have analyzed the main properties of credal sets associated with the A-NPI-M,
comparing them with IDM credal sets.

We have shown that, as with the IDM, as long as the sample size converges
to infinity, A-NPI-M credal sets converge to a single probability distribution,
estimated by relative frequencies. It has been shown that the A-NPI-M is
a more imprecise model than the IDM with the most used value of the s

parameter, the one recommended in the literature. One of the most remarkable
properties of A-NPI-M credal sets is that they cannot always be represented
by a belief function, unlike IDM credal sets. The calculation of the Möbius
inverse for the A-NPI-M is much more complex than for the IDM. The same
occurs with the set of extreme points of the credal set. Thereby, the A-NPI-M is
a notably more complex model than the IDM. However, we must remark that
the IDM makes previous assumptions about the data through a parameter,
unlike the A-NPI-M. As pointed out previously, it supposes a drawback when
the IDM is used in classification because the parameter strongly influences the
results, and it has not been possible so far to associate the optimal value of the
parameter with each dataset [18].



8 A N A LYS I S A N D P R O P O S A L S O F
U N C E RTA I N T Y M E A S U R E S O N
I M P R E C I S E P R O B A B I L I T I E S

8.1 Introduction

When imprecise probability theories and models arise, measures for quan-
tifying the uncertainty-based information in such theories and models are re-
quired. As explained before, the origin of the study of uncertainty measures
in imprecise probabilities resides in the study of uncertainty measures in Evi-
dence theory (ET).

It has been shown that, so far, the only uncertainty measure in ET that
satisfies all essential mathematical properties and behavioral requirements is
the maximum entropy. However, the procedures developed so far to compute
the maximum entropy are notably complex [7]. This supposes a drawback for
using such an uncertainty measure in practical applications. For this reason,
many alternatives to this measure have been proposed during the last years.

Among these alternatives, one of the most known is the Deng entropy [77].
The basis of this measure is that the uncertainty-based information is strongly
influenced by the number of alternatives. Abellán [4] demonstrated that the
Deng entropy does not verify most of the vital mathematical properties, and its
behavior in many situations is undesirable. Hence, the Deng entropy should
be cautiously used in practical applications.

A modification of the Deng entropy was introduced in [236]. Such a modifi-
cation supposes an improvement over the original Deng entropy since it con-
siders the total number of possible alternatives to a higher degree. Another
version of the Deng entropy was proposed in [69]. It performs better than
the original Deng entropy because it considers the intersections between state-
ments on uncertainty. In this chapter, we demonstrate that these modifications
of the Deng entropy do also not verify most of the essential mathematical prop-
erties. Moreover, we also show that, similar to the original Deng entropy, the
behavior of the mentioned modifications in some situations is also question-
able. Therefore, they should be cautiously utilized in practical applications, as
happens with the original Deng entropy.

185
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Many other alternatives to the maximum entropy in ET proposed during
the last years are based on the belief intervals for singletons. It is known that,
when using belief intervals for singletons instead of BPAs, some information
might be lost. Nonetheless, belief intervals for singletons are easier to man-
age than BPAs for representing uncertainty-based information in ET because
they let us quickly know the uncertain area associated with each alternative
(see Figure 3.1). In this way, belief intervals for singletons are considered an
interesting tool for quantifying uncertainty-based information in ET.

In this chapter, as a novelty, we carry out a study about the essential mathe-
matical properties that have to be satisfied by every total uncertainty measure
on belief intervals for singletons. We also analyze the crucial behavioral re-
quirements for measures of this category. Our study is based on the one car-
ried out by Abellán and Masegosa [21] for total uncertainty measures on BPAs.
We study which of such fundamental mathematical properties and behaviors
are satisfied by each one of the uncertainty measures on belief intervals for
singletons proposed so far. It is demonstrated that none of such measures
satisfies all required mathematical properties and behaviors.

Furthermore, we present an uncertainty measure on belief intervals for sin-
gletons consisting of the maximum entropy on the credal set compatible with
this set of intervals. We demonstrate that, unlike the uncertainty measures on
belief intervals for singletons proposed so far, our proposal satisfies all crucial
mathematical properties and behavioral requirements for this type of mea-
sure, even though its computation is more complex. We also show that our
proposed measure could be considered an approximation to the maximum
entropy of the credal set associated with a BPA as it provides an upper bound.
Moreover, the former measure is far easier to compute than the latter.

In addition to ET, uncertainty measures on credal sets have also been pro-
posed. As pointed out before, the maximum entropy is the well-established
uncertainty measures on credal sets because it satisfies all the required mathe-
matical properties for this kind of measure. The most general imprecise prob-
ability theory for which a procedure to compute the maximum entropy has
been proposed is Choquet capacities of order 2 [15]. Abellán [2] showed how
to calculate the main uncertainty measures on IDM credal sets (the maximum
entropy and the uncertainty measures that let us decompose the maximum
entropy into two measures that quantify conflict and non-specificity). Remark
that the NPI-M, unlike the IDM, does not make prior assumptions about the
data via a parameter. A procedure to compute the maximum entropy with the
NPI-M was presented in [5].

Remark that the A-NPI-M notably simplifies the NPI-M as it considers
the convex hull of the set probability distributions compatible with the ex-
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act model. In this chapter, we also present algorithms that allow obtaining
the main uncertainty measures on A-NPI-M credal sets. We show that these
procedures are more simple and efficient than the ones developed in the liter-
ature for general imprecise probability theories. Hence, with the A-NPI-M, it
is possible to efficiently quantify the uncertainty-based information.

The remainder of this chapter is arranged as follows: In Section 8.2, we
make a critical analysis of the aforementioned modifications of the Deng en-
tropy. Section 8.3 details our study about the required mathematical properties
and behaviors for uncertainty measures on belief intervals for singletons. Our
proposed uncertainty measure on belief intervals for singletons is introduced
in Section 8.4. Section 8.5 describes our proposed procedures for computing
the main uncertainty measures with the A-NPI-M. This chapter is concluded
in Section 8.6.

Within this chapter, let X = {x1, x2, . . . , xt} be a finite set1, with |X| = t. Let
℘(X) denote the power set of X and P(X) the set of all probability distributions
on X.

8.2 Critique of the modifications of the Deng entropy

A modification of the Deng entropy known as the Zhou entropy was pro-
posed in [236]. For a given BPA m on X, it is defined in the following way (See
Equation (3.13)):

EZhou(m) = −
∑

A∈℘(X)

m(A) log2

(
m(A)

2|A| − 1
exp

(
|A|− 1

|X|

))
.

This function can be re-written as follows:

EZhou(m) =
∑

A∈℘(X)

m(A) log2(2
|A| − 1)−

∑
A∈℘(X)

m(A) log2

(
exp

(
|A|− 1

|X|

))
−

∑
A∈℘(X)

m(A) log2m(A).

(8.1)
It could be considered that the first two terms in Equation (8.1) quantify

the non-specificity part in a BPA since both of them are equal to 0 when m

is a probability distribution. The third one might measure the conflict part,
which coincides with the conflict value in the original Deng entropy. It can be
observed that EZhou is also based on the idea of the Deng entropy as it gives

1 Or a discrete variable that takes values in {x1, x2, . . . , xt}.
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a higher total uncertainty value when there are more alternatives. However,
the increase is more controlled with this modification due to the second term.

Cui, Liu, Zhang, and Kang [69] proposed a new version of the Deng entropy
that takes the intersections between the focal elements into account. For a
given BPA m on X, it is defined as follows (See Equation (3.14)):

ECui(m) = −
∑

A∈℘(X)

m(A) log2

( m(A)

2|A| − 1

)
exp

 ∑
B ̸=A∧m(B)>0

|A∩B|
2|X|−1

.

It is possible to re-write this function as follows:

ECui(m) =
∑

A∈℘(X)

m(A) log2

(
2|A| − 1

)
−

∑
A∈℘(X)

m(A)

log2

m(A)× exp

 ∑
B ̸=A∧m(B)>0

|A∩B|
2|X|−1

.
(8.2)

In the above expression, the first term indicates non-specificity, while the
second one captures conflict. Indeed, when m is a probability distribution, the
first term is equal to 0, and the second one collapses to the Shannon entropy.
Hence, in ECui, the non-specificity part coincides with the non-specificity part
in the Deng entropy. However, the conflict part of ECui is lower than the
conflict part of the Deng entropy due to the exponential term.

8.2.1 Mathematical properties of the modified Deng entropies

We show below which of the required mathematical properties for total un-
certainty measures in ET, exposed in Section 3.3.1, are satisfied by the modified
Deng entropies EZhou and ECui.

• Probabilistic Consistency: It is easy to observe that, if m is a probability
distribution, then∑
A∈℘(X)

m(A) log2(2
|A| − 1) =

∑
A∈℘(X)

m(A) log2

(
exp

(
|A|− 1

|X|

))
= 0,

and, thus, EZhou collapses to the Shannon entropy.

We may also note that, in this case, it holds that:

exp

 ∑
B ̸={xi}∧m(B)>0

|{xi}∩B|
2|X|−1

 = 1, ∀i = 1, 2, . . . , t,
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and we deduce that ECui also coincides with the Shannon entropy for
probability distributions. Consequently, both modifications of the Deng
entropy satisfy Probabilistic Consistency.

• Set Consistency: If m is a BPA on X such that m(A) = 1 for some A ⊆ X,
then:

EZhou(m) = log2 (2
|A| − 1) − log2

(
exp

(
|A|− 1

|X|

))
.

The following result shows that, in this case, if there are three or more
alternatives, then the value of EZhou(m) is strictly greater than the one
obtained by the generalized Hartley measure. 2.

Proposition 8.2.1 If |X| ⩾ 3 and m(A) = 1 for some A ⊆ X, then

log2 (2
|A| − 1) − log2

(
exp

(
|A|− 1

|X|

))
> log2 (|A|), ∀A ⊆ X, |A| ⩾ 2.

Proof: It is easy to check that:

log2 (2
|A| − 1) − log2

(
exp

(
|A|− 1

|X|

))
> log2 (|A|)⇔

log2

(
2|A| − 1

|A|

)
> log2

(
exp

(
|A|− 1

|X|

))
⇔

2|A| − 1

|A|
> exp

(
|A|− 1

|X|

)
.

We distinguish 3 cases:

1. |A| = 2. In this situation:

2|A| − 1

|A|
=

3

2
> 1.3956 = exp

(
1

3

)
⩾ exp

(
|A|− 1

|X|

)
.

2. |A| = 3. Then:

2|A| − 1

|A|
=

7

3
> 1.9477 = exp

(
2

3

)
⩾ exp

(
|A|− 1

|X|

)
.

3. |A| ⩾ 4. In this case, since the function f : R → R given by f(x) =
2x−1

x , ∀x ∈ R, is clearly increasing, we have that:

2|A| − 1

|A|
⩾

24 − 1

4
=

15

4
> exp (1) > exp

(
|A|− 1

|X|

)
.

2 except for when A is a singleton, but, in that case, there is no uncertainty.



190 Analysis and proposals of uncertainty measures on imprecise probabil it ies

□

Therefore, EZhou does not satisfy the Set Consistency property.

Moreover, it is convenient to remark that there is a unique case where
the non-specificity value of EZhou is lower than the non-specificity value
of the Hartley measure: |A| = |X| = 2. Then,

EZhou(m) = log2 (3) − log2

(
exp

(
1

2

))
= 0.8636 < 1 = log2 (|A|).

Regarding ECui, when m(A) = 1 for some A ⊆ X,
ECui(m) = log2

(
2|A| − 1

)
, as the original Deng entropy. What is more,

ECui coincides with the Deng entropy when all focal elements are dis-
junct. In consequence, ECui neither satisfies Set Consistency, although,
in these cases, ECui always provides a greater value than the Hartley
measure, unlike EZhou.

• Range: If |X| = 4 and m is a BPA on X such that m(X) = 1, then:

EZhou(m) = log2 (2
|X| − 1) − log2

(
exp

(
|X|− 1

|X|

))
= log2 (15) − log2

(
exp

(
3

4

))
= 2.8249 > 2 = log2 (4) = log2 (|X|).

In such a case,

ECui(m) = log2

(
2|X| − 1

)
= log2 (15) > log2 (4) = log2 (|X|).

Hence, the range property is not verified by EZhou nor ECui.

According to the results proved in [125, 237], the maximum value of the
Deng entropy is equal to log2

(∑
A⊆X

(
2|A| − 1

))
. It is attained with the

following BPA:

m∗(A) =
2|A| − 1∑

B⊆X

(
2|B| − 1

) , ∀A ⊆ X.

It is easy to observe that, in this case, the value obtained by EZhou is
lower than the one attained by the Deng entropy due to the second term
of Equation (8.1). Likewise, in this situation, because of the exponential
term of Equation (3.14), the value obtained by ECui is lower than the one
obtained by the Deng entropy. Consequently, the ranges of EZhou and
ECui are lower than the range of the original Deng entropy.
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• Subadditivity: The following example shows that the modifications of
the Deng entropy considered here are not subadditive:

Example 8.2.1 Let us consider the finite sets X = {x1, x2, x3} and Y = {y1,y2}.
Let m be the following BPA on the product space X× Y:

m ({z11, z12, z21}) = 0.6, m ({z31, z32}) = 0.1, m (X× Y) = 0.3,

where we have denoted zij = (xi,yj).

Let m↓X and m↓Y denote the marginal BPAs of m on X and Y, respectively.
They are determined as follows:

m↓X ({x1, x2}) = 0.6, m↓X ({x3}) = 0.1, m↓X (X) = 0.3;

m↓Y(Y) = 1.

EZhou takes the following values:

EZhou(m) = 4.2583, EZhou(m
1) = 2.5116, EZhou(m

2) = 0.8636

It holds that EZhou(m
1) + EZhou(m

2) = 3.3752 and, thus, EZhou(m
1) +

EZhou(m
2) < EZhou(m).

Concerning ECui:

ECui(m) = 4.8674, ECui(m
↓X) = 1.4574, ECui(m

↓Y) = 1.585

Hence, ECui(m
↓X) + ECui(m

↓Y) = 3.0424 < 4.8674 = ECui(m).

• Additivity: We show in the example below that EZhou and ECui do not
verify the additivity property.

Example 8.2.2 Let X = {x1, x2, x3} and Y = {y1,y2} be two finite sets. Let
mX and mY be the following BPAs on X and Y, respectively:

mX ({x1, x2}) = 0.6, mX ({x3}) = 0.1, mX (X) = 0.3;

mY(Y) = 1.

We consider now the BPA m = mX ×mY on the product space X× Y. It has
the following values:

m ({z11, z12, z21, z22}) = 0.6, m ({z31, z32}) = 0.1, m (X× Y) = 0.3,
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where, again, we have denoted zij = (xi,yj). It is easy to check that the
marginal BPAs of m on X and Y are, respectively, mX and mY , and they are
non-interactive. We have the following values for EZhou and ECui:

EZhou(m) = 4.7873, EZhou(m
X) = 2.5116, EZhou(m

Y) = 0.8636.

ECui(m) = 5.5138, ECui(m
X) = 1.4574, ECui(m

Y) = 1.585.

Thus, EZhou(m
X) + EZhou(m

Y) = 3.3752 ̸= 4.7873 = EZhou(m), and
ECui(m

X) + ECui(m
Y) = 3.0424 ̸= 5.5138 = ECui(m).

• Monotonicity: The following example demonstrates that an increase or
decrease of uncertainty-based information is not always coherently re-
flected by EZhou:

Example 8.2.3 Let X = {x1, x2} be a finite set and m1 and m2 the following
BPAs on X:

m1(X) = 1;

m2({x1}) = m2(X) = 0.5.

We have the following values for EZhou:

EZhou(m
1) = 0.8636, EZhou(m

2) = 1.4318.

Clearly, the information provided by m2 is greater than the one represented via
m1 (m1 corresponds to total ignorance). Nevertheless,
EZhou(m1) < EZhou(m2).

In the following example, it is shown that the monotonicity requirement
is also not verified by ECui.

Example 8.2.4 Let us consider the finite set X = {x1, x2} and the following
BPAs on X:

m1(X) = 0.9, m1({x1}) = 0.1;

m2({x1}) = m2({x2}) = m2(X) =
1

3
.

It is easy to observe that m2 represents more uncertainty-based information
than m1. However, ECui(m

1) = 1.4146 < 1.4721 = ECui(m
2).
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In this way, among the required mathematical properties for uncertainty
measures in ET, EZhou and ECui only verify Probabilistic Consistency. Most
of such properties are crucial: If a BPA is defined on a product space, then the
sum of the uncertainties in the marginal BPAs cannot be lower than the uncer-
tainty involved in the original BPA; if we join two non-interactive BPAs, then
the total amount of uncertainty-based information must not vary; when an
increase of the uncertainty-based information contained in a BPA is produced,
it does not make sense that the uncertainty increases. The modifications of
the Deng entropy considered here present the mentioned shortcomings. The
same happens with the original Deng entropy [4].

8.2.2 Some undesirable behaviors of the modifications of the Deng entropy

The original Deng entropy provides incoherent results in some situations
because it does not consider the number of possible alternatives suitably [236].
The modified Deng entropy EZhou was proposed to solve this problem. Also,
ECui improves the original Deng entropy because it considers the intersections
between the focal elements. However, as we show in this subsection, both
EZhou and ECui also present some behavioral drawbacks, as the original Deng
entropy.

− Firstly, the maximum value of EZhou is not attained with the BPA asso-
ciated with total ignorance, as we have observed in Example 8.2.3. This
is an illogical situation because total ignorance implies total lack of infor-
mation. This also happens with the Deng entropy [125, 237]. In general,
since EZhou does not satisfy the monotonicity property, it is not always
consistent with an increase or decrease of information, which is quite
undesirable. ECui neither satisfies the monotonicity property. For this
reason, it also obtains incoherent results in some scenarios, as in Exam-
ple 8.2.4.

− As happens with the original Deng entropy, the range of the
non-specificity part of EZhou is greater than the range of the conflict
part, although the difference is not as great as with the original Deng
entropy. The difference between both ranges increases as the number
of possible alternatives is greater. The same occurs with ECui. In conse-
quence, the conflict part in both modifications of the Deng entropy might
have little importance when there are many alternatives. It could make
sense as the main difference between uncertainty in ET and probability
theory resides in the non-specificity part. Nonetheless, it is questionable
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and not coherent with the thoughts in the literature that both types of
uncertainty in ET have the same weight.

− We should remark that, in the original Deng entropy, when the informa-
tion is focused on a single set, the non-specificity value is always greater
than the non-specificity value of the Hartley measure. The same happens
with ECui. In fact, Deng entropy and ECui obtain identical values when
there is a single focal element. When there two are possible alternatives,
i.e, X = {x1, x2}, and a BPA m on X such that m(X) = 1, the value of
EZhou is lower than the value of the Hartley measure, as shown in Sec-
tion 8.2.1. We have also demonstrated that, in the rest of the cases where
there is only one focal element, the value of EZhou is strictly greater than
the value of the Hartley measure. It might be an inconsistent behavior.

− Regarding the conflict parts of EZhou and ECui, they can have positive
values in cases in which all focal elements share an element. It is not log-
ical since the conflict in ET corresponds to cases where the information
is focused on sets whose intersection is empty. It also occurs with the
original Deng entropy [4].

− Finally, the extension of the modifications the Deng entropy considered
here to more general theories than ET is still an open question. As
pointed out in Section 3.3.1 (RB4), it must be possible to extend an un-
certainty measure in ET to more general theories.

8.3 Requirements for uncertainty measures on be-
l ief intervals for singletons

Let m be a BPA on X, Belm its associated belief function and Plm its cor-
responding plausibility function. Let Im denote the set of belief intervals for
singletons associated with m, computed by means of Equation (2.41).

We consider the following issues for a total uncertainty measure on Im:

• When there is a unique probability distribution compatible with this set
of intervals, which occurs if, and only if, Belm ({xi}) = Plm ({xi}) ∀i =
1, 2, . . . , t, a total uncertainty measure on Im has to coincide with the
well-established uncertainty measure in probability theory, i.e, the Shan-
non entropy.

• If it is only known that the information is focused on a single subset
A ⊆ X with |A| ⩾ 2, that is, Belm ({xi}) = 0 ∀i = 1, 2, . . . , t, Plm ({xi}) =
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0 ∀xi /∈ A and Plm ({xi}) = 1 ∀xi ∈ A, then a total uncertainty mea-
sure on Im may have to coincide with the one established as appropriate
in classical possibility theory. Nevertheless, as pointed by Wang and
Song [212], it should be considered that the uncertainty in a classical set
depends on its cardinality. Consequently, in these cases, it is only crucial
that a total uncertainty measure on Im is an increasing function of |A|.

• In the study carried out by Abellán and Masegosa [21], it was established
that the range of a total uncertainty measure on BPAs has to be equal
to
[
0, log2 |X|

]
, as in probability theory. However, this point is debatable

since in ET there are more kinds of uncertainty than in probability theory
and, thus, arguments for a larger range might be reasonable.

Nonetheless, a total uncertainty measure on Im must be non-negative.
The value 0 must be reached if, and only if, the information is focused
on a singleton, i.e Belm ({xi}) = Plm ({xi}) = 1 for some i ∈ {1, . . . , t} and
Belm

({
xj
})

= Plm
({

xj
})

= 0 ∀j ∈ {1, 2, . . . , t} \ {i}. It can be stated
that it is the only case in which there is no uncertainty. Furthermore,
where there is an absolute lack of information, i.e, when Belm ({xi}) = 0

and Plm ({xi}) = 1 ∀i = 1, 2, . . . , t, a total uncertainty measure on Im
must attain its maximum value.

• As happens with BPAs, a total uncertainty measure on Im must be con-
sistent when an increase or decrease of information is produced. In
terms of belief intervals for singletons, the set of belief intervals for sin-
gletons associated with a BPA m1,
Im1

= {[Belm1
({xi}) ,Plm1

({xi})] , i = 1, . . . , t}, involves more
uncertainty-based information than the one corresponding to another
BPA m2, Im2

= {[Belm2
({xi}) ,Plm2

({xi})] , i = 1, . . . , t}, if

[Belm1
({xi}) ,Plm1

({xi})] ⊆ [Belm2
({xi}) ,Plm2

({xi})] , ∀i = 1, 2, . . . , t.
(8.3)

In the following proposition, we show that the condition given in Equa-
tion (8.3) is equivalent to the fact that the set of probability distributions
consistent with Im1

is contained in the set of probability distributions
compatible with Im2

.

Proposition 8.3.1 Let P
(
Imj

)
denote the credal set consistent with Imj

, com-
puted via Equation (2.42), for j = 1, 2. It holds that:

P (Im1
) ⊆ P (Im2

)⇔
[Belm1

({xi}) ,Plm1
({xi})] ⊆ [Belm2

({xi}) ,Plm2
({xi})] , ∀i = 1, 2, . . . , t.
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Proof: Suppose that Belm1
({xi}) < Belm2

({xi}), for some i ∈ {1, 2, . . . , t}.
As Im1

is reachable, ∃pi ∈ P (Im1
) such that pi (xi) = Belm1

({xi}) <

Belm2
({xi}), which implies that pi /∈ P (Im2

).

Likewise, if Plm1
({xi}) > Plm2

({xi}), then ∃p ′
i ∈ P (Im1

) satisfying
p ′
i (xi) = Plm1

({xi}) > Plm2
({xi}), and, thus, p ′

i /∈ P (Im2
).

In consequence, if P (Im1
) ⊆ P (Im2

), then the condition given in Equa-
tion (8.3) must be verified.

Let us assume now that

[Belm1
({xi}) ,Plm1

({xi})] ⊆ [Belm2
({xi}) ,Plm2

({xi})] , ∀i = 1, 2, . . . , t.

If p ∈ P (Im1
), then:

Belm2
({xi}) ⩽ Belm1

({xi}) ⩽ p (xi) ⩽

Plm1
({xi}) ⩽ Plm2

({xi}) , ∀i = 1, 2, . . . , t.

This implies that

Belm2
({xi}) ⩽ p (xi) ⩽ Plm2

({xi}) , ∀i = 1, 2, . . . , t,

and we conclude that p ∈ P (Im2
).

□

Deng and Jiang [76] analyzed this requirement for total uncertainty mea-
sures on belief intervals for singletons by utilizing the criterion estab-
lished to decide whether a certain BPA m1 contains the uncertainty-
based information involved by another BPA m2: Belm1

(A) ⩾ Belm2
(A)

and Plm1
(A) ⩽ Plm2

(A), ∀A ⊆ X. It should be noted that this condi-
tion is stronger than the one imposed in Equation (8.3).

• Suppose now that X = {x1, . . . , xt} and Y = {y1, . . . ,yt ′} are two finite
sets. Let m be a BPA on the product space X× Y and Belm and Plm
the belief and plausibility functions associated with m, respectively. Let
us consider the set of belief intervals for singletons corresponding to m,
Im. Let P(Im) denote the credal set associated with Im. Let I↓Xm and I

↓Y
m

be the projections of Im on X and Y, respectively, determined through
Proposition 2.2.9.

For a total uncertainty measure on the belief intervals for singletons asso-
ciated with a BPA defined on a product space, it is important that, when
it is projected on the marginal sets, the total uncertainty does not de-
crease. This is related to the subadditivity property for total uncertainty
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measures on BPAs. Nevertheless, if a total uncertainty measure is based
on belief intervals for singletons, it is much more coherent that this re-
quirement is imposed through the projections of such intervals rather
the marginal BPAs. We show with an example below that the belief in-
tervals for singletons corresponding to the marginal BPAs do not always
coincide with the marginalization of the belief intervals for singletons.

Example 8.3.1 Let us consider the finite sets X = {x1, x2, x3} and Y = {y1,y2}.
Let m be the BPA on X× Y given by:

m ({z11, z12, z21}) = 0.7, m ({z31, z32}) = 0.1,

m ({z11, z12, z21, z22, z31, z32}) = 0.2,

where zij = (xi,yj), for i = 1, 2, 3, j = 1, 2.

For singletons, we have the following belief intervals:

z11 → [Belm ({z11}) ,Plm ({z11})] = [0, 0.9];

z12 → [Belm ({z12}) ,Plm ({z12})] = [0, 0.9];

z21 → [Belm ({z21}) ,Plm ({z21})] = [0, 0.9];

z22 → [Belm ({z22}) ,Plm ({z22})] = [0, 0.2];

z31 → [Belm ({z31}) ,Plm ({z31})] = [0, 0.3];

z32 → [Belm ({z32}) ,Plm ({z32})] = [0, 0.3]

Let m↓X denote the marginal BPA of m on X. We have that:

m↓X ({x1, x2}) = 0.7,

m↓X ({x3}) = 0.1, m↓X(X) = 0.2.

The belief intervals for singletons associated with mX are the following ones:

x1 → [0, 0.9]; x2 → [0, 0.9]; x3 → [0.1, 0.3].

Nevertheless, the result of the projection of the belief intervals for singletons
corresponding to m on X is the following one:

x1 → [0, 1]; x2 → [0, 1]; x3 → [0, 0.6].
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Let P
(
I
↓X
m

)
and P

(
I
↓Y
m

)
denote the credal sets corresponding to I

↓X
m and

I
↓Y
m , respectively. If these credal sets are independent, then the value of a

total uncertainty measure on Im must coincide with the sum of the total
uncertainty values on I

↓X
m and I

↓y
m . This is associated with the additivity

property for total uncertainty measures on BPAs, but, again, it makes
more sense to consider the marginal belief intervals for singletons than
the marginal BPAs.

As pointed out in Section 2.2.1.3, for independence of credal sets, the con-
cept of strong independence is commonly used in the literature. There
is strong independence under P (Im) if, and only if,

P (Im) = CH
(
P
(
I↓Xm

)
×P

(
I↓Ym

))
, (8.4)

where CH denotes the convex hull of a set of probability distributions.

Hence, a total uncertainty measure on Im, TUM(Im), must satisfy the fol-
lowing mathematical properties:3

1. Probabilistic Consistency: When Belm ({xi}) = Plm ({xi})

∀i = 1, 2, . . . , t, TUM (Im) has to collapse to the Shannon entropy:

TUM(Im) = −

t∑
i=1

Belm ({xi}) log2 (Belm ({xi})) .

2. Generalized Set Consistency: If ∃A ⊆ X with |A| ⩾ 2 such that
Belm ({xi}) = 0 ∀i = 1, . . . , t, Plm ({xi}) = 0 ∀xi /∈ A, and Plm ({xi}) =

1 ∀xi ∈ A, then TUM(Im) must take the form:

TUM(Im) = f (|A|) ,

f : N→ R being an increasing function.

3. Coherent Range: TUM (Im) has to be non-negative.

It must hold that TUM(Im) = 0⇔ Belm ({xi}) = Plm ({xi}) = 1 for some
i ∈ {1, 2 . . . , t} and Belm

({
xj
})

= Plm
({

xj
})

= 0 ∀j = 1, 2, . . . , t, j ̸= i.

The maximum value of TUM (Im) must be attained when Belm ({xi}) =

0 and Plm ({xi}) = 1, ∀i = 1, 2, . . . , t.

3 These mathematical properties are adaptations of the properties established as crucial by Abel-
lán and Masegosa [21] to uncertainty measures on belief intervals for singletons.
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4. Monotonicity: Let m1 and m2 be two BPAs on X whose respective sets
of belief intervals for singletons are Im1

and Im2
. If it holds that:

[Belm1
({xi}) ,Plm1

({xi})] ⊆ [Belm2
({xi}) ,Plm2

({xi})] , ∀i = 1, 2, . . . , t,

then TUM must verify that

TUM(Im1
) ⩽ TUM(Im2

).

5. Subadditivity: Let m be a BPA on a product space X × Y and Im its
associated set of belief intervals for singletons. Let I↓Xm and I

↓Y
m denote

the projections of Im on X and Y, respectively. Then, TUM must satisfy:

TUM (Im) ⩽ TUM
(
I↓Xm

)
+ TUM

(
I↓Ym

)
. (8.5)

6. Additivity: Let m be a BPA on a product space X× Y and Im its cor-
responding set of belief intervals for singletons. Let I↓Xm and I

↓Y
m be the

projections of Im on X and Y, respectively. Let P (Im), P
(
I
↓X
m

)
, and

P
(
I
↓Y
m

)
denote the credal sets consistent with Im, I↓Xm , and I

↓Y
m , respec-

tively. If there is strong independence under P (Im), that is, P (Im) =

CH
(
P
(
I
↓X
m

)
×P

(
I
↓Y
m

))
, then TUM must verify the following equality:

TUM (Im) = TUM
(
I↓Xm

)
+ TUM

(
I↓Ym

)
.

As happens with total uncertainty measures on BPAs, in some cases, de-
pending on the form of the uncertainty measure, it makes more sense to con-
sider the submultiplicativity and multiplicativity properties than subadditiv-
ity and additivity. Such properties, for total uncertainty measures on belief
intervals for singletons, are defined in the following way taking into account
the definitions of additivity and subadditivity for this type of measures:

− Submultiplicativity: Let m be a BPA on a product space X× Y and Im
its associated set of belief intervals for singletons. Let I↓Xm and I

↓Y
m be the

projections of Im on X and Y, respectively. Then, TUM must verify that:

TUM (Im) ⩽ TUM
(
I↓Xm

)
× TUM

(
I↓Ym

)
.

− Multiplicativity: Let m be a BPA on a product space X × Y and Im
its corresponding set of belief intervals for singletons. Let I↓Xm and I

↓Y
m
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be the projections of Im on X and Y, respectively. Let P (Im), P
(
I
↓X
m

)
,

and P
(
I
↓Y
m

)
denote the credal sets associated with Im, I

↓X
m , and I

↓Y
m ,

respectively. If there is strong independence under P (Im), i.e, P (Im) =

CH
(
P
(
I
↓X
m

)
×P

(
I
↓Y
m

))
, then TUM must satisfy the following equality:

TUM (Im) = TUM
(
I↓Xm

)
× TUM

(
I↓Ym

)
.

Concerning the behavioral requirements for total uncertainty measures on
belief intervals for singletons, the following points must be considered:

• As pointed out before, belief intervals for singletons are easier to man-
age that BPAs to represent uncertainty-based information. Thereby, un-
certainty measures on belief intervals for singletons are, generally, faster
to compute than uncertainty measures on BPAs. Even so, a total uncer-
tainty measure on belief intervals for singletons must not require a very
complex calculation.

• When the belief intervals for singletons are utilized to quantify the
uncertainty-based information, conflict and non-specificity also coexist,
as stated by Wang and Song [212]. Consequently, a total uncertainty
measure on belief intervals for singletons must not conceal both kinds
of uncertainty, as happens with total uncertainty measures on BPAs.

– On the one hand, according to Wang and Song [212], the non-
specificity of a certain belief interval is measured via its span. But,
indeed, it is wanted to measure the non-specificity of the whole
set of belief intervals for singletons Im. The non-specificity value
must be equal to 0 if, and only if, there is a unique probability dis-
tribution consistent with the belief intervals for singletons, that is,
Belm ({xi}) = Plm ({xi}) ∀i = 1, 2, . . . , t. The maximum value of
non-specificity must be attained when all probability distributions
are compatible with the belief intervals for singletons, which hap-
pens if, and only if, Belm ({xi}) = 0 and Plm ({xi}) = 1, ∀i =

1, 2, . . . , t. Therefore, it makes sense that the non-specificity value
of a total uncertainty measure on Im indicates how large is the set
of probability distributions compatible with Im.

– On the other hand, the conflict of Im indicates the distribution of
the belief and plausibility values of the elements of X [212]. In con-
sequence, the conflict value of a total uncertainty measure on belief
intervals for singletons should be related with the Shannon entropy.
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The maximum value of conflict must be obtained when P (Im) only
contains the uniform probability distribution (in this case, there is
no non-specificity). If the plausibility value for an element of X is
equal to 1, then, due to the reachability of a set of belief intervals
for singletons, the belief values for the rest of the elements of X

are equal to 0. In these situations, a degenerate probability distri-
bution is consistent with Im, and it can be considered that there is
no conflict; the only type of uncertainty existing in these cases is
non-specificity, which depends on how large is P (Im). Hence, it
is logical that the conflict value of Im coincides with the minimum
conflict value between all the probability distributions compatible
with Im.

• As happens with total uncertainty measures on BPAs, a total uncertainty
measure on belief intervals for singletons must be sensitive to changes
in such intervals. It must be remarked that, if a certain belief interval
is widened (narrowed), then the non-specificity value may increase (de-
crease). In contrast, in these cases, the conflict value might decrease
(increase). Thus, it makes sense that, when there are changes in the be-
lief intervals for singletons, the total uncertainty value keeps equal and
the conflict and non-specificity values vary. Hence, a total uncertainty
measure on belief intervals for singletons has to be sensitive to changes
in such intervals, directly or via its parts of conflict and non-specificity.

• Every total uncertainty measure on BPAs must be extensible to more gen-
eral theories than ET. However, in most of such theories, the probabilistic
knowledge can be expressed via a coherent lower probability function,
which always has associated a coherent upper probability function. In
consequence, in more general theories than ET, the lower and upper
probability values for singletons can be considered. Thus, the extension
of a total uncertainty measure on belief intervals for singletons to more
general theories than ET is always possible.

In this way, every total uncertainty measure on Im, TUM (Im), must satisfy
the following behavioral requirements:

1. The calculation of TUM (Im) must not be too complex.

2. It has to be possible to decompose TUM (Im) into two measures that
coherently indicate, respectively, the conflict and non-specificity values
corresponding to Im.
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3. TUM (Im) must be sensitive to changes in the belief intervals for single-
tons, directly or through its components of conflict and non-specificity.

8.3.1 Analysis of uncertainty measures on belief intervals for singletons

In this subsection, we analyze which of the total uncertainty measures on
belief intervals for singletons proposed so far, described in Section 3.3.3, sat-
isfy each one of the essential mathematical properties exposed above for total
uncertainty measures on belief intervals for singletons.

• Probabilistic consistency: If Belm ({xi}) = Plm ({xi}) ∀i = 1, 2, . . . , t, it
is easy to deduce that both TUMI (Im) and TUMI

E (Im) may differ from
the Shannon entropy.

In contrast, in these situations,
SU(Im) = −

∑t
i=1 Belm ({xi}) log2 (Belm ({xi})) ⇒ SU(Im) collapses to

the Shannon entropy.

• Generalized Set Consistency: Suppose that ∃A ⊆ X such that
Belm ({xi}) = 0 ∀i = 1, 2, . . . , t, Plm ({xi}) = 1 ∀xi ∈ A, and
Plm

({
xj
})

= 0 ∀xj /∈ A.

For xi ∈ A, it holds that
dI ([Belm ({xi}) ,Plm ({xi})] , [0, 1]) = dI ([0, 1], [0, 1]) = 0. For xi /∈ A, it is
satisfied that dI ([Belm ({xi}) ,Plm ({xi})] , [0, 1]) = dI ([0, 0], [0, 1]) = 1√

3
.

Hence, in these scenarios, TUMI (Im) = 1− 1
t

√
3
∑

xi/∈A
1√
3
= 1−

|A|
t =

|A|
t ⇒ TUMI satisfies Generalized Set Consistency.

In these cases,

SU(Im) =

t∑
i=1

[
−
Belm ({xi}) + Plm ({xi})

2
log2

(
Belm ({xi}) + Plm ({xi})

2

)
+
Plm ({xi}) −Belm ({xi})

2

]
=

∑
xi∈A

[
−
1

2
log2

1

2
+

1

2

]
+

∑
xi/∈A

0 =
∑
xi∈A

1 = |A|⇒

SU verifies the Generalized Set Consistency property.
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Concerning TUMI
E, we have that, for xi ∈ A,

dI
E ([Belm ({xi}) ,Plm ({xi})] , [0, 1]) = dI

E ([0, 1], [0, 1]) = 0. For xi /∈ A,
dI
E ([({xi}) ,Plm ({xi})] , [0, 1]) = dI ([0, 0], [0, 1]) = 1. Therefore,

TUMI
E (Im) =

t∑
i=1

[
1− dI

E ([Belm ({xi}) ,Plm ({xi})] , [0, 1])
]

=
∑
xi∈A

[
1− dI

E ([0, 1], [0, 1])
]
+

∑
xi/∈A

[
1− dI

E ([0, 0], [0, 1])
]

=
∑
xi∈A

1−
∑
xi/∈A

0 = |A| ,

which implies that TUMI
E satisfies Generalized Set Consistency.

• Coherent Range: The range of TUMI is equal to [0, 1] [223]. The mini-
mum value of dI ([Belm ({xi}) ,Plm ({xi})] , [0, 1]) is reached when
Belm ({xi}) = 0 and Plm ({xi}) = 1. Such a minimum value is equal
to 0. In consequence, when Belm ({xi}) = 0 and Plm ({xi}) = 1, ∀i =
1, 2, . . . , t, TUMI attains its maximum value, which is equal to 1. The
maximum value of dI ([Belm ({xi}) ,Plm ({xi})] , [0, 1]) is obtained when
Belm ({xi}) = Plm ({xi}) = 0 or Belm ({xi}) = Plm ({xi}) = 1. In both
cases, such a value is equal to

√
3. Thus, TUMI is equal to 0 if, and only

if, Belm ({xi}) = Plm ({xi}) = 1 for some i ∈ {1, 2, . . . , t} and
Belm

({
xj
})

= Plm
({

xj
})

= 0 ∀j ∈ {1, 2, . . . , t} \ {i}.

It can be checked that dI
E ([Belm ({xi}) ,Plm ({xi})] , [0, 1]) = 0⇔

Belm ({xi}) = 0 and Plm ({xi}) = 1. In this way, TUMI
E obtains its maxi-

mum value, which is equal to t, when Belm ({xi}) = 0 and Plm ({xi}) =

1 ∀i = 1, 2, . . . , t. Now, dI
E ([Belm ({xi}) ,Plm ({xi})] , [0, 1]) = 1 if, and

only if
√
(Belm ({xi}))

2 + (1− Plm ({xi}))
2 = 1⇔ Belm ({xi}) =

Plm ({xi}) = 0 or Belm ({xi}) = Plm ({xi}) = 1. So, TUMI
E is equal to 0 if,

and only if, ∃i ∈ {1, 2, . . . , t} such that Belm ({xi}) = Plm ({xi}) = 1 and
Belm

({
xj
})

= Plm
({

xj
})

= 0 ∀j ∈ {1, 2, . . . , t} \ {i}.

We may note that

Belm ({xi}) + Plm ({xi})

2
log2

(
Belm ({xi}) + Plm ({xi})

2

)
= 0⇔

Belm ({xi}) = Plm ({xi}) = 0 ∨ Belm ({xi}) = Plm ({xi}) = 1,

∀i = 1, 2, . . . , t.
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Therefore, SU is equal 0 if, and only if, ∃i ∈ {1, 2, . . . , t} such that
Belm ({xi}) = Plm ({xi}) = 1 and Belm

({
xj
})

= Plm
({

xj
})

= 0 ∀j ∈
{1, 2, . . . , t} \ {i}. The maximum value of Plm({xi})−Belm({xi})

2 is attained
when Belm ({xi}) = 0 and Plm ({xi}) = 1 ∀i = 1, 2, . . . , t. In these situ-
ations, −Belm({xi})+Plm({xi})

2 log2

(
Belm({xi})+Plm({xi})

2

)
also reaches its

maximum value, ∀i = 1, 2, . . . , t, and, thus, the maximum value of SU
is attained.

Consequently, the three total uncertainty measures on belief intervals for
singletons proposed so far have a coherent range.

• Monotonicity: Let m1 and m2 be two BPAs on X and Im1
and Im2

their
respective sets of belief intervals for singletons. Let us assume that

[Belm1
({xi}) ,Plm1

({xi})] ⊆ [Belm2
({xi}) ,Plm2

({xi})] , ∀i = 1, 2, . . . , t.

Deng and Jiang [76] showed via counterexamples that, in these situa-
tions, it does not always hold that SU (Im1

) ⩽ SU (Im2
) nor that TUMI (Im1

) ⩽
TUMI (Im2

). In contrast, they demonstrated that
TUMI

E (Im1
) ⩽ TUMI

E (Im2
) is always satisfied in these scenarios. Hence,

TUMI
E verifies the monotonicity property, unlike TUMI and SU.

• Subadditivity/submultiplivativity and additivity/multiplicativity: Since
log(a× b) = log(a) + log(b) ∀a,b ∈ R, for SU, the subadditivity and
additivity properties make more sense than submultiplicativity and mul-
tiplicativity. In contrast, for the interval distance-based total uncertainty
measures, the submultiplicativity and multiplicativity requirements are
more appropriate than subadditivity and additivity [224].

The following example shows that both TUMI and TUMI
E violate the

submultiplicativity property.

Example 8.3.2 Let X = {x1, x2, x2} and Y = {y1,y2} be two finite sets. We
denote zij = (xi,yj), ∀i = 1, 2, 3, j = 1, 2. Let us consider the following
BPA m on the product space X× Y:

m (z11) = 0.8, m (X× Y) = 0.2.

It is disposed of the following set of belief intervals for singletons, Im:

z11 → [0.8, 1]; z12 → [0, 0.2]; z21 → [0, 0.2];

z22 → [0, 0.2]; z31 → [0, 0.2]; z32 → [0, 0.2].



8.3 Requirements for uncertainty measures on belief intervals for singletons 205

The marginal set of belief intervals for singletons on X, I↓Xm , is given by:

x1 → [0.8, 1]; x2 → [0, 0.2]; x3 → [0, 0.2].

The set of the projections of Im on Y, I↓Ym , is the following one:

y1 → [0.8, 1]; y2 → [0, 0.2].

We have:

TUMI (Im) = 1−

√
3

6

(
dI ([0.8, 1], [0, 1]) + 5× dI ([0, 0.2], [0, 1])

)
= 1−

√
3

6

(
0.8√
3
+ 5× 0.8√

3

)
= 0.2,

TUMI
(
I↓Xm

)
= 1−

√
3

3

(
dI ([0.8, 1], [0, 1]) + 2× dI ([0, 0.4], [0, 1])

)
= 1−

√
3

3
×
(
0.8√
3
+

2× 0.6√
3

)
=

1

3
,

TUMI
(
I↓Ym

)
= 1−

√
3

2

(
dI ([0.8, 1], [0, 1]) + dI ([0, 0.6], [0, 1])

)
= 1−

√
3

2
×
(
0.8√
3
+

0.4√
3

)
= 0.4,

TUMI
E (Im) =

(
1− dI

E ([0.8, 1], [0, 1])
)
+ 5×

(
1− dI

E ([0, 0.2], [0, 1])
)

= (1− 0.8) + 5× (1− 0.8) = 6× 0.2 = 1.2,

TUMI
E

(
I↓Xm

)
=
(
1− dI

E ([0.8, 1], [0, 1])
)
+ 2×

(
1− dI

E ([0, 0.2], [0, 1])
)

(1− 0.8) + 2× (1− 0.8) = 3× 0.2 = 0.6,

TUMI
E

(
I↓Ym

)
=
(
1− dI

E ([0.8, 1], [0, 1])
)
+
(
1− dI

E ([0, 0.2], [0, 1])
)

= 0.2+ 0.2 = 0.4.

Hence,

TUMI
(
I↓Xm

)
× TUMI

(
I↓Ym

)
=

0.4
3

< 0.2 = TUMI (Im) ,

TUMI
E

(
I↓Xm

)
× TUMI

E

(
I↓Ym

)
= 0.24 < 1.2 = TUMI

E (Im) .
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In the following example, it is shown that TUMI and TUMI
E do neither

satisfy the multiplicativity property:

Example 8.3.3 Suppose that X = {x1, x2, x2} and Y = {y1,y2} are two finite
sets and that we have the following BPA m on X× Y:

m ({z11}) =
1

3
, m ({z21}) =

1

3
, m ({z31}) =

1

3
,

where zij = (xi,yj), ∀i = 1, 2, 3, j = 1, 2.

The set of belief intervals for singletons, Im, is given by:

z11 →
[
1

3
,
1

3

]
; z12 → [0, 0]; z21 →

[
1

3
,
1

3

]
,

z22 → [0, 0]; z31 →
[
1

3
,
1

3

]
; z32 → [0, 0].

Let I↓Xm and I
↓Y
m denote the projections of Im on X and Y, respectively. They are

determined by:

x1 →
[
1

3
,
1

3

]
; x2 →

[
1

3
,
1

3

]
; x3 →

[
1

3
,
1

3

]
;

y1 → [1, 1]; y2 → [0, 0].

It is easy to observe that, in this case, P (Im) = CH
(
P
(
I
↓X
m

)
×P

(
I
↓Y
m

))
. It

holds that:

TUMI (Im) = 1−

√
3

6

(
3× dI

([
1

3
,
1

3

]
, [0, 1]

)
+ 3× dI ([0, 0], [0, 1])

)

= 1−

√
3

6
×

3×

√(
1

6

)2

+
(0.5)2

3
+

3√
3

 = 0.3354,

TUMI
(
I↓Xm

)
= 1−

√
3

3

(
3× dI

([
1

3
,
1

3

]
, [0, 1]

))

= 1−
√
3×

√(1

6

)2

+
(0.5)2

3

 = 0.6709,
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TUMI
(
I↓Ym

)
= 1−

√
3

2

(
dI ([1, 1], [0, 1]) + dI ([0, 0], [0, 1])

)
= 1−

√
3

2
× 2√

3
= 0.

TUMI
E (Im) = 3×

(
1− dI

E

([
1

3
,
1

3

]
, [0, 1]

))
+ 3×

(
1− dI

E ([0, 0] , [0, 1])
)
= 0.7639,

TUMI
E

(
I↓Xm

)
= 3×

(
1− dI

E

([
1

3
,
1

3

]
, [0, 1]

))
= 0.7639,

TUMI
E

(
I↓Ym

)
= 1− dI

E ([1, 1], [0, 1]) + 1− dI
E ([0, 0], [0, 1]) = 0.

Thereby,

TUMI
(
I↓Xm

)
× TUMI

(
I↓Ym

)
= 0.6709× 0 = 0 ̸= 0.3354 = TUMI (Im) ,

TUMI
E

(
I↓Xm

)
× TUMI

E

(
I↓Ym

)
= 0.7639× 0 = 0 ̸= 0.7639 = TUMI

E (Im) .

The following example shows that SU does not satisfy the subadditivity
requirement.

Example 8.3.4 Let X = {x1, x2, x3} and Y = {y1,y2} be two finite sets and m

the following BPA on the product space X× Y:

m (z11, z12, z21, z22) = 0.7, m (z31, z32) = 0.1, m(X× Y) = 0.2,

where zij = (xi,yj), ∀i = 1, 2, 3, j = 1, 2.

It is disposed of the following set of belief intervals for singletons, Im:

z11 → [0, 0.9]; z12 → [0, 0.9]; z21 → [0, 0.9];

z22 → [0, 0.9]; z31 → [0, 0.3]; z32 → [0, 0.3].

We consider the projections of the belief intervals for singletons on X and Y,
denoted by I

↓X
m and I

↓Y
m , respectively:

x1 → [0, 1]; x2 → [0, 1]; x3 → [0, 0.6];
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y1 → [0, 1]; y2 → [0, 1].

It holds that:

SU (Im) = 4×
(
−
0.9
2

log2

(
0.9
2

)
+

0.9
2

)
+ 2×

(
−
0.3
2

log2

(
0.3
2

)
+

0.3
2

)
= 4.9947,

SU
(
I↓Xm

)
= 2×

(
−
1

2
log2

(
1

2

)
+

1

2

)
− 0.3 log2 0.3 = 2.5211,

SU
(
I↓Ym

)
= 2×

(
−
1

2
log2

(
1

2

)
+

1

2

)
= 2.

In this way,

SU (Im) = 4.9947 > 4.5211 = 2.5211+ 2 = SU
(
I↓Xm

)
+ SU

(
I↓Ym

)
.

We show with an example below that SU does also not verify additivity.

Example 8.3.5 Let X = {x1, x2, x3} and Y = {y1,y2} be two finite sets. Sup-
pose that we have the following BPA m on the product space X× Y:

m (X× Y) = 1.

We shall denote zij = (xi,yj) ∀i = 1, 2, 3, j = 1, 2. The set of belief
intervals for singletons, Im, is given by:

z11 → [0, 1]; z21 → [0, 1]; z12 → [0, 1];

z22 → [0, 1]; z31 → [0, 1]; z32 → [0, 1].

The projections of Im on X and Y, denoted by I
↓X
m and I

↓Y
m , respectively, are the

following ones:

x1 → [0, 1]; x2 → [0, 1] x3 → [0, 1];

y1 → [0, 1]; y2 → [0, 1].

It is obvious that, in this case, P (Im) = CH
(
P
(
I
↓X
m

)
×P

(
I
↓Y
m

))
. We have

that:

SU (Im) = 6×
(
−
1

2
log2

(
1

2

)
+

1

2

)
= 6× 1 = 6,
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SU
(
I↓Xm

)
= 3×

(
−
1

2
log2

(
1

2

)
+

1

2

)
= 3× 1 = 3,

SU
(
I↓Ym

)
= 2×

(
−
1

2
log2

(
1

2

)
+

1

2

)
= 2× 1 = 2.

Therefore,
SU (Im) = 6 ̸= 5 = SU

(
I↓Xm

)
+ SU

(
I↓Ym

)
.

With regard to the behavioral requirements, we must remark the following
issues:

− Once it is disposed of the belief intervals for singletons, the computation
of TUMI, TUMI

E, and SU is direct.

− So far, it has not been possible to decompose the total uncertainty mea-
sures that employ distance functions of belief intervals, TUMI and TUMI

E,
into two measures that respectively quantify conflict and non-specificity.

In contrast, SU can be rewritten as follows:

SU (Im) =

t∑
i=1

−
Belm ({xi}) + Plm ({xi})

2
log2

(
Belm ({xi}) + Plm ({xi})

2

)

+

t∑
i=1

Plm ({xi}) −Belm ({xi})

2
.

The first term of the previous expression indicates conflict, whereas the
second one captures non-specificity. In fact, the second term is equal
to 0 if, and only if, Belm ({xi}) = Plm ({xi}) ∀i = 1, 2, . . . , t (the span
of all belief intervals for singletons is equal to 0). Also, the first term
indicates how the belief and plausibility values for singletons are dis-
tributed. However, when ∃i ∈ {1, 2, . . . , t} such that Plm ({xi}) = 1, the
conflict value indicated by SU might not be equal to 0. It is undesir-
able because, in these cases, there is no conflict in the belief intervals for
singletons, as argued previously.

− It is easy to observe that the distance functions utilized in TUMI and
TUMI

E are sensitive to variations in the belief and plausibility values
for singletons. In consequence, both uncertainty measures are directly
sensitive to changes in the belief intervals for singletons.
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Also, the values −Belm({xi})+Plm({xi})
2 log2

(
Belm({xi})+Plm({xi})

2

)
and

Plm({xi})−Belm({xi})
2 may vary when the belief and plausibility values for

singletons change, ∀i = 1, 2 . . . , t. Thus, SU is sensitive to changes
in the belief intervals for singletons via its parts of conflict and non-
specificity.

Table 8.1 summarizes the mathematical properties satisfied by the total un-
certainty measures on belief intervals developed so far. Likewise, Table 8.2
shows a summary about the behavioral requirements of such measures.

Table 8.1: Summary of the mathematical properties satisfied by the total uncertainty
measures on belief intervals for singletons proposed so far.

Property TUMI TUMI
E SU

Probabilistic Consistency No No Yes
Generalized Set Consistency Yes Yes Yes

Coherent Range Yes Yes Yes
Monotonicity No Yes No

Subadditivity/Submultiplicativity No No No
Additivity/Multiplicativity No No No

Table 8.2: Summary of the behavioral requirements of the total uncertainty measures
on belief intervals for singletons proposed so far.

Behavioral requirement TUMI TUMI
E SU

Complexity Low Low Low
Separation No No Improvable
Sensitivity Yes Yes Yes

We must remark the following issues about the mathematical properties:

• The three total uncertainty measures on belief intervals for singletons
provide a logical result when it is only known that the information is
focused on a subset of the set of possible alternatives since they satisfy
Generalized Set Consistency.

• The ranges of TUMI, TUMI
E, and SU are all coherent.

• When the belief intervals for singletons are reduced to a single prob-
ability distribution, SU obtains a logical result, which coincides with
the well-established uncertainty value for probability distributions (the
Shannon entropy). It does not occur with the total uncertainty measures
based on distance functions of intervals.
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• Unlike TUMI
E, TUMI and SU are not always consistent with an increase

or decrease of uncertainty-based information expressed via the belief
intervals for singletons (Monotonicity property).

• All total uncertainty measures on belief intervals for singletons violate
subadditivity and additivity, which implies that they might not produce
coherent results when they are defined over a set of belief intervals for
singletons on a product space that can be decomposed into more simple
sets.

• Consequently, none of TUMI, TUMI
E, and SU satisfies all the required

mathematical properties for total uncertainty measures on belief inter-
vals for singletons.

Regarding the behavioral requirements, the following points should be noted:

− The computations of TUMI, TUMI
E, and SU are direct.

− SU can be decomposed into two measures that respectively capture con-
flict and non-specificity, unlike the intervals distance-based total uncer-
tainty measures. Nevertheless, such a decomposition is not very coher-
ent as the conflict value of SU might not be equal to 0 when the plausi-
bility value for a singleton is equal to 1, which is not very logical.

− The three total uncertainty measures on belief intervals for singletons
proposed so far are sensitive to changes in the belief intervals for single-
tons, directly or through the parts of conflict and non-specificity.

Therefore, none of the total uncertainty on belief intervals for singletons pro-
posed so far satisfies all the essential mathematical properties and behavioral
requirements for this kind of measure.

8.4 Maximum entropy on belief intervals for single-
tons

Let m be a BPA on X and Belm and Plm its associated belief and plausibility
functions, respectively. Let Im denote the set of belief intervals for singletons
corresponding to m, determined by means of Equation (2.41). Let P (Im) be
the credal set associated with Im, given by Equation (2.42).
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We propose a total uncertainty measure that consists of the maximum en-
tropy on the credal set compatible with the belief intervals for singletons:

S∗ (P (Im)) = max
p∈P(Im)

{S(p)} , (8.6)

S(p) being the Shannon entropy of the probability distribution p.
This measure can be disaggregated as follows:

S∗ (P (Im)) = S∗ (P (Im)) + (S∗ (P (Im)) − S∗ (P (Im))) , (8.7)

where S∗ (P (Im)) is the minimum entropy on P (Im):

S∗ (P (Im)) = min
p∈P(Im)

{S(p)} . (8.8)

The first term of Equation (8.7) captures conflict whereas the second one
indicates non-specificity.

For the computation of S∗ (P (Im)), we utilize the algorithm proposed so
far for the maximum entropy on a reachable set of probability intervals (Algo-
rithm 3. Recall that the set of belief intervals for singletons is always reachable).
Hence, Algorithm 12 details the procedure to obtain the probability distribu-
tion for which S∗ (P (Im)) is attained. In it, sec_min indicates the second
minimum value (-1 if such a second minimum value does not exist).

In order to compute S∗ (P (Im)), we use the following lemma, proved by
Wasserman and Kadane [213]:

Lemma 8.4.1 Let p and q be two probability distributions on X. We denote pi =

p ({xi}) and qi = q ({xi}) ∀i = 1, 2, . . . , t, in such a way that p = (p1,p2, . . . ,pt)

and q = (q1,q2, . . . ,qt). Let p∗ (q∗) be the array p (q) ordered decreasingly. If∑j
i=1 p

∗
i ⩽

∑j
i=1 q

∗
i ∀j = 1, 2 . . . , t, then S(p) ⩾ S(q).

Let pIm denote the probability distribution of minimum entropy on P (Im)

and ((Belm)1 , (Belm)2 , . . . , (Belm)t) and ((Plm)1 , (Plm)2 , . . . , (Plm)t) the ar-
ray of belief and plausibility values for singletons, respectively, where
(Belm) = Belm ({xi}) and (Plm) = Plm ({xi}) , ∀i = 1, 2, . . . , t. Let Bel∗m
(Pl∗m) be the array of belief (plausibility) values for singletons ordered de-
creasingly. Let Bel ′m denote the array of belief values for singletons ordered
in the same way as Pl∗m. Let p∗

Im
be the array of pIm ordered decreasingly.

Then, pIm can be obtained via Algorithm 13.
We may note that, at the end of the while loop of the algorithm, r ⩽ t be-

cause Im is reachable. The following result demonstrates that the probability
distribution obtained in Algorithm 13 attains the minimum entropy on P (Im).



8.4 Maximum entropy on belief intervals for singletons 213

Algorithm 12: Procedure to compute the probability distribution of
maximum entropy on the credal set corresponding to the set of belief
intervals for singletons.
Procedure Determine probability distribution of maximum entropy
on a set of belief intervals for singletons(Set of belief intervals for
singletons Im = {[Belm ({xi}) ,Plm ({xi})], i = 1, 2, . . . , t})
for i = 1 to t do

p̂Im(xi)← Belm ({xi})

sum←
∑t

i=1 p̂Im(xi)

while sum < 1 do
min_prob← mini∈{1,2,...,t}|p̂Im(xi)<Plm({xi}) p̂Im(xi)

index_min_prob← {i ∈ {1, 2, . . . , t} | p̂Im(xi) = min_prob}
num_min← |index_min_prob|
sec_min_prob← sec _mini∈{1,2,...,t}|p̂Im(xi)<ui

p̂Im(xi)

for i ∈ index_min_prob do
if sec_min_prob = −1 then

p̂Im(xi)← p̂Im(xi) + min
(
Plm ({xi}) − p̂Im(xi),

1−sum
num_min , 1

)
else

p̂Im(xi)← p̂Im(xi) +

min
(
Plm ({xi}) − p̂Im(xi), sec_min_prob−min_prob, 1−sum

num_min

)
sum←

∑t
i=1 p̂Im(xi)

return p̂Im
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Algorithm 13: Procedure to compute the probability distribution of
minimum entropy on the set of belief intervals for singletons.
Procedure Determine probability distribution of minimum entropy
on a set of belief intervals for singletons(Set of belief intervals for
singletons Im = {[Belm ({xi}) ,Plm ({xi})], i = 1, 2, . . . , t})
for i = 1 to t do

pIm(xi)← Belm ({xi})

mass← 1−
∑t

i=1 Belm ({xi})

r← 1

first_step← false
while first_step = false do

if (Pl∗m)r − (Bel ′m)r < mass then
(p∗

Im
)r ← (Pl∗m)r

mass← mass− (Pl∗m)r + (Bel ′m)r
r← r+ 1

else
first_step← true

k← arg maxo⩾r {(Bel
′
m)o +mass}

(p∗
Im

)r ← (Bel ′m)k +mass

return pIm
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Theorem 8.4.1 The probability distribution pIm , obtained in Algorithm 13, satisfies
S(pIm) = S∗ (P (Im))

Proof: With same notation as in Algorithm 13, it holds that:

p∗
Im

=
(
(Pl∗m)1 , . . . , (Pl∗m)r−1 ,αr,

(
Bel

′′
m

)
r+1

, . . . ,
(
Bel

′′
m

)
t

)
,

where (
Bel

′′
m

)
i
∈ {(Belm)1 , (Belm)2 , . . . , (Belm)t} ∀i = r+ 1, . . . , t,(

Bel
′′
m

)
i
⩾
(
Bel

′′
m

)
j
∀i, j ∈ {r+ 1, . . . , t} with j ⩽ i, and

αr ∈ [(Bel ′m)r , (Pl∗m)r].
Suppose now that q ∈ P (Im) and let q∗ be its corresponding array ordered

decreasingly.
For j = 1, 2, . . . , r− 1 clearly:

j∑
i=1

(
p∗
Im

)
i
=

j∑
i=1

(Pl∗m)i ⩾
j∑

i=1

q∗
i .

For j = r, r+ 1, . . . , t:

j∑
i=1

(
p∗
Im

)
i
= 1−

t∑
i=j+1

(
Bel

′′
m

)
i
⩾ 1−

t∑
i=j+1

q∗
i =

j∑
i=1

q∗
i .

In consequence,

j∑
i=1

(
p∗
Im

)
i
⩾

j∑
i=1

q∗
i , ∀j = 1, 2, . . . , t.

Due to Lemma 8.4.1, S
(
pIm

)
⩽ S(q) . Thus, we can conclude that pIm is the

probability distribution of minimum entropy on P (Im). □
We show below an example about the procedure to obtain S∗ (P (Im)).

Example 8.4.1 Let X = {x1, x2, x3, x4} be the finite set. Let us consider the following
BPA m on X:

m ({x1}) = 0.1, m ({x2, x3}) = 0.6,

m ({x1, x4}) = 0.3.

We have the following set of belief intervals for singletons, Im:

x1 → [0.1, 0.4]; x2 → [0, 0.6]; x3 → [0, 0.6]; x4 → [0, 0.3].
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If we carry out the steps of the previous algorithm, we obtain the following values
for pIm =

(
pIm

(x1) ,pIm
(x2) ,pIm

(x3) ,pIm
(x4)

)
, the probability distribution of

minimum entropy on the credal set corresponding to these intervals:
pIm = (0.1, 0, 0, 0),
pIm = (0.1, 0, 0.6, 0),
pIm = (0.4, 0, 0.6, 0).

8.4.1 Mathematical properties of our proposal

In this subsection, we analyze which of the crucial mathematical properties
for total uncertainty measures on belief intervals for singletons, exposed in
Section 8.3, are satisfied by our proposed measure S∗ (P (Im)).

• Probabilistic consistency: If Belm ({xi}) = Plm ({xi}) ∀i = 1, 2, . . . , t,
then P (Im) contains a unique probability distribution, given by p(xi) =

Belm ({xi}) , ∀i = 1, 2, . . . , t. Clearly, in these cases, S∗ (P (Im)) coin-
cides with the Shannon entropy.

Generalized Set Consistency: Suppose that ∃A ⊆ X with |A| ⩾ 2 such
that Belm ({xi}) = 0 ∀i = 1, 2, . . . , t, Plm ({xi}) = 1 ∀xi ∈ A, and
Plm

({
xj
})

= 0 ∀xj /∈ A. We may observe that, in this situation, the
probability distribution of maximum entropy, among the ones belonging
to P (Im), is given by:

p̂Im (xi) =


1
|A|

if xi ∈ A

0 if xi /∈ A

It holds that

S∗ (P (Im)) = S (p̂Im) = −
∑
xi∈A

1

|A|
log2

(
1

|A|

)
= |A|

1

|A|
log2 (|A|) = log2 (|A|) .

As log_2 is an increasing function, it is deduced that S∗ (P (Im)) satisfies
Generalized Set Consistency.

• Coherent range: The minimum value of S∗ (P (Im)) is equal to 0. It is ob-
tained if, and only if, P (Im) only contains a degenerate probability distri-
bution. It is easy to deduce that it happens if, and only if, Belm ({xi}) =

Plm ({xi}) = 1 for some i ∈ {1, 2, . . . , t} and Belm
({

xj
})

= Plm
({

xj
})

=



8.4 Maximum entropy on belief intervals for singletons 217

0 ∀j ∈ {1, 2, . . . , t} , j ̸= i. Furthermore, when all the probability dis-
tributions on X belong to P (Im), that is, when Belm ({xi}) = 0 and
Plm ({xi}) = 1 ∀i = 1, 2, . . . , t, S∗ (P (Im)) attains its maximum value
(log2 (|X|)). In consequence, the range of S∗ (P (Im)) is coherent.

• Monotonicity: Let m1 and m2 be two BPAs on X and Im1
and Im2

their
respective sets of belief intervals for singletons. Let us assume that

[Belm1
({xi}) ,Plm1

({xi})] ⊆ [Belm2
({xi}) ,Plm2

({xi})] , ∀i = 1, 2, . . . , t.

From Proposition 8.3.1, it follows that P (Im1
) ⊆ P (Im2

) and, obviously,
S∗ (P (Im1

)) ⩽ S∗ (P (Im2
)).

• Subadditivity and additivity: Let X = {x1, x2, . . . , xt} and
Y = {y1,y2, . . . ,yt ′} be two finite sets and m a BPA on the product space
X × Y. Let Im =

{[
lmij ,um

ij

]
, i = 1, 2, . . . , t, j = 1, 2, . . . , t ′

}
be the

set of belief intervals for singletons associated with m and P (Im) the
corresponding credal set. Let I

↓X
m and I

↓Y
m denote the marginal sets of

intervals of Im on X and Y, respectively, determined through Proposition
2.2.9. Let P

(
I
↓X
m

)
and P

(
I
↓Y
m

)
denote the credal sets consistent with

such sets of intervals and P↓X (Im) and P↓Y (Im) the marginal credal
sets of P (Im) on X and Y, respectively.

In the following proposition, we demonstrate that projecting on the be-
lief intervals for singletons is equivalent to projecting on the correspond-
ing credal set:

Proposition 8.4.1 It is satisfied that
P↓X (Im) = P

(
I
↓X
m

)
, P↓Y (Im) = P

(
I
↓Y
m

)
Proof: Let pX ∈ P↓X (Im). Then, ∃p ∈ P (Im) such that pX (xi) =∑t ′

j=1 p
(
xi,yj

)
∀i = 1, 2, . . . , t.

Since p ∈ P (Im), we have that

lmij ⩽ p
(
xi,yj

)
⩽ um

ij , ∀i = 1, 2, . . . , t, j = 1, . . . , t ′ ⇒
t ′∑

j=1

lmij ⩽
t ′∑

j=1

p
(
xi,yj

)
= pX (xi) ⩽

t ′∑
j=1

um
ij ∀i = 1, 2, . . . , t,

which implies that pX ∈ P
(
I
↓X
m

)
.
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Suppose now that pX ∈ P
(
I
↓X
m

)
. Then:

t ′∑
j=1

lmij ⩽ pX (xi) ⩽
t ′∑

j=1

um
ij , ∀i = 1, 2, . . . , t.

For each i = 1, 2, . . . , t, there are 3 possibilities:

1. pX (xi) =
∑t ′

j=1 l
m
ij

2. pX (xi) =
∑t ′

j=1 u
m
ij

3. pX (xi) = λi, where
∑t ′

j=1 l
m
ij < λi <

∑t ′

j=1 u
m
ij .

We consider:

p
(
xi,yj

)
=


lmij if pX (xi) =

∑t ′

j=1 l
m
ij ,

um
ij if pX (xi) =

∑t ′

j=1 u
m
ij ,

αij if pX (xi) = λi


with

∑t ′

j=1 l
m
ij < λi <

∑t ′

j=1 u
m
ij , lmij ⩽ αij ⩽ um

ij , in such a way that∑t ′

j=1 αij = λi ∀i ∈ {1, 2, . . . , t} such that
∑t ′

j=1 l
m
ij < pX (xi) <∑t ′

j=1 u
m
ij .

Clearly, p ∈ P (Im) and pX (xi) =
∑t ′

j=1 p
(
xi,yj

)
∀i = 1, 2, . . . , t.

Consequently, pX ∈ P↓X (Im).

The proof of P↓Y (Im) = P
(
I
↓Y
m

)
is analogous.

□

The following proposition shows that S∗ (P (Im)) verifies the subadditiv-
ity property:

Proposition 8.4.2 With the above notation, it always holds that

S∗ (P (Im)) ⩽ S∗
(
P
(
I↓Xm

))
+ S∗

(
P
(
I↓Ym

))
.

Taking Proposition 8.4.1 into account, the proof of this result is identical
to the one given by Abellán and Moral [1] for the subadditivity property
for the maximum entropy on general credal sets.

S∗ (P (Im)) also satisfies additivity, as shown in the following result.
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Proposition 8.4.3 With the above notation, if there is strong independence
under P (Im), that is P (Im) = CH

(
P
(
I
↓X
m

)
×P

(
I
↓Y
m

))
, then

S∗ (P (Im)) = S∗
(
P
(
I↓Xm

))
+ S∗

(
P
(
I↓Ym

))
.

The proof of this proposition is identical to the one provided by Abellán
and Moral [1] for the additivity requirement for the maximum entropy
on credal sets if we consider Proposition 8.4.1.

Therefore, unlike the other total uncertainty measures on belief intervals for
singletons proposed so far, S∗ (P (Im)) verifies all the essential mathematical
properties for this type of measure.

8.4.2 Behavioral requirements of our proposed measure

Now, we analyze the fundamental behavioral requirements for uncertainty
measures on belief intervals for singletons, described in Section 8.3, for our
proposal S∗ (P (Im)).

• Computational complexity: The procedure proposed to compute
S∗ (P (Im)) (Algorithm 12) is not as direct as the computation of the other
total uncertainty measures on belief intervals for singletons proposed so
far. Nevertheless, the computation of S∗ (P (Im)) is considerably faster
than the maximum entropy on the credal set consistent with the BPA m

(the well-established total uncertainty measure in ET) because the algo-
rithms proposed so far in the literature for the latter measure work with
the whole power set of X, while Algorithm 12 only takes into account
the belief and plausibility values for singletons.

• Coherent disaggregation: As shown in Equation (8.7), S∗ (P (Im)) can be
decomposed into two measures that quantify conflict and non-specificity.

The non-specificity part, S∗ (P (Im)) - S∗ (P (Im)), is equal to 0 if and only
if, P (Im) contains a single probability distribution. When all probability
distributions on X belong to P (Im), S∗ (P (Im)) - S∗ (P (Im)) reaches its
maximum value.

Regarding the conflict part of S∗ (P (Im)), S∗ (P (Im)), it attains its min-
imum value, 0, when a degenerate probability distribution belongs to
P (Im). The maximum value of S∗ (P (Im)) is obtained when P (Im) only
contains the uniform probability distribution.
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Consequently, we can state that the decomposition of S∗ (P (Im)) into
conflict and non-specificity measures is pretty logical.

• Sensitivity to changes: For analyzing the sensitivity of S∗ (P (Im)) to
changes in the belief intervals for singletons, we use the following ex-
ample, based on the one employed in [21] to analyze the sensitive to
changes in the evidence for uncertainty measures on BPAs.

Example 8.4.2 Let X = {x1, x2} be a finite set and m the following BPA on X:

m ({x1}) = m1, m ({x2}) = m2, m ({x1, x2}) = m12 = 1−m1 −m2,

where 0 ⩽ mi ⩽ 1, for i = 1, 2, and m1 +m2 ⩽ 1. We have the following set
of belief intervals for singletons, Im:

x1 → [m1, 1−m2] , x2 → [m2, 1−m1] .

It should be noted that the width of both intervals is equal to 1−m1 −m2 =

m12. Thus, the non-specificity value is determined by means of m12. The con-
flict value depends on the interaction of m1 and m2 (recall that the conflict
value of a set of belief intervals for singletons is determined via the interac-
tion between the belief and plausibility values). Without loss of generality, we
assume that the value of m1 is known. We distinguish two cases:

– Case 1: m1 ⩾ 0.5: It holds that m2 ⩽ 0.5 ⩽ m1 ⇒ S∗ (P (Im)) =

S(m1, 1−m1), S∗ (P (Im)) = S(m2, 1−m2),
(S∗ − S∗) (P (Im)) = S(m1, 1−m1) − S(m2, 1−m2)

4.

The amount of total uncertainty keeps constant. The conflict part in-
creases as m2 is greater, which is logical if we take into account that
m2 ⩽ 0.5 ⩽ m1. The non-specificity value increases when m2 decreases
or, equivalently, when m12 increases. Remark that the non-specificity
value of Im depends on m12. Hence, we can state that the variations of
the conflict and non-specificity values of S∗ (P (Im)) as m2 changes are
pretty coherent.

– Case 2: m1 < 0.5. In this case,

S∗ (P (Im)) = S(α2, 1−α2), S∗ (P (Im)) = S(α, 1−α),

where α2 = max (m2, 0.5) , α = min (m1,m2). Consequently, the
conflict value depends on the minimum value between m1 and m2, which
is very logical.

For the non-specificity part, three cases are distinguished:

4 Within this example, S(a, 1− a) with a ∈ [0, 1] denotes the Shannon entropy of the probability
distribution pa defined as p(x1) = a, p(x2) = 1− a.
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1. m2 ⩽ m1 ⩽ 0.5. In such a case:

S∗ (P (Im)) = S(0.5, 0.5), S∗ (P (Im)) = S(m2, 1−m2),

(S∗ − S∗) (P (Im)) = S(0.5, 0.5) − S(m2, 1−m2).

We may observe that the total uncertainty value keeps constant and
the non-specificity value decreases as m2 increases (m12 decreases),
which makes a lot of sense.

2. m1 ⩽ m2 ⩽ 0.5. Then, S∗ (P (Im)) = S(m1, 1−m1), which im-
plies that the conflict part does not vary. In addition, S∗ (P (Im)) =

S(0.5, 0.5). Therefore, the total uncertainty, conflict, and
non-specificity values keep constant. It could be considered an unde-
sirable behavior. Nonetheless, in this situation, since 1−mi > 0.5,
for i = 1, 2, it might make sense to considered a total uncertainty
value as the plausibility of each singleton is greater than 0.5.

3. m1 < 0.5 ⩽ m2. In this case,

S∗ (P (Im)) = S(m2, 1−m2), S∗ (P (Im)) = S(m1, 1−m1),

(S∗ − S∗) (P (Im)) = S(m2, 1−m2) − S(m1, 1−m1).

The conflict part does not vary and the non-specificity value decreases
as m2 is higher, i.e, m12 is lower. This is quite coherent.

From the previous example, we can conclude that S∗ (P (Im)) is sensitive
to changes in the belief intervals for singletons, directly or through its
parts of conflict and non-specificity.

In this way, it could be stated that, unlike the total uncertainty measures
on belief intervals for singletons proposed so far, S∗ (P (Im)) satisfies all the
crucial behavioral requirements for this kind of measure, although its compu-
tation is more complex.

Moreover, it should be noted that the maximum entropy on the credal set
consistent with the set of belief intervals for singletons is always greater or
equal than the maximum entropy on the credal set compatible with the asso-
ciated belief function, as the following proposition shows:

Proposition 8.4.4 Let m be a BPA on X and Belm its associated belief function. Let
Im be the set of belief intervals for singletons corresponding to m. Let P (Belm) and
P (Im) denote the credal sets compatible with Belm and Im, respectively. It always
holds that:

S∗ (P (Belm)) ⩽ S∗ (P (Im))
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The proof of this result is trivial taking into account that it is always satisfied
that P (Belm) ⊆ P (Im). Hence, our proposed measure provides an upper
bound of the maximum of entropy on the credal set associated with a be-
lief function, the well-established total uncertainty measure in ET. In addition,
S∗ (P (Im)) ⩽ S∗ (P (Belm)). In consequence, the conflict value provided by
our uncertainty measure is always lower or equal than the conflict value cap-
tured by S∗ (P (Belm)). In contrast, the non-specificity value of S∗ (P (Im))

is always greater or equal than the non-specificity value of S∗ (P (Belm)). It
makes sense because the main difference between uncertainty in ET and prob-
ability theory resides in the non-specificity part, and our proposed measure
enhances this idea.

8.5 Computation of uncertainty measures on the A-
NPI-M

Let X be a discrete variable whose set of possible values is {x1, x2, . . . , xt}.
Suppose that there is a sample of N independent and identically distributed
observations about X. For each i = 1, 2, . . . , t, let n(xi) denote the number of
observations of xi in the sample. Let tobs (tunobs) be the number of observed
(unobserved) values of X in the sample.

tobs = |{xi | n(xi) > 0, i = 1, 2, . . . , t}| ,

tunobs = |{xi | n(xi) = 0, i = 1, 2, . . . , t}| .

In this section, we show how to compute the main uncertainty measures on
the A-NPI-M credal set on X, P (IANPI), determined via Equation (2.69).

8.5.1 Maximum entropy

Algorithm 4 shows the procedure proposed in [5] to compute the maximum
entropy with the A-NPI-M. In this subsection, we express the algorithm a little
bit more simple than in that work.

Let T(i) denote the number of values of X observed i times:

T(i) =
∣∣{xj | n(xj) = i, 1 ⩽ j ⩽ t

}∣∣ . (8.9)

The idea is the same as in the algorithm of maximum entropy for reachable
probability intervals: the resulting probability distribution has to be as close
to the uniform distribution as possible.
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We start by assigning the A-NPI-M lower probabilities to each xj,∀j =

1, 2, . . . , t. Then, the values for which there are no observations or only one
have assigned the lowest probability (in both cases, the lower probability is
equal to 0). The probability mass to distribute between all values is equal to
tobs
N . If the number of values for which there are 0 or 1 observations is lower

than tobs, then the probability mass is equally distributed between these val-
ues. Otherwise, we sum 1

N to the probability of each value xj for which
n(xj) ∈ {0, 1}. Then, the non-observed values have assigned the A-NPI-M up-
per probability and, between the rest of the values, the ones observed 1 or 2

times have assigned the lowest probability. The resting probability mass to
distribute is equal to tobs−T(0)−T(1)

N . We iteratively repeat the process until
the probability mass is completely distributed among the values of X.

In this way, our proposed procedure to obtain the probability distribution
of maximum entropy on an A-NPI-M credal set is given in Algorithm 14.

8.5.2 Minimum entropy

A-NPI-M probability intervals are reachable probability intervals and, thus,
Choquet capacities of order 2. In consequence, the algorithm proposed by
Abellán and Moral [15] to compute the minimum entropy for Choquet capac-
ities of order 2 could be employed. However, due to the special structure of
A-NPI-M probability intervals, the probability distribution of minimum en-
tropy with the A-NPI-M can be obtained in a very quick way via Lemma
8.4.1.

The following theorem shows how to obtain the probability distribution of
minimum entropy on an A-NPI-M credal set:

Theorem 8.5.1 Let
(
n∗
1,n∗

2, . . . ,n∗
t

)
be the array of observed frequencies ordered in

a decreasing way. The probability distribution of minimum entropy on P (IANPI) is
the one p

ANPI
that satisfies

p∗
ANPI

=

(
n∗

1+1

N , . . . ,
n∗

tobs−1
2

+1

N ,
n∗

tobs+1
2

N ,
n∗

tobs+1
2

+1
−1

N , . . . ,
n∗

tobs
−1

N , 0, . . . , 0

)
if tobs is odd,

p∗
ANPI

=

(
n∗

1+1

N , . . . ,
n∗

tobs
2

+1

N ,
n∗

tobs
2

+1
−1

N , . . . ,
n∗

tobs
−1

N , 0, . . . , 0

)
if tobs is even,

where p∗
ANPI

denotes the array of p
ANPI

decreasingly ordered.
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Algorithm 14: Proposed procedure to compute the probability distribu-
tion of maximum entropy with the A-NPI-M.
Procedure Determine probability distribution of maximum entropy
with the A-NPI-M(Observed frequencies in the sample
n(x1),n(x2), . . . ,n(xt))
for j = 1 to t do

if n(xj) ⩽ 1 then
p̂ANPI(xj)← 0

else
p̂ANPI(xj)←

n(xj)−1

N

mass← tobs
i← 0

while mass > 0 do
if T(i) + T(i+ 1) < mass then

for j = 1 to t do
if n(xj) ∈ {i, i+ 1} then

p̂ANPI(xj)← p̂ANPI(xj) +
1
N

mass← mass− 1

else
for j = 1 to t do

if n(xj) ∈ {i, i+ 1} then
p̂ANPI(xj)← p̂ANPI(xj) +

mass
N(T(i)+T(i+1))

mass← 0
i← i+ 1

return p̂ANPI
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Proof: Suppose that tobs is odd. Let q be a probability distribution belonging
to P (IANPI) and q∗ its corresponding array ordered decreasingly. Then:

j∑
i=1

q∗
i ⩽

j∑
i=1

n∗
i + 1

N
=

j∑
i=1

(
p∗
ANPI

)
i

, ∀j = 1, . . . ,
tobs − 1

2
.

For j = tobs+1
2 , . . . , tobs − 1, we have that:

j∑
i=1

q∗
i = 1−

t∑
i=j+1

q∗
i ⩽ 1−

t∑
i=j+1

max

(
0,

n∗
i − 1

N

)
= 1−

tobs∑
i=j+1

n∗
i − 1

N

= 1−

tobs∑
i=j+1

(
p∗
ANPI

)
i
= 1−

t∑
i=j+1

(
p∗
ANPI

)
i
=

j∑
i=1

(
p∗
ANPI

)
i

.

Obviously:

j∑
i=1

(
p∗
ANPI

)
i
= 1 ⩾

j∑
i=1

q∗
j , ∀j = tobs, . . . , t.

To sum up,
j∑

i=1

q∗
i ⩽

j∑
i=1

(
p∗
ANPI

)
i

, ∀j = 1, 2, . . . , t,

and Lemma 8.4.1 allows us to conclude that S (q) ⩾ S
(
p
ANPI

)
. Therefore,

p
ANPI

is the probability distribution of minimum entropy on P (IANPI).
The proof in the case that tobs is even is identical.

□

8.5.3 Generalized Hartley measure

Let mANPI denote the Möbius inverse associated with the A-NPI-M co-
herent lower probability function. The Generalized Hartley measure (GH) is
calculated by means of the following formula:

GHANPI =
∑

A⊆{x1,x2,...,xt}

mANPI(A) log2(|A|). (8.10)

As shown in Proposition 7.3.4, the Möbius inverse for a set whose cardinal-
ity is greater or equal than 2 depends on the cardinality of the set, the number
of observed values in the set, and the sample size (N). Moreover, the number
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of sets with a certain cardinality and a determinate number of observed values
depends on the total number of values (t) and how many of them have been
observed (tobs). Thereby, the GH value for A-NPI-M credal sets depends on
t, tobs, and N.

Firstly, we may observe that, according to Corollary 7.3.2, for a set of cardi-
nality greater than 1 but lower or equal than t

2 , the Möbius inverse is equal to
0. The Möbius inverse for singletons is not necessarily equal to 0. Nonetheless,
as it is well known, log2 1 = 0. So, the singletons do not influence the calcula-
tion of GH. Thus, only the sets whose cardinality is greater than t

2 influence
the computation of GHANPI.

Secondly, for a set A whose cardinality is cA, the number of observed val-
ues in the set, tAobs, clearly verifies that tAobs ⩽ tobs and tAobs ⩽ cA. Fur-
thermore, the number of observed values in the set is greater or equal than
tobs −

∣∣A∣∣ = tobs − t+ cA (this last number can be negative). Consequently,
min (tobs, cA) ⩾ tAobs ⩾ max (0, tobs − t+ cA).

For determining the number of sets whose cardinality is cA and have tAobs
observed values, we think as follows: we can choose the tAobs observed val-
ues in

(tobs
tAobs

)
possible ways. Likewise, the number of ways in which the

cA − tAobs non-observed values can be chosen is equal to
( tunobs

cA−tAobs

)
. There-

fore, the number of sets with cardinality cA and tAobs observed values is equal
to
(tobs
tAobs

)
×
( tunobs

cA−tAobs

)
.

Considering the previous points and the expression given in Proposition
7.3.4 to calculate the Mobius inverse for a set whose cardinality is greater than
1, the procedure for the computation of GHANPI is given in Algorithm 15.

8.5.4 Examples

In this subsection, we show two examples about the computation of the
uncertainty measures considered in this section with the A-NPI-M.

Example 8.5.1 Let X be a variable that takes values in {x1, x2, x3, x4}. Let
(n1,n2,n3,n4) = (7, 2, 1, 8) be the array of observed frequencies. In this case, N =

n1 + n2 + n3 + n4 = 18, t = tobs = 4. The set of A-NPI-M probability intervals
is: {[

6

18
,
8

18

]
;
[
1

18
,
3

18

]
;
[
0,

2

18

]
;
[
7

18
,
9

18

]}
.

Let p̂ANPI =
(
p̂ANPI (x1) , p̂ANPI (x2) , p̂ANPI (x3) , p̂ANPI (x4)

)
denote the ar-

ray of the probability distribution of maximum entropy on the corresponding credal
set.
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Algorithm 15: Procedure to compute the Möbius inverse with the A-
NPI-M.
Procedure Determine Möbius inverse associated with the
A-NPI-M(Observed frequencies in the sample (n(x1),n(x2), . . . ,n(xt)))
GHANPI ← 0

if t is odd then
min_cA ← t+1

2

else
min_cA ← t

2 + 1

for cA = min_cA to t do
if tobs ⩽ cA then

max_tAobs ← tobs

else
max_tAobs ← cA

if tobs − t+ cA > 0 then
min_tAobs ← tobs − t+ cA

else
min_tAobs ← 0

sum_inverses_cA ← 0

for tAobs = min_tAobs to max_tAobs do
sum_inverses_tAobs ← 0

for i = 1 to tAobs do
sum_inverses← 0

for j = 0 to cA − tAobs do
if 2i− t+ j > 0 then

sum_inverses←
sum_inverses+

(ca−tAobs
j

)
× (−1)ca−i−j × (2i− t+ j)

sum_inverses_tAobs ←
sum_inverses_tAobs + sum_inverses×

(tAobs
i

)
sum_inverses_cA ←
sum_inverses_cA + sum_inverses_tAobs ×

(t_obs
tAobs

)
×
( tunobs

cA−tAobs

)
GH← GH+ log2 cA × sum_inverses_cA

GHANPI ← GHANPI

N

return GHANPI
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If we utilize Algorithm 14, the array p̂ANPI initially has the values p̂ANPI =(
6
18 , 1

18 , 0, 7
18

)
. This array takes the following values after each one of the correspond-

ing iterations of the loop:

i = 0→ p̂ANPI =

(
6

18
,
1

18
,
1

18
,
7

18

)
,

i = 1→ p̂ANPI =

(
6

18
,
2

18
,
2

18
,
7

18

)
,

i = 2→ p̂ANPI =

(
6

18
,
3

18
,
2

18
,
7

18

)
.

The array obtained when i = 2, p̂ANPI =
(

6
18 , 3

18 , 2
18 , 7

18

)
, is the probability distri-

bution that reaches the maximum entropy on the A-NPI-M credal set.
According to Theorem 8.5.1, the probability distribution that attains the minimum

entropy on the A-NPI-M credal set, p
ANPI

, is given by:

p
ANPI

=

(
n∗
2 + 1

N
,
n∗
3 − 1

N
,
n∗
4 − 1

N
,
n∗
1 + 1

N

)
=

(
8

18
,
1

18
, 0,

9

18

)
.

The value of the generalized Hartley measure, obtained through Algorithm 15, is
equal to:

GHANPI =
1

18
×
(
8 log2 3− 4 log2 4

)
.

Example 8.5.2 Suppose again that X is a variable whose set of possible values is
{x1, x2, x3, x4}. Let (n1,n2,n3,n4) = (0, 3, 9, 1) denote the array of observed fre-
quencies. In this case, N = 13, t = 4, tobs = 3. We have the following set of
A-NPI-M probability intervals:{[

0,
1

13

]
;
[
2

13
,
4

13

]
;
[
8

13
,
10

13

]
;
[
0,

2

13

]}
.

Let p̂ANPI denote the array of the probability distribution of maximum entropy
on the associated credal set. If we apply Algorithm 14, it initially has the values
p̂ANPI =

(
p̂ANPI (x1) , p̂ANPI (x2) , p̂ANPI (x3) , p̂ANPI (x4)

)
=
(
0, 2

13 , 8
13 , 0

)
.

It takes the following values after each one of the corresponding iterations of the loop.

i = 0→ p̂ANPI =

(
1

13
,
2

13
,
8

13
,
1

13

)
,

i = 1→ p̂ANPI =

(
1

13
,
2

13
,
8

13
,
2

13

)
.
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The probability distribution obtained when i = 1, p̂ANPI =
(

1
13 , 2

13 , 8
13 , 2

13

)
, is

the one that attains the maximum entropy on the A-NPI-M credal set.
In order to obtain the probability distribution of minimum entropy on the A-NPI-M

credal set, p
ANPI

, Theorem 8.5.1 is applied:

p
ANPI

=

(
0,

n∗
2

N
,
n∗
1 + 1

N
,
n∗
3 − 1

N

)
=

(
0,

3

13
,
10

13
, 0
)

.

The value of the generalized Hartley measure, computed via Algorithm 15, is equal
to:

GHANPI =
1

13
×
[
5 log2 3− 2 log2 4

]
.

8.6 Concluding remarks

The study of uncertainty measures in imprecise probabilities has its origin in
the study of uncertainty measures in Evidence theory (ET). Within this theory,
the maximum entropy is the well-established uncertainty measure as it is the
only one that satisfies all essential mathematical properties and behavioral
requirements. Nevertheless, this measure has an important drawback: its
computation is notably complex.

For this reason, many alternatives to the maximum entropy have been devel-
oped during the last years. Among such alternatives, one of the most known
is Deng entropy. In previous works, it was proved that this measure violates
most of the crucial mathematical properties for uncertainty measures in ET,
and its behavior in some scenarios is questionable. In order to solve some
shortcomings of Deng entropy, two modifications of this measure were pro-
posed a few years ago. In this chapter, we have demonstrated that these
modifications also violate most of the fundamental mathematical properties
for uncertainty measures in ET. Moreover, we have also shown that, in some
scenarios, the behavior of the modifications of the Deng entropy is question-
able. For example, in both modifications, the conflict part may be positive
when all focal elements are not disjunct. Furthermore, the extension of these
modified Deng entropies to more general theories than ET is not trivial.

As another alternative to the maximum entropy, belief intervals for single-
tons have been commonly employed during the last years for quantifying
uncertainty-based information in ET. Indeed, they are easier to manage than
BPAs for representing uncertainty-based information. In this chapter, we have
carried out a study about the fundamental mathematical properties and be-
havioral requirements for total uncertainty measures on belief intervals for
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singletons. Such a study has been based on the one previously carried out
for total uncertainty measures on BPAs. It has been highlighted that, when
the belief intervals for singletons are reduced to a single probability distri-
bution, a total uncertainty measure on such intervals must coincide with the
one well-established in classical probability theory, i.e the Shannon entropy;
if it is only known that the uncertainty-based information expressed via the
belief intervals for singletons is focused on a subset of alternatives, then a
total uncertainty measure must take the form of an increasing function with
respect to the cardinality of that subset; the range of a total uncertainty mea-
sure on belief intervals for singletons must be coherent: the minimum value,
which has to be equal to 0, must be attained if, and only if, the information is
focused on a singleton, and its maximum value when all probability distribu-
tions are consistent with the belief intervals fro singletons; a total uncertainty
measure on belief intervals for singletons has to be consistent with an increase
or decrease of information expressed by such intervals; the values of a total
uncertainty measure on the set of belief intervals for singletons corresponding
to a BPA defined over a joint space that can be decomposed on more simple
sets must be coherent. Our proposed set of behavioral requirements for total
uncertainty measures on belief intervals for singletons reveals that the compu-
tation of a measure of this type must not be too complex; it has to be possible
to separate a total uncertainty measure on belief intervals for singletons into
two ones that coherently indicate conflict and non-specificity, respectively; a
total uncertainty measure on belief intervals for singletons must be sensitive
to changes in these intervals, directly or via conflict and non-specificity. We
have shown that none of the uncertainty measures on belief intervals for sin-
gletons proposed so far satisfies all the crucial mathematical properties and
behavioral requirements for this kind of measure.

Furthermore, we have proposed a total uncertainty measure on belief in-
tervals for singletons that consists of the maximum entropy on the credal set
compatible with such intervals. We have demonstrated that, even though our
proposed measure requires a more complex computation than the other un-
certainty measures on belief intervals for singletons proposed so far, it is the
only one that satisfies all the essential mathematical properties and behavioral
requirements for uncertainty measures on belief intervals for singletons. We
have also highlighted that the maximum entropy on the belief intervals for
singletons is always greater or equal than the maximum entropy on the credal
set associated with a belief function. Thereby, our proposal gives an upper
bound of the maximum entropy, the well-established uncertainty measure in
ET, the computation of the former measure being considerably simpler than
the latter.
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Concerning imprecise probability models, in this chapter, we have shown
how to compute the most important uncertainty measures for credal sets as-
sociated with the Approximate Non-Parametric Predictive Inference Model
(A-NPI-M). Remark that this model can be expressed by means of a reachable
set of probability intervals and, unlike the IDM, the A-NPI-M does not assume
previous knowledge about the data through a parameter. Specifically, we have
presented a little bit more simple algorithm than the one proposed so far to
calculate the maximum entropy (the well-established total uncertainty mea-
sure on credal sets) with the A-NPI-M; we have proposed and proved a result
that allows us to quickly obtain the minimum of entropy on A-NPI-M credal
sets; in addition, we have shown how to calculate the generalized Hartley mea-
sure with the A-NPI-M. Hence, with this model, it is possible to know how
both types of uncertainty: conflict (the difference between the maximum en-
tropy and the generalized Hartey measure, or the minimum of entropy), and
non-specificity (the generalized Hartley measure or the difference between
the maximum and minimum entropy), coexist. Those procedures represent
useful tools to make the A-NPI-M very suitable to be employed in practical
applications.





9 P R E C I S E C L A S S I F I C AT I O N W I T H N O I S E

9.1 Introduction

Nowadays, the classification task is widely used in many domains. It con-
sists of learning a model that predicts, for a given instance described via a set
of attributes or features, the value of a class variable. Many algorithms for
classification have been developed so far. Clearly, the performance of classi-
fication methods is worsened when there is noise in the data, i.e. when data
contain errors.

Naïve Bayes (NB) [85] is one of the most simple approaches to traditional
classification. It assumes that all attributes are independent given the class
variable, which is not often realistic. Despite this unrealistic assumption, NB
has obtained good results in practice, comparable with more sophisticated
classification methods, especially when the attributes are not strongly cor-
related [82, 93, 133]. Moreover, the NB algorithm, as a consequence of its
independence assumption, is much faster than other more sophisticated clas-
sification models and the required computational cost is significantly lower.

The NB classifier is based on the Bayes formula [31]. In NB, this formula
is used naïvely, i.e, assuming the independence condition. As pointed out by
Cestnik [47, 48], the evaluation of the naïve Bayesian formula is pretty influ-
enced by the estimation of the conditional probabilities. In Section 4.4, we
have shown that the classical probability estimation through relative frequen-
cies has important shortcomings; the Laplace estimation [103], which was pro-
posed to solve such shortcomings, has some drawbacks too; Cestnik [47, 48]
introduced a new probability estimation (m-probability estimation) that con-
siders the prior probabilities of the class values when the conditional probabil-
ity of the class values given the value of an attribute are estimated. Cestnik [47]
experimentally showed that m-probability estimation provides better results
than the previous approaches of conditional probability estimation, although
the experimentation carried out was very scarce, using only four databases
without added noise. In addition, Cestnik [48] experimentally showed that
m-probability estimation in the tree-pruning process improves the results of
standard pruning methods.

233
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In spite of the improvement in the performance of the NB model with the
m-probability estimation, the algorithm is still quite sensitive to noise. This
happens because the estimation of the prior probabilities is still done by means
of relative frequencies with Laplacian correction, which is clearly deteriorated
with the presence of noise. For this reason, in this chapter, we use the Im-
precise Dirichlet Model (IDM) to estimate the prior probabilities of the class
values. As pointed out previously, this imprecise model has been tested to be
useful for improving the performance of standard models when there is noise
in the data. An example of this issue is the Credal C4.5 algorithm [149].

Specifically, in this chapter, a new Naïve Bayes model, called the Imprecise
m-probability-estimation Naïve Bayes (ImNB), is proposed. It combines the m-
probability estimation with the IDM to obtain a classifier less sensitive to class
noise. An extensive experimental analysis is carried out where our new NB
approach is compared with NB using the m-probability, the Laplace, and clas-
sical probability estimations. The mentioned algorithms are applied to many
datasets without noise and with different levels of added class noise. The
experimental analysis shows that the Cestnik proposal obtains much better
results than NB with Laplace and classical estimations of probabilities, with
much more exhaustive experimentation than in [47] and that the proposed
method performs better than the Cestnik model.

This chapter is organised in the following way: Section 9.2 describes our
proposed Imprecise m-probability estimation Naive Bayes. The experimental
study carried out in this chapter is detailed in Section 9.3. Section 9.4 con-
cludes this chapter.

9.2 Imprecise m-probabil ity-estimation Naïve Bayes

Let C be the class variable and ΩC = {c1, c2, . . . , cK} its set of possible values.
Let

{
X1,X2, . . . ,Xd

}
be the set of predictive attributes. Within this section, we

assume that the domain of each attribute is finite, that is, the possible values
of Xi are

{
xi1, xi2, . . . , xiti

}
, ∀i = 1, 2, . . . ,d.

Our proposed Imprecise m-probability estimation Naïve Bayes model (ImNB)
uses the naïve assumption (see Equation (4.10)). In this way, in order to
classify an instance with attribute vector x = (x1r1 , x2r2 , . . . , xdrd), where ri ∈
{1, 2, . . . , ti} ∀i = 1, 2, . . . ,d, ImNB predicts the following class value:

h(x)NB = arg max
cj∈ΩC

P(C = cj)

d∏
i=1

P(C = cj | X
i = xiri)

P(C = cj)
.
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The difference between ImNB and the other NB algorithms resides in the
estimation of the probabilities P(C = cj) and P(C = cj | Xi = xiri), ∀j =

1, 2, . . . ,K, ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d.
Let Ntr denote the number of training instances and ntr(cj) the number

of instances in the training set for which C = cj, ∀j = 1, 2, . . . ,K. Let us
consider the IDM credal set on C on the training set:

PIDM
tr (C) =

{
p ∈ P(C) |

ntr(cj)

Ntr + s
⩽ p(cj) ⩽

ntr(cj) + s

Ntr + s
, ∀j = 1, 2, . . . ,K

}
,

(9.1)
where s is the IDM parameter and P(C) the set of all probability distributions
on C.

Uncertainty measures can be applied to this credal set. As explained before,
the maximum entropy is a well-established uncertainty measure on credal sets
as it satisfies the required properties. Hence, for the estimation of the prior
probabilities, ImNB uses the probability distribution attains the maximum en-
tropy on PIDM

tr (C), namely p̂ImNB. Algorithm 16 shows the procedure to
obtain such a probability distribution. It is based on Algorithm 3, the pro-
cedure proposed so far for the maximum entropy on reachable probability
intervals (IDM probability intervals are always reachable).

For the estimation of the conditional probabilities P(C = cj | X
i = xiri), ∀j =

1, 2, . . . ,K, ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d, ImNB takes the Cestnik model
as a reference in the sense that it considers the prior probabilities. However,
unlike the Cestnik model, the prior probabilities are estimated through Algo-
rithm 16. According to Cestnik [47], the value of the m parameter in his model
should be greater as there is more noise in the data, as happens with the IDM
parameter s. For this reason, the same values for s and m are chosen.

In this way, ImNB estimates the conditional probabilities as follows:

P̂ImNB(C = cj | X
i = xiri) =

ntr(x
i
ri,j) + sp̂ImNB(cj)

ntr(xiri) + s
, (9.2)

ntr(x
i
ri,j) being the number of training instances that satisfy Xi = xiri ∧C = cj

and ntr(x
i
ri
) the number of training instances for which Xi = xiri , ∀j =

1, 2, . . . ,K, ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d.
Therefore, for classifying an instance with attribute vector x =(

x1r1 , x2r2 , . . . , xdrd
)
, where ri ∈ {1, 2, . . . , ti} ∀i = 1, 2, . . . ,d, ImNB makes the

following prediction:

h(x)ImNB = arg max
cj∈ΩC

p̂ImNB(cj)

d∏
i=1

P̂ImNB(C = cj | X
i = xiri)

p̂ImNB(cj)
, (9.3)
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Algorithm 16: Procedure to compute the probability distribution of
maximum entropy on the IDM credal set on the training set.
Procedure Determine probability distribution of maximum entropy
with the IDM on the training set (Number of training instances Ntr,
class frequencies in the training set (ntr(c1),ntr(c2), . . . ,ntr(cK)), IDM
parameter s)
s ′ ← s

for j = 1 to K do
n ′(cj)← ntr(cj)

while s ′ > 0 do
s ′′ ← min {s ′, 1}
num_min←

∣∣{cj | n ′(cj) = mink=1,2,...,K n ′(ck)
}∣∣

for j = 1 to K do
if n ′(cj) = mink=1,2,...,K {n ′(ck)} then

n ′(cj)← n ′(cj) +
s ′′

num_min

s ′ ← s ′ − 1

for j = 1 to K do
p̂ImNB =

n ′(cj)
Ntr+s

return p̂ImNB
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where p̂ImNB is the probability distribution of maximum entropy on the IDM
credal set on the training set, obtained through Algorithm 16, and P̂ImNB(C =

cj | X
i = xiri) is computed via Equation (9.2), ∀j = 1, 2, . . . ,K, i = 1, 2, . . . ,d.

We must remark the following issues about ImNB:

• For the estimation of the prior probabilities, ImNB considers the proba-
bility distribution that attains the maximum entropy on the IDM credal
set, while the Cestnik model uses Laplace’s estimation. Thus, the Cest-
nik model is more sensitive to the presence of class noise in the training
data. As pointed out before, imprecise probability models have obtained
better results than classical estimators in classification with class noise.

• As the Cestnik model, ImNB takes the prior probabilities of the class
values into account for the estimation of the conditional probabilities. In
consequence, ImNB also solves the problems that arise with classical and
Laplace estimations of such probabilities.

Due to the previous points, it is expected that our proposed ImNB performs
better than the other NB methods, explained in Section 4.4.1, the improvement
being more notable as there is more class noise in the data. This point is
validated in Section 9.3 with exhaustive experimentation.

9.3 Experimentation

9.3.1 Description of the experiments

• Datasets: For the experiments, we have selected 75 well-known datasets,
obtained from UCI Machine Learning Repository [139]. All these datasets
have been widely used in the specialized literature for comparing clas-
sification algorithms. Tables 9.1 and 9.2 show the most relevant charac-
teristics of each dataset. As can be observed, these datasets are diverse
regarding the number of instances, number of continuous and discrete
attributes, number of values of the class variable, and number of values
of discrete features.

• Preprocessing: Since our proposed algorithm only works with discrete
attributes, the datasets have been previously discretized. For this pur-
pose, Fayyad and Irani’s discretization method [88] has been employed.

• Algorithms: In this experimental study, four algorithms have been com-
pared: NB with the classical estimation of probabilities (classical NB),
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NB using the Laplace smoothing (Laplace NB), NB with the Cestnik
model (mNB), and our proposal (ImNB). Classical NB, Laplace NB, and
mNB were described in Section 4.4.1, and our proposed ImNB have been
presented in Section 9.2.

• Evaluation: In order to evaluate the performance of the algorithms con-
sidered here, we principally consider the Accuracy metric. In addition,
since we are using datasets with class noise, we use the average Equalized
Loss Accuracy metric (ELA) [181], detailed in Section 4.2.1.2, to evaluate
the robustness to class noise of each algorithm considered here.

• Procedure: Four noise levels have been considered in our experiments:
0%, 10%, 20%, and 30%. Here, only class noise has been considered. The
noise has been added only to training sets. For each dataset, the noise
has been added by using a random procedure: given a noise level x,
the x% of the instances are randomly selected from the training dataset
and their class value is randomly changed to another class value. The
instances belonging to the test dataset are left unmodified.

To compare the results of the classifiers, a 10-fold cross validation pro-
cedure has been repeated 10 times for each dataset, level of noise, and
algorithm. The same partitions have been used for all methods.

• Software and Parameters: The Weka software [218] has been employed
for our experiments. The implementations available in this software for
Classical NB and Laplace NB have been used, and the necessary struc-
tures and methods for employing mNB and ImNB have been added.
The Weka filters have been utilized for adding noise. Also, for cross-
validation, the functionality available in Weka has been used.

For the ImNB model, in preliminary experiments, it has been noted that
the method has a good performance with m = 4 as the default value.
Obviously, the results would improve if we tuned the value of the pa-
rameter m to the level of noise in the data. However, its default value
has been used for the experiments. With regard to mNB, Cestnik did
not make any recommendation for the m value; we only know that it is
related to the level of noise in the data. Hence, a wide range of values
for the parameter m has been considered. In concrete, twenty values
have been tested for mNB (m=1, . . . ,m=20) in order to obtain the most
appropriate value for each noise level.

• Statistical evaluation: Following the recommendations of Demšar [75]
for statistical comparisons between the results obtained by three or more
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methods on many datasets, we have used the Friedman test to compare
the performance of the algorithms via the Accuracy metric. If the null
hypothesis of this test is rejected, then we compare the performance of
the algorithms by using the Holm test. The level of significance used
is α = 0.05. We present the results of these tests by means of critical
diagrams.

For the selection of the m parameter in mNB, the Friedman ranking has
been employed. Thereby, the chosen m value is the one that leads to the
best rank.

9.3.2 Results and discussion

Table 9.3 shows the Friedman ranks for mNB for each value of the m param-
eter and each noise level. The best value of the parameter m for each noise
level is emphasized using bold font and is the one used for the comparisons
of mNB with the other algorithms.

Tables 9.4 and 9.5 present, respectively, the average Accuracy and Friedman
ranks of the NB algorithms considered in this experimental analysis with dif-
ferent levels of added noise. In both tables, for each noise level, the best result
is marked with bold font and the second-best result with italic font.

Figures 9.1, 9.2 9.3, and 9.4 show the critical diagrams corresponding to the
Holm test with 0%, 10%, 20%, and 10% of added noise, respectively. Remark
that, in such diagrams, segments are used to connect the algorithms for which
there are no statistically significant differences according to the Holm test.

In Table 9.6, the average result obtained by each algorithm in the ELA metric
for each noise level can be seen.

From a general point of view, the following points should be noted:

• Both mNB (tuned) and ImNB have better performance than the NB
models used as reference (NB with and without Laplace smoothing) on
datasets with and without class noise. The improvement is not only with
regard to the classifier Accuracy, via the Friedman and Holm tests, but
also in terms of robustness to noise (ELA measure).

• We can note that our proposed ImNB obtains better results than Cest-
nik’s approach, this improvement being statistically significant in some
cases.

Now, we analyze in detail the experimental results taking into account the
following aspects: Average accuracy, Friedman ranks, Holm test, and robust-
ness to noise:
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Figure 9.1: Critical diagram about the Accuracy of the NB algorithms on datasets with-
out added noise. CD = critical distance

Figure 9.2: Critical diagram about the Accuracy of the NB algorithms on datasets with
a 10% of added noise. CD = critical distance
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Figure 9.3: Critical diagram about the Accuracy of the NB algorithms on datasets with
a 20% of added noise. CD = critical distance

Figure 9.4: Critical diagram about the Accuracy of the NB algorithms on datasets with
a 30% of added noise. CD = critical distance
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• Average accuracy: The methods based on m-probability-estimation, i.e,
mNB and ImNB, always attain the highest average Accuracy, regardless
of the level of added noise. The best result is always achieved by our pro-
posed method (ImNB), and the second-best result is invariably obtained
by Cestnik’s approach (mNB) with the tuned parameter. Regarding aver-
age Accuracy, the worst result is invariably obtained by the NB without
Laplace smoothing (Classical NB). We want to emphasize that this order-
ing from the best NB model (ImNB) to the worst (Classical NB) occurs
independently of the percentage of added noise.

• Friedman ranks and Holm test: The outcomes of the statistical tests re-
inforce the comments made about average Accuracy. The tuned mNB
and the ImNB methods obtain the best Friedman ranks for all levels of
added noise, and the best classifier in the ranking is always our pro-
posal (ImNB). According to the Friedman ranks, the worst NB model
for datasets without added noise is, interestingly, the NB with Laplace
smoothing (Laplace NB). Nevertheless, the NB without the Laplacian
correction (Classical NB) obtains the worst rank for any level of added
noise (10%, 20% or 30%).

Concerning the Holm test, our approach is the only one that always
significantly outperforms the classical NB classifiers with and without
Laplace smoothing, regardless of the level of added noise. Indeed, in the
critical diagrams, unlike mNB, ImNB is never connected via a segment
with Classical NB or Laplace NB. The Cestnik proposal shows a less
consistent behavior: it significantly outperforms NB without Laplace
smoothing for all noise levels; however, it only performs significantly
better than NB with Laplace smoothing when the level of noise is 0%.
In the critical diagrams of Figures 9.1 and 9.4, mNB and ImNB are con-
nected via a segment. The contrary happens in the critical diagrams
of Figures 9.2 and 9.3. Consequently, for 0% and 30% of added noise,
these two algorithms perform equivalently according to the Holm test,
whereas ImNB significantly outperforms mNB with the tuned value of
the parameter via this test for 10% and 20% of added noise.

• ELA measure: According to the average results obtained in this met-
ric, there is no doubt about what methods are the most robust to noise.
The ordering obtained in average Accuracy and Friedman’s ranking co-
incides with the sequence obtained in the ELA measure. Therefore, our
proposal is in the first place, the tuned mNB classifier in the second, NB
with Laplace smoothing in the third place, and the worst result is ob-
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tained by NB without Laplace smoothing (classical NB). This outcome
occurs independently of the percentage of added noise.

9.3.2.1 Summary of the results

With the above analysis, we can summarize the results obtained in this
experimental study (Tables 9.3-9.6 and Figures 9.1-9.4) as follows:

• The methods based on m-probability-estimation (mNB and ImNB) out-
perform the conventional approaches of NB, that is, NB with and with-
out Laplace smoothing (Classical NB and Laplace NB). These outcomes
are obtained consistently, regardless of whether the datasets suffer or not
from class noise. This happens because, unlike Classical NB and Laplace
NB, mNB and ImnB take the prior probabilities into account for this es-
timation of the conditional probabilities. In this way, mNB and ImNB
solve some drawbacks of the classical and Laplace estimations that we
commented in Section 4.4.1.

• Considering statistically significant differences, we may notice that the
best outcomes are achieved by our proposal. This occurs since, as shown
in Section 9.2, ImNB uses the probability distribution of maximum en-
tropy on the IDM credal set for the prior probabilities, while mNB uses
the Laplace estimation for such probabilities. In consequence, our pro-
posed ImNB is less sensitive to class noise than mNB.
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Table 9.1: Description of the datasets used in our experiments with NB models. Col-
umn ‘N’ is the number of instances, column ‘Feat’ is the number of features,
column ‘Num’ is the number of numerical features, column ‘Discr’ is the
number of discrete attributes, column ‘k’ is the number of values of the
class variable, and column ‘Range’ is the range of values of the discrete
attributes.

Dataset N Feat Num Discr k Range
acute-infl-nephritis 120 6 1 5 2 2

anneal 898 38 6 32 6 2-10

appendicitis 106 7 7 0 2 -
arrhythmia 452 279 206 73 16 2

audiology 226 69 0 69 24 2-6
autos 205 25 15 10 7 2-22

balance-scale 625 4 4 0 3 -
bank-marketing 4521 16 7 9 2 2-12

banknote-auth 1372 4 4 0 2 -
breast-cancer 286 9 0 9 2 2-13

breast-cancer-wisconsin 699 9 9 0 2 -
bridges-version1 107 11 3 8 6 2-54

bridges-version2 107 11 0 11 6 2-54

bupa 345 6 6 9 2 -
car 1728 6 0 6 4 3-4
cmc 1473 9 2 7 3 2-4
horse-colic 368 22 7 15 2 2-6
credit-rating-australian 690 15 6 9 2 2-14

credit-rating-german 1000 20 7 13 2 2-11

dermatology 366 34 1 33 6 2-4
diabetes-pima 768 8 8 0 2 -
dresses-sales 500 12 1 11 2 5-25

ecoli 366 7 7 0 7 -
fertility-diagnosis 100 9 9 0 2 -
flags 194 29 2 27 8 4-194

glass 214 9 9 0 7 -
glioma16 50 16 16 0 2 -
haberman 306 3 2 1 2 12

heart-disease-cleveland 303 13 6 7 5 2-14

heart-disease-hungarian 294 13 6 7 5 2-14

heart-statlog 270 13 13 0 2 -
hepatitis 155 19 4 15 2 2

hypothyroid 3772 30 7 23 4 2-4
ionosphere 351 35 35 0 2 -
iris 150 4 4 0 3 -
japanese-crx 690 15 6 9 2 2-14

kr-vs-kp 3196 36 0 36 2 2-3
letter 20000 16 16 0 26 -
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Table 9.2: Description of the datasets used in our experiments with NB models (cont).
Column ‘N’ is the number of instances, column ‘Feat’ is the number of
features, column ‘Num’ is the number of numerical features, column ‘Discr’
is the number of discrete attributes, column ‘k’ is the number of values of
the class variable, and column ‘Range’ is the range of values of the discrete
attributes.

Dataset N Feat Num Discr k Range
liver-disorders 345 6 6 0 2 -
lsvt-voice-rehab 126 310 310 0 2 -
lymphography 146 18 3 15 4 2-8
mfeat-pixel 2000 240 0 240 10 4-6
mol-splice-junction 3190 60 0 60 3 4-5
nursery 12960 8 0 8 4 2-4
optdigits 5620 64 64 0 10 -
page-blocks 5473 10 10 0 5 -
parkinsons 195 22 22 0 2 -
pendigits 10992 16 16 0 10 -
postoperative-patient 90 8 8 0 3 2-4
primary-tumor 339 17 0 17 21 2-3
qsar-biodegradation 1055 41 41 0 2 -
qualitative-bankruptcy 250 6 0 6 2 3

saheart 462 9 8 1 2 2

segment 2310 19 16 0 7 -
seismic-bumps 2584 18 14 4 2 2-3
sick 3772 29 7 22 2 2

solar-flare2 1066 12 0 6 3 2-8
sonar 208 60 60 0 2 -
soybean 683 35 0 35 19 2-7
spambase 4601 57 57 0 2 -
spect 267 22 0 22 2 2

spectf 349 44 44 0 2 -
spectrometer 531 101 100 1 48 4

splice 3190 60 0 60 3 4-6
sponge 76 44 0 44 3 2-9
tae 151 5 3 2 3 2

thoracic-surgery 470 16 3 13 2 2-7
tic-tac-toe 958 9 0 9 2 3

turkiye-student 5820 32 32 0 13 -
vehicle 946 18 18 0 4 -
vote 435 16 0 16 2 2

vowel 990 11 10 1 11 2

waveform 5000 40 40 0 3 -
wine 178 13 13 0 3 -
zoo 101 16 1 16 7 2
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Table 9.3: Friedman ranks about Accuracy of mNB with different values of m for
each noise level.

m 0% Noise 10% Noise 20% Noise 30% Noise
1 7.93 9.63 11.75 12.49

2 8.14 8.95 10.74 11.92

3 7.98 8.99 10.41 11.51

4 8.11 9.35 10.30 11.07

5 8.65 9.59 10.21 11.04

6 9.05 9.67 10.19 10.66

7 9.39 9.39 10.71 10.11

8 9.23 9.28 9.99 10.27

9 9.55 9.68 10.15 10.29

10 10.25 10.26 10.15 10.26

11 10.49 10.71 10.05 10.48

12 10.87 11.11 10.20 10.23

13 11.67 11.59 10.17 9.52
14 11.95 11.58 10.17 9.73

15 12.15 11.81 10.18 9.77

16 12.01 11.44 10.64 9.81

17 12.65 11.49 11.07 9.77

18 12.93 11.74 11.03 9.88

19 13.35 11.94 10.81 10.45

20 13.63 11.80 11.09 10.75

Table 9.4: Average Accuracy results of the NB models with different levels of added
noise.

Algorithm noise 0% noise 10% noise 20% noise 30%
Classical NB 77.05 74.69 73.08 71.08

Laplace NB 77.33 75.44 74.09 72.19

mNB BESTm 79.60 77.74 76.11 73.54
ImNB 79.88 78.67 77.17 74.64

Table 9.5: Friedman ranks about the Accuracy of the NB algorithms with different
percentages of added noise.

Algorithm noise 0% noise 10% noise 20% noise 30%
Classical NB 2.76 3.12 3.05 2.97

Laplace NB 2.97 2.81 2.77 2.66

mNBBESTm 2.21 2.35 2.37 2.36
ImNB 2.07 1.73 1.81 2.01

Table 9.6: Average values of the ELA measure obtained by the NB algorithms for
each noise level.

Algorithm noise 10% noise 20% noise 30%
Classical NB 0.3285 0.3494 0.3753

Laplace NB 0.3176 0.3351 0.3596

mNBBESTm 0.2796 0.3001 0.3324
ImNB 0.2670 0.2858 0.3175
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9.4 Conclusions

Naïve Bayes (NB) is a fast and simple approach to classification that has
obtained good results in practice, comparable with more sophisticated clas-
sification algorithms. The estimation of the probabilities is the key point of
NB. Many years ago, Cestnik [47] proposed a new NB model with a new way
of estimating the probabilities. Such a model takes the prior probabilities into
account through a parameter m for the estimation of the conditional probabili-
ties. We believe that the Cestnik approach has not received sufficient attention
from the scientific community, and we think that this is why we have not
found an extensive comparison where this model evidences its worth.

In this chapter, we have proposed a new NB model, called the Imprecise
m-probability estimation Naïve Bayes (ImNB), that also takes the prior prob-
abilities of the class values into account for the estimation of the conditional
probabilities. Nonetheless, our proposal uses the well-established uncertainty
measure on credal sets for the estimation of the prior probabilities, whereas
the Cestnik model employs relative frequencies with Laplacian correction to
estimate such probabilities. Therefore, it can be stated that our proposed
ImNB is more robust to class noise than the Cestnik model.

An exhaustive experimental analysis has been carried out in this chapter
with many datasets and several levels of added noise to compare the perfor-
mance of our proposed ImNB, the Cestnik model, and NB with classical and
Laplace estimations. Such an experimental analysis has highlighted the fol-
lowing points:

• The best choice of the parameter m in the Cestnik model depends on the
level of noise in the data, being generally higher as there is more noise.

• ImNB and the Cestnik model with the tuned value of m perform far
better than NB estimating the probabilities in a classical way and with
Laplace smoothing, regardless of the level of noise in the data.

• Our proposed ImNB using its default m value always achieves better
results than the Cestnik model with parameter tuning, although the dif-
ferences are not statistically significant in some cases. ImNB always
significantly outperforms NB with and without Laplace smoothing.

To summarize, in this chapter, it has been shown, with much more exhaus-
tive experimentation than in [47], that the Cestnik model supposes a very con-
siderable improvement over Laplace and classical estimations of the probabili-
ties in NB. Furthermore, we have presented a new way of estimating probabil-
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ities in NB based on the m-probability estimation and imprecise probabilities
that outperforms the Cestnik model.



10 I M P R OV E M E N TS OV E R I M P R E C I S E
C L A S S I F I C AT I O N A LG O R I T H M S

10.1 Introduction

Classifiers sometimes predict a set of values of the class variable because
the available information is not sufficient to point out a single class value.
This type of prediction is known as imprecise prediction, and classifiers that
make imprecise predictions are called imprecise classifies. The first method
proposed for Imprecise Classification was the Naïve Credal Classifier (NCC)
[62, 227]. It combines the IDM with the naïve assumption to make imprecise
predictions. Afterwards, the first Imprecise Classification method based on a
single Decision Tree, called Imprecise Credal Decision Tree (ICDT), was pro-
posed by Abellán and Masegosa [10]. For building the tree, ICDT employs
uncertainty measures on credal sets and, to classify instances at leaf nodes, it
uses the well-established dominance criterion on the probability intervals at
such leaf nodes. Abellán and Masegosa [10] experimentally showed that ICDT
significantly outperforms NCC as the former method is far more informative
than the latter.

ICDT uses the IDM for the uncertainty measures and the probability inter-
vals at leaf nodes. As commented previously, the A-NPI-M is an imprecise
probability model also based on reachable probability intervals that, unlike
the IDM, does not assume previous knowledge about the data via a parameter.
In precise classification, the A-NPI-M performs equivalently to the IDM with
the best selection of the parameter [6]. For these reasons, in this chapter, we
propose a new Imprecise Credal Decision Tree that utilizes the A-NPI-M for
the uncertainty measures in the split criterion and for the probability intervals
at leaf nodes (ICDT-ANPI). We carry out an experimental study to compare
the proposed ICDT-ANPI with the existing ICDT using different values of the
IDM parameter. The obtained results are consistent with the ones achieved in
precise classification: the performance of ICDT is strongly influenced by the
choice of the IDM parameter and ICDT-ANPI has equivalent performance to
ICDT with the best choice of the parameter.

Moreover, in this chapter, we propose a new version of the NCC algorithm
called the Extreme Prior Naive Credal Classifier (EP-NCC). For the estimation
of the lower and upper conditional probabilities of the class values, unlike

249
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NCC, EP-NCC takes the lower and upper prior probabilities into account. It
is based on the idea of the NB for precise classification proposed by Cestnik,
described in Section 4.4.1. We show that, with our proposed EP-NCC, the
non-dominated states set is often smaller than with the existing NCC. In this
way, EP-NCC solves the drawback found in [10] about the NCC method: it is
not very informative as it predicts too many class values. Since EP-NCC pre-
dicts fewer class values than NCC, the risk of making erroneous predictions
might be higher with the former method. Nevertheless, EP-NCC considers the
extreme prior probabilities of the class variable to reduce the number of pre-
dicted class values and, thus, the risk of incorrect predictions may not be much
higher than with NCC. We carry out exhaustive experimentation to compare
the performance of NCC, EP-NCC, and ICDT. Such experimentation reveals
that our proposed EP-NCC significantly outperforms the existing NCC and
that EP-NCC obtains statistically equivalent results to the ones achieved by
ICDT. Specifically, EP-NCC obtains significantly better results than NCC in
the metrics corresponding to the number of non-dominated states; the per-
formance of both algorithms in the metrics associated with making correct
predictions is equivalent; even though EP-NCC is not as accurate as ICDT, the
former method is more informative than the latter as it predicts fewer values
of the class variable. The experimental analysis also shows that the processing
time for EP-NCC is considerably lower than for ICDT.

It should be noted that there is no algorithm for Imprecise Classification
so far that makes an ensemble of classifiers even though ensembles tend to
improve the performance of individual classifiers. It might be because, as the
predictions made by imprecise classifiers usually consist of a set of class values,
it is not a trivial question to combine them, and there is no technique so far
for this purpose. If the imprecise predictions are not combined properly, then
it is quite probable that the performance of the ensemble is not better than the
performance of a single imprecise classifier because an excessive reduction of
the information can be produced. Hence, a technique for combining multiple
imprecise predictions must achieve a good trade-off between risk (the real class
value does not belong to the set of predicted ones) and informativeness (how
many class values are predicted)

In this chapter, as a novelty, we propose an ensemble method for Imprecise
Classification that combines the predictions made by the individual classifiers
in such a way that the ensemble method is as informative as possible although
it implies a higher risk of erroneous predictions. When many imprecise pre-
dictions are combined, there is a risk of loss of information. We will see that
this does not happen with our proposed combination technique. Specifically,
our proposed ensemble method consists of a Bagging scheme using the ICDT
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algorithm as the base classifier. The reasons are that Bagging has obtained
good performance in precise classification and Decision Trees are appropriate
to be used in ensembles because they encourage diversity, and the key issue
for the success of an ensemble scheme is that the individual classifiers are not
only accurate but also diverse. An experimental analysis highlights that our
proposed Bagging method for Imprecise Classification performs significantly
better than ICDT.

All the above-mentioned algorithms assume that all classification errors
have the same importance. However, in practical applications, different classi-
fication errors usually yield different costs. The ICDT algorithm was adapted
for cost-sensitive classification by Abellán and Masegosa [10]. Such an adap-
tation uses the same tree-building process as the original ICDT method. At
leaf nodes, it determines a risk interval for each value of the class variable con-
sidering the costs of errors. Then, it obtains the non-dominated states set via
a strong dominance criterion on these risk intervals. Abellán and Masegosa
[10] also adapted NCC for cost-sensitive classification. They experimentally
showed that the adaptation of ICDT outperforms the adaptation of NCC since
the former is more informative. The mentioned adaptations are the only algo-
rithms proposed so far for cost-sensitive Imprecise Classification.

It is important to remark that the adaptation of ICDT for cost-sensitive clas-
sification proposed so far does not take the error costs into account in the
procedure to build the tree; it considers, at each step of the procedure, that
all instances have the same importance, regardless of their class values. This
is obviously not optimal in scenarios where different classification errors lead
to different costs. Hence, we consider, as in the Weighted Decision Tree al-
gorithm for precise classification, exposed in Section 4.8.1, that the instances
with a higher cost of error of the corresponding class value should have more
weight than the instances for which the error cost of their class value is lower.
In addition, the adaptation of ICDT for cost-sensitive classification proposed
so far uses the IDM in the building process and for the probability intervals
at leaf nodes. As pointed out before, the IDM assumes previous knowledge
about the data via a parameter, and there is no way so far of associating the
optimal value of such a parameter with each dataset. The A-NPI-M is a non-
parametric approach that solves this shortcoming.

In this chapter, we propose a new cost-sensitive Imprecise Credal Decision
Tree that employs the A-NPI-M and considers weights for the training in-
stances depending on the error costs of their class values, similar to Weighted-
DT. In this way, for computing the uncertainty measures in the split criterion
and determining the probability intervals for the class values at leaf nodes, the
instances with a higher cost of error of their class value have more importance.
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We also show that the criterion used by our developed cost-sensitive Imprecise
Credal Decision Tree for classifying instances may be more informative than
the one of the existing cost-sensitive ICDT. An experimental analysis is carried
out to compare the original cost-sensitive ICDT using the IDM and the A-NPI-
M and our proposed cost-sensitive Imprecise Credal Decision Tree. Such an
experimental analysis highlights that the A-NPI-M obtains equivalent results
to the IDM with the recommended value of the parameter when both models
are used in the existing cost-sensitive ICDT and that the new cost-sensitive Im-
precise Credal Decision Tree significantly outperforms the existing one; even
though our proposed method obtains higher misclassification costs than the
existing cost-sensitive ICDT, it is often more informative and achieves a better
trade-off between low cost of incorrect classifications and informative predic-
tions.

The rest of this chapter is structured as follows: In Section 10.2, we present
the Imprecise Credal Decision Tree based on the A-NPI-M. Section 10.3 de-
scribes our proposed Extreme Prior Naïve Credal Classifier. The Bagging
method for Imprecise Classification is introduced in Section 10.4. Section 10.5
describes our proposed cost-sensitive Imprecise Credal Decision Tree. This
chapter is concluded in Section 10.6.

Within this section, let C be the class variable and ΩC = {c1, c2, . . . , cK}
its set of possible values. Let

{
X1,X2, . . . ,Xd

}
denote the set of predictive

attributes.

10.2 Imprecise Credal Decision tree with A-NPI-M

The difference between our proposed Imprecise Credal Decision Tree with
the A-NPI-M (ICDT-ANPI) and the existing ICDT is the mathematical model
utilized for the split criterion and to compute the probability intervals at leaf
nodes: whereas the existing ICDT uses the IDM, our proposed ICDT-ANPI
employs the A-NPI-M.

Let D be the subset of the training set associated with a certain node. Let
ND denote the total number of instances in D and nD(cj) the number of
instances in D for which C = cj, ∀j = 1, 2, . . . ,K. We have the following set
of A-NPI-M probability intervals on C corresponding to D:

IDANPI(C) =

{
IDANPI(cj) =

[
max

(
nD(cj) − 1

ND
, 0
)

,

min

(
nD(cj) + 1

ND
, 1
)]

, j = 1, 2, . . . ,K
}

.
(10.1)
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As we know, this set of probability intervals is always reachable and gives
rise to the following credal set on C:

PD
ANPI(C) =

{
p ∈ P(C) | p(cj) ∈ IANPI(cj), ∀j = 1, 2, . . . ,K

}
, (10.2)

where P(C) denotes the set of all probability distributions on C.
Similarly to ICDT, the basis of the split criterion of our proposed ICDT-

ANPI is the maximum entropy on this credal set:

S∗
(
PD
ANPI(C)

)
= max

p∈PD
ANPI(C)

S(p). (10.3)

The split criterion of ICDT-ANPI is the uncertainty-based information gain
taking as a reference the maximum entropy on the A-NPI-M credal set on C,
defined in Equation (10.3). Such a split criterion, for an attribute Xi that takes
values in

{
xi1, xi2, . . . , xiti

}
, is defined in the following way:

IIG(C,Xi)DANPI = S∗
(
PD
ANPI(C)

)
−

ti∑
ri=1

PD(Xi = xiri)S
∗
(
PD
ANPI(C | Xi = xiri)

)
,

(10.4)
where S∗

(
PD
ANPI(C | Xi = xiri

)
is the maximum entropy on the A-NPI-M credal

set on C on the subset of D composed of those instances for which Xi = xiri
and PD(Xi = xiri) is the probability that Xi = xiri on D, estimated through
relative frequencies:

PD(Xi = xiri) =
nD(xiri)

ND
,

nD(xiri) being the number of instances in D such that Xi = xiri , ∀ri =

1, 2, . . . , ti, i = 1, 2, . . . ,d.
In order to classify instances, ICDT-ANPI computes a probability interval

for each class value at each leaf node using the A-NPI-M. Let L be a leaf
node. Let NL denote the number of instances in L and nL(cj) the number of
instances in L that satisfy C = cj, ∀j = 1, 2, . . . ,K. We have the following set
of A-NPI-M probability intervals on C on L:

ILANPIM(C) =

{[
max

(
nL(cj) − 1

NL
, 0
)

,

min

(
nL(cj) + 1

NL
, 1
)]

, j = 1, 2, . . . ,K
}

.
(10.5)

A dominance criterion has to be applied to these intervals for obtaining
the non-dominated states set. Since A-NPI-M probability intervals are always
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reachable, in this case, the stochastic and credal dominance criteria are equiv-
alent. For this reason, in order to obtain the non-dominated states set, ICDT-
ANPI uses the stochastic dominance criterion, which is much easier to check.
Consequently, in ICDT-ANPI, a class value cj dominates another one ck at L
if, and only if,

max
(
nL(cj) − 1

NL
, 0
)

> min
(
nL(ck) + 1

NL
, 1
)
⇔

nL(cj) − 1

NL
>

nL(ck) + 1

NL
⇔ nL(cj) − 1 > nL(ck) + 1.

Thereby, at the leaf node L, the non-dominated states set predicted by ICDT-
ANPI is determined as follows:

ndsLICDT−ANPI =
{
ck | nL(ck) + 1 ⩾ nL(cj) − 1 ∀j = 1, 2, . . . ,K

}
. (10.6)

Similar to ICDT, for classifying an instance via ICDT-ANPI, a path from the
root node to a leaf one is made by using the attribute values of that instance.
Then, the stochastic dominance is applied to the probability intervals at that
leaf node to obtain the non-dominated states set for the instance. Algorithm
17 summarizes the procedure to classify an instance with ICDT-ANPI.

Algorithm 17: Procedure to classify an instance with ICDT-ANPI.
Procedure Classify_ICDT-ANPI(ICDT-ANPI T, instance with attribute
vector x)
1. Follow a path in T from the root node to a leaf one L using the

attribute vector x.
2. Consider the set of A-NPI-M probability intervals on C at L,
ILANPIM(C), computed through Equation (10.5).

3. Obtain the non-dominated states set at L via the stochastic
dominance criterion on ILANPIM(C):

h(x) = ndsLICDT−ANPI,

where ndsLICDT−ANPI is determined by means of Equation (10.6).
return h(x)

10.2.1 Experiments

For our experimental analysis, we base on the experimental study carried
out by Abellán and Masegosa in [10], where ICDT and NCC were compared.
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10.2.1.1 Experimental settings

• Datasets: In our experiments, 34 datasets have been used, which can
be downloaded from the UCI Machine Learning Repository. The datasets
have been chosen in such a way that they have at least three class values
because, with only two values of the class variable, an imprecise classifier
always predicts all class values or only one. Table 10.1 shows the most
important characteristics of each dataset. We may note that the datasets
are diverse concerning the number of instances, number of continuous
and discrete features, number of values of the class variable, etc.

• Preprocessing: Missing values have been replaced with mean values
for continuous features and with modal values for discrete attributes.
Afterwards, the datasets have been discretized via Fayyad and Irani’s
discretization method.

• Algorithms: In this experimentation, we aim to compare the existing
ICDT algorithm with three values of the IDM parameter, s = 1, s = 2,
and s = 3, and our proposed ICDT-ANPI method.

• Evaluation: The main evaluation metrics employed to test the perfor-
mance of the algorithms considered in this experimental study are DACC
and MIC1. For understanding better the behavior of the classifiers, we
also consider the average values of Determinacy, Single Accuracy, Inde-
terminacy Size, and Set Accuracy. All these metrics were detailed in
Section 5.3.

• Procedure: For comparing the results of the classifiers, a 10-fold cross-
validation procedure has been repeated 10 times for each dataset and
algorithm. The same partitions have been used for all methods.

• Software and Parameters: The Weka software [218] has been employed
for our experimental study. It has been started from the implementation
available in this software for ICDT, and the necessary structures and
methods for using ICDT-ANPI have been added. The Weka filters have
been employed for the preprocessing. Also, for cross validation, the
functionality available in Weka has been used.

For ICDT, three values of the IDM parameter have been used: s = 1,
s = 2 and s = 3. The rest of the parameters used in both algorithms

1 Here, we use MIC0/1 since both ICDT and ICDT-ANPI assume the same cost for all classifica-
tion errors.
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Table 10.1: Description of the datasets employed in our experiments for Imprecise
Classification. Column “N" is the number of instances, column “Attr" is
the number of attributes, column “Cont" is the number of continuous fea-
tures, column “Disc" is the number of discrete features, column “K" is the
number of class values, and column “Range" is the range of values of the
discrete attributes.

Dataset N Attr Cont Disc K Range
anneal 898 38 6 32 6 2-10

arrhythmia 452 279 206 73 16 2

audiology 226 69 0 69 24 2-6
autos 205 25 15 10 7 2-22

balance-scale 625 4 4 0 3 -
car 1728 6 0 6 4 3-4
cmc 1473 9 2 7 3 2-4
dermatology 366 34 1 33 6 2-4
ecoli 366 7 7 0 7 -
flags 194 30 2 28 8 2-13

hypothyroid 3772 30 7 23 4 2-4
iris 150 4 4 0 3 -
letter 20000 16 16 0 26 -
lymphography 146 18 3 15 4 2-8
mfeat-pixel 2000 240 0 240 10 4-6
nursery 12960 8 0 8 4 2-4
optdigits 5620 64 64 0 10 -
page-blocks 5473 10 10 0 5 -
pendigits 10992 16 16 0 10 -
postop-patient-data 90 9 0 9 3 2-4
primary-tumor 339 17 0 17 21 2-3
segment 2310 19 16 0 7 -
soybean 683 35 0 35 19 2-7
spectrometer 531 101 100 1 48 4

splice 3190 60 0 60 3 4-6
sponge 76 44 0 44 3 2-9
tae 151 5 3 2 3 2

vehicle 946 18 18 0 4 -
vowel 990 11 10 1 11 2

waveform 5000 40 40 0 3 -
wine 178 13 13 0 3 -
zoo 101 16 1 16 7 2
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have been the ones given by default in Weka. Let ICDT-IDMi denote
ICDT-IDM with s = i, for i = 1, 2, 3.

• Statistical evaluation: In accordance with the recommendations given
by Demšar [75] for statistical comparisons between the results obtained
by three or more algorithms on many datasets, we have used the Fried-
man test to compare the performance of the classifiers considered here
via DACC and MIC. If the null hypothesis of this test is rejected, then
we compare the algorithms pairwise via the Nemenyi test. The level of
significance utilized is α= 0.05. We present the results of these tests by
means of critical diagrams.

10.2.1.2 Results and discussion

Tables 10.2 and 10.3 show the average values and Friedman ranks corre-
sponding to DACC and MIC, respectively. In both tables, the best results are
marked in bold. The critical diagrams associated with DACC and MIC can be
seen in Figures 10.1 and 10.2, respectively.

Table 10.2: Average values and Friedman ranks of ICDT and ICDT-ANPI for the
DACC measure.

Algorithm Average Friedman Rank
ICDT-ANPI 0.7675 1.9118
ICDT-IDM1 0.7763 2.3382
ICDT-IDM2 0.7606 2.4853
ICDT-IDM3 0.7482 3.2647

Table 10.3: Average values and Friedman ranks of ICDT and ICDT-ANPI for the MIC
measure.

Algorithm Average Friedman Rank
ICDT-ANPI 1.3414 1.9706
ICDT-IDM1 1.3652 2.4412
ICDT-IDM2 1.3334 2.5
ICDT-IDM3 1.3065 3.0882

The following points should be noted about these results:

• Average values: For both DACC and MIC, the highest average value
is obtained by ICDT-IDM1, followed by ICDT-ANPI, ICDT-IDM2, and
ICDT-IDM3.
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Figure 10.1: Critical diagram of ICDT and ICDT-ANPI for the DACC metric. CD =
Critical Distance.

Figure 10.2: Critical diagram of ICDT and ICDT-ANPI for the MIC metric. CD =
Critical Distance.
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• Friedman ranks: The proposed ICDT-ANPI algorithm achieves the best
Friedman rank for both DACC and MIC. Regarding ICDT, the higher is
the value of the IDM parameter, the higher is the Friedman rank.

• Nemenyi test: In the critical diagram corresponding to DACC (Figure
10.1), it can be observed that the only algorithms that are not connected
via a segment are ICDT-IDM1 and ICDT-IDM3 and ICDT-ANPI and
ICDT-IDM3. In consequence, for DACC, both ICDT-ANPI and ICDT-
IDM1 perform significantly better than ICDT-IDM3 according to the Ne-
menyi test. In the critical diagram associated with MIC (Figure 10.2), the
only algorithms that are not connected via a segment are ICDT-ANPI
and ICDT-IDM3. Thus, ICDT-ANPI significantly outperforms ICDT-
IDM3 via the Nemenyi test for MIC. As ICDT-ANPI, ICDT-IDM1, and
ICDT-IDM2 are connected via a segment in both critical diagrams, it
can be stated that these three algorithms obtain statistically equivalent
results according to the Nemenyi test for both DACC and MIC.

Hence, the performance of the ICDT algorithm depends on the choice of the
s parameter. Regarding ICDT-ANPI, the results obtained by this algorithm are
statistically equivalent to the ones obtained by ICDT with the best s parame-
ter. Furthermore, ICDT-NPI performs significantly better than ICDT with the
worst value of the s parameter.

Table 10.4 shows the average values of Determinacy, Single Accuracy, Set
Accuracy and Indeterminacy size obtained by each algorithm.

Table 10.4: Average results obtained for basic metrics by of ICDT and ICDT-ANPI.
Ind Size = Indeterminacy Size. Best scores are marked in bold.

Algorithm Determinacy Single Accuracy Set Accuracy Ind Size
ICDT-ANPI 0.9002 0.8237 0.9561 7.9381
ICDT-IDM1 0.9477 0.8023 0.8844 5.2955
ICDT-IDM2 0.8985 0.8119 0.9168 5.9313
ICDT-IDM3 0.8666 0.8151 0.9218 6.1346

We express the following comments about these results:

• Determinacy: ICDT-IDM1 achieves the highest average Determinacy
value. It means that the highest number of instances precisely classified
is obtained with ICDT-IDM1. ICDT-ANPI obtains the second-highest
average Determinacy value, followed by ICDT-IDM2 and ICDT-IDM3.

• Single Accuracy: For the accuracy among the instances for which a sin-
gle value of the class variable is predicted, ICDT obtains the worst per-
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formance with s = 1. In the ICDT algorithm, the higher is the value of
the s parameter, the better is the performance in Single Accuracy. The
highest average Single Accuracy value is obtained by ICDT-ANPI.

• Indeterminacy Size: The lowest average Indeterminacy size value is
achieved by ICDT-IDM1. Indeed, in ICDT, the lower is the s value, the
lower is the average Indeterminacy size value. The highest average num-
ber of non-dominated states is obtained by ICDT-ANPI.

• Set Accuracy: The results achieved in Set Accuracy are similar to the
ones obtained in Single Accuracy: ICDT performs better as the value of
the s parameter is higher and ICDT-ANPI outperforms ICDT with the
three s values considered.

Therefore, with ICDT-ANPI, the best trade-off between predicting only one
class value and making correct predictions is attained. This algorithm obtains
the second-highest score in Determinacy and the best score in Single Accuracy,
whereas ICDT-IDM1, which achieves the highest average Determinacy value,
obtains the worst results in Single Accuracy. Moreover, when there is more
than one predicted value of the class variable, in the ICDT algorithm, the sizes
of the non-dominated states sets are larger as the s value is higher and the
largest sets are obtained with the ICDT-ANPI algorithm. Nonetheless, ICDT-
ANPI obtains the highest proportion of instances for which the real class value
is predicted and, in the ICDT method, this proportion is lower as the value of
the s parameter is lower.

Summary of the results: The results obtained in this experimental anal-
ysis can be summarized in the following points:

• The ICDT algorithm predicts the real class value more frequently as the
value of the s parameter is higher. However, if the s value is higher, then
the predictions made by ICDT are less informative in the sense that the
number of predicted class values sets is larger. This happens because the
IDM is more imprecise as the value of the s parameter is higher.

• With ICDT-ANPI, although the non-dominated set is, on average, larger
than with ICDT, it is achieved the best trade-off between predicting fewer
values of the class variable and making correct predictions.

• The results obtained in the DACC and MIC measures allow us to deduce
that ICDT-ANPI performs equivalently to ICDT with the best choice of
the s parameter. In addition, the results obtained by ICDT-ANPI are



10.3 Extreme Prior Naïve Credal Classif ier 261

significantly better than the ones obtained by ICDT with the worst s

value.

10.3 Extreme Prior Naïve Credal Classif ier

Within this section, we assume that the domain of each attribute Xi is finite,
that is, the possible values of Xi are

{
xi1, xi2, . . . , xiti

}
, ∀i = 1, 2, . . . ,d.

We also assume that the lower probability of each value of the class variable
is strictly greater than 0. Our proposed Extreme Prior Naïve Credal Classifier
(EP-NCC) considers the Bayesian formula with the naïve assumption in the
following way:

P
(
C = cj | X

1 = x1r1 ,X2 = x2r2 , . . . ,Xd = xdrd
)
∼

P
(
C = cj

) d∏
i=1

P
(
Xi = xiri | C = cj

)
= P

(
C = cj

) d∏
i=1

P
(
Xi = xiri ,C = cj

)
P
(
C = cj

) =

P
(
C = cj

) d∏
i=1

P
(
Xi = xiri

)
P
(
C = cj | X

i = xiri
)

P
(
C = cj

) ∼

P
(
C = cj

) d∏
i=1

P
(
C = cj | X

i = xiri
)

P
(
C = cj

) ,

∀j = 1, 2, . . . ,K, ri = 1, 2 . . . , ti, i = 1, 2, . . . ,d.
(10.7)

Let Ntr be the number of training instances and ntr(cj) the number of
training instances such that C = cj, ∀j = 1, 2, . . . ,K. We have the set of IDM
probability intervals on C, IIDM(C), determined through Equation (5.11). We
consider the IDM credal set on C consistent with such intervals:

PEP (C) =
{
p ∈ P(C) | p(cj) ∈ IDM(cj), ∀j = 1, 2, . . . ,K

}
, (10.8)

P(C) being the set of all probability distributions on C.

Let ntr

(
xiri
)

denote the number of training instances such that Xi = xiri

and ntr

(
xiri,j

)
the number of training instances that satisfy Xi = xiri ∧ C =

cj, ∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d, j = 1, 2, . . . ,K. For each i = 1, 2, . . . ,d,
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and each ri = 1, 2, . . . , ti, we consider the following conditional credal set on
the class variable:

PEP

(
C | xiri

)
=

p ∈ P(C) |
ntr

(
xiri,j

)
+ sp

EP
(cj)

ntr

(
xiri
)
+ s

⩽ p(cj) ⩽
ntr

(
xiri,j

)
+ spEP(cj)

ntr

(
xiri
)
+ s

, ∀j = 1, 2, . . . ,K

 ,

(10.9)

where s is the IDM parameter and p
EP

(ck) and pEP(ck) are, respectively, the
minimum and maximum values on cj among all probability distributions be-
longing to PEP (C). They are obtained as follows:

p
EP

(cj) =
ntr

(
cj
)

Ntr + s
, pEP(cj) =

ntr

(
cj
)
+ s

Ntr + s
, ∀j = 1, 2, . . . ,K. (10.10)

As NCC, we refer the credal sets PEP (C) and PEP

(
C | xiri

)
as local credal

sets, ∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d. The proposed EP-NCC algorithm con-
siders, for each i = 1, 2, . . . ,d, and each ri = 1, 2, . . . , ti, the set of joint proba-
bility distributions PEP

(
C, x1r1 , x2r2 , . . . , xdrd

)
resulting from making every pos-

sible combination of probability distributions on the local credal sets defined
above:

PEP

(
C, x1r1 , x2r2 , . . . , xdrd

)
=

{
pc

d∏
i=1

pi
ri

pc
, | pc ∈ PEP(C), pri ∈ PEP

(
C | xiri

)}
.

(10.11)
Suppose now that it is wanted to classify an instance for which Xi = xiri ,

with ri ∈ {1, 2, . . . , ti} ∀i = 1, 2, . . . ,d.
The following result shows that the local credal sets PEP

(
C | xiri

)
are de-

fined by reachable probability intervals, ∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d.

Proposition 10.3.1 The set of probability intervals

IC|xi
ri
=


ntr

(
xiri,j

)
+ sp

EP
(cj)

ntr

(
xiri
)
+ s

,
ntr

(
xiri,j

)
+ spEP(cj)

ntr

(
xiri
)
+ s

 , j = 1, 2, . . . ,K


is reachable, ∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d.

Proof:
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For each i = 1, 2, . . . ,d, it holds that:

ntr

(
xiri,j

)
+ sp

EP
(cj)

ntr

(
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)
+ s

+

K∑
k=1,k̸=j
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(
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=
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+
s
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 ⩾

ntr

(
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)
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(
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+
s
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(
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+ s

= 1, ∀j = 1, 2, . . . ,K.

since sets of IDM probability intervals are reachable.

Analogously, it can be checked that

ntr

(
xiri,j

)
+ spEP(cj)

ntr

(
xiri
)
+ s

+

K∑
k=1,k̸=j

ntr

(
xiri,k

)
+ sp

EP
(ck)

ntr

(
xiri
)
+ s

⩽ 1, ∀j = 1, 2, . . . ,K,

and Proposition 2.2.6 allows us to conclude that IC|xi
ri

is reachable.

□

Therefore, in our case, the credal and stochastic dominance criteria are
equivalent. Consequently, we only need to analyze the relations among the
bounds of the predicted intervals to obtain the non-dominated states set.

We consider

p
EP

(cj | x
i
ri
) = min

pji∈PEP

(
C|xi

ri

){pji(cj | x
i
ri
)
}

,

pEP(cj | x
i
ri
) = max

pji∈PEP

(
C|xi

ri

){pji(cj | x
i
ri
)
}

, ∀j = 1, 2, . . . K, i = 1, 2, . . . ,d.

(10.12)

Clearly,

p
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(cj | x
i
ri
) =
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, pEP(cj | x
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ri
) =
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(
xiri,j

)
+ spEP(cj)
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(
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)
+ s

,

∀j = 1, 2, . . . K, i = 1, 2, . . . ,d.
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We may observe that:

min
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Thus, according to EP-NCC, a class value ck dominates another one cj if,
and only if:
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∀j,k ∈ {1, 2, . . . ,K} .



10.3 Extreme Prior Naïve Credal Classif ier 265

Since we are considering the credal set associated with the IDM for C, it
holds that ck dominates cj under EP-NCC if, and only if:
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To sum up, with EP-NCC, when it is required to classify a new instance with
attribute vector x =

(
x1r1 , x2r2 , . . . , xdrd

)
, with ri ∈ {1, 2, . . . , ti} ∀i = 1, 2, . . . ,d,

the predicted non-dominated states set is determined by:
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 .

(10.13)

10.3.1 Justification of the new Naïve Credal Classifier

The main difference between the existing NCC and our proposed EP-NCC
is the determination of the non-dominated states set for a given instance.

Unlike NCC, EP-NCC narrows the probability interval estimated for each
class value by taking the lower and upper prior probabilities into account for
the estimation of the conditioned probability interval. Hence, intuitively, the
probability intervals predicted by EP-NCC might be more informative than
the probability intervals predicted by NCC.

Suppose that, for an instance that is wanted to be classified, the frequency
of a class value is much higher than the frequency of another class value,
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the proportion being greater than the proportions of the conditioned class
frequencies for all attribute values. Let us also assume that all conditional
class frequencies of the latter class value are greater than zero. As we show
below, in these situations, if the former class value dominates the latter class
value under NCC, then the same happens under EP-NCC.

Proposition 10.3.2 Suppose that it is wanted to classify an instance for which Xi =

xiri , with ri ∈ {1, 2, . . . , ti} ∀i = 1, 2, . . . ,d. Let ck and cj be two class val-

ues, where k, j ∈ {1, 2, . . . ,K}. Suppose that ntr

(
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)
> 0 and ntr(ck)
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ntr

(
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ri ,k

)
ntr

(
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ri ,j

) , ∀i = 1, 2, . . . ,d. In this case, if ck dominates cj under NCC, then

ck dominates cj under EP-NCC.

Proof: Under our hypothesis of dominance under NCC:
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In addition, by hypothesis, ntr
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Now, since ntr
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In consequence:
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(10.16)
Hence, we obtain:
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Equation (10.16)
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where the last inequality is due to Equation (10.14).
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which implies that ck dominates cj under EP-NCC.
□

The following example illustrates a case in which, intuitively, it makes much
sense that a class value dominates another one, and such a dominance case is
verified with EP-NCC but not with NCC.

Example 10.3.1 Suppose that there are two attributes, namely X1 and X2. Let us
assume that each attribute Xi takes values in

{
xi1, xi2

}
, for i = 1, 2. Let C be the

class variable, whose possible values are {c1, c2}. Suppose that ntr (c1) = 48 and
ntr (c2) = 2. Let us assume the following arrangement of the class values for each
one of the possible values of the attributes:

X1 = x11 → ntr

(
x11,1

)
= 48, ntr

(
x11,2

)
= 1;

X1 = x12 → ntr

(
x12,1

)
= 0, ntr

(
x12,2

)
= 1;

X2 = x21 → ntr

(
x21,1

)
= 15, ntr

(
x21,2

)
= 1;

X2 = x22 → ntr

(
x22,1

)
= 33, ntr

(
x22,2

)
= 1.
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We assume the value s = 1 for the IDM parameter. Suppose that it is required to
classify an instance for which X1 = x12 and X2 = x22. Then:

(ntr (c1) + 1)×
ntr

(
x12,1

)
+
(
ntr(c1)
Ntr+1

)
ntr (c1) + 1

×
ntr

(
x22,1

)
+
(
ntr(c1)
Ntr+1

)
ntr (c1) + 1

=

49×
48
51

49
×

33+ 48
51

49
= 0.6519 > 0.5605 = 2×

1+ 3
51

2
×

1+ 3
51

2
=

ntr (c2)×
ntr

(
x12,2

)
+
(
ntr(c2)+1
Ntr+1

)
ntr (c2)

×
ntr

(
x22,2

)
+
(
ntr(c2)+1
Ntr+1

)
ntr (c2)

.

In consequence, c1 dominates c2 under EP-NCC. However, it does not happen
under NCC since:

ntr (c1)×
ntr

(
x12,1

)
ntr (c1) + 1

×
ntr

(
x22,1

)
ntr (c1) + 1

= 48× 0× 33

49
= 0 <

4

3
=

3× 2

3
× 2

3
= (ntr (c2) + 1)×

ntr

(
x12,2

)
+ 1

ntr (c2) + 1
×

ntr

(
x22,2

)
+ 1

ntr (c2) + 1
.

In this case, the prediction made by EP-NCC about the dominance of c1 on c2 is
intuitively more coherent than the one made by NCC.

Therefore, the predictions of EP-NCC are probably more informative than
the predictions of NCC. It is such an important issue for our proposal. In the
previous example, we have observed a problematic situation of NCC: when
only one lower conditional probability of a class value is equal to 0, the lower
probability predicted by NCC for that value of the class variable is equal to
0, even though the rest of the lower conditional probabilities are very high.
Thus, that class value does not dominate any other only due to that lower
conditional probability, which is incoherent. This problem is solved with our
proposed EP-NCC because it considers the lower prior probabilities of the
class values for the estimation of the lower conditional probabilities.

Our proposed EP-NCC assumes more risk of making incorrect predictions
than NCC since its predicted non-dominated states set is often smaller. How-
ever, this risk is controlled because the probability interval predicted for each
class value is narrowed by taking the extreme prior probabilities into account.
In addition, EP-NCC solves some problematic situations of NCC, such as the
one found in Example 10.3.1.

To summarize, EP-NCC is more appropriate than NCC for Imprecise Clas-
sification as the former method is more informative than the latter without
assuming a much higher risk of making erroneous predictions. This fact is
corroborated in Section 10.3.2 with an exhaustive experimental analysis.
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10.3.2 Experimental study

In this experimental analysis, we aim to compare the performance of the
existing NCC, our proposed EP-NCC, and ICDT.

10.3.2.1 Experimental setup

For this experimentation, we take as a reference the experimental analysis
carried out by Abellán and Masegosa in [10], where the NCC and the ICDT
methods were compared.

• Datasets: The three algorithms considered in this experimentation have
been applied to the 34 classification datasets that we used in the ex-
periments of the previous section, were we checked the performance of
ICDT-ANPI. The most important characteristics of each dataset can be
seen in Table 10.1.

• Preprocessing: Missing values have been replaced with mean values
for continuous attributes and modal values for discrete features. After
that, continuous features have been discretized by following Fayyad and
Irani’s discretization method.

• Algorithms: Three algorithms have been used in this experimental study:
NCC, EP-NCC, and ICDT.

• Evaluation: The main evaluation metrics used for checking the perfor-
mance of the algorithms considered here are DACC and MIC2. For a
deeper analysis of the behavior of the algorithms, we also consider De-
terminacy, Single Accuracy, Indeterminacy Size, and Set Accuracy. All
these metrics were detailed in Section 5.3.

Furthermore, we aim to compare the computational complexity of the
algorithms considered in this experimentation. For this purpose, we
consider the processing time, in milliseconds, of the algorithms.

• Procedure: In order to compare the performance of the classifiers consid-
ered in this experimental study, for each dataset and algorithm, a 10-fold
cross-validation procedure has been repeated 10 times. The same parti-
tions have been used for all algorithms.

2 Here, we use MIC0/1 because we use classifiers that assume the same cost for all classification
errors.
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• Software and Parameters: We have used the Weka software for our ex-
periments. We have utilized the implementation available in Weka for
ICDT, and we have added the necessary structures and methods for us-
ing NCC and EP-NCC. We have employed the Weka filters for the pre-
processing. Also, for cross-validation, we have used the functionality
available in Weka.

We have employed the value s = 1 for the IDM parameter for the three
algorithms as it is one of the recommended by Walley [209] and is the
one used in the experimental analysis carried out in [10], where NCC
and ICDT were compared. The rest of the parameters utilized for all
algorithms have been the ones given by the default in Weka.

• Statistical evaluation: Following the recommendations of Demšar [75]
for statistical comparisons between the results obtained by three or more
methods on many datasets, we have used the Friedman test to compare
the performance of NCC, EP-NCC, and ICDT via the evaluation metrics
considered here. If the null hypothesis of this test is rejected, then we
compare the algorithms pairwise through the Nemenyi test. The level of
significance utilized is α=0.05. We present the results of these tests via
critical diagrams.

10.3.2.2 Results and discussion

Tables 10.5 and 10.6 show that average values and Friedman ranks corre-
sponding to DACC and MIC, respectively. In both tables, the best results are
marked in bold fonts. The critical diagram corresponding to DACC (MIC) can
be seen in Figure 10.3 (10.4).

Table 10.5: Average values and Friedman ranks of NCC, EP-NCC, and ICDT corre-
sponding to DACC.

Algorithm Average Friedman rank
NCC 0.6237 2.6765

EP-NCC 0.7810 1.5882
ICDT 0.7763 1.7353

We must remark the following points about these results:

• Both ICDT and EP-NCC achieve a higher average value and a lower
Friedman rank than NCC in MIC and DACC. Moreover, in the critical
diagrams, NCC is not connected through a segment with the other two
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Table 10.6: Average values and Friedman ranks of NCC, EP-NCC, and ICDT corre-
sponding to MIC.

Algorithm Average Friedman rank
NCC 1.3042 2.8235

EP-NCC 1.3529 1.5882
ICDT 1.7676 1.8235

Figure 10.3: Critical diagram corresponding to NCC, EP-NCC, and ICDT for the
DACC metric. CD = Critical Distance.

Figure 10.4: Critical diagram corresponding to NCC, EP-NCC, and ICDT for the MIC
metric. CD = Critical Distance.
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algorithms. Consequently, both ICDT and EP-NCC perform significantly
better than NCC according to the Nemenyi test in MIC and DACC.

• In both DACC and MIC, the average value of EP-NCC is higher than
the average value of ICDT, and the Friedman rank of EP-NCC is lower
than the Friedman rank of ICDT. Nevertheless, in the critical diagrams
associated with these metrics, these two algorithms are connected via a
segment. Thereby, EP-NCC and ICDT perform equivalently according
to the Nemenyi test in both DACC and MIC.

Tables 10.7 and 10.8 illustrate, respectively, the average values and average
Friedman ranks obtained by each classifier in Determinacy, Single Accuracy,
Indeterminacy size, and Set Accuracy. Again, the best results are marked in
bold. The critical diagrams corresponding to these measures are shown in
Figures 10.5, 10.6, 10.7, and 10.8.

Table 10.7: Average results obtained by NCC, EP-NCC, and ICDT in Determinacy,
Single Accuracy, Indeterminacy size and Set Accuracy.

Metric NCC EP-NCC ICDT
Determinacy 0.6037 0.9150 0.9477

Single Accuracy 0.8692 0.8165 0.8058

Indeterminacy size 4.4537 2.0999 5.3294

Set Accuracy 0.8698 0.8389 0.8999

Table 10.8: Average Friedman ranks obtained by NCC, EP-NCC, and ICDT in Deter-
minacy, Single Accuracy, Indeterminacy size and Set Accuracy.

Metric NCC EP-NCC ICDT
Determinacy 2.8235 1.5 1.6765

Single Accuracy 1.3226 2.3548 2.3226

Indeterminacy size 2.1875 1.0469 2.7656

Set Accuracy 1.9844 2.3594 1.6562

The following points should be noted about the results obtained in these
measures:

• NCC obtains, by far, the worst performance in predicting a single class
value due to the results obtained in Determinacy. Indeed, in this metric,
NCC gets the highest Friedman rank and the lowest average value. Fur-
thermore, in the critical diagram of Figure 10.5, NCC is not connected
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Figure 10.5: Critical diagram corresponding to NCC, EP-NCC, and ICDT for Determi-
nacy. CD = Critical Distance.

Figure 10.6: Critical diagram corresponding to NCC, EP-NCC, and ICDT for Single
Accuracy. CD = Critical Distance.

Figure 10.7: Critical diagram corresponding to NCC, EP-NCC, and ICDT for Indeter-
minacy size. CD = Critical Distance.
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Figure 10.8: Critical diagram corresponding to NCC, EP-NCC, and ICDT for Set Ac-
curacy. CD = Critical Distance.

via a segment with EP-NCC or ICDT, which implies that these two al-
gorithms significantly outperform NCC via the Nemenyi test in Deter-
minacy. In this metric, EP-NCC obtains a lower Friedman rank than
ICDT, whereas the latter algorithm obtains a higher average value than
the former. However, EP-NCC and ICDT are connected via a segment
in the critical diagram of Figure 10.5. Hence, in Determinacy, ICDT and
EP-NCC have equivalent performance according to the Nemenyi test.

• Regarding Single Accuracy, which measures the accuracy among the
instances for which a single class value is predicted, NCC achieves, by
far, the highest average value and the lowest Friedman rank. In addition,
NCC is not connected by a segment with the other two algorithms in the
critical diagram of Figure 10.6 and, thus, it significantly outperforms EP-
NCC and ICDT via the Nemenyi test in Single Accuracy. Nevertheless,
we should remark that, with NCC, the proportion of instances precisely
classified is far lower than with the other two algorithms. EP-NCC and
ICDT are connected through a segment in the critical diagram of Figure
10.6. So, there are no statistically significant differences via the Nemenyi
test between these two methods in Single Accuracy.

• The results obtained in Indeterminacy size allow deducing that EP-NCC
achieves, by far, the lowest average number of non-dominated class val-
ues. In fact, it attains the highest average value and the lowest Fried-
man rank in this metric. Moreover, EP-NCC is not connected through
a segment with the other two algorithms in the corresponding critical
diagram (Figure 10.7). Therefore, EP-NCC performs significantly better
than the other two algorithms in Indeterminacy Size according to the Ne-
menyi test. Even though NCC attains a lower average value and a lower
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Friedman rank than ICDT in Indeterminacy size, these two algorithms
are connected via a segment in the critical diagram of Figure 10.7. In con-
sequence, in this measure, NCC and ICDT obtain statistically equivalent
results according to the Nemenyi test.

• Concerning Set Accuracy, which measures the proportion of correct pre-
dictions among the instances for which more than a class value is pre-
dicted, ICDT obtains the best results according to Friedman rank and
average values. Furthermore, ICDT and EP-NCC are not connected with
a segment in the critical diagram of Figure 10.8 and, consequently, the
former algorithm significantly outperforms the latter via the Nemenyi
test in Set Accuracy. Although NCC obtains a higher average value and
a lower Friedman rank than ICDT in Set Accuracy, these two algorithms
are connected via a segment in the critical diagram of Figure 10.8. Hence,
there are no statistically significant differences according to the Nemenyi
test between the results obtained by ICDT and NCC in Set Accuracy.

Table 10.9 shows the average values and Friedman ranks corresponding to
the processing times of NCC, EP-NCC, and ICDT. Again, the best results are
marked in bold. The critical diagram associated with the computational time
can be seen in Figure 10.9.

Table 10.9: Average values and Friedman ranks obtained by NCC, EP-NCC, and ICDT
corresponding to the processing time results.

Algorithm Average Friedman rank
NCC 0.0006 1.5588

EP-NCC 0.0005 1.4412
ICDT 0.0424 3

We may note that ICDT requires, by far, the highest computational time. It
should be noted that it obtains the worst result in terms of processing time for
all datasets since its average Friedman rank is equal to 3. In the critical dia-
gram of Figure 10.9, ICDT is not connected via segments with the other two
algorithms. Thereby, it performs significantly worse than NCC and EP-NCC
according to the Nemenyi test in terms of computational time. In addition,
the average processing time obtained by ICDT is much higher than the ones
achieved by NCC and EP-NCC. NCC obtains a higher average value than
EP-NCC, and the Friedman rank achieved by NCC is also higher. However,
there are no statistically significant differences between these two algorithms
in terms of processing time according to the Nemenyi test as they are con-
nected with a segment in the critical diagram of Figure 10.9.
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Figure 10.9: Critical diagram associated with NCC, EP-NCC, and ICDT for computa-
tional time. CD = Critical Distance.

Summary of the results: The results obtained in this experimental anal-
ysis can be summarized in the following points:

• EP-NCC outperforms NCC. Specifically, EP-NCC performs better than
NCC in predicting fewer class values and, thus, EP-NCC is more in-
formative than NCC, as we argued in Section 10.3.1. According to the
results obtained in Single Accuracy and Set Accuracy, NCC performs
slightly better than EP-NCC in making the right predictions. It is be-
cause the predictions made by EP-NCC are more precise than the ones
made by NCC and, thus, the former method assumes more risk of mak-
ing incorrect predictions than the latter. Nonetheless, this is not as im-
portant as the fact that EP-NCC is more informative since the risk is not
far higher, as we commented in Section 10.3.1, and it is highlighted in
the results obtained in DACC and MIC.

• ICDT and EP-NCC have equivalent performance. Both algorithms ob-
tain statistically equivalent results in predicting only one value of class
variable and in the accuracy among precise predictions. Regarding in-
stances imprecisely classified, ICDT outperforms EP-NCC in making the
right predictions, while EP-NCC performs significantly better than ICDT
in predicting fewer values of the class variable.

• The processing times of NCC and EP-NCC are very similar. The ICDT
algorithm requires a much higher computational time than NCC and
EP-NCC.
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10.4 Bagging of Imprecise Credal Decision Trees

In this section, a Bagging scheme for Imprecise Classification that uses the
ICDT algorithm as base classifier is proposed. We call this new method the
Bagging of Imprecise Credal Decision Trees (Bagging-ICDT).

For building the individual classifiers, Bagging-ICDT uses a similar idea
to the Bagging scheme for precise classification. For each individual ICDT, a
bootstrapped sample of the original training set is selected. Then, an Imprecise
Classification model is learned using such a bootstrapped sample and our base
classification algorithm, ICDT.

The key point of the proposed Bagging scheme for Imprecise Classification
is how to combine the predictions made by the individual classifiers. Remark
that, in precise classification, combining the predictions is as simple as tak-
ing the majority vote. However, in Imprecise Classification, it is not a trivial
question since the individual classifiers may not return a unique value of the
class variable, but they might predict a set of non-dominated class values. Ac-
tually, there are multiple ways of combining imprecise predictions because a
class value might be predicted as dominated by some classifiers and as non-
dominated by others. The crucial issue is how to determine, taking into ac-
count the number of classifiers that predict that a class value is dominated, the
threshold to decide whether that class value is dominated for the final predic-
tion. In fact, this consists of a trade-off between risk and information. Here, the
term risk is used to denote the possibility of not including the real class value
in the predicted non-dominated states set, and the term information indicates
how precise the prediction is, i.e, how many class values are predicted as non-
dominated. Logically, more information implies more risk. We consider that
our proposed technique is closer to the risk because it predicts the class values
with the minimum level of dominance.

If all the class values that are predicted as non-dominated by at least one
classifier are finally predicted as non-dominated, then the probability of mak-
ing an erroneous prediction is minimum. Nonetheless, in these situations, the
predicted non-dominated states set may be composed of almost all values of
the class variable. In this way, the predictions are probably hardly informative
and, thus, the Bagging scheme might not be very useful. For this reason, our
strategy consists of the opposite extreme: we want that the Bagging scheme is
as informative as possible, even though this implies a higher risk of erroneous
prediction.

Therefore, when an instance is wanted to be classified in our proposed
Bagging-ICDT algorithm, for each class value, the number of classifiers that
predict such a class value as dominated is counted. We call that number of
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votes the number of votes against. The non-dominated states set predicted by
Bagging-ICDT is composed of those class values with the minimum number
of votes against.

Algorithm 18 summarizes our proposed Bagging-ICDT method.

Algorithm 18: Bagging scheme with ICDT.
Procedure Bagging-ICDT (Training set D, number of ICDTs n_trees)
for i = 1 to n_trees do

Select a bootstrapped sample with replacement, Di, from D

(|Di| = |D|)
Build a classifier Ci using the ICDT algorithm and Di as training set

For classifying an instance with attribute vector x
for j = 1 to K do

Let vaj be the number of classifiers that predict cj as dominated for
x

min_against← minj=1,··· ,K vaj

hBagg−ICDT (x)←
{
cj | vaj = min_against, 1 ⩽ j ⩽ K

}
return hBagg−ICDT (x)

In summary, with our proposed Bagging-ICDT, we try to improve the per-
formance of an individual ICDT by increasing the diversity through multiple
ICDTs built with different training sets. In order to classify new instances, the
predictions made by the individual classifiers are combined for the proposed
Bagging scheme to be as informative as possible.

10.4.1 Experimentation

10.4.1.1 Description of the experiments

For our experimental analysis, we take as a reference the one carried out by
Abellán and Masegosa in [10], where the ICDT method was proposed.

• Datasets: In this experimental study, we have employed the 34 classifi-
cation datasets that we used in the experiments of the previous sections
with Imprecise Classification algorithms. Table 10.1 shows the most im-
portant characteristics of such datasets.

• Preprocessing: Missing values have been replaced with mean values
for continuous features and modal values for discrete attributes. Then,
continuous attributes have been discretized via Fayyad and Irani’s dis-
cretization method.
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• Algorithms: Two algorithms have been considered in our experiments:
ICDT and Bagging-ICDT.

• Evaluation: In order to evaluate the performance of the algorithms con-
sidered here, we principally consider the evaluation metrics DACC and
MIC3. For a deeper analysis of the behavior of the algorithms, we also
consider the average values of Determinacy, Single Accuracy, Indetermi-
nacy Size, and Set Accuracy. All these metrics were described in Section
5.3.

• Procedure: For comparing the performance of ICDT and Bagging-ICDT,
for each dataset and algorithm, a 10-fold cross-validation procedure has
been repeated 10 times. The same partitions have been utilized for ICDT
and Bagging-ICDT.

• Software and Parameters: We have used the Weka software for this ex-
perimental study. We have started from the implementation available in
Weka for ICDT, and we have added the necessary structures and meth-
ods for Bagging-ICDT. For the preprocessing, we have utilized the Weka
filters. Also, we have employed the functionality available in Weka for
cross-validation.

For the IDM parameter, we have used the value s = 1 for both algorithms
since it is one of the values recommended by Walley [209] and requires
a low computational cost. For Bagging-ICDT, we have used 100 trees as
it is an appropriate number of classifiers for a Bagging scheme [37]. The
rest of the parameters employed for both algorithms have been the ones
given by the default in Weka.

• Statistical evaluation: Consistently with the recommendations of Demšar
[75] for statistical comparisons between the results obtained by two al-
gorithms on many datasets, we have used the Wilcoxon test with a level
of significance of α = 0.05 to compare the performance of ICDT and
Bagging-ICDT via DACC and MIC.

In addition, the Corrected Paired t-test has been employed to compare
the performance of ICDT and Bagging-ICDT in each dataset. It is a cor-
rected version of the Paired t-test implemented in Weka. This test checks
whether one algorithm performs better than the other, on average, across
all the training and test sets extracted from a cross-validation procedure
repeated several times on a dataset.

3 Here, we use MIC0/1 because we are using classifiers that assume the same cost for all classi-
fication errors.
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10.4.1.2 Results and discussion

Tables 10.10 and 10.11 present the results obtained by each algorithm in
each dataset in the DACC and MIC measures, respectively. In both tables, for
each dataset, the best result is marked in bold. Moreover, these tables show,
for each dataset, which algorithm performs better according to the Corrected
Paired t-test (in case the differences are significant).

A summary of the results for both DACC and MIC evaluation metrics can
be seen in Table 10.12. In concrete, for DACC and MIC, Table 10.12 shows
the average value, the result of the Wilcoxon test, and the number of datasets
where ICDT performs significantly better than Bagging-ICDT according to the
Corrected Paired t-test and vice-versa.

We express the following comments about these results:

• From Tables 10.10 and 10.11, it can be observed that, for both DACC and
MIC, Bagging-ICDT outperforms ICDT in almost all datasets. In fact, for
DACC, ICDT only performs better than Bagging-ICDT in one dataset,
and both algorithms obtain the same result in two datasets. In the rest
of the datasets, the performance is better for Bagging-ICDT according to
this measure. Similarly, for MIC, Bagging-ICDT obtains a better result
than ICDT in all datasets except four. In three of them, ICDT outper-
forms Bagging-ICDT and, in the other one, both algorithms obtain the
same result.

• As can be seen in Table 10.12, Bagging-ICDT performs significantly bet-
ter than ICDT for both DACC and MIC according to the Wilcoxon test.
Also, the average DACC value obtained by Bagging-ICDT is much higher
than the average DACC value obtained by ICDT. The same happens with
the average values of MIC.

• Furthermore, according to the Corrected Paired t-test, the number of
datasets where Bagging-ICDT obtains significantly better results than
ICDT is 16 for DACC and 14 for MIC. In contrast, for none of the two
metrics, ICDT performs significantly better than Bagging-ICDT in any
dataset according to the Corrected Paired t-test.

In this way, it can be concluded that Bagging-ICDT performs much better
than ICDT, the differences being pretty considerable.

Table 10.13 shows the average results of Determinacy, Single Accuracy, Set
Accuracy, and Indeterminacy size obtained by ICDT and Bagging-ICDT. The
best results are marked in bold. Figure 10.10 allows us to observe better the
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Figure 10.10: Graphic about the normalized average results obtained by ICDT and
Bagging-ICDT in Determinacy, Single Accuracy, Indeterminacy size, and
Set Accuracy.

differences between the results obtained by both algorithms in these metrics.
The results shown in the graphic are normalized.

For each one of these metrics, the following points should be noted:

• Determinacy: The proportion of instances for which a single class value
is predicted is higher for Bagging-ICDT.

• Single Accuracy: Between the instances precisely classified, the accuracy
is similar for both algorithms

• Indeterminacy size: The imprecise predictions made by Bagging-ICDT
are more informative than the imprecise predictions made by ICDT.

• Set Accuracy: Among the instances imprecisely classified, there are
more erroneous predictions with Bagging-ICDT.

Due to the previous points, it can be stated that the predictions made by
Bagging-ICDT are more informative than the ones made by ICDT, even though
the error rate is a little bit higher with Bagging-ICDT.
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Summary of the results: We can summarize the results obtained in this
experimentation in the following issues:

• Bagging-ICDT is a far more informative classifier than ICDT, although
the error rate is a little bit higher with the former algorithm.

• The results obtained in the main Imprecise Classification evaluation met-
rics proposed so far in the literature, DACC and MIC, allow concluding
that our proposed Bagging-ICDT significantly outperforms ICDT.
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Table 10.10: Complete results obtained by ICDT and Bagging-ICDT in DACC. In each
row, ◦ means that Bagging-ICDT significantly outperforms ICDT via the
Corrected Paired t-test in the corresponding dataset; • indicates that ICDT
performs significantly better than Bagging-ICDT according to the Cor-
rected Paired t-test in the dataset of the row.

Dataset ICDT Bagging-ICDT
anneal 0.9957 0.9967

arrhythmia 0.6625 0.7150 ◦
audiology 0.7887 0.8232

autos 0.7817 0.8278 ◦
balance-scale 0.6961 0.6977

bridges-version1 0.6375 0.6503
bridges-version2 0.5729 0.6199

car 0.9168 0.9299 ◦
cmc 0.4884 0.4931

dermatology 0.9405 0.9500
ecoli 0.7993 0.8054
flags 0.5554 0.6034 ◦

hypothyroid 0.9935 0.9935

iris 0.9337 0.9390
letter 0.7714 0.8277 ◦

lymphography 0.7275 0.7591
mfeat-pixel 0.7702 0.8837 ◦

nursery 0.9628 0.9654 ◦
optdigits 0.7716 0.8647 ◦

page-blocks 0.9619 0.9663 ◦
pendigits 0.8812 0.9175 ◦

postoperative-patient-data 0.7104 0.7100

primary-tumor 0.3815 0.4239 ◦
segment 0.9406 0.9502 ◦
soybean 0.9178 0.9276

spectrometer 0.4430 0.5127 ◦
splice 0.9270 0.9447 ◦

sponge 0.9293 0.9475
tae 0.4678 0.4678

vehicle 0.6899 0.7025
vowel 0.7635 0.7953 ◦

waveform 0.7371 0.7777 ◦
wine 0.9194 0.9290
zoo 0.9592 0.9612

Average 0.7763 0.8023
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Table 10.11: Complete results obtained by ICDT and Bagging-ICDT in MIC. In each
row, ◦ means that Bagging-ICDT significantly outperforms ICDT via the
Corrected Paired t-test in the corresponding dataset; • indicates that ICDT
performs significantly better than Bagging-ICDT according to the Cor-
rected Paired t-test in the dataset of the row.

Dataset ICDT Bagging-ICDT
anneal 1.7825 1.7847

arrhythmia 1.7861 1.9316 ◦
audiology 2.5156 2.5936

autos 1.4535 1.5553 ◦
balance-scale 0.6033 0.6006

bridges-version1 1.0247 1.0446
bridges-version2 0.8755 0.9767

car 1.2330 1.2568 ◦
cmc 0.2599 0.2636

dermatology 1.6637 1.6844
ecoli 1.6128 1.6182
flags 1.0322 1.1398

hypothyroid 1.3744 1.3744

iris 0.9911 0.9982
letter 2.5135 2.6771 ◦

lymphography 0.8857 0.9417
mfeat-pixel 1.7194 2.0066 ◦

nursery 1.5350 1.5398 ◦
optdigits 1.7275 1.9579 ◦

page-blocks 1.5332 1.5418 ◦
pendigits 2.0042 2.0925 ◦

postoperative-patient-data 0.6213 0.6207

primary-tumor 1.1476 1.2278
segment 1.8119 1.8331 ◦
soybean 2.7004 2.7203

spectrometer 1.7353 1.9527 ◦
splice 0.9784 1.0077 ◦

sponge 0.9822 1.0121
tae 0.2218 0.2216

vehicle 0.8171 0.8372
vowel 1.7889 1.8594 ◦

waveform 0.6656 0.7325 ◦
wine 0.9658 0.9817
zoo 1.8532 1.8578

Average 1.3652 1.4248
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Table 10.12: Summary of the results obtained by ICDT and Bagging-ICDT for the
DACC and MIC measures. In the "Wilcoxon test" rows, when one clas-
sifier significantly outperforms the other one via the Wilcoxon test, it is
expressed by "*". The rows "Paired t-test" indicate the number of datasets
where the algorithm in the column performs significantly better than the
other one according to the Corrected-Paired t-test.

ICDT Bagging-ICDT
DACC: Average 0.7763 0.8023

Wilcoxon test *
Paired t-test 0 16

MIC: Average 1.3652 1.4248

Wilcoxon t-test *
Paired t-test 0 14

Table 10.13: Average results obtained by ICDT and Bagging-ICDT for basic metrics.
The best scores are marked in bold. Ind size = Indeterminacy size.

Algorithm Determinacy Single Accuracy Set Accuracy Ind size
ICDT 0.9477 0.8023 0.8877 5.2290

Bagging-ICDT 0.9965 0.8037 0.7792 2.7013
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10.5 The new cost-sensitive Imprecise Credal Deci-
sion Tree

Our proposed cost-sensitive Imprecise Credal Decision Tree combines the
idea of weighing instances of the existing Weighted-DT for precise classifi-
cation, exposed in Section 4.8.1, with the A-NPI-M. We call our proposed
method the Weighted Imprecise Credal Decision Tree (Weighted-ICDT).

Let Ntr denote the number of instances in the training set and ntr(cj) the
number of training instances that satisfy C = cj, ∀j = 1, 2, . . . ,K. Let us
consider the set of A-NPI-M probability intervals on C on the training set:

ItrANPI =

{
ItrANPI(cj) =

[
max

(
ntr(cj) − 1

Ntr
, 0
)

,

min
(
ntr(cj) + 1

Ntr
, 1
)]

, j = 1, 2, . . . ,K
}

.
(10.17)

The following credal set corresponds to these probability intervals:

P
(
ItrANPI

)
=

{
p ∈ P(C) | p(cj) ∈ ItrANPI(cj), ∀j = 1, 2, . . . ,K

}
, (10.18)

where P(C) denotes the set of all probability distributions on C.
Uncertainty measures can be applied to this credal set. As pointed out

before, the maximum entropy is a well-established uncertainty measure on
credal sets as it satisfies the required properties. Thus, we consider the ar-
rangement of the training instances (n̂tr(c1), n̂tr(c2), . . . , n̂tr(cK)) for which
the probability distribution that reaches the maximum entropy on P

(
ItrANPI

)
is

attained. Let (p̂tr(c1), p̂tr(c2), . . . , p̂tr(cK)) be the probability distribution that
obtains the maximum entropy on P

(
ItrANPI

)
, which can be obtained via the al-

gorithm proposed in Section 8.5 for obtaining the probability distribution that
reaches the maximum entropy value on an A-NPI-M credal set (Algorithm 14).
Then, n̂tr(cj) = Ntr × p̂tr(cj), ∀j = 1, 2, . . . ,K.

The proposed Weighted-ICDT method considers weights for the instances
using the error costs, as Weighted-DT. However, while Weighted-DT uses the
relative frequencies in the training set, Weighted-ICDT employs the arrange-
ment that leads to the maximum entropy on P

(
ItrANPI

)
.

Let M be the matrix of errors costs of dimension K×K, where the mij value
indicates the cost of predicting, for an instance, the class value ci when the real
class value is cj, ∀i, j ∈ {1, 2, . . . ,K}. It is always satisfied that mii = 0, ∀i =
1, 2, . . . ,K. Weighted-ICDT computes the weight of a training instance with
true class value cj via the following formula:

wj = Cost(j)× Ntr∑K
i=1 n̂tr(ci)×Cost(i)

, (10.19)
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where Cost(j) is the cost of misclassifying an instance whose real class value
is cj, determined by Equation (4.24), ∀j = 1, 2, . . . ,K.

Let D denote the subset of the training set associated with a certain node,
ND the number of instances in D and nD(cj) the number of instances in D

for which C = cj, ∀j = 1, 2, . . . ,K. For the split criterion, Weighted-ICDT
considers the A-NPI-M probability intervals on C corresponding to D:

IDANPI =

{
IDANPI(cj) =

[
max

(
nD(cj) − 1

ND
, 0
)

,

min
(
nD(cj) + 1

ND
, 1
)]

, j = 1, 2, . . . ,K
}

.
(10.20)

The credal set consistent with these intervals is given by:

P
(
IDANPI

)
=

{
p ∈ P(C) | p(cj) ∈ IDANPI(cj), ∀j = 1, 2, . . . ,K

}
. (10.21)

Let
(
n̂D(c1), n̂D(c2), . . . , n̂D(cK)

)
be the arrangement of the class values in

the node that gives rise to the maximum entropy on P
(
IDANPI

)
.

Then, Weighted-ICDT estimates the probability of each class value in that
node through a weighted proportion of instances, as Weighted-DT. Neverthe-
less, Weighted-ICDT uses the arrangement that reaches the maximum entropy
with the A-NPI-M, unlike Weighted-DT, which employs the relative frequen-
cies in the node. So, the probability of the cj value estimated by Weighted-
ICDT in that node is given by:

p̂D(cj) =
wj × n̂D(cj)∑K
i=1wi × n̂D(ci)

, ∀j = 1, 2, . . . ,K. (10.22)

In this way, Weighted-ICDT computes the uncertainty about the class vari-
able in that node via the Shannon entropy of the probability distribution p̂,
determined through Equation (10.22):

ŜD (C) = −

K∑
j=1

p̂D(cj) log2 p̂
D(cj). (10.23)

Let Xi be an attribute whose possible values are
{
xi1, xi2, . . . , xiti

}
. The split

criterion of Weighted-ICDT is called the Weighted Information Gain (WIG). It is
based on the entropy defined in Equation (10.23) and is given by:

WIGD(C,Xi) = ŜD (C) −

ti∑
ri=1

P̂D(Xi = xiri)× ŜD
(
C | Xi = xiri

)
, (10.24)
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where ŜD
(
C | Xi = xiri

)
is the entropy of C on the subset of D composed of

those instances for which Xi = xiri , computed by means of Equation (10.23),
and P̂D(Xi = xiri) is the probability that Xi = xiri in D, estimated via propor-
tion of weights:

P̂D(Xi = xiri) =

∑K
j=1 n

D(xiri , cj)×wj∑K
j=1 n

D(cj)×wj

, ∀i = 1, 2, . . . , t, (10.25)

nD(xiri , cj) being the number of instances in D that satisfy Xi = xiri and C =

cj, ∀ri = 1, 2, . . . ti, i = 1, 2, . . . , t, j = 1, 2, . . . ,K.

For classifying an instance at a leaf node, Weighted-ICDT computes, for
each value of the class variable, a probability interval based on the A-NPI-M
lower and upper probabilities that also takes the weight of the class value into
account.

Formally, let NL be the number of instances in a leaf node L and nL(cj) the
number of instances in L for which C = cj, ∀j = 1, 2, . . . ,K. We know that
the A-NPI-M lower and upper probabilities of cj at L are given by:

PL
ANPI(cj) = max

(
nL(cj) − 1

NL
, 0
)

,

P
L

ANPI(cj) = min
(
nL(cj) + 1

NL
, 1
)

, ∀j = 1, 2, . . . ,K.
(10.26)

Weighted-ICDT considers, for the lower (upper) probability, the proportion
of weights in an arrangement of the class values for which the A-NPI-M lower
(upper) probability is attained. Hence, at that leaf node, we have the following
probability interval for each class value:

[
max

(
wj ×

(
nL(cj) − 1

)
WL

, 0

)
, min

(
wj ×

(
nL(cj) + 1

)
WL

, 1

)]
, ∀j = 1, 2, . . . ,K,

(10.27)
where WL denotes the sum of all weights at L, that is, WL =

∑K
i=1wi ×

nL(ci).

Then, a dominance criterion is applied to these probability intervals to ob-
tain the non-dominated states set. Our proposed Weighted-ICDT algorithm
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utilizes the stochastic dominance criterion, on these intervals. According to
that criterion, a class value cj dominates another one ck if, and only if,

max

(
wj ×

(
nL(cj) − 1

)
WL

, 0

)
⩾ min

(
wk ×

(
nL(ck) + 1

)
WL

, 1

)
⇔

wj ×
(
nL(cj) − 1

)
WL

⩾
wk ×

(
nL(ck) + 1

)
WL

⇔

wj ×
(
nL(cj) − 1

)
⩾ wk ×

(
nL(ck) + 1

)
, ∀j,k ∈ {1, 2, . . . ,K} .

Consequently, the non-dominated states set predicted by Weighted-ICDT at
L is determined as follows:

ndsLWeighted_ICDT =
{
ck, 1 ⩽ k ⩽ K | wk ×

(
nL(ck) + 1

)
>

wj ×
(
nL(cj) − 1

)
, ∀j = 1, 2, . . . ,K

}
.

(10.28)

In order to classify an instance with Weighted-ICDT, a path from the root
node to a terminal one is made by using the attribute values of such an in-
stance. The predicted non-dominated states set for the instance is the one
associated with such a terminal node. The procedure to classify an instance
with Weighted-ICDT is summarized in Algorithm 19.

Algorithm 19: Procedure to classify an instance with Weighted-ICDT.
Procedure Classify_Weighted_ICDT(Weighted_ICDT T, instance with
attribute vector x)
1. Follow a path in T from the root node to a leaf one L using the

attribute vector x.
2. hWeighted_ICDT (x) = ndsLWeighted_ICDT , where ndsLWeighted_ICDT

denotes the non-dominated states set predicted by Weighted-ICDT at
L, determined via Equation (10.28).

return hWeighted_ICDT (x)

10.5.1 Justification of Weighted-ICDT

The most relevant issues of our proposed Weighted-ICDT method can be
summarized in the following way:

• Similar to Weighted-DT, Weighted-ICDT computes a weight for each in-
stance depending on the cost of misclassifying the corresponding class
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value. Both methods estimate the costs in the same way. Neverthe-
less, whereas Weighted-DT estimates the instance weights based on such
costs by using the class frequencies in the training set, Weighted-ICDT
utilizes the arrangement that reaches the maximum entropy on the A-
NPI-M credal set. Therefore, unlike Weighted-DT, Weighted-ICDT con-
siders that the training set is not totally reliable and employs the well-
established uncertainty measure on credal sets.

• For the split criterion, the existing CS-ICDT method considers that all
instances have the same importance, regardless of their class values. It is
oriented to minimize the number of classification errors but it neglects
varying costs of errors. In contrast, for computing the uncertainty of the
class variable in a certain node, Weighted-ICDT considers the proportion
of instance weights for each class value. In this way, in Weighted-ICDT,
the instances whose class value has a higher cost of misclassification
have more importance. For example, suppose that we have two class
values, c1 and c2, where the cost of erroneously classifying an instance
with real class value c1 is ten times the cost of misclassifying an instance
whose real class value is c2. Suppose that, in a certain node, there are
four instances whose true class value is c1 and another four instances
with real class value c2. In this case, for the split criterion, CS-ICDT
considers that there is total uncertainty about the class variable, while
our proposed Weighted-ICDT algorithm estimates that, in that node, the
uncertainty of the class variable is considerably low. So, the uncertainty
value estimated by our proposal is intuitively far more reasonable than
the one estimated by CS-ICDT because, if that node were terminal, it
would be quite logical to predict c1.

• Indeed, Weighted-DT also considers that the importance of an instance
for calculating the uncertainty value depends on the error cost of the
associated class value. However, for estimating the probability of each
class value, Weighted-ICDT employs the arrangement that obtains the
maximum entropy with the A-NPI-M, whereas Weighted-DT uses the
arrangement associated with relative frequencies. In consequence, un-
like Weighted-DT, Weighted-ICDT considers that the dataset in a certain
node is not totally reliable and employs the well-established uncertainty
measure on the corresponding A-NPI-M credal set.

• To classify an instance at a leaf node, our proposed Weighted-ICDT
method considers, for each class value, a probability interval that de-
pends on the frequency of that class value at that terminal node and the
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cost of incorrectly classifying an instance that has such a class value.
Thus, as in the split criterion, the instances whose class value has a
higher cost of erroneous classification have more importance. In contrast,
CS-ICDT estimates the lower and upper probabilities for each class value
by considering that all instances have the same weight. Afterwards, it
computes a risk interval for each class value in which the lower (upper)
risk is calculated by considering the lower (upper) probabilities of the re-
maining class values and the costs of predicting that class value when the
real class value is another one. Thereby, the lower and upper probabili-
ties of the corresponding class value do not directly influence the com-
putation of the risk interval, and the cost of misclassifying an instance
with that class value is also not taken into account. Concerning the domi-
nance criterion on the probability intervals at leaf nodes, Weighted-ICDT
uses the stochastic dominance criterion, the well-established dominance
criterion on a given set of probability intervals.

For these reasons, the risk intervals computed by CS-ICDT might be
generally less informative than the probability intervals computed by
Weighted-ICDT. This issue is illustrated in Example 10.5.1.

• The original CS-ICDT method uses the IDM for the uncertainty mea-
sures in the split criterion and for the lower and upper probabilities at
leaf nodes. In contrast, our proposed Weighted-ICDT algorithm utilizes
the A-NPI-M for estimating the instance weights, in the split criterion,
and for the probability intervals at leaf nodes. As commented before, un-
like the IDM, the A-NPI-M does not assumes previous knowledge about
the data via a parameter, and, consequently, the latter model is more
appropriate than the former.

Example 10.5.1 Suppose that we have a training set of Ntr = 150 instances. Let C
be the class variable and {c1, c2, c3} its possible values. Let M denote the matrix of
error costs, where mii = 0 ∀i = 1, 2, 3, mi1 = 1 for i = 2, 3, mi2 = 2 for
i = 1, 3, and mi3 = 3 for i = 1, 2.

The costs of misclassifying each class value are given by:

Cost(1) = m21 +m31 = 2,

Cost(2) = m12 +m32 = 4,

Cost(3) = m13 +m23 = 6.

Let us assume the following class frequencies in the training set: ntr(c1) = ntr(c2) =

ntr(c3) = 50.
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In this case, the arrangement that attains the maximum entropy with the A-NPI-M
coincides with the one corresponding to relative frequencies. Therefore, the instance
weights computed by Weighted-ICDT for the class values are the following ones:

w1 = Cost(1)× Ntr∑3
i=1Cost(i)×ntr(ci)

=
2× 150

100+ 200+ 300
= 0.5,

w2 = Cost(2)× Ntr∑3
i=1Cost(i)×ntr(ci)

=
4× 150

100+ 200+ 300
= 1,

w3 = Cost(3)× Ntr∑3
i=1Cost(i)×ntr(ci)

=
6× 150

100+ 200+ 300
= 1.5.

Suppose that, at a certain leaf node L, nL(c1) = nL(c2) = nL(c3) = 3. In
such a case, PL

ANPI(ci) =
2
9 and P

L

ANPI(ci) =
4
9 , for i = 1, 2, 3. The risk intervals

determined by CS-ICDT at L are given by:

RCS−ICDT (c1) = PL
ANPI(c2)m12 + PL

ANPI(c3)m13 =
10

9
,

RCS−ICDT (c1) = P
L

ANPI(c2)m12 + P
L

ANPI(c3)m13 =
20

9
,

RCS−ICDT (c2) = PL
ANPI(c1)m21 + PL

ANPI(c3)m23 =
8

9
,

RCS−ICDT (c2) = P
L

ANPI(c1)m21 + P
L

ANPI(c3)m23 =
16

9
,

RCS−ICDT (c3) = PL
ANPI(c1)m31 + PL

ANPI(c2)m32 =
6

9
,

RCS−ICDT (c3) = P
L

ANPI(c1)m31 + P
L

ANPI(c2)m32 =
12

9
.

In consequence, RCS−ICDT (ci) > RCS−ICDT (cj) ∀i, j ∈ {1, 2, 3} and, thus, any
of the class values is dominated under the stochastic dominance criterion on these risk
intervals.

Regarding Weighted-ICDT, it holds that:

w1 ×
(
nL(c1) − 1

)
= 0.5× 2 = 1, w1 ×

(
nL(c1) + 1

)
= 0.5× 4 = 2,

w2 ×
(
nL(c2) − 1

)
= 1× 2 = 2, w2 ×

(
nL(c2) + 1

)
= 1× 4 = 4,

w3 ×
(
nL(c3) − 1

)
= 1.5× 2 = 3, w3 ×

(
nL(c3) + 1

)
= 1.5× 4 = 6,
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Thereby, according to the stochastic dominance criterion utilized in Weighted-ICDT,
c1 is dominated by both c2 and c3. The non-dominated states set predicted by
Weighted-ICDT is {c2, c3}.

Hence, in this situation, the prediction made by Weighted-ICDT is more informative
and intuitive than the one made by CS-ICDT.

Table 10.14 summarizes the differences between Weighted-DT, the existing
CS-ICDT, and our proposed Weighted-ICDT. It should be noted that, in the
proposed Weighted-ICDT method, the weight of an instance for the split crite-
rion depends on the error cost of its class value, unlike CS-ICDT; the criterion
used by Weighted-ICDT to classify instances at leaf nodes may be more effec-
tive than the one employed by CS-ICDT because the predicted intervals are
probably more informative. For these reasons, it is expected that Weighted-
ICDT performs better than CS-ICDT. This point is corroborated in Section
10.5.2 with exhaustive experimentation.

Table 10.14: Summary of the differences between Weighted-DT, CS-ICDT, and
Weighted-ICDT.

Property Weighted-DT CS-ICDT Weighted-ICDT
Mathematical model precise probabilities IDM A-NPI-M

Error costs in
the split criterion yes no yes

Criterion to
classify instances precise prediction little informative very informative

10.5.2 Experimental analysis

10.5.2.1 Experimental setup

For our experimentation, we take as a reference the experimental study
carried out by Abellán and Masegosa in [10], where the ICDT algorithm and
its adaptation for cost-sensitive scenarios were proposed.

• Datasets: In this experimental analysis, we have employed the same
34 classification datasets used in the other experimental studies carried
out in this chapter to test the performance of our proposed Imprecise
Classification algorithms. The most important characteristics of these
datasets are shown in Table 10.1.

• Preprocessing: We have replaced missing values with mean values for
continuous attributes and modal values for discrete features. After that,
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we have discretized continuous attributes by following Fayyad and
Irani’s discretization method.

• Algorithms: Three algorithms have been used in this experimental study:
The original CS-ICDT method (CS-ICDT-IDM), a new version of the
CS-ICDT algorithm that uses the A-NPI-M instead of the IDM for the
split criterion and for the probability intervals at leaf nodes (CS-ICDT-
ANPI)4, and our proposed Weighted-ICDT method. Remark that the
computational complexity of these three methods is similar since they
are Decision Trees whose split criterion is based on the maximum en-
tropy on a mathematical model based on reachable probability intervals.
We do not use more algorithms because, as explained previously, CS-
ICDT-IDM and the adaptation of NCC for cost-sensitive scenarios are
the only methods for cost-sensitive Imprecise Classification proposed so
far, and, since the former algorithm significantly outperforms the latter,
considering the adaptation of NCC could introduce noise in the statisti-
cal comparisons.

• Cost matrices: Let σ : {1, 2, . . . ,K} → {1, 2, . . . ,K} be a permutation that
yields a decreasing order of the frequencies of the class values in the
training set, i.e ntr

(
cσ(i)

)
⩾ ntr

(
cσ(j)

)
∀1 ⩽ i ⩽ j ⩽ K. The cost

matrices used in this experimentation are the following ones:

– Cost Matrix 0/1: The costs of all erroneous predictions are equal to
1, i.e:

m01
ij = 1 ∀i, j ∈ {1, 2, . . . ,K} , j ̸= i,

m01
jj = 0 ∀j = 1, 2, . . . ,K.

– Cost Matrix (I): The cost of an incorrect prediction only depends on
the real class value. The class values with lower frequencies have
more costs than the ones with higher frequencies. Specifically, the
cost of misclassifying an instance whose real class value is the one
with the highest frequency is equal to 1, the cost of misclassifying an
instance whose true class value is the one with the second-highest
frequency is equal to 2, and so on. Formally:

mI
iσ(j) = j ∀i, j ∈ {1, 2, . . . ,K} , σ(j) ̸= i,

mI
jj = 0 ∀j = 1, 2, . . . ,K.

4 It is the adaptation of the ICDT-ANPI method, proposed in Section 10.2, for cost-sensitive
classification. Such an adaptation uses the same dominance criterion on risk intervals as CS-
ICDT.
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– Cost Matrix (II): Only the predicted class value influences the cost
of an erroneous prediction. Again, the class values with lower fre-
quencies have more costs than the ones with higher frequencies.
The cost of erroneously predicting the class value with the highest
frequency is equal to 1, the cost of incorrectly predicting the class
value with the second-highest frequency is equal to 2, and so on:

mII
σ(j)i = j ∀i, j ∈ {1, 2, . . . ,K} , σ(j) ̸= i,

mII
jj = 0 ∀j = 1, 2, . . . ,K.

– Cost Matrix (III): This cost matrix is equivalent to Cost Matrix (I),
but now the class values with lower frequencies have lower costs
than the class values with higher frequencies:

mIII
iσ(j) = K− j+ 1 ∀i, j ∈ {1, 2, . . . ,K} , σ(j) ̸= i,

mIII
jj = 0 ∀j = 1, 2, . . . ,K.

– Cost Matrix (IV): It is similar to Cost Matrix (II). However, now the
class values with lower frequencies have lower costs than the class
values with higher frequencies:

mIV
σ(j)i = K− j+ 1 ∀i, j ∈ {1, 2, . . . ,K} , σ(j) ̸= i,

mIV
jj = 0 ∀j = 1, 2, . . . ,K.

• Evaluation: In order to check the performance of the algorithms con-
sidered in this experimentation, we mainly use the MIC measure, the
well-established evaluation metric for cost-sensitive imprecise classifiers
so far. For a deeper analysis of the behavior of the algorithms, we also
consider two metrics to evaluate how informative the predictions are:
Determinacy and Single Accuracy, which were described in Section 5.3,
and two metrics for checking the costs of incorrect classifications of the
algorithms: Single Cost and Set Cost. They are, respectively, the adap-
tations of the Single Accuracy and Set Accuracy metrics, described in
Section 5.3, for cost-sensitive classification.

Formally, let Ntest be the number of test instances, h the learned Impre-
cise Classification model, h(xj) the non-dominated states set predicted
for the j-th test instance, and αj the maximum cost of predicting a class
value belonging to that set, computed through Equation (5.6).
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Single Cost is defined as the average misclassification cost among the
instances precisely classified:

Single_Cost(h) =
1

Nprecise

Ntest∑
j=1,|h(xj)|=1

αj, (10.29)

where Nprecise =
∣∣{j ∈ {1, 2, . . . ,K} :

∣∣h(xj)
∣∣ = 1

}∣∣.
Set Cost measures the average error cost between the instances for which
more than a class value is predicted:

Set_Cost(h) =
1

Nimprecise

Ntest∑
j=1,|h(xj)|>1

αj, (10.30)

where Nimprecise =
∣∣{j ∈ {1, 2, . . . ,K} :

∣∣h(xj)
∣∣ > 1

}∣∣.
• Procedure: For checking the performance of the algorithms considered

in this experimental study, for each preprocessed dataset and cost matrix,
a cross-validation procedure of 10 folds has been repeated 10 times.

• Software and Parameters: We have employed the Weka software for our
experiments. We have utilized the implementation available in Weka
for ICDT, and we have added the necessary structures and methods for
CS-ICDT-IDM, CS-ICDT-ANPI, and Weighted-ICDT. We have used the
Weka filters for the preprocessing. Also, for cross-validation, we have
employed the functionality available in Weka.

For the IDM parameter in CS-ICDT-IDM, the value s = 1, one of the
values recommended in [209], has been used, as in the experimental
analysis carried out in [10]5. The rest of the parameters utilized for all
algorithms have been the ones given by the default in Weka.

• Statistical evaluation: For each cost matrix, we have three algorithms
to compare. Hence, following the recommendations of Demšar [75] for
statistical comparisons between the results obtained by three or more al-
gorithms on many datasets, the Friedman test has been used with a level
of significance of α=0.05 to compare the performance of the algorithms
considered here via the MIC measure. If the null hypothesis of this test
is rejected, then the algorithms are compared pairwise via the Nemenyi
test. Critical diagrams are used to present the results of these tests.

5 Experiments have been carried out with s = 2, but the obtained results are always worse than
with s = 1. So, they are not reported.
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Figure 10.11: Critical diagram for the MIC measure with Cost Matrix 0/1. CD = Critical
Distance.

Figure 10.12: Critical diagram for the MIC measure with Cost Matrix (I). CD = Critical
Distance.

10.5.2.2 Results and discussion

Table 10.15 lets us observe the average Friedman rank obtained by each
algorithm for each cost matrix in MIC. The best result for each cost matrix is
marked in bold. Figures 10.11, 10.12, 10.13, 10.14, and 10.15 show the critical
diagrams for MIC corresponding to Cost Matrices 0/1, (I), (II), (III), and (IV),
respectively.

Table 10.15: Average Friedman rank obtained by CS-ICDT-IDM, CS-ICDT-ANPI, and
Weighted-ICDT in MIC for each cost matrix.

Cost Matrix
Algorithm 0/1 (I) (II) (III) (IV)

CS-ICDT-IDM 2.2794 2.0588 2.2353 2.0882 2.5588

CS-ICDT-ANPI 2.5882 2.6324 2.5441 2.4559 2.6176

Weighted-ICDT 1.1324 1.3088 1.2206 1.4559 1.1765

We express the following comments about these results:
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Figure 10.13: Critical diagram for the MIC measure with Cost Matrix (II). CD = Critical
Distance.

Figure 10.14: Critical diagram for the MIC measure with Cost Matrix (III). CD = Criti-
cal Distance.

Figure 10.15: Critical diagram for the MIC measure with Cost Matrix (IV). CD = Criti-
cal Distance.
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• CS-ICDT-IDM obtains a lower average Friedman rank than CS-ICDT-
ANPI for all the cost matrices considered in this experimentation. Nev-
ertheless, as CS-ICDT-IDM and CS-ICDT-ANPI are connected via a seg-
ment in all critical diagrams, there are no statistically significant differ-
ences according to the Nemenyi test between these two algorithms for
any of the five cost matrices considered. In consequence, we could state
that CS-ICDT-ANPI obtains statistically equivalent results to CS-ICDT-
IDM.

• For all cost matrices, the lowest average Friedman rank is achieved by
our proposed Weighted-ICDT method. In addition, in the critical dia-
grams, Weighted-ICDT is not connected with the other two algorithms
through segments. Thus, according to the Nemenyi test, Weighted-ICDT
performs significantly better than CS-ICDT-ANPI and CS-ICDT-IDM for
the five cost matrices. Hence, we can state that Weighted-ICDT achieves,
by far, the best results.

Table 10.16 presents, for each cost matrix considered in our experimental
analysis, the average results obtained by each algorithm in Determinacy, Inde-
terminacy Size, Single Cost, and Set Cost. The best result for each measure
and cost matrix is marked in bold.

Table 10.16: Average values obtained by CS-ICDT-IDM, CS-ICDT-ANPI, and
Weighted-ICDT in the individual evaluation metrics for each cost matrix.

Cost Matrix
Measure Algorithm 0/1 (I) (II) (III) (IV)

CS-ICDT-IDM 0.7094 0.6248 0.6457 0.7159 0.5432

Determinacy CS-ICDT-ANPI 0.6835 0.6070 0.6404 0.7025 0.5068

Weighted-ICDT 0.9002 0.8083 0.8756 0.8485 0.8685
CS-ICDT-IDM 0.0890 0.1739 0.6457 0.3625 0.1613

Single Cost CS-ICDT-ANPI 0.0806 0.1598 0.1183 0.3584 0.1345
Weighted-ICDT 0.1521 0.4294 0.4156 0.9636 1.0995

CS-ICDT-IDM 8.6956 8.7030 3.6924 8.4671 3.4241
Indeterminacy Size CS-ICDT-ANPI 8.8938 9.0162 4.4448 8.6728 3.9586

Weighted-ICDT 7.9228 7.1027 7.2984 7.0778 7.4300

CS-ICDT-IDM 0.0041 0.0145 0.3001 0.0220 0.8438

Set Cost CS-ICDT-ANPI 0.0061 0.0087 0.2100 0.0355 0.6742

Weighted-ICDT 0.0075 0.0993 0.0636 0.1074 0.1528

These results indicate the following points for each metric:

• Determinacy:
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– CS-ICDT-IDM makes more precise predictions than CS-ICDT-ANPI
since the average Determinacy value obtained by CS-ICDT-ANPI is
lower than the one obtained by CS-ICDT-IDM for all cost matrices.

– Our proposed Weighted-ICDT algorithm achieves, by far, the high-
est average Determinacy value for all cost matrices. Hence, this
method is, by far, the one that makes more precise predictions
among the ones considered in this experimentation.

• Indeterminacy Size:

– For imprecise predictions, CS-ICDT-ANPI predicts more class val-
ues than CS-ICDT-IDM due to the average results obtained in In-
determinacy Size. Thus, it can be stated that the predictions made
by CS-ICDT-IDM are more informative than the ones made by CS-
ICDT-ANPI.

– The cost matrix influences the average Indeterminacy Size value of
Weighted-ICDT. For Cost Matrices 0/1, (I), and (III), Weighted-ICDT
obtains the lowest average Indeterminacy Size value. Therefore, for
such cost matrices, the imprecise predictions made by Weighted-
ICDT are the most informative ones. The opposite happens with
Cost Matrices (II) and (IV). Nonetheless, we must remark that, for
these cost matrices, the average Determinacy value obtained by
Weighted-ICDT is pretty high.

• Single Cost:

– CS-ICDT-ANPI obtains a better result than CS-ICDT-IDM concern-
ing the misclassification cost of precise predictions for all the cost
matrices considered here.

– Weighted-ICDT gets the highest average Single Cost value for the
five cost matrices. Thereby, it obtains the highest misclassification
costs when predicting a single class value.

• Set Cost:

– For Cost Matrices 0/1, (I), and (III), CS-ICDT-ANPI obtains a higher
average Set Cost value than CS-ICDT-IDM, while, for Cost Matrices
(II) and (IV), CS-ICDT-ANPI achieves the lowest average Set Cost
value. This implies that, for Cost Matrices 0/1, (I), and (III), CS-
ICDT-ANPI obtains a higher cost of incorrect imprecise classifica-
tions than CS-ICDT-IDM, whereas, for Cost Matrices (II) and (IV),
the opposite occurs.
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– Weighted-ICDT obtains the highest average Set Cost value for Cost
Matrices 0/1, (I), and (III). Hence, for these cost matrices, the cost
of incorrect imprecise predictions with Weighted-ICDT is higher
than with the other algorithms. The contrary happens with Cost
Matrices (II) and (IV).

Summary of the results: The results obtained in this experimental study
can be summarized as follows:

• The predictions made by CS-ICDT-ANPI are less informative than the
ones made by CS-ICDT-IDM. It is because, as shown in Section 7.3, given
a sample of outcomes of a discrete attribute, IDM probability intervals
with s = 1 are always contained in A-NPI-M probability intervals. Since
the predictions made by CS-ICDT-IDM are more precise than the ones
made by CS-ICDT-ANPI, the risk of misclassification is higher with the
former algorithm and, therefore, the cost of incorrect classifications is
generally higher with CS-ICDT-IDM.

• The results obtained in MIC allow deducing that CS-ICDT-IDM and CS-
ICDT-ANPI achieve an equivalent trade-off between informative predic-
tions and low misclassification cost and, thus, they perform equivalently.
This point is consistent with the experimental study carried out for the
proposed ICDT-ANPI (Section 10.2.1), where we showed that the A-NPI-
M obtains statistically equivalent results to the IDM with the recom-
mended value of the parameter when both models are utilized in the
existing Decision Tree for Imprecise Classification.

• Our proposed Weighted-ICDT method makes much more informative
predictions than the other algorithms, even though it leads to a higher
cost of incorrect predictions. Weighted-ICDT achieves the best trade-
off between informative predictions and low misclassification costs. It is
because, as argued in Section 10.5.1, the criterion employed by Weighted-
ICDT to classify instances at leaf nodes is probably more effective than
the one used by CS-ICDT as the predicted intervals may be more in-
formative and, unlike CS-ICDT, Weighted-ICDT considers the costs of
errors for the uncertainty measures in the split criterion.
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10.6 Concluding remarks

Classifiers sometimes predict a set of class values since there is not sufficient
information to point out a single class value. This is known as Imprecise Clas-
sification. The first Imprecise Classification algorithm was the Naïve Credal
Classifier (NCC). Afterwards, an Imprecise Classification method based on a
single Decision Tree, called the Imprecise Credal Decision Tree (ICDT), was
introduced. NCC and ICDT were also adapted for cost-sensitive scenarios.

In this chapter, we have developed important improvement of the algo-
rithms for Imprecise Classification proposed so far. Specifically, we can sum-
marize the contributions of this chapter in the following issues:

• Firstly, we have proposed a new Imprecise Credal Decision Tree that
uses the A-NPI-M for the uncertainty measures in the split criterion and
the probability intervals at leaf nodes (ICDT-ANPI), unlike the existing
ICDT, which employs the IDM. Experimental results have highlighted
that the IDM parameter strongly influences the performance of ICDT
and that ICDT-ANPI performs equivalently to ICDT with the best choice
of the IDM parameter. These results are consistent with the ones ob-
tained by Credal Decision Trees for precise classification.

Therefore, it can be concluded that the A-NPI-M is more suitable than
the IDM to be applied to Decision Trees for Imprecise Classification as
the former model does not make prior assumptions about the data and
is non-parametric, unlike the latter model.

• We have also developed a new version of the NCC algorithm, called the
Extreme Prior Naive Credal Classifier (EP-NCC), that also combines the
naïve assumption with the IDM to make imprecise predictions. How-
ever, unlike NCC, EP-NCC considers the lower and upper prior prob-
abilities of the class values for the estimation of the lower and upper
conditional probabilities. We have shown that our proposed EP-NCC
algorithm tends to predict fewer values of the class variable than NCC.
In consequence, the predictions made by EP-NCC are more informative.
This also implies that, with EP-NCC, there is more risk of making erro-
neous predictions. Nevertheless, as we have argued, this risk is not far
higher than with NCC since EP-NCC narrows the predicted conditional
probability intervals by considering the bounds of the prior probabilities
of the class values.

An exhaustive experimental study has been carried out to compare the
performance of NCC, our proposed EP-NCC, and the ICDT method.
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Such an experimental study has shown that EP-NCC significantly out-
performs NCC. Specifically, the predictions made by EP-NCC are far
more informative than the ones made by NCC, whereas the difference
between both algorithms in making correct predictions is not statistically
significant. In addition, ICDT and EP-NCC perform equivalently; while
ICDT obtains better results than EP-NCC in the metrics corresponding
to Accuracy, the predictions made by EP-NCC are more informative.
Nonetheless, ICDT requires a considerably higher computational time
than EP-NCC.

For the reasons exposed above, good performance and low computa-
tional cost (Table 10.9), it can be concluded that our proposed EP-NCC
algorithm is more suitable to be applied to large datasets for Imprecise
Classification than the existing algorithms for such a task. Due to the
increasing amount of data used in every area, this is a very important
point to take into account in favor of EP-NCC.

• Ensemble schemes often improve the performance of individual classi-
fiers in precise classification. None of the Imprecise Classification meth-
ods proposed so far makes an ensemble of classifiers. The reason might
be that it is not trivial how to combine the predictions made by multiple
imprecise classifiers. The first ensemble method for Imprecise Classifica-
tion has been presented in this chapter. It has been taken into account
that the Bagging scheme has been shown to provide pretty good results
in precise classification, especially when it has been used with Credal
Decision Trees (CDT), which are known to be diverse and unstable clas-
sifiers. Hence, the proposed ensemble method consists of a Bagging
scheme using the adaptation of CDT for Imprecise Classification (ICDT)
as the base classifier. For the combination of the predictions made by
multiple imprecise classifiers, we have proposed a new technique that
tries that the Bagging imprecise classifier to be as precise as possible.
Such a technique consists of predicting as non-dominated only the class
values with the lowest possible level of dominance, which implies that it
is not very conservative. Reducing the number of non-dominated class
values could produce an unnecessary excessive risk.

Experimental results have revealed that Bagging-ICDT with our pro-
posed combination technique performs much better than the ICDT al-
gorithm. As expected, even though the error rate is a little bit higher for
Bagging-ICDT than for ICDT, the former algorithm is much more precise
than the latter. In consequence, it can be stated that our developed Bag-
ging method for Imprecise Classification with our proposed technique of
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combining the predictions made by multiple imprecise classifiers, which
tries to maximize information assuming more risk, is quite appropriate in
the sense that it improves the performance of a single ICDT.

• With regard to cost-sensitive classification, in this chapter, we have pro-
posed a new cost-sensitive Imprecise Credal Decision Tree that weights
the instances by taking the misclassification cost of the corresponding
class value into account. It is based on the idea of an existing Deci-
sion Tree for cost-sensitive precise classification. Our new method con-
siders the error costs in the tree-building process, unlike the existing
cost-sensitive Imprecise Credal Decision Tree, which only considers the
error costs for classifying instances at leaf nodes. Thereby, for the split
criterion, an instance has more importance as the misclassification cost
of the corresponding class value is higher. In this sense, our proposal
presents an advantage over the existing cost-sensitive Imprecise Credal
Decision Tree because, in cost-sensitive scenarios, the aim is to minimize
the cost of incorrect classifications and not the number of erroneous pre-
dictions. Furthermore, our proposed cost-sensitive Imprecise Credal De-
cision Tree uses the A-NPI-M, whereas the existing one employs the
IDM. As explained before, the former model is more suitable than the
latter as it does not assume previous knowledge about the data via a
parameter. We have also argued that the criterion employed by our pro-
posed cost-sensitive Imprecise Credal Decision Tree to classify instances
at leaf nodes is probably more effective than the one used by the existing
cost-sensitive Imprecise Credal Decision Tree since the predictions made
may be more informative.

An experimental study has been carried out to check the performance of
the existing cost-sensitive Imprecise Credal Decision Tree using the IDM
and the A-NPI-M and our proposal. Such an experimental study has
revealed that the A-NPI-M obtains statistically equivalent results to the
IDM with the recommended value of the parameter when both models
are utilized in the existing cost-sensitive Imprecise Credal Decision Tree
and, as expected, our proposed cost-sensitive Imprecise Credal Decision
Tree performs significantly better than the existing one; even though the
cost of erroneous predictions of our proposed method is higher, it is
far more informative and achieves a better trade-off between low mis-
classification cost and informative predictions. Therefore, it can be con-
cluded that our proposed cost-sensitive Imprecise Credal Decision Tree
is more suitable than the existing one for practical applications where
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the misclassification costs are different and the available information is
not enough for classifiers to predict a unique class value.



11 I M P R E C I S E P R O B A B I L I T I E S I N
M U LT I - L A B E L C L A S S I F I C AT I O N

11.1 Introduction

In some domains such as text categorization, biology, or multimedia, Multi-
Label Classification (MLC) fits better than traditional classification as each
instance might belong to multiple labels simultaneously. The MLC problem
aims to predict the set of labels corresponding to a certain instance. Many
MLC algorithms have been developed so far. A summary of most of them can
be found in [97].

On the one hand, the problem transformation methods convert the MLC task
into multiple traditional classification problems and then combine the solu-
tions of such problems to output a solution for the MLC task. A standard
classification algorithm is required to solve the traditional classification prob-
lems. Within traditional classification, C4.5 is a well-known method based on
Decision Trees. The Credal C4.5 algorithm (CC4.5) [148], exposed in Section
4.6.2, is a version of C4.5 that uses uncertainty measures on credal sets to build
the tree. CC4.5 has obtained significantly better results than C4.5 when there
is class noise in the data. In this chapter, we analyze the use of CC4.5 in two
problem transformation methods: Binary Relevance (BR) and Calibrated Label
Ranking (CLR), described in Sections 6.4.1 and 6.4.3, respectively. We argue
that the intrinsic label noise in MLC might be higher than the intrinsic class
noise in traditional classification. Consequently, CC4.5 is probably more suit-
able than C4.5 to be employed for solving the binary classification tasks in BR
and CC because CC4.5 is less sensitive to class noise than C4.5. Experimental
results highlight that CC4.5 performs better than C4.5 when both methods are
used to solve the binary classification tasks in BR and CC, the improvement
being more notable as there is more noise in the labels.

On the other hand, the algorithm adaptation methods directly adapt the exist-
ing traditional classification algorithms for MLC. Decision Trees were adapted
for MLC by Clare [56]. Such an adaptation, described in Section 6.6, uses
precise probabilities for building the tree. Also, multiple versions of the Near-
est Neighbors algorithms for MLC have been developed so far. The majority
of them use statistical estimators from the neighboring instances based on

307
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classical probability theory. We described most of the mentioned lazy MLC
algorithms in Section 6.7.

In this chapter, we propose a new adaptation of Decision Trees for MLC that
uses imprecise probabilities in the tree-building process and for predicting the
posterior probabilities about the relevance of the labels for the instances at leaf
nodes. We show that our proposed adaptation might be less sensitive to label
noise than the one proposed so far, based on classical probability theory. Via
an experimental analysis, we highlight that the proposed adaptation of Deci-
sion Trees for MLC performs better than the one developed so far, especially
when there is noise in the labels. We also propose new lazy approaches to
MLC that use imprecise probability models for the statistical estimators based
on the neighboring instances. We show that our proposed lazy approaches to
MLC are more suitable than the existing ones based on classical probability
theory to handle the class-imbalance problem that frequently arises in MLC,
especially when data contain label noise. We carry out an experimental study
to corroborate this issue.

Moreover, one of the main challenges of the MLC task is exploiting correla-
tions between labels. Actually, this may be very useful for MLC methods since
the number of labels in MLC tends to be very high. The Classifier Chains al-
gorithm (CC), exposed in Section 6.4.2, is considered a simple and effective
method to exploit label correlations in MLC. As we know, this method consid-
ers a binary classification problem per label in which the previous labels ac-
cording to an established order are utilized as additional predictive attributes.
As pointed out before, the label order strongly influences the performance of
CC, and there is no way of determining the optimal label order so far. For
these reasons, many label ordering methods for CC have been proposed so far.
Most of them estimate correlations between labels via precise probabilities.

A new label ordering method for CC that uses imprecise probabilities to
estimate the label correlations is proposed in this chapter. It consists of a
greedy procedure that, for each candidate label, takes into account the corre-
lations between that label and the ones already inserted in the chain, as well
as the correlations between the candidate label and the labels not inserted yet.
We show that our proposal presents some advantages over the label order-
ing methods based on label correlations proposed so far. An experimental
analysis demonstrates that our proposed label ordering procedure performs
better than the label ordering methods for CC proposed so far based on label
correlations.

To summarize, in this chapter, we analyze the use of imprecise probability
models in MLC, showing that they are more suitable than classical probability
theory since, as we show, the intrinsic label noise in MC may be higher than
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the intrinsic class noise in traditional classification and imprecise probability
models obtain better results than precise probabilities when data contain noise.
We show through several experimental studies that imprecise probabilities
lead to better results than classical probability theory in MLC, and this point
is enhanced when there is label noise in the data.

The remainder of this chapter is organized as follows: In Section 11.2, we
analyze the use of the Credal C4.5 algorithm in the Binary Relevance and
Calibrated Label Ranking methods. Section 11.3 describes our proposed adap-
tation of Decision Trees for Multi-Label Classification. The proposed lazy ap-
proaches to Multi-Label Classification that employ imprecise probabilities are
detailed in Section 11.4. Section 11.5 presents our proposed label ordering
procedure for Classifier Chains based on imprecise probabilities. We conclude
this chapter in Section 11.6.

Within this chapter, let
{
X1,X2, . . . ,Xd

}
denote the set of predictive at-

tributes and Y = {y1,y2, . . . ,ynL
} the label set, where nL > 1. Let Dom(Xi) be

the domain of the Xi attribute, ∀i = 1, 2, . . . ,d. Let
Dtrain = {(xi, Yi) , i = 1, 2, . . . ,Ntr} be the training set, where Ntr denotes
the number of training instances, xi the attribute vector of the i-th training
instance, and Yi ⊆ Y its label set, ∀i = 1, 2, . . . ,Ntr.

11.2 Analysis of Credal C4.5 in problem transforma-
tion methods

11.2.1 Binary Relevance with Credal C4.5

The Binary Relevance method (BR) [36] considers a binary classification
problem per label. In it, the attribute space coincides with the original attribute
set and the class variable indicates whether the corresponding label is relevant
for a given instance. In order to build the mentioned classifiers, we use the
CC4.5 algorithm, described in Section 4.6.2.

When it is required to classify an instance, the set of labels predicted as rele-
vant for such an instance is directly derived from the predictions made by the
binary classifiers. The same happens with the predicted posterior probabilities
about the relevance of the labels for the instance.

Algorithm 20 summarizes the BR method using the CC4.5 algorithm as the
base classifier.

As we know, the BR method is a very simple approach to MLC. Despite this,
it has obtained good results in practice, comparable with more sophisticated
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Algorithm 20: Binary Relevance with Credal C4.5.
Procedure BR-CC4.5 Training set Dtrain = {(xi, Yi), i = 1, 2, . . . ,Ntr}

for j = 1 to nL do
Let DBR

j be the training set obtained from
Dtrain = {(xi, Yi), i = 1, 2, . . . ,Ntr} via Equation (6.31)

Build a binary classifier
hBR_CC45
j : (Dom(X1),Dom(X2), . . . ,Dom(Xd))→ {0, 1} from DBR

j

using CC4.5. Such a classifier can also be determined through a
real-valued function
fBR_CC45
j : (Dom(X1),Dom(X2), . . . ,Dom(Xd))→ R.

For classifying a new instance with attribute vector x
hBR_CC45(x)←

{
yj, 1 ⩽ j ⩽ nL | hBR_CC45

j (x) = 1
}

for j = 1 to nL do
fBR_CC45(x,yj)← fBR_CC45

j (x)

MLC algorithms [144]. Nonetheless, BR has two drawbacks: it ignores label
correlations, and the binary classification tasks of BR tend to suffer from a
class-imbalance problem.

11.2.2 Calibrated Label Ranking with Credal C4.5

The Calibrated Label Ranking algorithm CLR [94] builds a binary classifier
for each pair of labels. For this purpose, those instances for which one of the
two labels is relevant and the other one irrelevant are utilized. In this work
thesis, the CC4.5 algorithm is used to build these classifiers. This yields a label
ranking for a given instance. CLR introduces a virtual label for distinguishing
between relevant and irrelevant labels. In this way, CLR considers a binary
classification problem per label to predict, for a given instance, the relative
relevance of the label versus the virtual one or, in other words, whether such a
label is relevant for that instance. We also employ the CC4.5 method to build
these classifiers.

When an instance is wanted to be classified, for each label, the number of
favorable votes in the classifiers corresponding to the pairwise comparisons
is counted. For each label, that number of votes is incremented in one if that
label is predicted to be more relevant than the virtual one for the instance to
classify. This leads to a label ranking for the instance. For obtaining the set of
labels predicted as relevant for that instance, the number of votes of the virtual
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label is considered. Then, a label is predicted as relevant for the instance, if,
and only if, its final number of votes is higher than the number of votes of the
virtual label.

The CLR method with the CC4.5 algorithm as the base classifier is summa-
rized in Algorithm 21.

Algorithm 21: Calibrated Label Ranking with Credal C4.5.
Procedure CLR-CC4.5 (Training set
Dtrain =

{
(xj, Yj), j = 1, 2, . . . ,Ntr

}
)

for j = 1 to nL − 1 do
for k = j+ 1 to nL do

Let DCLR
jk be the training set obtained from Dtrain by means of

Equation (6.44)
Build a binary classifier
hCLR_CC45
jk : (Dom(X1),Dom(X2), . . . ,Dom(Xd))→ {0, 1} from

DCLR
jk using CC4.5.

for j = 1 to nL do
Let DCLR

j0 be the training set obtained from Dtrain via Equation
(6.46).

Build a binary classifier hCLR_CC45
j0 from DCLR

j0 employing CC4.5.

For classifying a new instance with attribute vector x
for j = 1 to nL do

num_votCC45
x (yj)←∑j−1

k=1

[[
hCLR_CC45
kj (x) = 0

]]
+
∑nL

k=j+1

[[
hCLR_CC45
jk (x)) = 1

]]
final_votesCC45

x (yj)← num_votCC45
x (yj) +

[[
hCLR_CC45
j0 (x) = 1

]]
fCLR_CC45(x,yj) =

final_votesCC45
x (yj)

nL

votes_virtualCC45 (x)←
∑nL

j=1

[[
hCLR_CC45
j0 (x) = 0

]]
.

hCLR_CC45(x)←{
yj | final_votesCC45

x (yj) > votes_virtualCC45 (x) , 1 ⩽ j ⩽ nL

}

As pointed out previously, CLR mitigates the class-imbalance problem that
usually appears in MLC and allows exploiting correlations between pairs of
labels.
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11.2.3 Justification of CC4.5 as the base classifier

As we know, C4.5 is a well-known traditional classification algorithm based
on Decision Trees. In this subsection, we study the use of CC4.5 versus C4.5
to tackle the binary classification problems in BR and CLR. We may note the
following issues concerning the use of CC4.5 versus C4.5 as the base classifier
of BR and CLR:

• Intrinsic label noise in MLC: It is known that, in classification datasets,
there are often errors although they have not been intentionally added.
This is known as intrinsic noise and can be due to errors in data extrac-
tion or because the value of a variable is not exactly known. In this
subsection, we argue in detail that the intrinsic label noise in MLC may
be higher than the intrinsic class noise in traditional classification.

Let pnoise be the probability that an instance has an error in the class
variable in traditional classification. Suppose that, in MLC, the probabil-
ity that an instance has an error in a label is also pnoise (we are assuming
the same probability of error for all labels). In this case, the probability
that an instance has the correct class value in traditional classification is

1− pnoise.

In MLC, assuming that there is independence between the errors in the
labels, the probability that an instance has no error in any label is equal
to (

1− pnoise
)nL .

Suppose that, in the previous situation, pnoise = 0.05 and nL = 10. Then,
the probability that an instance has the correct class value in traditional
classification is equal to

1− 0.05 = 0.95.

The probability that an instance has the correct value in all labels is

(0.95)10 = 0.6

Consequently, in this case, the probability that an instance has an er-
ror in some label is 0.4. Thereby, even though the probability that an
instance has an error in a specific label is very low, the probability of
error in at least one label can be quite notable. In consequence, we can
easily deduce that the intrinsic label noise in MLC is probably higher
than in traditional classification. For this reason, in MLC, it seems to be
appropriate to use classifiers robust to label noise.
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• Sensitivity to label noise: In [148, 150], it was demonstrated that the
split criterion of CC4.5 is more robust to class noise than the split crite-
rion of C4.5. Moreover, in those works, it was empirically shown that
CC4.5 and C4.5 have equivalent performance without class noise in the
data and that CC4.5 obtains significantly better results than C4.5 when
classifying class noisy data. Therefore, it was concluded that CC4.5 is
less sensitive to class noise than C4.5.

When there is an error in a certain label for a given training instance,
the corresponding binary classifier of BR has a training instance with an
incorrect value of the class variable. Likewise, when a training instance
has an error in a label, the binary classifiers associated with the pairwise
comparisons in CLR have an error in the class value of that instance. In
these cases, BR and CLR are less affected by the noise by using CC4.5
rather than C4.5. Hence, BR and CLR are more robust to label noise with
CC4.5 than with C4.5.

To sum up, BR obtains good results in practice despite being really sim-
ple; CLR exploits pairwise label correlations and mitigates the class-imbalance
problem that often arises in MLC; C4.5 is a well-known traditional classifica-
tion method; BR and CLR are more robust to label noise with CC4.5 than with
C4.5; the intrinsic label noise in MLC might be higher than the intrinsic class
noise in traditional classification. For these reasons, it is worth empirically
analyzing BR and CLR using CC4.5 as the base classifier, checking whether it
supposes an improvement over C4.5.

11.2.4 Experiments

In this experimental study, we aim to compare the performance of C4.5 and
CC4.5 when both algorithms are employed to tackle the binary classification
tasks of BR and CLR.

11.2.4.1 Experimental settings

• Datasets: Thirteen datasets have been employed in our experimental
analysis. They can be downloaded from the official website of Mulan
[202]1, a Java library for MLC. Most of these datasets have been used in
other experimental studies for MLC methods [49, 144]. Table 11.1 shows
the main characteristics of each dataset: number of instances, number

1 http://mulan.sourceforge.net/datasets-mlc.html
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of continuous and discrete attributes, number of labels, label cardinality,
label density, and MLC domain.

Table 11.1: Datasets used in our experimentation with MLC methods. N is the number
of instances, N_CA and N_DA are, respectively, the number of continuous
and discrete attributes, N_L is the number of labels, L_C the label cardinal-
ity, and L_D the label density.

Dataset N N_DA N_CA N_L L_C L_D Domain
bibtex 7395 1836 0 159 2.4 0.015 Text
birds 645 2 258 19 1.014 0.053 Multimedia
cal500 502 0 68 174 26.044 0.15 Multimedia
corel5k 5000 499 0 374 3.52 0.009 Multimedia

delicious 16105 500 0 983 19.02 0.019 Text
emotions 593 0 72 6 1.87 0.311 Multimedia

enron 1702 1001 0 53 3.38 0.064 Text
flags 194 9 10 7 3.392 0.485 Multimedia

genbase 662 1186 0 27 1.252 0.046 Biology
mediamill 43907 0 120 101 4.38 0.043 Multimedia

medical 978 1449 0 45 1.24 0.028 Text
scene 2407 0 294 6 1.07 0.179 Multimedia
yeast 2417 0 103 14 4.24 0.303 Biology

We must remark that the ‘delicious’ dataset requires a very high compu-
tational cost due to its very large numbers of instances and labels. For
this reason, this dataset is only used for BR.

It can be observed that the datasets used in this experimental analysis
are diverse with regard to the number of instances, number of continu-
ous and discrete features, number of labels, label cardinality, and label
density. Hence, we can state that the set of datasets used in our experi-
mentation is representative.

• Algorithms: Two MLC algorithms have been employed in this experi-
mental study: BR and CLR. For both of them, two base classifiers have
been considered: C4.5 and CC4.5.

• Evaluation metrics: Consistently with the extensive experimental study
with MLC algorithms carried out in [144], sixteen evaluation metrics
have been used in this experimentation: Six are based on
instance-classification: Hamming Loss, Subset Accuracy, Accuracy, Pre-
cision, Recall, and F1; six label-based classification evaluation metrics
have been employed: Micro Precision, Macro Precision, Micro Recall,
Macro Recall, Micro F1, and Macro F1; the other four evaluation mea-
sures are based on ranking: Coverage, One Error, Ranking Loss, and
Average Precision. All these metrics were exposed in Section 6.3.
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• Procedure: Three noise levels have been considered in our experiments:
0%, 5%, and 10%. For each MLC algorithm, base classifier, dataset, and
noise level, the following cross-validation procedure has been carried
out: the dataset has been divided into five partitions, and, for each one
of them, an iteration has been done. In it, the associated partition has
been employed for testing, and the rest of the data for training. For
each label, the x% of the training instances (x being the noise level) have
been chosen, and the value of their label has been changed (if the label
is irrelevant it has been changed to relevant and vice-versa)2. The MLC
model is learned with the noisy training set, and the evaluation measures
are extracted via the test set. The same partitions have been employed
for all combinations of MLC algorithm/base classifier in all datasets.

• Software and parameters: The implementations available in Mulan for
BR and CLR have been used for this experimentation. The implementa-
tions given in Weka for both C4.5 and CC4.5 have been employed. For
the IDM parameter in CC4.5, the value s = 1 has been utilized because it
is one of the values recommended by Walley [209], has been used in the
experimental study carried out by the developers of CC4.5 in [149], and
requires a low computational cost. The rest of the parameters used for
all algorithms have been the ones given by default in the corresponding
software.

Part of the functionality available in Mulan has been employed to create
the partitions of cross-validation. The Weka filters have been utilized for
generating the label noise.

• Statistical evaluation: For each MLC algorithm considered here and
evaluation metric, we have two base classifiers to compare: C4.5 and
CC4.5. In this way, following the indications given in [49, 75] for sta-
tistical comparisons between two methods, the Wilcoxon test has been
employed with a level of significance of α = 0.05 for checking which
base classifier achieves better performance and whether the differences
are statistically significant.

11.2.4.2 Results and discussion

Tables 11.2 and 11.3 show a summary of the results obtained by each base
classifier for each evaluation metric and noise level in BR and CLR, respec-

2 We have not considered noise levels higher than 10% because the noise is introduced in each
label and, thus, a higher noise level would imply a very considerable amount of noise in the
data.
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tively. Specifically, for each metric and noise level, they illustrate which base
classifier performs better according to the Wilcoxon test and whether the dif-
ferences are statistically significant. Also, these tables let us see, for each
metric and noise level, in how many datasets a base classifier achieves a better
result than the other one (number of wins).

Binary Relevance: The following points should be noted about the results
obtained by the BR algorithm for each type of evaluation metric:

• Instance-based classification metrics:

– When there is no label noise in the data, according to the Wilcoxon
test, CC4.5 performs significantly better than C4.5 as the base clas-
sifier of BR in Hamming Loss and Subset Accuracy. It means that
BR predicts the entire sets of relevant labels for the instances with
CC4.5 more frequently than with C4.5 and that BR incorrectly clas-
sifies fewer pairs of instance-label with CC4.5.

– Concerning Recall, in ten datasets, C4.5 achieves a better result than
CC4.5 as the base classifier of BR, whereas, in only three datasets,
the opposite happens. However, in this case, both base classifiers
perform equivalently according to the Wilcoxon test.

– CC4.5 obtains a higher number of wins than C4.5 as the base classi-
fier of BR in Accuracy, Precision, and F1. Consequently, BR gener-
ally predicts better the sets of relevant labels for the instances with
CC4.5 than with C4.5; BR predicts less irrelevant labels as relevant
using CC4.5 than employing C4.5, and the results of BR in the har-
monic means between Precision and Recall are more favorable to
CC4.5. Nevertheless, there no are statistically significant differences
via the Wilcoxon test for none of these three metrics.

– When there is noise in the labels, CC4.5 significantly outperforms
C4.5 via the Wilcoxon test as the base classifier of BR in Hamming
Loss, Subset Accuracy, Accuracy, Precision, and F1. Furthermore,
in these metrics, the number of wins of CC4.5 is notably higher
than the number of wins of C4.5.

– With noise in the labels, in Recall, there are more datasets in which
BR performs better using C4.5 than datasets in which BR gets a
better result with CC4.5. Nonetheless, there are no statistically sig-
nificant differences in Recall via the Wilcoxon test for any of the
label noise levels considered.
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Table 11.2: Summary of the results obtained by BR with C4.5 and CC4.5 for each eval-
uation metric and noise level. (•) means that the base classifier of the
column performs significantly better than the other one according to the
Wilcoxon test. (-) indicates that the algorithm of the column improves the
other one in BR, but the differences are not statistically significant.

Noise level Metric C4.5 CC4.5 Wins C4.5 Wins CC4.5
Hamming Loss (•) 3 9

Subset Accuracy (•) 3 8

Accuracy (-) 5 8

Precision (-) 5 8

Recall (-) 10 3

F1 (-) 5 8

Micro Precision (-) 5 8

0% Macro Precision (-) 4 9

Noise Micro Recall (-) 10 3

Macro Recall (-) 8 4

Micro F1 (-) 4 9

Macro F1 (-) 8 5

Coverage (•) 1 12

Ranking Loss (•) 0 12

Average Precision (•) 2 11

One-Error (•) 2 9

Hamming Loss (•) 3 9

Subset Accuracy (•) 1 10

Accuracy (•) 4 8

Precision (•) 3 9

Recall (-) 9 3

F1 (•) 4 8

Micro Precision (•) 3 9

5% Macro Precision (-) 4 8

Noise Micro Recall (•) 10 2

Macro Recall (•) 10 2

Micro F1 (-) 5 7

Macro F1 (-) 6 6

Coverage (•) 3 9

Ranking Loss (•) 2 10

Average Precision (•) 2 10

One-Error (•) 1 11

Hamming Loss (•) 2 10

Subset Accuracy (•) 1 10

Accuracy (•) 2 10

Precision (•) 2 10

Recall (-) 8 4

F1 (•) 2 10

Micro Precision (•) 2 10

10% Macro Precision (-) 4 8

Noise Micro Recall (•) (-) 9 3

Macro Recall (•) 11 1

Micro F1 (•) 4 8

Macro F1 (-) 8 4

Coverage (•) 2 10

Ranking Loss (•) 1 11

Average Precision (•) 1 11

One-Error (•) 0 12
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Table 11.3: Summary of the results obtained by CLR with C4.5 and CC4.5 for each
evaluation metric and noise level. (•) means that the base classifier of the
column performs significantly better than the other one according to the
Wilcoxon test. (-) indicates that the algorithm of the column improves the
other one in CLR, but the differences are not statistically significant.

Noise level Metric C4.5 CC4.5 Wins C4.5 Wins CC4.5
Hamming Loss (-) 3 7

Subset Accuracy (-) 4 6

Accuracy (-) 5 7

Precision (-) 8 4

Recall (-) 7 5

F1 (-) 5 7

Micro Precision (-) 7 5

0% Macro Precision (-) 6 6

Noise Micro Recall (-) 7 5

Macro Recall (-) 6 5

Micro F1 (-) 4 8

Macro F1 (-) 4 8

Coverage (-) 6 5

Ranking Loss (-) 7 4

Average Precision (-) 6 5

One-Error (-) 5 6

Hamming Loss (-) 3 8

Subset Accuracy (-) 3 7

Accuracy (•) 3 8

Precision (-) 6 5

Recall (-) 5 6

F1 (-) 3 8

Micro Precision (-) 5 6

5% Macro Precision (-) 6 5

Noise Micro Recall (-) 6 5

Macro Recall (-) 8 3

Micro F1 (-) 4 7

Macro F1 (-) 5 6

Coverage (-) 4 8

Ranking Loss (-) 4 8

Average Precision (-) 3 9

One-Error (-) 3 8

Hamming Loss (•) 2 10

Subset Accuracy (•) 0 11

Accuracy (•) 0 11

Precision (•) 2 10

Recall (-) 4 8

F1 (•) 1 11

Micro Precision (-) 4 8

10% Macro Precision (-) 6 6

Noise Micro Recall (-) 5 7

Macro Recall (-) 8 4

Micro F1 (•) 2 10

Macro F1 (-) 7 5

Coverage (-) 4 8

Ranking Loss (•) 3 9

Average Precision (•) 2 9

One-Error (•) 2 9
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• Label-based classification metrics:

– When there is no noise in the labels, the results obtained by BR
with C4.5 and CC4.5 are statistically equivalent according to the
Wilcoxon test in all label-based classification evaluation measures.

– Despite the previous point, without noise in the labels, BR obtains
more wins with CC4.5 than with C4.5 in the metrics correspond-
ing to Precision, while, in the metrics associated with Recall, the
opposite happens. Therefore, BR predicts fewer irrelevant labels
as relevant with CC4.5 than with C4.5 but predicts more relevant
labels as relevant with the latter base classifier than with the former.

– Without noise in the labels, the results obtained by C4.5 and CC4.5
as the base classifiers of BR in Micro and Macro F1 are statistically
equivalent according to the Wilcoxon test. The number of wins of
CC4.5 is higher than the number of wins of C4.5 in Micro F1, and
the contrary happens in Macro F1.

– Something similar occurs with noise in the labels. However, BR per-
forms significantly better with C4.5 than with CC4.5 in the metrics
corresponding to Recall. In consequence, the fact that BR predicts
more relevant labels as relevant with C4.5 than with CC4.5 is now
enhanced. In contrast, CC4.5 performs significantly better than C4.5
as the base classifier of CLR in Micro Precision. Indeed, with noise
in the labels, C4.5 and CC4.5 have equivalent performance in BR
according to the Wilcoxon test in Macro Precision. Even so, it is
remarkable that, in this case, CC4.5 gets a notably higher number
of wins than C4.5. So, with noise in the labels, BR predicts much
fewer irrelevant labels as relevant with CC4.5 than with C4.5.

– With a 10% of noise in the labels, CC4.5 significantly outperforms
C4.5 via the Wilcoxon test as the base classifier of BR in Micro Pre-
cision. In contrast, with this noise level, there are no statistically
significant differences between C4.5 and CC4.5 in Macro F1.

• Ranking-based measures: For all noise levels, CC4.5 performs signif-
icantly better than C4.5 as the base classifier of BR according to the
Wilcoxon test in all ranking-based metrics. In addition, the number
of wins of CC4.5 is far higher than the number of wins of C4.5 in all
ranking-based evaluation measures for all noise levels. Therefore, BR
predicts the posterior probabilities about the relevance of the labels for
the instances much better with CC4.5 than with C4.5.
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Calibrated Label Ranking:

• Instance-based classification measures:

– Without noise in the labels, there are no statistically significant dif-
ferences via the Wilcoxon test between the results obtained by C4.5
and CC4.5 as the base classifiers of CLR in any of the instance-based
classification metrics considered.

– However, even without noise in the labels, in Hamming Loss, CLR
obtains a better result with CC4.5 in seven datasets and with C4.5
in three datasets. Thereby, without label noise, for a given instance,
there is generally less difference between the set of labels associated
with an instance and the set of labels predicted as relevant for such
an instance with CC4.5 as the base classifier of CLR than with C4.5.

– When there is no noise in the labels, in Precision, the number of
wins of CC4.5 is four over eight of C4.5. Hence, without noise in
the labels, with CC4.5 as the base classifier of CLR, more irrelevant
labels are predicted as relevant than with C4.5.

– With a 5% of noise in the labels, CLR performs better with CC4.5
than with C4.5 in all instance-based classification evaluation mea-
sures. In Hamming Loss, Subset Accuracy, Accuracy, and F1, the
number of datasets in which CC4.5 performs better than C4.5 in
CLR is notably larger than the number of datasets in which C4.5
gets a better result. Furthermore, CC4.5 significantly outperforms
C4.5 via the Wilcoxon test as the base classifier of CLR in Accuracy.
Therefore, with a 5% of label noise, CLR predicts the set of labels
associated with the instances much better using CC4.5 as the base
classifier rather than C4.5.

– The differences are more notable when there is a 10% of noise in
the labels. In fact, with this noise level, the results obtained by
CLR with CC4.5 are significantly better than the ones achieved
with C4.5 in all instance-based classification metrics according to
the Wilcoxon test, except for Recall. Indeed, the number of wins
of CC4.5 is far higher than the number of wins of C4.5 in all these
measures, even in Recall, where CLR obtains a better result with
CC4.5 in eight datasets and with C4.5 in three datasets. Thus, with
a 10% of label noise in the data, CLR predicts the sets of relevant
labels for the instances with CC4.5 as the base classifier much better
than with C4.5.

• Label-based classification metrics:
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– As in instance-based classification metrics, when there is no noise
in the labels, the results obtained by C4.5 and CC4.5 as the base clas-
sifiers of CLR are statistically equivalent according to the Wilcoxon
test in all label-based classification measures.

– Nevertheless, in the metrics corresponding to the harmonic means
between Precision and Recall (Micro and Macro F1), the perfor-
mance of CLR with CC4.5 is better than with C4.5, even though
we must remark that the differences are not statistically significant
via the Wilcoxon test for any of these measures.

– With a 5% of label noise, according to the Wilcoxon test, the differ-
ences between the results obtained by CLR with C4.5 and CC4.5 are
also not statistically significant for any of the label-based classifica-
tion metrics considered here.

– However, it is remarkable that, with a 5% of label noise, the re-
sults achieved by CLR using C4.5 as the base classifier in Micro
and Macro Recall are better than with CC4.5 (eight wins and three
losses in both metrics). Consequently, when there is a 5% of label
noise, with C4.5, CLR predicts more relevant labels as relevant than
with CC4.5, although the differences are not statistically significant.

– With a 10% of label noise, the results are similar to the ones ob-
tained with a 5% of label noise. Nonetheless, according to the
Wilcoxon test, the performance of CLR with CC4.5 as the base clas-
sifier in the harmonic mean between Micro Precision and Micro
Recall, i.e. Micro F1, is significantly better than with C4.5. In con-
sequence, when there is a 10% of label noise, in harmonic means
between Precision and Recall averaged over all instance/label pairs,
CLR obtains much better performance with CC4.5 than with C4.5.

• Ranking-based measures:

– When there is no noise in the labels, the results obtained by C4.5
and CC4.5 in CLR are statistically equivalent according to the Wilcoxon
test in all the ranking-based metrics considered in this experimen-
tal analysis, similar to instance-based evaluation measures. We may
observe that, in all ranking-based metrics, the numbers of wins of
both base classifiers of CLR are similar, except for Ranking Loss. In
this metric, CLR performs better with CC4.5 in only three datasets
and with C4.5 in seven datasets. Thereby, without noise in the la-
bels, CLR reversely orders fewer pairs of relevant-irrelevant labels
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with C4.5 than with CC4.5, even though, in this case, there are no
statistically significant differences.

– With a 5% of noise in the labels, according to the Wilcoxon test,
there are also no statistically significant differences between the re-
sults obtained by C4.5 and CC4.5 as the base classifiers of CLR
in any ranking-based evaluation metric. However, in all ranking-
based measures, the number of datasets in which CC4.5 obtains a
better result than C4.5 as the base classifier of CLR is much higher
than the number of datasets where the contrary happens. Hence,
with a 5% of noise in the labels, CLR predicts the posterior proba-
bilities of the relevance of the labels for the instances far better with
CC4.5 than with C4.5.

– The difference between the performance of CLR with CC4.5 and
C4.5 in ranking-based metrics is even more notable with a 10% of
label noise. Indeed, CC4.5 significantly outperforms C4.5 via the
Wilcoxon test as the base classifier of CLR in all the ranking-based
metrics considered in this experimentation, except for Coverage,
which measures the number of steps, on average, that are required
to go down the label ranking for covering all labels associated with
an instance. Even so, in this evaluation metric, CC4.5 gets eight
wins and three losses. In this way, when there is a 10% of label
noise, the posterior probabilities of the relevance of the labels for
the instances predicted by CLR employing CC4.5 as the base classi-
fier are far more suitable than using C4.5.

Summary of the results: The following issues summarize the results ob-
tained in this experimental analysis:

• When there is no noise in the labels, both BR and CLR perform better
using CC4.5 as the base classifier than with C4.5. Actually, in both MLC
algorithms, the number of wins of CC4.5 is higher than the number of
wins of C4.5 in most of the evaluation metrics. Furthermore, in BR, in
some evaluation metrics, CC4.5 significantly outperforms C4.5 via the
Wilcoxon test. This happens because the intrinsic label noise in MLC
is probably higher than in traditional classification and CC4.5 is more
robust to class noise than C4.5.

• As the level of label noise is higher, there are more datasets where
CC4.5 achieves a better result than C4.5 and more evaluation measures
in which, according to the Wilcoxon test, CLR obtains significantly bet-
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ter performance using CC4.5 than with C4.5. So, the improvement of
CC4.5 over C4.5 as the base classifier of BR and CLR is more notable as
there is more noise in the labels. We already know the reason: C4.5 is
more sensitive to class noise than CC4.5 and, thus, BR and CLR are more
robust to label noise with CC4.5 than with C4.5.

• We appreciate that, in BR, C4.5 performs better than CC4.5 in the metrics
corresponding to Recall whereas CC4.5 outperforms C4.5 in the metrics
associated with Precision. This means that BR predicts more relevant la-
bels as relevant with C4.5 as the base classifier than with CC4.5, but BR
predicts fewer irrelevant labels as relevant with the latter base classifier
than with the former. It occurs since, as commented before, the binary
classification problems in BR tend to suffer from a class-imbalance prob-
lem, and CC4.5 stops branching the tree before C4.5. Consequently, in
many cases, with CC4.5, some parts of the tree in which a label is cor-
rectly predicted as relevant with C4.5 are not reached. However, in such
parts, the label noise may have a negative influence. The results ob-
tained in F1 metrics let us deduce that the trade-off between correctly
predicting relevant labels and not predicting irrelevant labels as relevant
is better for CC4.5, especially when there is noise in the labels.

• The improvement is especially notable in instance-based and ranking-
based evaluation metrics. It is because the proportion of instances with
an error in at least one label is probably far higher than the proportion
of instances that have an error in a specific label.

11.3 Multi-Label Credal Decision Tree

The adaptation of Decision Trees for MLC proposed here, called the Multi-
Label Credal Decision Tree (ML-CDT), principally differ from the adaptation
proposed so far, described in Section 6.6, in the split criterion and in the cri-
terion used to predict the posterior probabilities about the relevance of the
labels for the instances at leaf nodes.

Let D be the subset of the training set corresponding to a certain node and
ND the total number of instances in D. Let nD(yj) (nD(yj)) denote the num-
ber of instances in D for which yj is relevant (irrelevant), ∀j = 1, 2, . . . ,nL.
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For each label yj, we have the following A-NPI-M probability interval on yj

associated with D:

IDANPI(yj) =

[
max

(
nD(yj) − 1

ND
, 0
)

, min
(
nD(yj) + 1

ND
, 1
)]

, ∀j = 1, 2, . . . ,nL.

(11.1)
This probability interval leads to the following credal set on yj on D:

P
(
IDANPI(yj)

)
=

{
p ∈ P(yj) | p(yj) ∈ IDANPI(yj)

}
, (11.2)

where P(yj) denotes the set of all probability distributions on yj and p(yj) is
the probability that yj is relevant according to the probability distribution p.

As we know, the maximum entropy is a well-established uncertainty mea-
sure on credal sets as it satisfies the essential mathematical properties. Hence,
ML-CDT considers the maximum entropy on P

(
IDANPI(yj)

)
:

S∗
(
P
(
IDANPI(yj)

))
= max

p∈P(IDANPI(yj))
S(p), (11.3)

S(p) being the Shannon entropy of the probability distribution p.
Computing S∗

(
P
(
ID(yj)

))
is direct. Indeed, applying Algorithm 14, we

obtain that the probability distribution that gives rise to the maximum entropy
on P

(
ID(yj)

)
, p̂D

j , is given by:

p̂D
j (yj) =



1
2 if

∣∣nD(yj) −nD(yj)
∣∣ ⩽ 2

nD(yj)−1

ND if nD(yj) > nD(yj) + 2

nD(yj)+1

ND if nD(yj) > nD(yj) + 2

(11.4)

The basis of the split criterion of ML-CDT is the maximum entropy on the
entire label set Y, which is determined by the sums of the maximum entropies
on the A-NPI-M credal sets on the labels:

S∗ (Y) =

nL∑
j=1

S∗
(
P
(
IDANPI(yj)

))
. (11.5)

For the split criterion, ML-CDT considers the gain of information of the label
set assuming that the entropy of the label set is computed via the sum of the
maximum entropies on the A-NPI-M credal sets on the labels. Formally, for
an attribute Xi whose possible values are

{
xi1, xi2, . . . , xiti

}
, the split criterion

of ML-CDT is defined in the following way:

IIGD(Y) = S∗ (Y) −

ti∑
ri=1

PD(Xi = xiri)S
∗ (Y | Xi = xiri

)
, (11.6)
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where PD(Xi = xiri) is the probability that Xi = xiri in D, estimated through
relative frequencies, and S∗

(
Y | Xi = xiri

)
is the maximum entropy on Y on

the subset of D composed of those instances for which Xi = xiri , computed via
Equation (11.5), ∀ri = 1, 2, . . . , ti, i = 1, 2, . . . ,d.

For classifying an instance at a leaf node, ML-CDT predicts the posterior
probability about the relevance of a label at that leaf node through the prob-
ability distribution that reaches the maximum entropy on the corresponding
A-NPI-M credal set on such a label. A label is predicted as relevant at that leaf
node if, and only if, its predicted posterior probability is greater or equal than
0.5. Formally, let L be a leaf node and NL the total number of instances in
L. For each label yj, let nL(yj) (nL(yj)) denote the number of instances in L

for which yj is relevant (irrelevant). Let us consider the A-NPI-M probability
interval on yj on L:

ILANPI(yj) =

[
max

(
nL(yj) − 1

NL
, 0
)

, min
(
nL(yj) + 1

NL
, 1
)]

. (11.7)

The following credal set is associated with this interval:

P
(
ILANPI(yj)

)
=

{
p ∈ P(yj) | p(yj) ∈ ILANPI(yj)

}
. (11.8)

Let p̂L
j (yj) be the probability distribution of maximum entropy on

P
(
ILANPI(yj)

)
. It can be directly computed by means of Algorithm 14, and is

determined as follows:

p̂L
j (yj) =



1
2 if

∣∣nL(yj) −nL(yj)
∣∣ ⩽ 2

nL(yj)−1

NL if nL(yj) > nL(yj) + 2

nL(yj)+1

NL if nL(yj) > nL(yj) + 2

(11.9)

The set of labels predicted as relevant by ML-CDT at L is composed of those
labels for which the predicted posterior probability is greater or equal than 0.5:

hL
ML_CDT =

{
yj, 1 ⩽ j ⩽ nL | p̂L

j (yj) ⩾ 0.5
}

. (11.10)

Algorithm 22 summarizes the building procedure of a ML-CDT.
In order to classify an instance with ML-CDT, a path from the root node to

a leaf one is made by using the attribute values of the instance. The predicted
label set for the instance is the one assigned to such a terminal node. The
same occurs with the predicted posterior probabilities about the relevance of
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Algorithm 22: Procedure to build a Multi-Label Credal Decision Tree.
Procedure Build_ML-CDT(Node N)
Let D be the dataset associated with N

if there are more attributes to insert then
Select Xi the attribute that reaches the maximum value of
IIGD(Y,Xi)

for xiri possible value of Xi do
Make a node Nri child of N
Build_ML-CDT(Nri)

else
Make N a leaf node
for j = 1 to nL do

fNML_CDT (yj) = p̂L
j (yj),

where p̂L
j (yj) is determined by Equation (11.9)

Assign a label set hN
ML_CDT to N, computed through Equation

(11.10)

Algorithm 23: Procedure to classify an instance with ML-CDT.
Procedure Classify_ML-CDT(ML-CDT T, instance with attribute vector
x =

(
x1r1 , x2r2 , . . . , xdrd

)
)

1. Follow a path in T from the root node to a leaf one L using the
attribute values x1r1 , x2r2 , . . . , xdrd .

2. for j = 1 to nL do
fML_CDT (x,yj) = fLML_CDT (yj)

3. Assign the predicted label set at L, hL
ML_CDT , to hML_CDT (x).
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the labels for such an instance. Algorithm 23 summarizes the procedure to
classify an instance via ML-CDT.

For handling continuous attributes, similar to ML-DT, ML-CDT considers
binary splits and selects the split point that produces the maximum IIG value.
Concerning missing values, when an instance has a missing value for an at-
tribute, it can go down each branch hanging from the corresponding node
with a weight equal to the proportion of instances at such a branch, as in ML-
DT. Similar to ML-DT, ML-CDT can utilize pruning processes by considering
the number of errors in all labels.

11.3.1 Differences between Multi-Label Decision Tree and Multi-Label Credal
Decision Tree

We remark below the main differences between the behavior of ML-DT and
ML-CDT.

• Size of the dataset: It is easy to observe that the intervals IDANPI(yj),
determined through Equation (11.1), are narrower as the number of in-
stances in the dataset, ND, is higher. In consequence, as ND is higher,
the corresponding credal set, computed via Equation (11.2), has fewer
probability distributions far from the one associated with relative fre-
quencies. Hence, at the upper levels of the tree, where the number of
instances tends to be pretty large, IG and IIG, defined in Equations (6.53)
and (11.6), respectively, may provide similar values and, thus, ML-DT
and ML-CDT might have similar behavior. In contrast, at the lower lev-
els of the tree, where there are often very few instances, the associated
credal sets may contain many probability distributions far from the ones
estimated through relative frequencies. So, in these cases, IG and IIG
might not give similar values since S(Y) and S∗(Y) are probably quite
different. In this way, ML-DT and ML-CDT behave similarly at the up-
per levels of the tree but their behavior might be quite different at the
lower levels. The same happens with classical Decision Trees and Credal
Decision Trees for traditional classification, as argued in Section 4.6.3.

• Stop criterion: For an attribute Xi that takes values in
{
xi1, xi2, . . . , xiti

}
,

the value of IIG(Y,Xi) can be negative, unlike IG(Y,Xi). The reason
is that, according to the results proved in [5], the imprecise information
gain for a label yj, S∗

(
P
(
ID(yj)

))
−
∑ti

ri=1 P
D(Xi = xiri)S

∗ (Y | Xi = xiri
)
,

can be negative, unlike the information gain SD(Y) −
∑ti

ri=1 P
D(Xi =

xiri)S
D(Y | Xi = xiri). Therefore, ML-CDT avoids selecting attributes
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that worsen the uncertainty-based information about the label set. In
consequence, overfitting in ML-CDT is probably lower than in ML-DT
because ML-CDT may stop branching the tree before ML-DT.

• Predictions at leaf nodes: We may note that ML-DT predicts a label yj

as relevant at a leaf node L if, and only if, nL(yj) ⩾ nL(yj), nL(yj) and
nL(yj) being the number of instances in L for which yj is relevant and
irrelevant, respectively. Nonetheless, ML-CDT predicts yj as relevant at
L ⇔ nL(yj) + 2 ⩾ nL(yj). Thus, ML-CDT is more flexible than ML-
DT for predicting a label as relevant at a leaf node. It is suitable for
alleviating the class-imbalance problem that usually appears in MLC.

Regarding the predicted posterior probabilities about the relevance of
the labels for the instances, ML-DT predicts the ones associated with rel-
ative frequencies, while ML-CDT predicts the probability distributions
that yield the maximum entropies on the corresponding credal sets. Con-
sequently, according to the examples shown below, the posterior proba-
bilities predicted by ML-CDT might be less sensitive to label noise than
the posterior probabilities predicted by ML-DT.

• Noise in the labels: We show with an example below that, for a certain
label, the Shannon entropy may be more sensitive to noise in that label
than the maximum entropy on the corresponding credal set:

Proposition 11.3.1 Suppose that there is a dataset D with ND instances. Let
nD(yj) denote the number of instances in D that have associated yj and nD(yj)

the number of instances in D for which yj is irrelevant. Let us assume that
nD(yj) > nD(yj) + 3 and nD(yj) > 2. Let Dnois be a dataset derived from
D by chaining the value of yj for an instance from irrelevant to relevant. With
these assumptions, it holds that

SDnois(yj) − SD(yj) ⩾ S∗
(
P
(
IDnois

ANPI(yj)
))

− S∗
(
P
(
IDANPI(yj)

))
,

where P
(
IDANPI(yj)

) (
P
(
IDnois

ANPI(yj)
))

is the A-NPI-M credal set on yj cor-
responding to D (Dnois), determined by Equation (11.2).

Proof: We have that:

SD(yj) = −
nD(yj)

ND
log2

nD(yj)

ND
−

nD(yj)

ND
log2

nD(yj)

ND
,

SDnois(yj) = −
nD(yj) − 1

ND
log2

nD(yj) − 1

ND
−

nD(yj) + 1

ND
log2

nD(yj) + 1

ND
.
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Hence,

SDnois(yj) − SD(yj) = −
nD(yj) − 1

ND
log2(n

D(yj) − 1)−

nD(yj) + 1

ND
log2(n

D(yj) + 1) +
nD(yj)

ND
log2(n

D(yj)) +
nD(yj)

ND
log2(n

D(yj))+

log2(N
D)

ND
×
[
nD(yj) − 1+nD(yj) + 1−nD(yj) −nD(yj)

]
=

−(nD(yj) − 1) log2(n
D(yj) − 1) − (nD(yj) + 1) log2(n

D(yj) + 1)

ND
+

nD(yj) log2(n
D(yj)) +nD(yj) log2(n

D(yj))

ND
.

Now, we may note that the probability distribution that reaches the max-

imum entropy on P
(
IDANPI(yj)

)
is given by p̂D

j (yj) =
nD(yj)+1

ND . Like-
wise, it is easy to check that the probability distribution of maximum

entropy on P
(
IDnois

ANPI(yj)
)

is determined by p̂Dnois

j (yj) =
nD(yj)+2

ND .

Consequently,

S∗
(
P
(
IDnois

ANPI(yj)
))

− S∗
(
P
(
IDANPI(yj)

))
=

−(nD(yj) − 2) log2(n
D(yj) − 2) − (nD(yj) + 2) log2(n

D(yj) + 2)

ND
+

(nD(yj) − 1) log2(n
D(yj) − 1) + (nD(yj) + 1) log2(n

D(yj) + 1)

ND
.

Therefore,

SDnois(yj) − SD(yj) ⩾ S∗
(
P
(
IDnois

ANPI(yj)
))

− S∗
(
P
(
IDANPI(yj)

))
⇔

− (nD(yj) − 1) log2(n
D(yj) − 1) − (nD(yj) + 1) log2(n

D(yj) + 1)+

nD(yj) log2(n
D(yj)) +nD(yj) log2(n

D(yj)) ⩾

− (nD(yj) − 2) log2(n
D(yj) − 2) − (nD(yj) + 2) log2(n

D(yj) + 2)+

(nD(yj) − 1) log2(n
D(yj) − 1) + (nD(yj) + 1) log2(n

D(yj) + 1)⇔
nD(yj) log2(n

D(yj)) +nD(yj) log2(n
D(yj))+

(nD(yj) − 2) log2(n
D(yj) − 2) + (nD(yj) + 2) log2(n

D(yj) + 2) ⩾

2(nD(yj) − 1) log2(n
D(yj) − 1) + 2(nD(yj) + 1) log2(n

D(yj) + 1)
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As the logarithm function is convex, it holds that:

nD(yj) log2(n
D(yj)) + (nD(yj) − 2) log2(n

D(yj) − 2) ⩾

2(nD(yj) − 1) log2(n
D(yj) − 1),

(nD(yj) + 2) log2(n
D(yj) + 2) +nD(yj) log2(n

D(yj)) ⩾

2(nD(yj) + 1) log2(n
D(yj) + 1),

and it is quite easy to check that our thesis holds.

□

Remark that the main difference between the split criteria of ML-CDT
and ML-DT is that the former is based on the maximum entropies on
the A-NPI-M credal sets corresponding to the labels, whereas the latter
is based on the Shannon entropy of each label. Hence, the previous
proposition lets us deduce that, when noise is introduced in a dataset by
changing the value of a label for an instance, the split criterion used in
ML-CDT may be less sensitive to such a change than the one employed
in ML-DT. We show below an example of this point, which is very based
on the one given in [150].

Example 11.3.1 Let D be a dataset of ND = 15 instances. Suppose that a label
yj is irrelevant for 5 instances and that the other 10 instances have associated
yj. Let nD(yj) and nD(yj) denote the number of instances in D for which yj

is relevant and irrelevant, respectively. Let X1 and X2 be two binary attributes.
Let us assume the following arrangement for each one of the possible values of
the attributes:

X1 = 0→ (nD(yj) = 4,nD(yj) = 5),

X1 = 1→ (nD(yj) = 6,nD(yj) = 0),

X2 = 0→ (nD(yj) = 1,nD(yj) = 5),

X2 = 1→ (nD(yj) = 9,nD(yj) = 0).

We have that:

SD(yj) = −
10

15
log2

(
10

15

)
−

5

15
log2

(
5

15

)
= 0.918,

SD(yj | X
1 = 0) = −

4

9
log2

(
4

9

)
−

5

9
log2

(
5

9

)
= 0.991, SD(yj | X

1 = 1) = 0,
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IGD(yj,X1) = SD(yj) − PD(X1 = 0)SD(yj | X
1 = 0)−

PD(X1 = 1)SD(yj | X
1 = 1)

= 0.918− 0.991× 0.6 = 0.3237.

Regarding X2:

SD(yj | X
2 = 0) = −

1

6
log2

(
1

6

)
−

5

6
log2

(
5

6

)
= 0.65, SD(yj | X

2 = 1) = 0,

IGD(yj,X2) = SD(yj) − PD(X2 = 0)SD(yj | X
2 = 0)

− PD(X2 = 1)SD(yj | X
2 = 1)

= 0.918− 0.65× 0.4 = 0.6583.

Let P
(
IDANPI(yj)

)
denote the A-NPI-M credal set on yj associated with D,

computed by means of Equation (11.2). It holds that:

S∗
(
P
(
IDANPI(yj)

))
= 0.971,

S∗
(
P
(
IDANPI(yj) | X

1 = 0
))

= 1, S∗
(
P
(
IDANPI(yj) | X

1 = 1
))

= 0.65,

IIGD(yj,X1) =S∗
(
P
(
IDANPI(yj)

))
− PD(X1 = 0)S∗

(
P
(
IDANPI(yj) | X

1 = 0
))

− PD(X1 = 1)S∗
(
P
(
IDANPI(yj) | X

1 = 1
))

= 0.971− 0.6− 0.26× 0.4 = 0.111.

For X2:

S∗
(
P
(
IDANPI(yj) | X

2 = 0
))

= 0.65,

S∗
(
P
(
IDANPI(yj) | X

2 = 1
))

= 0.5033.

IIGD(yj,X2) = S∗
(
P
(
IDANPI(yj)

))
− PD(X2 = 0)S∗

(
P
(
IDANPI(yj) | X

2 = 0
))

− PD(X2 = 1)S∗
(
P
(
IDANPI(yj) | X

2 = 1
))

= 0.971− 0.4× 0.65− 0.5033× 0.6 = 0.409.
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As IGD(yj,X1) < IGD(yj,X2) and IIGD(yj,X1) < IIGD(yj,X2), if we only
had the label yj, the attribute X2 would be selected to branch the tree in both
ML-DT and ML-CDT.

Suppose that noise is introduced in the dataset by changing the value of yj for
an instance that verifies that X1 = 0 and X2 = 1 from relevant to irrelevant. In
this noisy dataset, Dnois, the instances are arranged as follows:

X1 = 0→ (nDnois(yj) = 3,nDnois(yj) = 6),

X1 = 1→ (nDnois(yj) = 6,nDnois(yj) = 0),

X2 = 0→ (nDnois(yj) = 1,nDnois(yj) = 5),

X2 = 1→ (nDnois(yj) = 8,nDnois(yj) = 1),

where nDnois(yj)
(
nDnois(yj)

)
denotes the number of instances in Dnois for

which yj is relevant (irrelevant).

Let P
(
IDnois

ANPI(yj)
)

denote the A-NPI-M credal set on yj corresponding to
Dnois, computed by means of Equation (11.2). Values of IG and IIG in this
noisy dataset:

SDnois(yj) = −
9

15
log2

(
9

15

)
−

6

15
log2

(
6

15

)
= 0.971,

SDnois(yj | X
1 = 0) = −

3

9
log2

(
3

9

)
−

6

9
log2

(
6

9

)
= 0.9183,

SDnois(yj | X
1 = 1) = 0,

IGDnois(yj,X1) = SDnois(yj) − PDnois(X1 = 0)SDnois(yj | X
1 = 0)

− PDnois(X1 = 1)SDnois(yj | X
1 = 1)

= 0.971− 0.9183× 0.6 = 0.42.

SDnois(yj | X
2 = 0) = −

1

6
log2

(
1

6

)
−

5

6
log2

(
5

6

)
= 0.65,

SDnois(yj | X
2 = 1) = −

8

9
log2

(
8

9

)
−

1

9
log2

(
1

9

)
= 0.5033,

IGDnois(yj,X2) = SDnois(yj) − PDnois(X2 = 0)SDnois(yj | X
2 = 0)

− PDnois(X2 = 1)SDnois(yj | X
2 = 1)

= 0.971− 0.65× 0.4− 0.5033× 0.6 = 0.409.
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S∗
(
P
(
IDnois

ANPI(yj)
))

= 0.9968,

S∗
(
P
(
IDnois

ANPI(yj | X
1 = 0)

))
= 0.9911, S∗

(
P
(
IDnois

ANPI(yj | X
1 = 1)

))
= 0.65,

IIGDnois(yj,X1) = S∗
(
P
(
IDnois

ANPI(yj)
))

− PDnois(X1 = 0)S∗
(
P
(
IDnois

ANPI(yj | X
1 = 0)

))
− PDnois(X1 = 1)S∗

(
P
(
IDnois

ANPI(yj | X
1 = 1)

))
= 0.9968− 0.6× 0.9911− 0.65× 0.4 = 0.1421.

S∗
(
P
(
IDnois

ANPI(yj | X
2 = 0)

))
= 0.65,

S∗
(
P
(
IDnois

ANPI(yj | X
2 = 1)

))
= 0.5033,

IIGDnois(yj,X2) = S∗
(
P
(
IDnois

ANPI(yj)
))

− PDnois(X2 = 0)S∗
(
P
(
IDnois

ANPI(yj | X
2 = 0)

))
− PDnois(X2 = 1)S∗

(
P
(
IDnois

ANPI(yj | X
2 = 1)

))
= 0.9968− 0.4× 0.65− 0.5033× 0.6 = 0.4055.

In this noisy dataset, it holds that IGDnois(yj,X2) < IGDnois(yj,X1) and
IIGDnois(yj,X1) < IIGDnois(yj,X2). Thereby, in ML-DT, the attribute X1

is now selected for splitting the dataset (assuming that yj is the only label).
Nevertheless, in ML-CDT, the selected split attribute is X2, as with the clean
dataset.

Hence, in the previous example, IIG is not affected by the noise in the
label yj, unlike IG. It illustrates the fact that the split criterion employed
in ML-CDT is probably less sensitive to label noise than the one used
in ML-DT. Therefore, it can be deduced that ML-CDT might be more
robust to label noise than ML-DT since the main difference between both
algorithms resides in the split criterion.

In summary, ML-CDT may be less sensitive to label noise than ML-DT.
Moreover, we must take into account that the intrinsic label noise in MLC
might be higher than in traditional classification, as argued in Section 11.2.3.
For this reason, it is expected that ML-CDT performs better than ML-DT. This
issue is checked with an experimental analysis carried out in Section 11.3.2.
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11.3.2 Experiments

In this experimental study, we aim to compare the performance of the exist-
ing ML-DT and our proposed ML-CDT.

11.3.2.1 Experimental settings

• Datasets: For our experimentation, we have employed the datasets used
in the experimental analysis of the previous section, except for ‘deli-
cious’. We have not used this dataset because it requires a very high
computational cost due to its high number of labels and instances. Ta-
ble 11.1 shows the main characteristics of these datasets: number of in-
stances, number of continuous and discrete attributes, number of labels,
label cardinality, label density, and MLC domain.

• Algorithms: Two MLC algorithms are compared in our experimental
study: ML-CDT and ML-DT.3

• Evaluation metrics: In accordance with the extensive experimental anal-
ysis with MLC methods carried out in [144], sixteen evaluation metrics
have been employed in this experimentation: Six are based on instance-
classification: Hamming Loss, Subset Accuracy, Accuracy, Precision, Re-
call, and F1; six label-based classification evaluation measures have been
employed: Micro Precision, Macro Precision, Micro Recall, Macro Recall,
Micro F1, and Macro F1; the other four evaluation metrics are based on
ranking: Coverage, One Error, Ranking Loss, and Average Precision. We
detailed all these metrics in Section 6.3.

• Procedure: Three noise levels have been considered in this experimental
study: 0%, 5%, and 10%. For each algorithm, dataset, and noise level, the
following cross-validation procedure has been carried out: the dataset is
divided into five partitions, and, for each one of them, an iteration has
been done. In it, the corresponding partition is utilized for testing, and
the rest of the data for training. For each label, the x% of the training
instances (x being the noise level) are chosen, and the value of their label
is changed (if the label is irrelevant it is changed to relevant and vice-

3 In this experimentation, a version of the ML-CDT algorithm that uses uncertainty measures
on IDM credal sets has not been considered because the IDM has a strong dependence on a
parameter. In fact, with the standard value of the IDM parameter, the obtained results are poor.
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versa)4. The MLC model is learned with the noisy training set, and the
evaluation measures are extracted via the test set. The same partitions
have been employed for ML-DT and ML-CDT in all datasets.

• Software: We have implemented both algorithms in Mulan. For this pur-
pose, we have used some of the structures provided in Weka. We have
used part of the functionality available in Mulan to create the partitions
of cross-validation. In order to generate the label noise, we have utilized
the Weka filters.

• Statistical evaluation: For each evaluation metric and noise level consid-
ered here, we have two algorithms to compare: ML-DT and ML-CDT. In
this way, consistently the indications given in [49, 75] for statistical com-
parisons between two methods, the Wilcoxon test has been used with
a level of significance of α = 0.05 to check which algorithm performs
better and whether the differences are statistically significant.

11.3.2.2 Results and discussion

Table 11.4 shows a summary of the results obtained by ML-DT and ML-CDT
for each metric and noise level. Specifically, for each metric and noise level,
it shows which method performs better according to the Wilcoxon test and
whether the differences are statistically significant. Also, Table 11.4 lets us see,
for each metric and noise level, in how many datasets an algorithm achieves a
better result than the other one.

We must express the following comments about these results for each type
of evaluation measure:

Instance-based classification metrics:

• ML-CDT significantly outperforms ML-DT through the Wilcoxon test
in Hamming Loss for all noise levels. In addition, for the three noise
levels, the number of datasets in which ML-CDT achieves a better result
than ML-DT in Hamming Loss is far higher than the number of datasets
where the contrary happens. Consequently, there are fewer pairs of label-
instance erroneously classified with ML-CDT than with ML-DT.

4 We have not considered noise levels higher than 10% because the noise is introduced in each
label and, thus, a higher noise level would imply a very considerable amount of noise in the
data.
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Table 11.4: Summary of the results obtained by ML-DT and ML-CDT for each evalu-
ation metric and label noise level. (•) indicates that the algorithm of the
column performs significantly better than the other one according to the
Wilcoxon test. (-) means that the classifier of the column performs better
than the other one but the results are statistically equivalent.

Noise level Metric ML-DT ML-CDT Wins ML-DT Wins ML-CDT
Hamming Loss (•) 0 12

Subset Accuracy (-) 2 9

Accuracy (-) 5 7

Precision (-) 2 10

Recall (•) 11 1

F1 (-) 5 7

Micro Precision (•) 0 12

0% Macro Precision (-) 5 7

Noise Micro Recall (•) 11 1

Macro Recall (•) 10 2

Micro F1 (-) 5 7

Macro F1 (-) 4 8

Coverage (•) 1 11

Ranking Loss (•) 1 11

Average Precision (-) 3 9

One Error (-) 3 9

Hamming Loss (•) 0 12

Subset Accuracy (•) 2 9

Accuracy (-) 3 9

Precision (•) 1 11

Recall (•) 10 2

F1 (-) 3 9

Micro Precision (•) 1 10

5% Macro Precision (-) 2 10

Noise Micro Recall (•) 12 0

Macro Recall (•) 12 0

Micro F1 (-) 3 9

Macro F1 (-) 7 5

Coverage (•) 2 10

Ranking Loss (•) 2 10

Average Precision (-) 3 9

One Error (-) 3 9

Hamming Loss (•) 0 12

Subset Accuracy (•) 0 11

Accuracy (•) 2 10

Precision (•) 1 11

Recall (•) 11 1

F1 (•) 2 10

Micro Precision (•) 1 11

10% Macro Precision (•) 1 11

Noise Micro Recall (•) 11 1

Macro Recall (•) 11 1

Micro F1 (•) 2 10

Macro F1 (-) 6 6

Coverage (•) 2 10

Ranking Loss (•) 2 10

Average Precision (-) 4 8

One Error (-) 4 8
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• The results obtained in Recall (Wilcoxon test and number of wins of each
algorithm for each noise level) allows deducing that ML-DT predicts
more relevant labels as relevant than ML-CDT.

• When there is no noise in the labels, the results obtained by ML-DT and
ML-CDT in the rest of the instance-based classification metrics are statis-
tically equivalent according to the Wilcoxon test. However, the number
of wins of ML-CDT in Precision and Subset Accuracy is considerably
higher than the wins of ML-DT in these metrics. Hence, ML-CDT pre-
dicts fewer irrelevant labels as relevant than ML-DT (Precision), and the
former algorithm correctly predicts the entire set of relevant labels for
more instances than the latter (Subset Accuracy).

• With a 5% of label noise, ML-CDT performs significantly better than ML-
DT in Precision and Subset Accuracy according to the Wilcoxon test. The
results obtained by ML-DT and ML-CDT in F1 (harmonic mean between
Precision and Recall) and Accuracy, which measures how an algorithm
predicts the label sets for the instances in general, are statistically equiv-
alent according to the Wilcoxon test. Nevertheless, in these metrics, the
number of wins of ML-CDT is notably higher than the number of wins
of ML-DT (9 versus 3 in both metrics).

• When there is a 10% of noise in the labels, ML-CDT obtains significantly
better performance than ML-DT in all instance-based classification met-
rics, except for Recall. In this measure, the results are significantly better
for ML-DT according to the Wilcoxon test.

Label-based classification measures:

• For all noise levels, according to the Wilcoxon test, ML-CDT obtains
significantly better results than ML-DT in the Precision averaged over-
all pairs of label-instance (Micro Precision). In contrast, ML-DT always
significantly outperforms ML-CDT via the Wilcoxon test in the Recall av-
eraged over all labels (Macro Recall) and in the Recall averaged overall
pairs of label-instance (Micro Recall).

• When there is no noise in the labels, the results obtained by ML-DT and
ML-CDT in the remaining label-based classification metrics are statisti-
cally equivalent according to the Wilcoxon test.

• The results are similar when there is a 5% of noise in the labels. However,
we should remark that, in Macro Precision, which is the Precision aver-
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aged overall labels, ML-CDT achieves a better result than ML-DT in ten
datasets, whereas ML-DT outperforms ML-CDT in only two datasets.

• With a 10% of label noise, ML-CDT obtains significantly better results
than ML-DT according to the Wilcoxon test in Macro Precision. Also,
ML-CDT significantly outperforms ML-DT via the Wilcoxon test in terms
of the harmonic mean between Micro Precision and Micro Recall (Micro
F1). The results obtained by ML-DT and ML-CDT in Macro F1, the har-
monic mean between Precision and Recall averaged overall labels, are
statistically equivalent according to the Wilcoxon test, as happens with
0% and 5% of noise.

Ranking-based metrics:

• In general, the results obtained by ML-CDT in the ranking-based metrics
are better than the ones obtained by ML-DT. This issue can be appreci-
ated in the number of datasets in which an algorithm outperforms the
other and the results of the Wilcoxon tests. In consequence, ML-CDT
generally predicts the posterior probabilities about the relevance of the
labels for the instances better than ML-DT.

• Specifically, according to the Wilcoxon test, ML-CDT performs signifi-
cantly better than ML-DT in Coverage, which indicates the average num-
ber of steps that are necessary to go down the predicted label ranking
for covering all relevant labels for an instance, and in Ranking Loss (the
average number of pairs of relevant/irrelevant labels reversely ordered).

• For all label noise levels, in the other two ranking-based evaluation
measures, the results obtained by ML-DT and ML-CDT are statistically
equivalent according to the Wilcoxon test. Nonetheless, in both mea-
sures, the number of wins of ML-CDT is notably higher than the number
of wins of ML-DT for all noise levels.

Summary of the results: We can summarize the results obtained in this
experimentation in the following points:

• Due to the results obtained in Accuracy, Hamming Loss, and Subset Ac-
curacy, we can state that ML-CDT generally predicts the sets of relevant
labels for the instances better than ML-DT. This issue is enhanced as the
noise in the labels is higher. The reasons are that, as argued in Section
11.2.3, the intrinsic label noise in MLC may be higher than in traditional
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classification, and ML-CDT is probably more robust to label noise than
ML-DT, as shown in Section 11.3.1.

• ML-DT always performs significantly better than ML-CDT in the metrics
associated with Recall. It means that ML-DT predicts more relevant la-
bels as relevant than ML-CDT. In contrast, ML-CDT predicts fewer irrel-
evant labels as relevant than ML-DT due to the better results in the mea-
sures corresponding to Precision. The performance of both algorithms in
the metrics associated with F1 (harmonic mean between Precision and
Recall) is statistically equivalent without noise. However, when there
is noise in the labels, the results are more favorable to ML-CDT. These
facts happen because, in MLC, there are normally very few instances that
have associated a certain label, and ML-CDT might stop branching the
tree before ML-DT. Thus, in many cases, ML-CDT does not reach parts
of the tree where relevant labels are correctly predicted. Nevertheless,
in these parts of the tree, the noise has a quite negative influence, and,
there, irrelevant labels are sometimes erroneously predicted as relevant.
Since ML-CDT might be more appropriate than ML-DT for handling
label noise, as the label noise is higher, the harmonic means between
Precision and Recall are more favorable to ML-CDT.

• For all noise levels, ML-CDT predicts more suitable posterior probabili-
ties about the relevance of the labels for the instances than ML-DT. This
occurs because the noise has a negative influence on the label rankings
predicted by the adaptations of Decision Trees for MLC, and the building
process of ML-CDT may be more robust to label noise than the building
process of ML-DT. Moreover, the posterior probabilities predicted by ML-
CDT at a leaf node are the ones that attain the maximum entropy on the
A-NPI-M credal sets on such a leaf node, while the posterior probabili-
ties predicted by ML-DT are the ones estimated by relative frequencies at
the terminal node. Hence, the predicted posterior probabilities are less
sensitive to label noise in the case of ML-CDT. In addition, at leaf nodes,
there are often very few instances. Thus, at leaf nodes, the difference
between the behavior of ML-DT and ML-CDT is even more notable.

• Therefore, it can be stated that, as expected, ML-CDT performs better
than ML-DT, the improvement being more notable as there is more noise
in the labels.
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11.4 Lazy Multi-Label Classif ication methods based
on imprecise probabil it ies

11.4.1 Multi-Label Credal Nearest Neighbors

The Multi-Label Nearest Neighbors algorithm (ML-Credal-NN), presented
in this section, uses a Maximum a Posteriori principle (MAP) to predict the
label set associated with an instance that is required to be classified. Similar
to ML-NN, ML-Credal-NN is a lazy approach to MLC that does not use any
training phase.

Let num_neighbors be the number of neighbors considered and x the at-
tribute vector of an instance to classify. ML-Credal-NN, as ML-NN, computes
the num_neighbors-nearest neighbors of the instance by using a distance
function on the attribute space. For each label yj, with 1 ⩽ j ⩽ nL, let Kj(x)
denote the number of neighbors of the instance (among the num_neighbors-
nearest ones) for which yj is relevant. ML-Credal-NN mainly differs from ML-
NN in the estimation of the prior probability that yj is relevant (irrelevant) for
the instance, namely PML−CNN(yj) (PML−CNN(yj)), and the posterior proba-
bility that the instance has Kj(x) neighbors that have associated yj conditioned
on yj is relevant (irrelevant) for the instance, namely PML−CNN(Kj(x) | yj)

(PML−CNN(Kj(x) | yj)).
With regard to the prior probabilities, ML-Credal-NN considers, for each

label yj, with 1 ⩽ j ⩽ nL, the A-NPI-M probability interval on the training set:

ItrainANPI(yj) =

[
max

(
ntr(yj) − 1

Ntr
, 0
)

, min
(
ntr(yj) + 1

Ntr
, 1
)]

, (11.11)

where Ntr is the total number of instances in the training set and ntr(yj) is
the number of training instances for which yj is relevant.

The following credal set corresponds to this interval:

Ptrain
ANPI(yj) =

{
p ∈ P(yj) | p(yj) ∈ ItrainANPI(yj)

}
, (11.12)

P(yj) being the set of all probability distributions on yj, ∀j = 1, 2, . . . ,nL.
Uncertainty measures can be applied to the credal set Ptrain

ANPI(yj). As we
know, the maximum entropy is a suitable uncertainty measure on credal sets
since it satisfies the crucial properties. For this reason, the prior probability
estimated by ML-Credal-NN that yj is relevant for x, p̂ML−CNN(yj), is the
one that attains the maximum entropy on Ptrain

ANPI(yj). Let ntr(yj) denote the
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number of training instances for which yj is irrelevant. If we apply Algorithm
14, we may deduce that p̂ML−CNN(yj) is determined as follows:

p̂ML−CNN(yj) =


1
2 if

∣∣ntr(yj) −ntr(yj)
∣∣ ⩽ 2

ntr(yj)−1

Ntr
if ntr(yj) > ntr(yj) + 2

ntr(yj)+1

Ntr
if ntr(yj) > ntr(yj) + 2

(11.13)

For each j = 1, 2, . . . ,nL, let δj(kj) denote the number of training instances
for which yj is relevant and have kj neighbors that have associated yj, and
δ ′
j(kj) the number of training instances that have no associated yj and have kj

neighbors for which yj is relevant, ∀kj = 0, 1, . . . ,num_neighbors. For the
estimation of the posterior probabilities, ML-Credal-NN considers the follow-
ing A-NPI-M credal sets on {0, 1, . . . ,num_neighbors}:

P
yj

ANPI =

p |

num_neighbors∑
kj=0

p(kj) = 1, l1kj
⩽ p(kj) ⩽ u1

kj
,

∀kj = 0, 1, . . . ,num_neighbors
}

,

P
yj

ANPI =

p |

num_neighbors∑
kj=0

p(kj) = 1, l2kj
⩽ p(kj) ⩽ u2

kj
,

∀kj = 0, 1, . . . ,num_neighbors
}

,

(11.14)

where l1kj
= max

(
δj(kj)−1

ntr(yj)
, 0
)

, l2kj = max
(
δ ′
j(kj)−1

ntr(yj)
, 0
)

, u1
kj = min

(
δj(kj)+1

ntr(yj)
, 1
)

,

u2
kj = min

(
δ ′
j(kj)+1

ntr(yj)
, 1
)

, ∀kj = 0, 1, . . . ,num_neighbors, j = 1, 2, . . . ,nL.

Again, ML-Credal-NN considers the probability distributions that attain
the maximum entropies on P

yj

ANPI and P
yj

ANPI, denoted by p̂ML−CNN
1 and

p̂ML−CNN
2 , respectively. They can be obtained through Algorithm 14, our pro-

posed procedure to obtain the probability distribution of maximum entropy
on an A-NPI-M credal set. In this way, ML-Credal-NN estimates
PML−CNN(Kj(x) | yj) and PML−CNN(Kj(x) | yj) by means of p̂ML−CNN

1 and
p̂ML−CNN
2 , respectively. Therefore, the set of labels predicted by ML-Credal-

NN as relevant for the instance is given by:

hML−CNN(x) =
{
yj | p̂

ML−CNN(yj)p̂
ML−CNN
1

(
Kj(x)

)
>(

1− p̂ML−CNN(yj)
)
p̂ML−CNN
2

(
Kj(x)

)
, 1 ⩽ j ⩽ nL

}
.

(11.15)
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The posterior probability predicted by ML-Credal-NN about the relevance
of yj for the instance is determined as follows:

fML−CNN(x,yj) =

p̂ML−CNN(yj)p̂
ML−CNN
1

(
Kj(x)

)
p̂ML−CNN(yj)p̂

ML−CNN
1

(
Kj(x)

)
+
(
1− p̂ML−CNN(yj)

)
p̂ML−CNN
2

(
Kj(x)

) .

(11.16)

11.4.2 Binary Relevance Credal Nearest Neighbors

The Binary Relevance Credal Nearest Neighbors method, (BR-Credal-NN),
proposed here, similar to BR-NN, considers a binary classification task per
label.

Let num_neighbors be the number of neighbors considered. Suppose that
it is wanted to classify an instance with attribute vector x. BR-Credal-NN
computes the num_neighbors-nearest neighbors of the instance via a distance
function on the attribute space. For each label yj, with 1 ⩽ j ⩽ nL, let Kj(x)
denote the number of neighbors of x that have associated yj and Kj(x) the
number of neighbors of x for which yj is irrelevant. BR-Credal-NN considers
the following A-NPI-M probability interval on yj:

Ix
ANPI(yj) =

[
max

(
Kj(x) − 1

num_neighbors
, 0
)

, min
(

Kj(x) + 1

num_neighbors
, 1
)]

.

(11.17)
This interval has associated with it the following credal set on yj:

Px
ANPI(yj) =

{
p ∈ P(yj) | p(yj) ∈ Ix

ANPI(yj), ∀j = 1, 2, . . . ,nL

}
. (11.18)

BR-Credal-NN considers the probability distribution of maximum entropy
on this credal set, namely p̂BR−CNN

j,x . Such a probability distribution can be
obtained via Algorithm 14. Thus, the posterior probability predicted by BR-
Credal-NN that yj is relevant for the instance is given by:

fBR−CNN(x,yj) = p̂BR−CNN
j,x . (11.19)

The set of labels predicted by BR-Credal-NN as relevant for the instance
is composed of those labels for which the predicted posterior probability is
greater or equal than 0.5:

hBR−CNN(x) =
{
yj | f

BR−CNN(x,yj) ⩾ 0.5, 1 ⩽ j ⩽ nL

}
. (11.20)
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11.4.3 Justification of the proposed lazy multi-label classifiers

In this subsection, we show the principal advantage of our proposed lazy
MLC algorithms, based on the A-NPI-M, versus the ones proposed so far that
employ precise probabilities: the former algorithms are more suitable than the
latter to tackle the class-imbalance problem that tends to arise in MLC.

ML-NN vs ML-Credal-NN: Both ML-NN and ML-Credal-NN use the MAP
to predict whether a label is relevant or irrelevant for an instance, considering
the number of neighbors that have associated that label. However, whereas
ML-NN uses probabilities estimated by relative frequencies with Laplacian
correction, ML-Credal-NN utilizes probability distributions that attain the
maximum entropy on A-NPI-M credal sets.

To estimate the prior probabilities, the whole training set is employed in
both algorithms. It is easy to observe that, when the sample size is very large,
the probability distributions that attain the maximum entropy with the A-
NPI-M do not differ much from the ones estimated with Laplacian correction.
Thereby, the estimations of the prior probabilities in ML-NN and ML-Credal-
NN are not very different. Nevertheless, for the estimation of the posterior
probability conditioned on the label is relevant (irrelevant), only the training
instances for which the label is relevant (irrelevant) are taken into account. In
consequence, the performances of ML-NN and ML-Credal-NN principally dif-
fer on the estimation of the posterior probabilities, especially the probability
conditioned on the label is relevant as, in MLC, there are usually very few in-
stances that have associated a certain label. Let PML−NN(yj), PML−NN(yj) =

1 − PML−NN(yj), PML−NN(Kj(x) | yj), and PML−NN(Kj(x) | yj) denote
the probabilities estimated by ML-NN and p̂ML−CNN(yj), p̂ML−CNN(yj) =

1− p̂ML−CNN(yj), p̂ML−CNN
1

(
Kj(x)

)
, and p̂ML−CNN

2

(
Kj(x)

)
the probabili-

ties estimated by ML-Credal-NN.
Remark that, due to the class imbalance of MLC datasets, MLC algorithms

normally predict that a label is irrelevant for an instance. For ML-NN,
PML−NN(yj) is often quite higher than PML−NN(yj). Hence, a label yj is not
predicted as relevant by ML-NN unless PML−NN(Kj(x) | yj) is much greater
than PML−NN(Kj(x) | yj). The same happens with ML-Credal-NN.

The following result shows that, if Kj(x) is large enough, then
p̂ML−CNN
1

(
Kj(x)

)
is higher than PML−NN(Kj(x) | yj).

Proposition 11.4.1 If
(
Kj(x) − 1

)
num_neighbors ⩾ 2ntr(yj) then

p̂ML−CNN
1

(
Kj(x)

)
⩾ pL(Kj(x) | yj).
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Proof: Under our hypothesis,

ntr(yj)Kj(x) −ntr(yj) +num_neighborsKj(x) −num_neighbors ⩾

ntr(yj)Kj(x) +ntr(yj)⇒
Kj(x) − 1

ntr(yj)
⩾

Kj(x) + 1

ntr(yj) +num_neighbors
.

In this way,

p̂ML−CNN
1

(
Kj(x)

)
⩾

Kj(x) − 1

ntr(yj)
⩾

Kj(x) + 1

ntr(yj) +num_neighbors
= PML−NN(Kj(x) | yj).

□
Thus, ML-Credal-NN predicts relevant labels as relevant more frequently

than ML-NN. The following example illustrates this issue:

Example 11.4.1 Suppose that we have Ntr = 100 training instances and that, for a
label yj, ntr(yj) = 10 and ntr(yj) = 90. Let us fix num_neighbors = 10. Let
x be the attribute vector of an instance to classify. Let us assume that there are 6

training instances that have associated yj and have Kj(x) neighbors for which yj is
relevant and that 4 training instances have no associated yj and have Kj(x) neighbors
for which yj is relevant. In such a case:

PML−NN(yj)P
ML−NN(Kj(x) | yj) =

11

102
× 7

21
<

91

102
× 5

101
= PML−NN(yj)P

ML−NN(Kj(x) | yj),

p̂ML−CNN(yj)p̂
ML−CNN
1

(
Kj(x)

)
=

11

100
× 5

10
>

89

100
× 5

90
⩾ p̂ML−CNN(yj)p̂

ML−CNN
2

(
Kj(x)

)
.

Consequently, in this case, yj is predicted as irrelevant for x by ML-NN and as
relevant by ML-Credal-NN.

If noise is introduced in the training set by changing the value of a label for
an instance from relevant to irrelevant, then ML-NN might be more affected
by this fact than ML-Credal-NN, as shown in the following example:

Example 11.4.2 Suppose that there are Ntr = 100 training instances. Let yj be a
label such that ntr(yj) = 10 and ntr(yj) = 90. Let us fix num_neighbors = 10.
Let x denote the attribute vector of an instance that is required to be classified. Let
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us assume that there are 6 instances in the training set for which yj is relevant and
have Kj(x) neighbors that have associated yj, and 2 training instances that have no
associated yj and have Kj(x) neighbors for which yj is relevant. In this case,

PML−NN(yj)P
ML−NN(Kj(x) | yj) =

11

102
× 7

21
>

91

102
× 3

101
= PML−NN(yj)P

ML−NN(Kj(x) | yj),

p̂ML−CNN(yj)p̂
ML−CNN
1

(
Kj(x)

)
=

11

100
× 5

10
>

89

100
× 3

90
⩾

p̂ML−CNN(yj)p̂
ML−CNN
2

(
Kj(x)

)
.

Now, suppose that noise is introduced by changing, for a training instance that has
Kj(x) neighbors that have associated yj, the value of yj from relevant to irrelevant.
In this noisy dataset, ntr(yj) = 9, ntr(yj) = 91, there are 5 instances for which yj is
relevant and have Kj(x) neighbors that have associated yj and 3 instances for which
yj is irrelevant and have Kj(x) neighbors for which yj is relevant. We have that:

PML−NN(yj)P
ML−NN(Kj(x) | yj) =

10

102
× 6

20
<

92

102
× 4

102
= PML−NN(yj)P

ML−NN(Kj(x) | yj),

p̂ML−CNN(yj)p̂
ML−CNN
1

(
Kj(x)

)
=

10

100
× 4

9
>

90

100
× 4

91
⩾ p̂ML−CNN(yj)p̂

ML−CNN
2

(
Kj(x)

)
.

Hence, with the original dataset, both ML-NN and ML-Credal-NN predict that x
has associated yj. Nonetheless, with the noisy dataset, ML-NN changes that predic-
tion, while ML-Credal-NN keeps predicting that yj is relevant for x.

Therefore, we can deduce that ML-Credal-NN is more appropriate than ML-
NN to address the class-imbalance problem that frequently appears in MLC,
especially when data contains labels noise.

BR-NN vs BR-Credal-NN: To classify a new instance with attribute vector
x, BR-NN predicts that the instance has associated a label yj if, and only if,
Kj(x) ⩾ num_neighbors

2 , whereas BR-Credal-NN predicts that yj is relevant
for the instance if, and only if, Kj(x) + 1 ⩾ num_neighbors

2 . In consequence,
if a label is predicted as relevant for the instance by BN-NN, then it is also
predicted as relevant by BR-Credal-NN, but not vice-versa. Thus, BR-Credal-
NN probably predicts more relevant labels as relevant than BR-NN. This is an
important point in favor of BR-Credal-NN because, in MLC datasets, very few
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instances have often associated a certain label and, thus, it is little probable
that the label is relevant for at least half of the neighboring instances.

When noise is introduced in the neighborhood of the instance, it is even
more difficult to detect the relevant labels for BR-NN than for BR-Credal-NN.
We illustrate this point in the following example:

Example 11.4.3 Let x be the attribute vector of an instance that is required to be
classified. Suppose that 5 neighbors of the instance have associated a label yj and, for
the others 5 neighbors, yj is irrelevant. In this case, both BR-NN and BR-Credal-NN
predict that the instance has associated yj.

Nevertheless, if the value of yj for a neighboring instance is changed from rele-
vant to irrelevant, then BR-NN changes its prediction, whereas BR-Credal-NN keeps
predicting that the instance has associated yj.

In this way, BR-Credal-NN may be more suitable than BR-NN to address
the class-imbalance problem that tends to appear in MLC, especially when
data contain label noise.

11.4.4 Experiments

In this experimental analysis, we aim to compare the performance of the
proposed lazy MLC algorithms, based on the A-NPI-M, with the existing ones
based on classical probability theory.

11.4.4.1 Experimental settings

• Datasets: Twenty datasets have been used in this experimentation, which
can be downloaded from the official website of Mulan.5 Table 11.5 shows
the most important characteristics of each dataset: number of instances,
number and continuous and discrete attributes, number of labels, label
cardinality, and label density. We may note that the datasets are diverse
concerning these issues. So, we can state that the datasets employed in
this experimentation are representative.

• Algorithms: We have employed five algorithms in our experiments: the
already existing ML-NN, BR-NN, and DML-NN, exposed in Section 6.7,
and the proposed ML-Credal-NN and BR-Credal-NN. The IBLR-ML and
MLCW-NN algorithms have not been considered here because of their
high computational cost.

5 http://mulan.sourceforge.net/datasets-mlc.html
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Table 11.5: Datasets employed in the experimental analysis with lazy MLC methods.
N is the number of instances, N_CA (N_DA) is the number of continuous
(discrete) attributes, N_L is the number of labels, and L_C (L_D) is the
label cardinality (density).

Dataset Domain N N_CA N_DA N_L L_C L_D
bibtex Text 7395 0 1836 159 2.4 0.015
birds Multimedia 645 258 2 19 1.014 0.053

business Text 11214 21924 0 30 1.599 0.053
cal500 Multimedia 502 68 0 174 26.044 0.150

computers Text 12444 34096 0 33 1.507 0.046
corel5k Multimedia 5000 0 499 374 3.52 0.009

education Text 12030 57534 0 33 1.463 0.044
emotions Multimedia 593 72 0 6 1.87 0.311

enron Text 1702 0 1001 53 3.378 0.064
entertainment Text 12370 32001 0 21 1.414 0.067

flags Multimedia 194 10 9 7 3.392 0.485
genbase Biology 662 0 1186 27 1.252 0.046
health Text 9250 30605 0 32 1.644 0.051

mediamill Multimedia 43907 120 0 101 4.38 0.043
medical Text 978 0 1449 45 1.24 0.028

scene Multimedia 2407 294 0 6 1.07 0.179
science Text 6428 37187 0 40 1.450 0.036
social Text 12111 52350 0 39 1.279 0.033

society Text 14512 31802 0 27 1.670 0.062
yeast Biology 2417 103 0 14 4.24 0.303

• Evaluation: In order to compare the performance of the algorithms con-
sidered here, ten evaluation metrics have been utilized: Four are based
on instance classification: Subset Accuracy, Hamming Loss, Accuracy, and
F1; we have used two label-based classification metrics: Micro F1 and
Macro F1; four instance-based ranking metrics have been used: Rank-
ing Loss, Coverage, Average Precision and One Error. These metrics were
exhaustively explained in Section 6.3.

Moreover, for each evaluation metric Me, we have considered the cor-
responding Equalized Loss ELMe

. It is based on the ELA measure for
standard classification, described in Section 4.2.1.2. ELMe

indicates the
sensitivity to the label noise of an algorithm for the Me measure.

For metrics such that a lower value implies a better performance, ELMe

is obtained as follows:

ELMe
=

M10
e

M0
e

,

M0
e being the value of Me obtained without noise in the labels and M10

e

the value obtained with a 10% of label noise.
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For evaluation metrics such that the performance is better as its value is
higher, ELMe

= 1−M10
e

M0
e

.

The algorithms have been also compared in terms of computational time.

• Procedure: Two label noise levels have been considered in this experi-
mental study: 0% and 10%. A cross-validation procedure of five folds
has been carried out for each dataset and noise level. An iteration has
been done for each fold, in which the corresponding partition has been
used for testing and the rest of the data for training. The noise has
been added to the training set as follows: for each label, the x% of the
instances in the training set have been chosen and the value of the corre-
sponding label has been changed, (if the label is relevant for the instance
it has been changed to irrelevant and vice-versa), x being the noise level.
The same partitions have been used for all algorithms in all datasets.

• Software and parameters: We have started from the implementations
provided in Mulan for the ML-NN, BR-NN and DML-NN algorithms.
The necessary methods for using ML-Credal-NN and BR-Credal-NN
have been implemented. For all algorithms, we have used the value
10 for the parameter num_neighbors since it is the one given by default
in Mulan and one of the most utilized in the literature. For both BR-NN
and BR-Credal-NN, the α extension has been considered.6

• Statistical evaluation: For each evaluation measure, we compare the
results obtained by the algorithms without noise in the labels and in
the corresponding Equalized Loss. For this purpose, following the rec-
ommendations given in [75] about statistical comparisons between the
results obtained by three or more algorithms on many datasets, we use
the Friedman test. When the null hypothesis of the Friedman test is re-
jected, we employ the Nemenyi test. The level of significance considered
is α = 0.05. We present the results of the Friedman and Nemenyi tests
through critical diagrams.

11.4.4.2 Results and discussion

Table 11.6 shows the average Friedman rank obtained by each algorithm in
each evaluation metric and computational time without noise in the labels. For
each evaluation metric, the best result is marked in bold. The critical diagrams
corresponding to the Nemenyi tests without noise in the labels can be seen in

6 Both BR-NN extensions, BR-NN-α and BR-NN-β, perform equivalently [194].
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Figure 11.1. The average Friedman ranks obtained by each algorithm in the
metrics associated with Equalized Losses are presented in Table 11.7. In such
a table, the best results are also marked in bold. Figure 11.2 lets us see the
critical diagrams corresponding to the Nemenyi test associated with Equalized
Losses. The critical diagram associated with computational time is presented
in Figure 11.3.

Table 11.6: Average Friedman ranks obtained by the lazy MLC methods without noise
in the labels for each metric.

Metric ML-NN BR-NN DML-NN ML-Credal-NN BR-Credal-NN
Hamming Loss 2 4.05 2.7 1.55 4.7

Subset Accuracy 3.6 1.95 3.95 2.6 2.9
Accuracy 3.65 2.95 4.2 2.4 1.8

F1 3.65 3.1 4.2 2.4 1.65
Micro F1 3.45 3.45 4.1 2.55 1.45
Macro F1 3.45 3.15 4.5 2.35 1.55
Coverage 1.75 3.975 1.65 2.95 4.675

Ranking Loss 1.8 3.975 1.55 2.95 4.725
Average Precision 1.8 4 2.15 2.3 4.875

One Error 2 3.825 2.4 2.25 4.525
Computational Time 3.55 1.5 4.9 3.55 1.5

Table 11.7: Average Friedman ranks for Equalized Losses corresponding to each metric
obtained by the lazy MLC methods.

Metric ML-NN-NN BR-NN DML-NN ML-Credal-NN BR-Credal-NN
Hamming Loss 2.4 3.05 2.3 2.6 4.65

Subset Accuracy 3.6944 1.7222 4.1389 2.4444 3

Accuracy 3.65 2.7 4.25 2.6 1.8
F1 3.6 2.9 4.25 2.7 1.55

Micro F1 3.6 2.7 4.35 2.4 1.95
Macro F1 3.6 2.95 4.4 2.3 1.75
Coverage 2.85 2.65 2.75 3.25 3.5

Ranking Loss 2.6 2.8 2.6 3.35 3.65
Average Precision 1.85 3.5 2.7 2.4 4.55

One Error 3.05 2.475 3.15 3 3.325

About the obtained results, we remark the following points for each type of
evaluation metric:

Classification-based metrics:

• Regarding Hamming Loss, which measures the differences between the
real and predicted sets of labels, the lowest Friedman ranks are achieved
by ML-Credal-NN and ML-NN. Both BR-NN and BR-Credal-NN obtain
very poor performance in this evaluation measure since they obtain the
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Figure 11.1: Critical diagrams corresponding to the Friedman and Nemenyi tests with-
out noise in the labels in the experimental study with lazy MLC algorithms.
CD = Critical Distance.
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Figure 11.2: Critical diagrams associated with Equalized Loss for each evaluation met-
ric in the experimental analysis with lazy MLC methods. CD = Critical
Distance
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Figure 11.3: Critical diagram corresponding to computational time in the experimental
study with lazy MLC algorithms. CD = Critical Distance

highest Friedman ranks and are not connected via segments with ML-
NN and ML-Credal-NN in the critical diagram associated with Ham-
ming Loss, which implies that BR-NN and BR-Credal-NN are signifi-
cantly outperformed by ML-NN and ML-Credal-NN in Hamming Loss
according to the Nemenyi test. In addition, in the critical diagram corre-
sponding to Hamming Loss, DML-NN and BR-Credal-NN are not con-
nected by means of a segment. Thus, DML-NN performs significantly
better than BR-Credal-NN in Hamming Loss according to the Nemenyi
test. Due to the results obtained in Equalized Loss Hamming Loss, we
can state that BR-Credal-NN is, by far, the most sensitive to the noise in
this metric. Indeed, this method obtains the highest average Friedman
rank in Equalized Loss Hamming Loss, and it is not connected via seg-
ments with the other algorithms in the critical diagram associated with
Equalized Loss Hamming Loss. Consequently, BR-Credal-NN is signif-
icantly outperformed by the other algorithms via the Nemenyi test in
Equalized Loss Hamming Loss. The rest of the lazy MLC algorithms
considered here perform equivalently according to the Nemenyi test in
terms of robustness to noise for Hamming Loss as they are connected
with a segment in the corresponding critical diagram.

• The BR-NN algorithm achieves the highest proportion of instances for
which the predicted set of labels coincides with the set of relevant la-
bels as it obtains the lowest Friedman rank in Subset Accuracy. Fur-
thermore, in the critical diagram corresponding to this metric, BR-NN is
not connected via segments with DML-NN and ML-NN. Hence, BR-NN
performs significantly better than DML-NN and ML-NN according to
the Nemenyi test in Subset Accuracy. These are the only pairs of algo-
rithms that are not connected with segments in the critical diagram of
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Subset Accuracy. Thereby, there are no more cases of statistically sig-
nificant differences between pairs of algorithms in this metric, although
our proposed lazy MLC algorithms obtain lower Friedman ranks than
ML-NN and DML-NN. According to the Equalized Loss Subset Accu-
racy results, BR-NN is the most robust to noise in this metric, followed
by ML-Credal-NN. Indeed, BR-NN and ML-Credal-NN obtain the low-
est Friedman ranks in Equalized Loss Subset Accuracy. Moreover, in the
critical diagram associated with Equalized Loss Subset Accuracy, these
algorithms are not connected through a segment with DML-NN. This
means that BR-NN and ML-Credal-NN significantly outperform DML-
NN according to the Nemenyi test in Equalized Loss Subset Accuracy.
In the critical diagram corresponding to Equalized Loss Subset Accuracy,
BR-NN and ML-NN are not connected via a segment and, thus, the for-
mer algorithms performs significantly better than the latter in Equalized
Loss Subset Accuracy according to the Nemenyi test.

• In Accuracy, the best Friedman rank is achieved by BR-Credal-NN, fol-
lowed by ML-Credal-NN. In the critical diagram corresponding to this
metric, DML-NN is not connected with BR-Credal-NN nor with ML-
Credal-NN through segments. The same happens with ML-NN and
BR-Credal-NN. Therefore, BR-Credal-NN and ML-Credal-NN perform
significantly better than DML-NN according to the Nemenyi test in Ac-
curacy, and BR-Credal-NN also outperforms ML-NN via the Nemenyi
test in this metric. With regard to the sensitivity to noise for this metric,
the best Friedman ranks are obtained by BR-Credal-NN and the worst by
ML-NN and DML-NN. Furthermore, in the critical diagram correspond-
ing to Equalized Loss Accuracy, BR-Credal-NN is not connected via seg-
ments with ML-NN nor with DML-NN. So, BR-Credal-KNN performs
significantly better than DML-NN and ML-NN in Equalized Loss Accu-
racy according to the Nemenyi test. Also, in terms of robustness to noise
for Accuracy, DML-NN is significantly outperformed by ML-Credal-NN
and BR-NN as DML is not connected via segments with ML-Credal-NN
nor with BR-NN in the critical diagram corresponding to Equalized Loss
Accuracy.

• Concerning the F1 metrics, the lowest Friedman ranks are obtained,
again, by BR-Credal-NN, followed by ML-Credal-NN. In the critical di-
agrams associated with the F1 evaluation measures, BR-Credal-NN is
connected via a segment only with ML-Credal-NN. Consequently, BR-
Credal-NN significantly outperforms all the algorithms considered here
via the Nemenyi test in the F1 metrics, except for ML-Credal-NN. In
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addition, ML-Credal-NN performs significantly better than DML-NN
in the F1 metrics as these two algorithms are not connected via seg-
ments in the corresponding critical diagrams. The results obtained in
Equalized Losses associated with the F1 measures allow deducing that
BR-Credal-NN is the most robust to noise in these metrics. Indeed, it
obtains the lowest Friedman ranks in the Equalized Losses associated
with the F1 metrics and, in the corresponding critical diagrams, it is not
connected through segments with DML-NN nor with ML-NN. There-
fore, BR-Credal-NN obtains significantly better results than DML-NN
and ML-NN according to the Nemenyi test in Equalized Losses associ-
ated with the F1 metrics. Also, ML-NN is significantly more sensitive
to noise than ML-Credal-NN and BR-NN in the F1 measures because
the Friedman ranks obtained by ML-NN in the Equalized Losses corre-
sponding to the F1 metrics are higher than the ones obtained by ML-
Credal-NN and BR-NN and the former algorithm is not connected via
segments with the other two algorithms in the corresponding critical
diagrams.

Ranking-based metrics:

• BR-Credal-NN obtains the worst Friedman ranks in all the ranking-based
measures considered here, followed by BR-NN. None of these two algo-
rithms is connected with DML-NN via a segment in none of the criti-
cal diagrams corresponding to the ranking-based evaluation measures.
Thus, both BR-Credal-NN and BR-NN are significantly outperformed
by DML-NN according to the Nemenyi test in all ranking-based met-
rics. ML-Credal-NN and ML-NN also perform significantly better than
BR-Credal-NN in these measures via the Nemenyi test since the former
algorithms are not connected via segments with the latter in the critical
diagrams corresponding to the ranking-based metrics.

• In Coverage, which measures the average number of steps that are nec-
essary to go down the label ranking to cover all relevant labels for an
instance, the lowest Friedman ranks are obtained by DML-NN and ML-
NN. In the critical diagram associated with this metric, none of these
two algorithms is connected through segments with BR-NN nor with
BR-Credal-NN. Hence, DML-NN and ML-NN perform significantly bet-
ter than BR-NN and BR-Credal-NN according to the Nemenyi test in
Coverage. The only algorithm that is not connected with ML-Credal-
NN through a segment in the critical diagram associated with Cover-
age is BR-Credal-NN. In consequence, according to the Nemenyi test,
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ML-Credal-NN only significantly outperforms BR-Credal-NN in Cover-
age. The results are similar in Ranking Loss, which indicates the average
proportion of pairs of relevant-irrelevant labels reversely ordered in the
label ranking, but now DML-NN performs significantly better than ML-
Credal-NN as these two algorithms are not connected with a segment in
the critical diagram corresponding to Ranking Loss.

• Regarding Average Precision and One error, which indicate, respectively,
the average number of labels ranked above a relevant one and the pro-
portion of instances for which the top-ranked label is not relevant, ML-
NN, DML-NN, and ML-Credal-NN, obtain statistically equivalent re-
sults. In fact, these three algorithms are connected via segments in the
critical diagrams associated with these metrics. Also, in such critical dia-
grams, these three algorithms are not connected through segments with
BR-NN nor with BR-Credal-NN. Thereby, ML-NN, DML-NN, and ML-
Credal-NN significantly outperform BR-NN and BR-Credal-NN via the
Nemenyi test in Average Precision and One Error.

• The results do not vary much with a 10% of noise in the labels; the re-
sults obtained by the five algorithms considered in this experimentation
in Equalized Losses associated with Coverage, Ranking Loss, and One
Error, are statistically equivalent according to the Nemenyi test. Actu-
ally, the five algorithms are connected through segments in the corre-
sponding critical diagrams. In Equalized Loss Average Precision, ML-
NN performs significantly better than BR-Credal-NN and BR-NN ac-
cording to the Nemenyi test as the former algorithm achieves a lower
Friedman rank in this metric and is not connected with the other two al-
gorithms via segments in the associated critical diagram. DML-NN and
ML-Credal-NN also significantly outperform BR-Credal-NN in terms of
sensitivity to noise in Average Precision. Indeed, in Equalized Loss Av-
erage Precision, DML-NN and ML-Credal-NN obtain lower Friedman
ranks than BR-Credal-NN, and the latter method is not connected with
the other two algorithms via segments in the critical diagram correspond-
ing to Equalized Loss Average Precision.

Computational time:

• DML-NN is, by far, the algorithm that requires the highest computa-
tional cost. Indeed, this method obtains the highest Friedman rank in
computational time. Moreover, DML-NN is not connected with the other
algorithms via segments in the critical diagram associated with computa-
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tional time. In consequence, there are statistically significant differences
according to the Nemenyi test between the computational time required
by DML-NN and the computational times required by the other algo-
rithms.

• The computational times of ML-NN and ML-Credal-NN are statistically
equivalent. In fact, these two algorithms are connected with a segment in
the critical diagram associated with computational time. The Friedman
ranks obtained by these algorithms in computational time are lower than
the one achieved by DML-NN, even though there are no statistically sig-
nificant differences via the Nemenyi test (both ML-NN and ML-Credal-
NN are connected through a segment with DML-NN in the critical dia-
gram associated with computational time).

• BR-NN and BR-Credal-NN obtain lower Friedman ranks than ML-NN
and ML-Credal-NN in computational time. In addition, in the corre-
sponding critical diagram, BR-NN and BR-Credal-NN are not connected
via segments with ML-NN and ML-Credal-NN. Hence, in terms of com-
putational time, ML-NN and ML-Credal-NN are significantly outper-
formed by the lazy BR-based methods according to the Nemenyi test.

Summary of the results: The results obtained in this experimental anal-
ysis can be summarized in the following issues:

• For all F1 measures, the ML-Credal-NN and BR-Credal-NN algorithms,
proposed in this section, achieve the best performance. Furthermore,
they are the more robust to noise in F1 metrics. The same happens with
Accuracy. It is since, as argued in Section 11.4.3, our proposed lazy
MLC algorithms, based on the A-NPI-M, predict more relevant labels
as relevant than the existing ones based on classical probability theory,
especially when data contain label noise.

• BR-Credal-NN performs slightly better than ML-Credal-KNN in Accu-
racy and F1-based measures. However, the performance of BR-Credal-
NN in Hamming Loss is quite poor. In classification-based metrics,
DML-NN generally obtains the worst results.

• With regard to ranking-based measures, both BR-NN and BR-Credal-
NN perform worse than the other algorithms considered here. We can
state that, in these metrics, the ML-NN, DML-NN, and ML-Credal-NN
algorithms have equivalent performance.
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• Concerning the computational time, the BR-based methods are the ones
that achieve the best results, followed by ML-NN and ML-Credal-NN,
and the DML-NN algorithm is the one that requires the highest compu-
tational time. It makes sense since the BR-based methods are quite sim-
ple, and DML-NN employs a more sophisticated MAP principle than
ML-NN. The computational times of ML-NN and ML-Credal-NN, and
BR-NN and BR-Credal-NN are equivalent. It is because the differences
between the complexities of the estimations of the probabilities in ML-
NN and ML-Credal-NN are not significant. The same occurs with BR-
NN and BR-Credal-NN.

11.5 New label ordering method for Classif ier Chains

Before exposing our proposed procedure to insert the labels in the chain, i.e,
determine the permutation σ : {1, . . . ,nL}→ {1, . . . ,nL} that generates the label
order, we explain how the correlation between each pair of labels is estimated
in our proposed label ordering method.

Let Ntr be the total number of instances in the training set. For each label
yj, with 1 ⩽ j ⩽ nL, let ntr(yj) (ntr(yj)) denote the number of training
instances for which yj is relevant (irrelevant). We consider the following A-
NPI-M probability interval on yj corresponding to the training set:

ItrainANPI(yj) ∈
[

max
(
ntr(yj) − 1

Ntr
, 0
)

, min
(
ntr(yj) + 1

Ntr
, 1
)]

. (11.21)

This interval has associated with it the following credal set:

Ptrain
ANPI(yj) =

{
p ∈ P(yj) | p(yj) ∈ ItrainANPI(yj)

}
, (11.22)

P(yj) being the set of all probability distributions on yj, ∀j = 1, 2, . . . ,nL.
Uncertainty measures can be applied to this credal set. As we know, the

maximum entropy is an appropriate uncertainty measure on this type of set
since it satisfies all essential properties. Hence, our proposed label ordering
method utilizes the maximum entropy on Ptrain

ANPI(yj):

S∗
(
Ptrain
ANPI(yj)

)
= max

p∈Ptrain
ANPI(yj)

S(p), (11.23)

S(p) being the Shannon entropy on the probability distribution p.
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Applying Algorithm 14, we may deduce that the probability distribution
that attains the maximum entropy on Ptrain

ANPI(yj), namely p̂tr
ANPI(yj), is deter-

mined by:

p̂tr
ANPI(yj) =



1
2 if

∣∣ntr(yj) −ntr(yj)
∣∣ ⩽ 2

ntr(yj)−1

Ntr
if ntr(yj) > ntr(yj) + 2

ntr(yj)+1

Ntr
if ntr(yj) > ntr(yj) + 2

(11.24)

For each pair of labels yj,yk, let ntr(yj,yk) denote the number of training
instances for which both yj and yk are relevant, ntr(yj,yk) the number of
training instances that have associated yk but not yj, ntr(yj,yk) the number
of training instances for which yj is relevant but yk irrelevant, and ntr(yj,yk)

the number of training instances for which both yj and yk are irrelevant.
We consider the A-NPI-M credal set corresponding to the training set on yj

conditioned on yk is relevant:

Ptrain
ANPI

(
yj | yk

)
=

{
p ∈ P

(
yj | yk

)
| max

(
0,

ntr(yj,yk) − 1

ntr(yk)

)
⩽

p(yj | yk) ⩽ min
(
ntr(yj,yk) + 1

ntr(yk)
, 1
)}

,
(11.25)

where P
(
yj | yk

)
denotes the set of all probability distributions on yj condi-

tioned on yk is relevant.
Our proposed label ordering method considers the maximum entropy on

this credal set, which can also be easily determined via Algorithm 14:

S∗
(
Ptrain
ANPI

(
yj | yk

))
= S(p̂tr

ANPI

(
yj | yk

)
), (11.26)

where

p̂tr
ANPI(yj | yk) =



1
2 if

∣∣ntr(yj,yk) −ntr(yj,yk)
∣∣ ⩽ 2

ntr(yj,yk)−1

ntr(yk)
if ntr(yj,yk) > ntr(yj,yk) + 2

ntr(yj,yk)+1

ntr(yk)
if ntr(yj,yk) > ntr(yj,yk) + 2

(11.27)
Likewise, in our proposal, the maximum entropy on the A-NPI-M credal set

on yj conditioned on yk is irrelevant, Ptrain
ANPI

(
yj | yk

)
, is considered:

S∗
(
Ptrain
ANPI

(
yj | yk

))
= S(p̂tr

ANPI

(
yj | yk

)
), (11.28)
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where:

Ptrain
ANPI

(
yj | yk

)
=

{
p ∈ P

(
yj | yk

)
| max

(
0,

ntr(yj,yk) − 1

ntr(yk)

)
⩽

p(yj | yk) ⩽ min
(
ntr(yj,yk) + 1

ntr(yk)
, 1
)}

,
(11.29)

P
(
yj | yk

)
being the set of all probability distributions on yj conditioned on

yk is irrelevant,

p̂tr
ANPI

(
yj | yk

)
=



1
2 if

∣∣ntr(yj,yk) −ntr(yj,yk)
∣∣ ⩽ 2

ntr(yj,yk)−1

ntr(yk)
if ntr(yj,yk) > ntr(yj,yk) + 2

ntr(yj,yk)+1

ntr(yk)
if ntr(yj,yk) > ntr(yj,yk) + 2

(11.30)
The method used in our proposal to estimate the correlation between two

labels yj, yk, is based on the Imprecise Information Gain [13]:

IIG(yj,yk) = S∗
(
Ptrain
ANPI(yk)

)
− p̂tr

ANPI(yj)S
∗ (Ptrain

ANPI

(
yj | yk

))
−(

1− p̂tr
ANPI(yk)

)
S∗
(
Ptrain
ANPI

(
yj | yk

))
.

(11.31)

The estimated correlation between yj and yk consists of the Imprecise Sym-
metrical Uncertainty (ISU), which uses IIG in a normalized way:

ISU(yj,yk) =
2× IIG(yj,yk)

S∗
(
Ptrain
ANPI(yj)

)
+ S∗

(
Ptrain
ANPI(yk)

) . (11.32)

The ISU measure takes as a reference the Symmetrical Uncertainty (SU)
[106], widely used for estimating the correlation between two variables in
classical information theory.

In this way, our proposed method to estimate the correlation between two
labels consists of the reduction of uncertainty, estimated via the A-NPI-M, of a
label when the value of the other label is known. Such a reduction is measured
in a normalized way by considering the initial uncertainty of both labels.

For determining the label order given by the permutation σ, i.e
yσ(1) > yσ(2) > . . . > yσ(nL), we take the following points into account:

• If the label positioned at the beginning of the chain is little correlated
with the other ones, then the following classifiers may utilize irrelevant
information about it. In contrast, when the label placed in the first po-
sition is highly correlated with the remaining ones, the following clas-
sifiers might use important and relevant information and, consequently,
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their predictive performance may improve. Thus, in our proposal, the
label with the maximum average correlation with the other ones is posi-
tioned at the beginning of the chain, i.e,

σ(1) = arg max
j=1,2,...,nL

nL∑
k=1,k̸=j

ISU(yj,yk). (11.33)

• To decide the label placed in the second position, we consider, for each
candidate, two issues. The first one is how correlated is the candidate
label with the one already inserted; if the label inserted at the second po-
sition is not correlated with the first one, then the information provided
by the first label may be irrelevant, while if the first label and the second
one are highly correlated, then the information provided by the first la-
bel may be very relevant for the second one and, thus, the performance
of the second classifier might improve. Secondly, similar to the first step,
for each candidate, it is important that the remaining candidate labels
are correlated with it for the information provided by the label to be
useful for the following classifiers. For these reasons, for each candidate
label to be positioned at the second place, we consider a score that con-
sists of the sum of the correlation between the candidate label and the
first one and the average correlation between the candidate label and the
remaining ones not inserted yet:

Score2(yk) = ISU(yk,yσ(1)) +

∑nL

j=1,j̸=k,σ(1) ISU(yj,yk)

nL − 2
,

∀k ∈ {1, 2, . . . ,nL} \ {σ(1)} .
(11.34)

The chosen label is the one with the highest score.

• For inserting the labels at the remaining positions, we apply the same
reasoning: In the ith position, with 2 < i ⩽ nL, for each candidate
label, the corresponding score is computed via the sum of the average
correlation among the candidate label and the ones already inserted in
the chain and the average correlation between the candidate label and
the remaining ones not positioned yet:

Scorei(yk) =

∑i−1
j=1 ISU(yσ(j),yk)

i− 1
+∑

j̸=σ(1),...,σ(i−1),k ISU(yj,yk)

nL − i
, ∀k ̸= σ(1), . . . ,σ(i− 1)

(11.35)

The label placed in the ith position is the one with the highest score
according to Equation (11.35).
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Therefore, once the correlation between each pair of labels is computed, our
proposed greedy procedure to insert the labels in the chain is determined via
Algorithm 24, where yσ =

(
yσ(1),yσ(2), . . . ,yσ(nL)

)
.

Algorithm 24: Our proposed label ordering procedure.
Procedure Determine label order(labels y1,y2, . . . ,ynL

, correlation
between each pairs of labels ISU(yj,yk), with j,k = 1, 2, . . . ,nL)
for k = 1 to nL do

1. Score1(yk) =
∑nL

j=1,j̸=k ISU(yj,yk).

σ(1) = arg maxk=1,2,...,nL
Score1(yk).

for i = 2 to nL do
for k ̸= σ(1), . . . ,σ(i− 1) do

Scorei(yk) =
∑i−1

j=1 ISU(yσ(j),yk)

i−1 +
∑

j̸=σ(1),...,σ(i−1),k ISU(yj,yk)

nL−i .

σ(i) = arg maxk̸=σ(1),...,σ(i−1) Scorei(yk).
return yσ.

11.5.1 Justification of our proposed label ordering procedure

The advantages of our proposed method to determine the label order in CC
over the ones based on label correlations proposed so far can be summarized
in the following way:

• The label ordering method based on ReliefF developed in [214] uses a
list of labels correlated with each one. For this purpose, a correlation
score between each pair of labels is computed, and a threshold is used
to decide which labels are correlated with each one. It must be remarked
that the choice of the threshold is a difficult question. In the experimen-
tal study carried out by the developers of the method, it was supposed
that half of the total number of labels are correlated with each one, but
this assumption is obviously unrealistic. Nevertheless, in our proposed
method, we do not employ any threshold to decide whether a label is
correlated with another one but we use correlation scores between pairs
of labels. Furthermore, in the label ordering procedure based on ReliefF,
to insert a label at the ith position of the chain, the one with the high-
est number of non-inserted labels correlated with it is selected whenever
it is correlated with at least one label inserted, even though it is only
correlated with one of the many labels already inserted. Hence, in that
label ordering method, the correlation of a label with the ones already
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inserted has little influence, which is a drawback. In contrast, our pro-
posed method equally considers the average correlation of a label with
the remaining candidates and the average correlation of the candidate
label with the ones already inserted in the chain.

• The greedy label ordering procedures proposed in [124] only take into
account, for each candidate label to insert in the chain, its average con-
ditional entropy-based correlation with the labels not inserted yet. As
explained before, it is a shortcoming because if a label is not correlated
with the previous ones according to the order established by the chain,
then the corresponding classifier might use irrelevant information and,
consequently, its performance may worsen.

• Indeed, in our proposed label ordering procedure, it is possible that, at
a certain step, a label is chosen because it is strongly correlated with the
ones already inserted though its correlation with the remaining candi-
date labels is not very high. However, such a correlation cannot be very
low since, in such a case, that label would not be selected via our crite-
rion. In these situations, the information provided by the chosen label
for the remaining classifiers may not be very useful (although it would
not imply noise because the correlation would not be close to 0). Nev-
ertheless, the classifier corresponding to the selected label may use very
relevant information and, thus, its performance probably improves.

Likewise, at a certain step, a label strongly correlated with the remaining
candidate labels may be selected although its correlation with the labels
already inserted is not very high. In these cases, the classifier corre-
sponding to that label may not use very relevant information (although
the information must not be very irrelevant because the correlation with
the labels already inserted cannot be close to 0). Nonetheless, the infor-
mation provided by that label for the remaining classifiers may be very
useful and, thus, their performance might improve.

• Moreover, for the estimation of the correlations between pairs of labels,
our proposed method utilizes the A-NPI-M, unlike the label ordering
methods based on label correlations developed so far, which employ
classical probability theory. The Multi-Label classifiers based on impre-
cise probabilities that we have proposed in the previous sections have
achieved better performance than the ones that use precise probabilities,
as highlighted via experimental analyses. In general, imprecise probabil-
ity models are more suitable for classification than classical probability
theory when there is class noise in the data. As argued in Section 11.2.3,
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the intrinsic noise in MLC may be higher than the intrinsic class noise in
traditional classification.

In consequence, it is expected that our proposal outperforms the label or-
dering procedures based on label correlations proposed so far in CC. This fact
is corroborated with an experimental analysis in Section 11.5.2.

11.5.2 Experimental study

11.5.2.1 Description of the experiments

• Datasets: Ten datasets have been employed in this experimentation.
They can be downloaded from the official website of Mulan [202]7, ex-
cept for the Slashdot dataset, which can be found on the website of Meka
[179]8, another Java library for MLC. Table 11.8 shows the main char-
acteristics of each dataset: number of instances, number of attributes,
number of labels, label cardinality, label density, and MLC domain.

Table 11.8: Datasets used in our experimental analysis with label ordering methods
in CC. N is the number of instances, N_A is the number of attributes,
nL is the number of labels, and L_C and L_D are, respectively, the label
cardinality and the label density.

Dataset N N_A nL L_C L_D Domain
birds 645 260 19 1.014 0.053 Audio
cal500 502 68 174 26.044 0.15 Music

emotions 593 72 6 1.87 0.311 Music
enron 1702 1001 53 3.38 0.064 Text
flags 194 9 17 3.392 0.485 Image

genbase 662 1186 27 1.252 0.046 Biology
medical 978 1449 45 1.24 0.028 Text

scene 2407 294 6 1.07 0.179 Image
slashdot 3782 1079 22 0.9096 0.413 Text

yeast 2417 103 14 4.24 0.303 Biology

As can be seen, the datasets utilized in our experimental study are varied
in terms of domain, number of instances, number of features, number of
labels, label density, etc.

7 http://mulan.sourceforge.net/datasets-mlc.html

8 https://waikato.github.io/meka/datasets



364 Imprecise probabil it ies in Multi-Label Classif ication

• Evaluation metrics: We have employed ten evaluation metrics in our ex-
periments. Four of them are based on instance classification: Hamming
Loss, Subset Accuracy, Accuracy, and F1; two label-based classification
metrics have been used: Micro F1 and Macro F1; the other four eval-
uation measures considered here, One Error, Coverage, Ranking Loss,
and Average Precision, are based on ranking. All these metrics were
described in detail in Section 6.3.

• Algorithms: Five algorithms have been considered in our experimental
analysis: Binary Relevance (BR), the original Classifier Chain method
(CC), CC with the greedy procedure based on conditional entropies that
obtained the best experimental results among the ones used in [124]
(CondEnt_CC), CC with the label ordering method based on ReliefF pro-
posed in [214] (ReliefF_CC), and CC with our proposed label ordering
method (ImpCorr_CC).

• Procedure: For each algorithm and dataset, a cross-validation procedure
of 5 folds has been repeated: the dataset is divided into 5 partitions
and, for each one of them, an iteration is done. In it, the corresponding
partition is used for testing and the rest of the dataset for training. The
model is learned using the training set, and each one of the evaluation
metrics is extracted with the test set. The same partitions have been
employed for all algorithms in all datasets.

• Software and parameters: We have started from the implementation
available in Mulan for BR and CC, and we have added the necessary
structures and methods for employing CondEnt_CC, ReliefF_CC, and
ImpCorr_CC. For these algorithms, the parameters given by default in
Mulan have been used. As the base classifiers, we have used the Support
Vector Machines based on the SMO algorithm [173], available in Weka,
with default parameters.

We have utilized part of the functionality available in Mulan to create
the partitions of cross-validation.

• Statistical evaluation: For each evaluation metric, there are five algo-
rithms to compare. Thus, in accordance with the recommendations
given by Demšar [75] for statistical comparisons between the results ob-
tained by more than two algorithms, the Friedman test has been em-
ployed. When the null hypothesis of the Friedman test is rejected, we
use the Nemenyi test [167] to detect the cases of statistically significant
differences between pairs of algorithms.
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Furthermore, we have used the Friedman test for comparing the average
Friedman ranks obtained by the algorithms in the evaluation metrics
considered here. Again, if the null hypothesis of this test is rejected,
then the Nemenyi test is employed.

The level of significance utilized in all statistical tests is α = 0.05.

11.5.2.2 Results and discussion

Table 11.9 shows the average Friedman rank obtained by each algorithm
considered in this experimentation in each evaluation metric. The cases of
statistically significant differences according to the Nemenyi test in each eval-
uation metric are summarized in Table 11.10. Table 11.11 presents the average
Friedman ranks computed over the average Friedman ranks of the algorithms
on the evaluation metrics. The critical diagram associated with the Nemenyi
test corresponding to such Friedman ranks can be seen in Figure 11.4. In
Tables 11.9 and 11.11, the best results are marked in bold font and the second-
best results in italic font.

Table 11.9: Average Friedman rank obtained by each algorithm of the experimental
analysis with label ordering procedures in CC in each evaluation metric.

Metric BR CC ReliefF_CC CondEnt_CC ImpCorr_CC
Hamming Loss 2.1 3.6 3.1 3.3 2.9

Subset Accuracy 4.5 2.9 3.15 2.2 2.25
Accuracy 4 3.2 3.2 2.5 2.1

F1 3.9 3.1 3.3 2.5 2
Micro F1 3.2 3.6 3.1 2.9 2.2
Macro F1 3.9 3.1 2.8 3.2 2
One Error 2.95 3.15 3.1 2.55 3.25

Coverage 4.5 3.2 3.2 2.1 2
Ranking Loss 4 3.4 3.1 2.4 2.1

Average Precision 3.7 3.4 3 2.4 2.5

The following points should be noted about the results:

• In general, the BR algorithm obtains, by far, the worst performance. It
is since this algorithm completely ignores the correlations among the la-
bels, and the labels are usually not independent. The only evaluation
measure in which BR obtains good results is Hamming Loss, which in-
dicates the symmetric differences between the real label sets and the
predicted ones. It is because, as pointed out before, in MLC, there are
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Table 11.10: Summary of the results of the Nemenyi tests of the experimental analysis
with label ordering procedures in CC in each evaluation metric. In each
cell, the algorithm of the column performs significantly better than the
method of the row in the evaluation measure indicated in the cell.

BR CC ReliefF_CC CondEnt_CC ImpCorr_CC
BR - Subset Accuracy, Subset Accuracy,

Coverage Coverage
CC -

ReliefF_CC -
CondEnt_CC -
ImpCorr_CC -

Table 11.11: Average Friedman ranks computer over the Friedman ranks obtained by
the algorithms of the experimental analysis with label ordering procedures
in CC in the evaluation metrics.

Algorithm Average Friedman Rank
BR 4.2
CC 3.8

ReliefF_CC 3.2
CondEnt_CC 2.1
ImpCorr_CC 1.7

Figure 11.4: Critical diagram corresponding to the Nemenyi test associated with the
average Friedman ranks in the experimental analysis with label ordering
procedures in CC. CD = Critical Distance.



11.5 New label ordering method for Classif ier Chains 367

often very few instances that have associated a certain label. Hence, BR,
which does not consider correlations among labels, usually predicts that
the labels are irrelevant for the instances. Since BR obtains poor perfor-
mance in the rest of the classification-based metrics (Accuracy, Subset
Accuracy, F1, and Micro and Macro F1), it can be deduced that this al-
gorithm is the least suitable one, among the ones considered here, to
handle the class-imbalance problem that frequently appears in MLC. It
also achieves quite bad results in ranking-based measures, except for
One Error, which only focuses on the top-ranked label.

• The original CC algorithm obtains better results than BR: it obtains a
lower average Friedman rank, and it achieves a lower Friedman rank in
seven evaluation measures. It is because CC does not assume that the
labels are independent, but it considers a label order, and each classifier
takes the predictions of the previous ones according to that order into
account. In this way, CC captures some label correlations. Nevertheless,
CC performs worse than the versions of this algorithm that previously
study the correlations among the labels to determine the label order, in
both classification-based and ranking-based evaluation measures. The
reason is obvious: CC considers a random label order, and the perfor-
mance of CC is strongly influenced by that label order.

• CC with the label ordering method based on ReliefF performs better
than the original CC method; the Friedman rank of the ReliefF_CC
method is lower than the one of CC in most of the evaluation metrics,
and the average Friedman rank is also lower. It is because ReliefF_CC
previously studies the correlations among the labels to order them, un-
like CC, which considers a random order. However, ReliefF_CC obtains
worse performance than the other two methods based on CC considered
here that order the labels by considering the correlations between them.
We explained the reasons in Section 11.5.1: it is difficult to establish a
good threshold based on the correlation scores to determine the list of
labels that are correlated with each one. In addition, in the greedy proce-
dure carried out in ReliefF_CC for ordering the labels, the correlation of
each candidate label with the ones already inserted has little influence,
which is a shortcoming.

• In consequence, CondEnt_CC and ImpCorr_CC are the algorithms that
achieve the best results among the ones considered here; they attain a
lower Friedman rank than the other algorithms in most of the evaluation
measures, and the average Friedman ranks are pretty lower too. Con-
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dEnt_CC and ImpCorr_CC perform significantly better than BR accord-
ing to the Nemenyi test in both Subset Accuracy and Coverage. These
are the only cases of statistically significant differences via this test in
the evaluation metrics. Moreover, CondEnt_CC and ImpCorr_CC are
not connected with BR via a segment in the critical diagram of Figure
11.4. So, these two algorithms significantly outperform BR according to
the Nemenyi test associated with the Friedman test computed over the
Friedman ranks in the evaluation metrics. The previous points are since
the label ordering methods employed in CondEnt_CC and ImpCorr_CC
do not present the problem of the threshold that appears in ReliefF_CC.

• Our proposed ImpCorr_CC method performs better than CondEnt_CC
as it obtains a lower average Friedman rank, and the Friedman rank of
ImpCorr_CC is lower than the one of CondEnt_CC in seven evaluation
metrics, whereas, in the other three evaluation measures, the opposite
happens. Furthermore, according to the Nemenyi test associated with
the Friedman test computed over the Friedman ranks in the evaluation
measures, ImpCorr_CC performs significantly better than CC, unlike
CondEnt_CC. It is because, to insert the labels in the chain, our proposal
considers, for each candidate label, its correlation with the labels already
inserted and its correlation with the labels not inserted yet, whereas Con-
dEnt_CC just considers the correlation of each candidate label with the
ones not inserted yet. Furthermore, CondEnt_CC estimates the corre-
lations among the labels via classical probability theory, while our pro-
posal uses the A-NPI-M for this purpose. As explained in Section 11.2.3,
imprecise probability models are more appropriate to be employed than
precise probabilities in MLC since, in this field, the intrinsic label noise
might be higher than the intrinsic class noise in traditional classification.

Specifically, the difference between the performance of both methods
in classification-based evaluation metrics is quite notable: the Friedman
rank of CondEnt_CC is slightly lower in Subset Accuracy, whereas Im-
pCorr_CC obtains a much lower Friedman rank in Accuracy, Hamming
Loss, and F1-based metrics. The differences are very notable in Micro
and Macro F1. Regarding the ranking-based evaluation metrics, in One
Error, ImpCorr_CC performs far worse than CondEnt_CC; it is the only
evaluation metric in which our proposal does not achieve good results;
in contrast, the Friedman rank of ImpCorr_CC is lower than the one of
CondEnt_CC in Ranking Loss; the differences in Coverage and Average
Precision are hardly appreciable. Thereby, it can be stated that both al-
gorithms obtain equivalent results in ranking-based evaluation metrics.
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To summarize, BR, which ignores the label correlations, obtains the worst
results; among the CC-based methods, the original CC algorithm is the one
that performs worst; and our proposed label ordering method achieves better
results than the ones based on label correlations developed so far, especially
in classification-based evaluation metrics.

11.6 Conclusions

Most of the Multi-Label Classification (MLC) methods proposed so far are
based on classical probability theory. In this chapter, we have developed new
MLC algorithms that use imprecise probability models. We have shown that
the intrinsic label noise in MLC tends to be higher than the intrinsic class
noise in traditional classification. Hence, as algorithms based on imprecise
probabilities have obtained better performance than the ones that employ pre-
cise probabilities when there is class noise in the data, our proposed MLC
methods are more suitable than the ones developed so far based on classical
probability theory. Experimental studies have corroborated this point. Specifi-
cally, the main contributions of this chapter can be summarized as follows:

• Firstly, we have analyzed the use of traditional classification algorithms
based on imprecise probabilities in problem transformation methods.
Remark that algorithms within this category transform the MLC task
into multiple traditional classification problems and then combine the
solutions of such problems to output a solution for the MLC task. Specif-
ically, we have studied the use of Credal C4.5 (CC4.5) in two problem
transformation methods: Binary Relevance (BR) and Calibrated Label
Ranking (CLR). BR is a quite simple approach to MLC that has obtained
good results in practice, and CLR exploits pairwise label correlations
and mitigates the class-imbalance problem that often arises in MLC. We
have shown that, as CC4.5 is less sensitive to noise than C4.5, both BR
and CLR are more robust to noise in the labels with CC4.5 than with
C4.5. Consequently, since the intrinsic label noise in MLC might be
higher than in traditional classification, CC4.5 is more suitable than C4.5
to handle the binary classification tasks in BR and CLR. Experimental
results have revealed that both BR and CLR achieve better results with
CC4.5 than with C4.5, the improvement being more notable as there
is more noise in the labels. The difference between the performance
of CC4.5 and C4.5 is more notable in metrics based on instances than
in label-based metrics. It happens because the proportion of instances
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with an error in any label may be much higher than the proportion of
instances with an error in a specific label.

• We have proposed a new adaptation of Decision Trees for MLC that uses
the A-NPI-M for computing the uncertainty-based information about the
label set in the nodes for the split criterion and to predict the posterior
probabilities about the relevance of the labels for the instances at leaf
nodes. It has been shown that our proposed adaptation is more robust
to label noise than the one proposed so far, which is based on precise
probabilities. An experimental analysis has been carried out with sev-
eral datasets, MLC evaluation metrics, and noise levels to compare the
performance of our proposed adaptation of Decision Trees for MLC and
the existing adaptation based on classical probability theory. Such an
experimental analysis has highlighted that our proposed adaptation out-
performs the one proposed so far, and the improvement is more notable
as there is more noise in the labels. Therefore, the A-NPI-M is more suit-
able than classical probability theory to be employed in the adaptations
of Decision Trees for MLC, especially when there is noise in the labels.

• Also, we have developed two new lazy approaches to MLC: Binary
Relevance Credal Nearest Neighbors (BR-Credal-NN) and Multi-Label
Credal Nearest Neighbors (ML-Credal-NN). As the original Multi-Label
Nearest Neighbors (ML-NN) and Binary Relevance Nearest Neighbors
(BR-NN) algorithms, to classify a new instance, our proposed methods
employ statistical estimators based on the nearest neighbors of the in-
stance. Nonetheless, whereas the original algorithms use relative fre-
quencies with Laplacian correction for the statistical estimators, BR-Credal-
NN and ML-Credal-NN use the A-NPI-M. We have shown that our pro-
posed ML-Credal-NN and BR-Credal-NN methods predict that an in-
stance has associated with it a certain label more frequently than the
existing ML-NN and BR-NN algorithms, especially when there is noise
in the labels. We have carried out an experimental study with many
MLC evaluation metrics and different MLC datasets, with and without
noise in the labels, to compare the performance of our proposed lazy
approaches, based on the A-NPI-M, with some of the existing lazy MLC
algorithms based on classical probability theory. Such an experimen-
tal study has highlighted that BR-Credal-NN and ML-Credal-NN ob-
tain the best results in Accuracy and F1 measures. Remark that F1 is a
well-established evaluation metric in the literature to analyze the perfor-
mance of algorithms for unbalanced classification problems. In addition,
our proposed algorithms are more robust to noise in F1 metrics. In this
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way, ML-Credal-NN and BR-Credal-NN are more appropriate than ML-
NN and BR-NN to tackle the class-imbalance problem that frequently
appears in MLC, especially with noise in the labels. In ranking-based
metrics, BR-Credal-NN obtains poor results, but ML-Credal-NN does
not perform worse than any of the lazy MLC algorithms considered in
our experimentation. Thus, ML-Credal-NN is far more suitable than
BR-Credal-NN for handling the multi-label ranking problem.

• It must be also remarked that one of the main challenges in MLC is to
exploit the correlations between the labels and Classifier Chain (CC) is
considered a simple and effective method to exploit label correlations.
CC considers a binary classifier per label in which the previous labels
according to an established order are employed as additional predictive
attributes. Such an order strongly influences the performance of CC, and
it is not a trivial question to determine the optimal label order. Most of
the label ordering methods proposed so far are based on label correla-
tions. A new label ordering method has been proposed in this chapter.
It estimates the correlation between each pair of labels via the A-NPI-M
and then orders the labels by means of a greedy procedure. In it, for
each candidate label, the average correlation between that label and the
ones already inserted is considered, as well as the average correlation
between that label and the ones not inserted yet. It has been shown that
our proposed procedure presents some advantages over the ones devel-
oped so far based on label correlations; it uses imprecise probabilities
for estimating label correlations, which is more suitable than employ-
ing classical probability theory; it does not utilize a threshold to deter-
mine the list of labels that are correlated with each one; our proposal,
for each candidate label to insert in the chain, considers the correlation
of the labels already inserted with it and the correlation of the labels
non-inserted with the candidate label. Experiments have been carried
out with several MLC datasets and many MLC evaluation metrics to
check the performance of our proposed method. We have compared
our proposal with BR, the original CC algorithm, and CC with the label
ordering methods proposed so far based on label correlations. Such ex-
periments have revealed that the CC-based algorithms outperform BR,
which ignores the label correlations; the original CC method is the one
that obtains the worst results among the ones based on CC; as expected,
our proposed label ordering procedure achieves better performance than
the ones based on label correlations developed so far, the improvement
being especially notable in classification-based evaluation metrics.
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12.1 Concluding remarks

Classical probability theory (PT) is the standard way of representing the in-
formation about a finite set of alternatives provided by an expert or dataset.
Nonetheless, in many cases, this representation might not be suitable since the
available information is not sufficient for precisely determining the probability
of each alternative. For this reason, many imprecise probability theories and
models have been developed in the literature. Concerning imprecise proba-
bility theories, some theories are more general than others. One of the most
general ones is the theory based on general credal sets. In addition, as these
theories have particular mathematical properties, some theories are more suit-
able than others in specific situations. Evidence theory (ET) has been widely
used in the literature to handle uncertainty-based information, and reachable
probability intervals are easy to understand and manage, have high expressive
power, and can be efficiently computed. In fact, they have been frequently em-
ployed in practical applications such as classification. As demonstrated by
Abellán [2], ET does not generalize reachable probability intervals, and the
converse is also not satisfied. With regard to the imprecise probability mod-
els, the Imprecise Dirichlet Model (IDM), proposed by Walley [209], satisfies
some principles that were claimed to be desirable for inference, such as the
Representation Invariance Principle (RIP). Nevertheless, this model assumes
previous knowledge about the data through a parameter. In practical applica-
tions, it has not been possible so far to determine the optimal value of the pa-
rameter for each specific case. The Non-Parametric Predictive Inference Model
(NPI-M) [58, 59] was developed to solve this shortcoming. The NPI-M is a non-
parametric approach that does not make previous assumptions about the data.
Even so, the set of probability distributions compatible with the NPI-M is not
convex. Indeed, when the NPI-M is employed, it is necessary to deal with
difficult constraints. For this reason, in [5], the Approximate Non-Parametric
Predictive Inference Model (A-NPI-M) was proposed. The A-NPI-M consists
of the convex hull of the set of probability distributions consistent with the
NPI-M and belongs to the reachable probability intervals theory. Hence, the
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A-NPI-M is more manageable than the NPI-M to be employed in practical
applications.

Within imprecise probability theories and models, new tools for represent-
ing the available information are needed. Such tools are known as uncertainty
measures. The basis of the study of uncertainty measures in imprecise prob-
ability theories is the study of uncertainty measures in ET. In such a theory,
uncertainty-based information can always be represented via a belief function.
The maximum entropy on the set of probability distributions consistent with a
belief function is the only uncertainty measure in ET so far that satisfies all es-
sential mathematical properties and behavioral requirements. Also, in the the-
ory based on general credal sets, the maximum entropy is a well-established
uncertainty measure as it satisfies the fundamental properties. However, the
maximum entropy requires a considerably high computational cost. Actually,
the algorithms proposed so far to compute the maximum entropy in ET are
notably complex. For this reason, many alternatives to the maximum entropy
in ET have been proposed during the last years. A well-known alternative to
the maximum entropy is the Deng entropy. In previous works, it was proved
that this measure violates most of the fundamental mathematical properties
for uncertainty measures in ET, and its behavior in some situations is ques-
tionable. Two modifications of this measure were proposed a few years ago
for solving some drawbacks of the Deng entropy. It should be remarked that
belief intervals for singletons are easier to manage than belief functions for
representing the uncertainty-based information in ET. Hence, many alterna-
tives to the maximum entropy in ET proposed during the last years are based
on belief intervals for singletons. Furthermore, there is no algorithm so far
to compute the maximum entropy on a general credal set. An algorithm for
the maximum entropy on Choquet capacities of order 2 was developed [16].
Moreover, Abellán [2] developed algorithms for the computation of the main
uncertainty measures with the IDM. An algorithm to compute the maximum
entropy with the NPI-M was also developed in [5].

Situations in which it is necessary to represent the information about a fi-
nite set of possible alternatives provided by a dataset arise in classification,
an essential area within Data Mining. This task consists of predicting, for an
instance described via a set of attributes or features, the value of a variable
under study called the class variable. In order to make such a prediction, clas-
sification algorithms usually need to represent the available information about
the class variable given the values of the attributes. One of the most simple
classification algorithms is Naïve Bayes (NB). It assumes that all attributes are
independent given the class variable. Despite this unrealistic assumption, NB
has obtained good results in practice, comparable with more sophisticated



12.1 Concluding remarks 377

classification methods. The estimation of the probabilities plays a crucial role
in NB. Many years ago, Cestnik [47] proposed a new NB model that takes the
prior probabilities into account for the estimation of the conditional probabili-
ties. Such a model has obtained better performance that the NB models based
on classical estimators. Also, Decision Trees are very simple, transparent, and
interpretable models. Within Decision Trees, C4.5 is a well-known classifica-
tion algorithm. Classical Decision Trees use uncertainty measures based on
PT for selecting the attribute to split in each node. Decision Trees that utilize
uncertainty measures on credal sets to represent the uncertainty-based infor-
mation about the class variable at each node, known as Credal Decision Trees
(CDTs), were developed a few years ago. Within CDTs, a version of C4.5 based
on imprecise probabilities, called the Credal C4.5 algorithm (CC4.5), was pro-
posed. CDTs and classical Decision Trees obtain statistically equivalent results
without noise in the data and CDTs perform significantly better than classical
Decision Trees when classifying class noise. Moreover, ensembles of classifiers
often achieve better results than individual classifiers. They consider multiple
individual classifiers and combine their predictions to give a final prediction.
The key point for the success of an ensemble scheme is that the base classifiers
are not only accurate but also diverse. Therefore, Decision Trees are appro-
priate for ensembles as, in these classifiers, little variations in the training set
may lead to considerable variations in the learned model.

Most classification algorithms aim to minimize the number of misclassified
instances. This would be optimal if all classification errors had the same im-
portance. Nonetheless, in practical applications, classification errors tend to
yield different costs. For this reason, many classifiers that take the error costs
into account, known as cost-sensitive classifiers, have been developed in the
last years.

Cost-insensitive and cost-sensitive classifiers usually predict a single value
of the class variable when classifying an instance. However, in some cases,
classifiers predict a set of class values because there is not sufficient avail-
able information to point out a unique value of the class variable. This is
known as Imprecise Classification. The performance of an imprecise classifier
is evaluated via its trade-off between accuracy (the real class value is among
the predicted ones) and informativeness, which is measured by the average
number of predicted class values. The first Imprecise Classification method
was the Naïve Credal Classifier (NCC), which combines the IDM with the
naïve assumption to output imprecise predictions. Afterwards, the first Impre-
cise Classification algorithm based on Decision Trees was developed, which is
called the Imprecise Credal Decision Tree (ICDT). ICDT obtained significantly
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better performance than NCC as the former model is much more informative
than the latter. Both NCC and ICDT were adapted for cost-sensitive scenarios.

Traditional classification assumes that each instance has a unique value of
a class variable. In some domains, Multi-Label Classification (MLC) fits bet-
ter than traditional classification since each instance might belong to multiple
labels simultaneously. MLC aims to predict the set of labels associated with
an instance. Many MLC algorithms have been proposed so far. They can be
divided into two groups. On the one hand, the problem transformation meth-
ods convert the MLC task into multiple traditional classification problems and
then combine their solutions to give a prediction for the MLC problem. On the
other hand, the algorithm adaptation methods directly adapt the existing algo-
rithms for traditional classification to MLC. Most of the algorithms proposed
so far for MLC use PT. It should be remarked that, as the number of labels in
MLC tends to be very high, one of the main challenges of MLC is to exploit
label correlations. The Classifier Chain algorithm (CC) is considered a simple
and effective method to exploit label correlations in MLC. CC considers a bi-
nary classification problem per label in which the previous labels according to
an established order are used as additional predictive attributes. The perfor-
mance of CC is strongly influenced by the label order, and there is no way so
far of determining the optimal label order. Many label ordering methods in
CC have been developed so far. Most of them estimate label correlations via
classical PT before ordering the labels. It must also be remarked that, in MLC,
there are often very few instances that belong to a certain label. Consequently,
MLC algorithms tend to suffer from a class-imbalance problem.

In this thesis work, we have analyzed some imprecise probability theories
and models; we have also made a critical analysis of some uncertainty mea-
sures in ET, and we have proposed an uncertainty measure on belief intervals
for singletons that satisfies all essential mathematical properties and behav-
ioral requirements; we have proposed new classification algorithms based on
imprecise probability models, including the above-commented special types
of classification: Imprecise Classification and MLC, that outperform the ones
of the state-of-the-art.

In concrete, we list below the main contributions of this thesis work:

• Credal sets representable by belief functions and reachable probability
intervals have been characterized: we have provided a set of necessary
and sufficient conditions that a given reachable set of probability inter-
vals must satisfy to be representable by means of a belief function. It
has been demonstrated that, in order to check such conditions, it is re-
quired to consider several subsets and check some simple inequalities
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with the sums of the lower and upper probabilities on such subsets. The
subsets are also simple and fast to compute. We have also given a char-
acterization of belief functions representable via reachable probability
intervals. Specifically, it has been demonstrated that the necessary and
sufficient condition for a belief function to be representable through a
reachable set of probability intervals is the following one: the difference
between any pair of non-singleton focal elements of the corresponding
basic probability assignment (BPA) has a cardinality lower or equal than
one. By employing our given condition, we have characterized some
special types of belief functions, such as p-boxes or necessity measures,
that can be represented via reachable sets of probability intervals.

• With regard to imprecise probability models, we have analyzed the main
properties of A-NPI-M credal sets, comparing them with IDM credal
sets. It has been shown that, as with the IDM, as long as the sample
size converges to infinity, A-NPI-M credal sets converge to a unique
probability distribution, computed through relative frequencies; the A-
NPI-M is a more imprecise model than the IDM with the most utilized
value of the parameter, the one recommended in the literature; one of the
most remarkable properties of A-NPI-M credal sets is that they cannot
always be represented through a belief function, unlike IDM credal sets.
The calculation of the Möbius inverse for the A-NPI-M is more complex
than for the IDM. The same occurs with the set of extreme points of the
credal set. Therefore, the A-NPI-M is a more complex model than the
IDM. Nonetheless, it must be remarked that the IDM assumes previous
knowledge about the data via a parameter, unlike the A-NPI-M.

• Concerning uncertainty measures, we have made a critical analysis of
two modifications of the Deng entropy proposed a few years ago. It
has been proved that such modifications, similar to the original Deng
entropy, do not satisfy most of the crucial mathematical properties for
uncertainty measures in ET, and their behavior in some scenarios is also
questionable. Furthermore, we have carried out a study about the es-
sential mathematical properties and behavioral requirements for total
uncertainty measures on belief intervals for singletons. That study has
been based on the one previously carried out for total uncertainty mea-
sures on BPAs. We have shown that none of the uncertainty measures
on belief intervals for singletons proposed so far verifies all the funda-
mental mathematical properties and behaviors for this type of measure.
We have also proposed a total uncertainty measure on belief intervals
for singletons, which consists of the maximum entropy on the credal set
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associated with such intervals. We have proved that, even though our
proposed measure requires a more complex computation than the other
uncertainty measures on belief intervals for singletons proposed so far, it
is the only one that satisfies all the crucial mathematical properties and
behavioral requirements for uncertainty measures on belief intervals for
singletons. We have also highlighted that our proposal gives an upper
bound of the maximum entropy on the credal set compatible with a BPA,
the well-established uncertainty measure in ET, the computation of the
former measure being notably faster than the latter. Moreover, we have
shown how to compute the most important uncertainty measures on A-
NPI-M credal sets. Such procedures represent useful tools to make the
A-NPI-M very suitable for practical applications.

• Within traditional classification, we have presented a new version of
the NB algorithm, called the Imprecise m-probability estimation Naïve
Bayes (ImNB), that considers the prior probabilities of the class values
to estimate the conditional probabilities, as the Cestnik approach. How-
ever, ImNB uses the well-established uncertainty measure on credal sets
for estimating the prior probabilities, unlike the Cestnik model, which
employs relative frequencies with Laplacian correction to estimate such
probabilities. Thereby, our proposed ImNB is more robust to noise than
the Cestnik model. An experimental study with several noise levels has
highlighted that ImNB performs better than the Cestnik approach and
the versions of NB that use classical estimators of the probabilities, with
and without noise in the data.

• Improvements over the Imprecise Classification algorithms developed
so far have been proposed. Specifically, we can summarize the con-
tributions of this thesis work related to Imprecise Classification in the
following issues:

– We have proposed a new version of the ICDT algorithm that em-
ploys the A-NPI-M for the split criterion and the probability inter-
vals at leaf nodes (ICDT-ANPI), whereas the existing ICDT uses the
IDM. Experimental results have shown that ICDT-ANPI performs
equivalently to ICDT with the best choice of the IDM parameter.
Consequently, the A-NPI-M is more appropriate than the IDM for
Decision Trees for Imprecise Classification since the former model
does not assume previous knowledge about the data via a parame-
ter, unlike the latter model.
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– A new version of the NCC algorithm has been developed, called
the Extreme Prior Naïve Credal Classifier (EP-NCC). Unlike NCC,
EP-NCC takes the lower and upper prior probabilities of the class
values into account to estimate the lower and upper conditional
probabilities. It has been shown that the predictions made by EP-
NCC are probably more informative than the predictions made by
NCC, the risk of incorrect predictions not being much higher with
EP-NCC. An experimental analysis has revealed that EP-NCC per-
forms significantly better than NCC as the former method is much
more informative than the latter, while the difference between the
performance of both algorithms in accuracy is not statistically sig-
nificant. Such an experimental analysis has also highlighted that EP-
NCC and ICDT obtain equivalent performance, but ICDT requires
a much higher computational time than EP-NCC. Hence, due to its
good performance and low computational time, EP-NCC is more
suitable for large datasets for Imprecise Classification than the ex-
isting algorithms for such a task. This is an important point in
favor of our proposed EP-NCC algorithm because of the increasing
amount of data in every area.

– The first ensemble method for Imprecise Classification has been pre-
sented in this thesis work. It has been taken into account that the
Bagging scheme has obtained good performance in precise classifi-
cation, especially when it has been used with CDTs, which encour-
age diversity. Thus, our proposed ensemble method for Imprecise
Classification consists of a Bagging scheme using the ICDT algo-
rithm (the adaptation of CDT for Imprecise Classification) as the
base classifier (Bagging-ICDT). The key point is how to combine
the predictions made by multiple imprecise classifiers. As com-
mented before, it is not a trivial question because, if the imprecise
predictions are not suitably combined, then the ensemble may not
perform better than an individual imprecise classifier since an exces-
sive reduction of the information can be produced. Our proposed
combination technique aims that the Bagging imprecise classifier is
as informative as possible. Such a technique consists of predicting
as non-dominated only the class values with the lowest possible
level of dominance, which implies that it is not very conservative.
Via an experimental analysis, we have shown that Bagging-ICDT
with our proposed combination technique performs much better
than the ICDT method; Bagging-ICDT is far more informative than
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ICDT, whereas the difference between the performance of both al-
gorithms in making correct predictions is not significant.

– Concerning cost-sensitive classification, we have proposed a new
cost-sensitive Imprecise Credal Decision Tree that weights the in-
stances by considering the cost of misclassifying the corresponding
class value. Our proposed method takes the error costs into ac-
count in the tree-building process, unlike the existing cost-sensitive
Imprecise Credal Decision Tree, which just considers the misclassi-
fication costs to classify instances at leaf nodes. We have shown that
the criterion used by our proposed cost-sensitive Imprecise Credal
Decision Tree for classifying instances at leaf nodes might be more
effective than the one employed by the existing cost-sensitive Im-
precise Credal Decision Tree because the predictions made may be
more informative. An experimental study has highlighted that our
proposed cost-sensitive Imprecise Credal Decision Tree significantly
outperforms the existing one; although the misclassification cost of
our proposed method is higher, it is much more informative and
achieves a better trade-off between low cost of incorrect classifica-
tions and informative predictions. In this way, we conclude that our
proposed cost-sensitive Imprecise Credal Decision Tree is more ap-
propriate than the existing one for practical applications where the
error costs are different and the available information is not enough
for classifiers to predict a single class value.

• We have also proposed new MLC algorithms based on imprecise prob-
ability models. We have shown that the intrinsic label noise in MLC is
probably higher than the intrinsic class noise in traditional classification.
In consequence, since algorithms that use imprecise probabilities per-
form better than the ones based on classical PT when there is class noise
in the data, our proposed MLC methods might be more suitable than the
ones developed so far based on precise probabilities. We have checked
this issue via experimental studies. In concrete, the contributions of this
thesis work regarding MLC can be summarized in the points below:

– Firstly, we have analyzed the use of CC4.5 in two problem trans-
formation methods: Binary Relevance (BR) and Calibrated Label
Ranking (CLR). BR is a very simple MLC method that has obtained
good performance in practice, and CLR exploits pairwise label cor-
relations and alleviates the class-imbalance problem that tends to
appear in MLC. We have shown that, as CC4.5 is more robust to
class noise than C4.5, both BR and CLR are less sensitive to noise
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in the labels with CC4.5 than with C4.5. Hence, since the intrin-
sic label noise in MLC may be higher than the intrinsic class noise
in traditional classification, CC4.5 is probably more suitable than
C4.5 to tackle the binary classification problems in BR and CLR. Ex-
perimental results have shown that both BR and CLR obtain better
performance with CC4.5 than with C4.5, the improvement being
more significant as the noise in the labels is higher.

– We have proposed a new adaptation of Decision Trees for MLC that
employs the A-NPI-M for the split criterion and to predict the poste-
rior probabilities about the relevance of the labels for the instances
at leaf nodes. We have shown that our proposed adaptation is less
sensitive to label noise than the one proposed so far, which is based
on classical PT. Experimental results have highlighted that our pro-
posed adaptation performs better than the one proposed so far, the
improvement being more notable as there is more noise in the la-
bels. Therefore, the A-NPI-M is more appropriate than classical PT
to be used in the adaptations of Decision Trees for MLC, especially
when there is noise in the labels.

– Also, we have presented two lazy MLC algorithms that, in order
to classify an instance, employ statistical estimators based on the
neighboring instances, similar to some existing lazy MLC meth-
ods. Nevertheless, our proposed lazy methods use the A-NPI-M
for such statistical estimators, unlike the existing ones, which uti-
lize relative frequencies with Laplacian correction. We have shown
that our proposed lazy MLC algorithms predict that a label is rel-
evant for an instance more frequently than the existing ones, and
this issue is enhanced with noise in the labels. An experimental
study has revealed that our proposed lazy MLC methods signifi-
cantly outperform the ones proposed so far in F1-based evaluation
metrics. Thus, as F1 is a well-established evaluation metric to an-
alyze the performance of algorithms for unbalanced classification
problems, it can be stated that our proposed lazy MLC algorithms,
based on the A-NPI-M, are more suitable than the existing ones
based on precise probabilities to handle the class-imbalance prob-
lem that usually arises in MLC, especially with noise in the labels.

– Finally, we have proposed a new label ordering procedure in CC
that estimates the correlation between each pair of labels via the
A-NPI-M and then orders the labels through a greedy procedure.
In such a procedure, for each candidate label, the average correla-
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tion between that label and the ones already inserted is considered,
as well as the average correlation between that label and the ones
not inserted yet. It has been shown that our proposed procedure
presents some advantages over the ones developed so far based on
label correlations; it employs an imprecise probability model to es-
timate label correlations, which is more appropriate than precise
probabilities; our proposed method, for each candidate label, takes
into account the correlation of the labels already inserted with it
and the correlation of the labels non-inserted with the candidate la-
bel, while some of the label ordering methods proposed so far only
consider the correlations between the candidate label and the ones
not inserted yet. An experimental study has shown that our pro-
posed label ordering method performs better than the ones based
on label correlations developed so far.

12.2 Future research

The management of uncertainty-based information in some imprecise prob-
ability theories is still an open research line. Such management is very impor-
tant in some crucial tasks, such as classification. Within this task, including
Imprecise Classification and MLC, new algorithms based on imprecise proba-
bility models that perform better than the ones developed in this thesis work
could also be proposed. Moreover, the tools presented here could be employed
in practical applications to extract useful information.

We list below some specific ideas for future research:

• Some of the essential mathematical properties for uncertainty measures
on BPAs are debatable. For example, in ET, there more are types of
uncertainty than in classical PT: conflict and non-specificity coexist in
ET, while the only type of uncertainty existing in PT is conflict. Conse-
quently, it may be logical that the range of an uncertainty measure on
BPAs is larger. Hence, the set of crucial mathematical properties for un-
certainty measures on BPAs could be revised. The same happens with
the set of fundamental mathematical properties for uncertainty measures
on belief intervals for singletons proposed in this thesis work.

• Few Imprecise Classification methods have been developed so far. For
future work, many of the traditional classification algorithms based on
classical PT could be adapted for Imprecise Classification by employing
imprecise probability theories or models.
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• It must be noted that the first ensemble method for Imprecise Classifica-
tion has been presented in this thesis work. In this way, other ensemble
schemes that have obtained good performance in standard classification,
such as Boosting or Random Forest, could be adapted for Imprecise Clas-
sification. Moreover, as said previously, the combination of multiple
imprecise predictions is not trivial. The combination technique of our
proposed ensemble algorithm for Imprecise Classification tries that the
ensemble is as informative as possible, although it assumes a higher risk
of incorrect predictions. This technique has obtained good experimental
results, but it might not be optimal. Therefore, it would be interesting to
study other techniques for combining the predictions made by multiple
imprecise classifiers.

• With regard to cost-sensitive Imprecise Classification, other cost-sensitive
Imprecise Credal Decision Trees could be developed by considering other
ways of using the instance weights for the split criterion or via other crite-
ria to make the predictions at leaf nodes. In addition, it would be worth
proposing ensemble methods for cost-sensitive Imprecise Classification
that use our proposed cost-sensitive Imprecise Credal Decision Tree as
the base classifier.

• New MLC algorithms based on imprecise probabilities have been pro-
posed in this thesis work. They have obtained better performance than
the existing ones that use classical PT. For future work, this motivates us
to develop new MLC methods based on imprecise probability models
that outperform the ones of the state-of-the-art. Also, imprecise proba-
bility models could be utilized in ensembles of Decision Trees for MLC.
Furthermore, it would be interesting to propose new methods for ex-
ploiting label correlations in MLC based on imprecise probabilities. For
example, in CC (a simple and effective method for exploiting label corre-
lations in MLC), other label ordering methods based on imprecise prob-
ability models that achieve better results than the one developed in this
thesis work could be proposed.

• It would be worth developing algorithms that combine MLC with Impre-
cise Classification. Even though this point has not been covered in this
thesis work, in the literature, there are some works about methods that
output multi-label imprecise predictions. Examples can be found in [45,
46, 168].

• Finally, the classification algorithms based on imprecise probability mod-
els presented here could be used in practical applications, such as credit
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scoring, medical diagnosis, software defect prediction, traffic accident analysis,
text categorization, or biology, to extract useful knowledge in these do-
mains.



Part V

A P P E N D I X





A P R AC T I C A L A P P L I C AT I O N S O F
I M P R E C I S E P R O B A B I L I T Y M O D E L S

On the one hand, an estimated 1.27 million people die, and 20-50 million
people are injured in traffic accidents every year, with devastating human and
economic impact [219]. For this reason, it is fundamental to analyze the main
causes of the serious severity in traffic accidents to avoid fatal injuries. In
this way, traffic accident analysis is an essential area nowadays. Within this area,
data mining techniques are commonly applied to traffic datasets for extracting
the main causes of fatalities in traffic accidents.

On the other hand, the credit risk analysis is a crucial issue for banks and
financial institutions. It consists of applying techniques to credit databases to
extract information about when a credit should be given to a client depending
on a set of features of such a client. It is important to remark that, in credit
risk, any small improvement might lead to considerable benefits [151].

In this appendix, we apply imprecise probability models to techniques for
traffic accident analysis (Section A.1) and credit risk analysis (Section A.2)

A.1 Traffic accidents of novice drivers in urban areas

A.1.1 Introduction

Many accidents occur in urban areas [196]. In addition, the factors that affect
road accident severity in urban and no urban areas are different [198]. Also,
many works in the literature, such as [206, 215] have revealed that driving
experience is an important factor in accident analysis, since inexperienced
drivers are more likely to suffer or cause fatal injuries. For instance, in [98],
it was concluded that adolescents, inexperienced in most cases, are not really
worried about certain dangers, and that this lack of experience is the reason of
many crashes. In fact, novice drivers have a different perception about the risk
[35, 131], and novice drivers have less visual attention than the experienced
ones [204, 205].

In this section, which corresponds to our published work [164], we study
accidents in urban areas in Spain involving drivers with 3 or fewer years of
driving experience. In particular, our goal is to analyze the main causes of
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fatal injuries in this kind of accidents. This will help road safety analysts and
managers to identify the main problems related to inexperienced drivers and
take measures for trying to reduce the number of accidents of this type and al-
leviate their consequences. Accidents in intersections are analyzed separately.

A.1.2 Data and Methods

A.1.2.1 Accident data

The Spanish General Traffic Directorate (DGT) collected accident data over a
period of 5 years (2011-2015). These data contain three tables per year. One of
these tables (accidents) refers to the characteristics of the crashes (weather con-
ditions, time, weekday . . . , and so on). The second table (people) contains data
about the people involved in each accident. Finally, the third table (vehicles)
covers the information of the vehicles involved in each crash. A description
of the meaning of possible variable values for these tables can be found in
https://sedeapl.dgt.gob.es.

The afore-mentioned data has been pre-processed to get the data in a suit-
able format for the data mining methods employed to extract knowledge from
the data. Specifically, some variables that are clearly not relevant have not
been considered; we have grouped some attribute values because variables
with many possible values often have a negative impact on the performance
of data mining algorithms; also, some continuous variables have been dis-
cretized. Most of these transformations have been extracted from the work
of [169]. The most important transformation is the creation of the variable
driver_type, which indicates whether the driver has three or fewer years of ex-
perience. Since we want to study the impact of driving inexperience on the
fatality of accidents in urban areas, only data corresponding to accidents in
urban areas and drivers with three years of experience or less are selected.

A.1.2.2 Information Root Node Variation

Decision Trees are well-known classification methods as they are very sim-
ple, transparent, and interpretable models. One important advantage of DTs is
that decision rules (DRs) can be extracted easily. A DR is a logical conditional
structure written as an “IF A THEN B" statement, where A is the antecedent
and B is the consequent of the rule. In our case, the antecedent is the set of val-
ues of several attributes, and the consequent is a class value. Each rule starts
at the root node, where the conditioned structure (IF) begins. Each variable
that appears in the path represents an IF condition of a rule, that ends in leaf
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nodes with a THEN value, associated with the class value associated with the
leaf node.

However, rules that can be obtained from a single decision tree strongly de-
pend on the root node. Thus, within a single Decision Tree, it is only possible
to extract knowledge in the sense indicated by root variable. For this reason,
the Information Root Node Variation method (IRNV), proposed in [19], varies
the root node to generate different DTs. Therefore, as multiple trees with dif-
ferent structure are considered, the number of rules may be much larger than
the number of rules generated using a single Decision Tree.

Furthermore, the split criterion is probably the most important point for
building a Decision Tree since different split criteria might lead to considerably
different trees. Consequently, the IRNV method also employs several split
criteria for the tree-building process.

A.1.2.3 Selection of the best rules

A priori, a decision rule can be obtained for each leaf node in a Decision Tree.
Nevertheless, in a considerable number of cases, some of these rules are not
significant because a rule should not necessarily represent a large number of
instances of the dataset. Rules of this kind do not provide useful information
for defining safety measures.

For this reason, sufficiently significant rules are extracted using a mecha-
nism based on two parameters:

• Support (S): Let us consider a rule of type ’IF A THEN B’ (A → B).
Support is defined as the fraction of the data set where A and B are
present. In other words, it is the probability that both the antecedent
and the consequent occur.

• Probability (Pr): It is the probability that the consequent is present given
that the antecedent is present. If we have a rule A → B, then Pr =

P(B|A) =
P(A,B)
P(A) , where P(A,B) is the probability of A∩B.

The selection method consists in choosing only the rules in the set which
meet a minimum value (threshold) for both parameters. As argued in [19], the
more suitable threshold values for Support and Probability depend on some
characteristics, such as the nature of the data (balanced or unbalanced), the
interest in the minority class, and the data sample.
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A.1.2.4 Procedure

In accordance with the research carried out in [9], three split criteria have
been considered: The Information Gain Ratio (IGR), the Imprecise Information
Gain based on the IDM (IIG-IDM), and the Imprecise Information Gain based
on the A-NPI-M (IIG-ANPI).

The software used to build the Decision Trees was Weka. We added the
necessary methods to build decision trees using the IRNV with the above-
mentioned split criteria. Consistently with other works in the literature, such
as [9, 19, 169], we built the Decision Trees with only four levels to get rules
which could be useful, simple and easy to understand for road safety analysts.
We did not use pruning to build the Decision Trees. The rest of the parameters
had the default values used in Weka. We also used the treatment for missing
values given by default in Weka.

Our two datasets are relatively small (slightly over 30,000 instances) and the
nature of our data is clearly unbalanced (less than the 10% of the instances
have fatal severity), as the data set considered in [160]. Similarly, we are
strongly interested in extracting rules where the consequent is fatal injury.
For this reason, we selected the same Support and Probability thresholds used
in [160]: 10% for Pr and 0.1% for S.

A.1.3 Results

The obtained results can be seen in the rules of Tables 2 and 3 of [164]. From
these results, we can make the following comments:

• In most of the rules with the highest values of support and probabil-
ity, part of the antecedent is that the type of accident is running over a
pedestrian. Hence, collisions with pedestrians is the type of accident of
inexperienced drivers that causes the most fatal injuries in urban areas.
For this reason, road safety analysts should urge inexperienced drivers
to exercise extreme caution to prevent pedestrian accidents while driv-
ing.

• We have also observed that in most of the accidents with fatal severity
involving inexperienced drivers the speed of the vehicle was excessive.
In fact, in most of the rules with the highest values of support and prob-
ability, part of the antecedent is that the infraction of the driver is a high
speed. Therefore, speed moderation is crucial for novice drivers, espe-
cially during the first few years. As this is a very common infraction,
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advertising campaigns should be run to raise awareness about this issue
among inexperienced drivers.

• The issues mentioned above often give rise to fatal severity in accidents,
even when external conditions are good. However, according to part of
the antecedents of some rules, the situation could be aggravated under
certain circumstances. These circumstances can be the hour, the weekday
and, most importantly, the lack of pavements. This factor can lead to fa-
tal injuries, especially in intersections. In consequence, apart from warn-
ing novice drivers to moderate the speed in areas without pavements,
building more pavements in urban areas (especially in intersections) is
desirable.

• Part of the antecedent in some rules corresponding to intersections is
that the driver overlooked traffic officer directions. So, another point
to consider is that novice drivers must obey traffic officer directions in
intersections. They should be aware that the directions given by a traffic
officer have priority over the rest of signals and general rules. Thus,
advertising campaigns should be run to raise awareness about this point
among inexperienced drivers.

A.2 Feature selection in Bayesian networks for credit
scoring

A.2.1 Introduction

Many data mining techniques have been employed in the literature for
credit risk analysis. Among them, we can mention Bayesian Networks [172].
These models are very interpretable since they use graphical structures to rep-
resent dependence relations among the features of the problem. They have
been successfully used to work with credit scoring datasets [28, 136, 146, 238].
Indeed, a BN can be used as a classifier but it is not one of the principal virtues
of this model. BNs have different characteristics than standard classifiers:

• BNs are interpretable probabilistic models, whereas some classifiers with
a high predictive performance perform as black-boxes;

• If the classifier is also interpretable as BNs (for example, a decision tree),
then we need to know the values of all the features associated with the
case to predict (all the values of the antecedent to know the consequent
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in a rule generated by a decision tree). With a BN, we can do inference
regardless of the number of observations about the features that we have.
Furthermore, BNs are capable of informing about the probability of each
value from any feature. These probabilities change when we know the
values of any other features. For example, knowing part of the credit
applicant data, we will be able to calculate the probability that the credit
is positive through inference methods.

• With a BN, we can do inference from causes to effects and from effects
to causes, whereas, with another classifier, we can only predict the class
variable (causes to effects). Knowing the values of some features, with a
BN, we can find the most probable combination of the rest of the features.
For example, suppose that a credit is negative and the client is under
twenty years of age. Then, we can find the most probable combination
of values for the rest of the client features.

The reduction of the number of features can improve the performance and
reduce the complexity of a NB. For that aim it is important that the procedure
used to select variables could find the most informative features. A higher
number of features does not necessarily imply that the learned BN be a better
representation of the data available. If we have irrelevant features, the BN
could use them and build a model with erroneous relations. Redundant vari-
ables will usually deteriorate the goodness of a fitted model. Furthermore,
the models including a great number of features become less interpretable
because the network is bigger and more complex. For these reasons, it is ap-
propriate to take advantage of a good feature selection algorithm that would
remove any irrelevant/redundant variables before learning the network.

One of the most successful feature selection algorithms employed in the lit-
erature is the Correlation-Based Feature Selection method (CFS) [106]. It consists
of a greedy procedure that selects the set of attributes correlated with the class
variable by taking into account, for each candidate attribute to insert, the cor-
relations between the candidate attribute with the attributes already inserted
and the correlation between the candidate attribute with the class variable. Be-
fore the explained greedy procedure, CFS estimated the correlation between
each pair of attributes by utilizing classical probability theory.

As pointed out previously, the use of imprecise probabilities has several ad-
vantages. The most important of them might be the suitable management of
the little reliable information, when the sample size is not enough or there
are noisy data. In particular, the Imprecise Information Gain measure (IIG),
used for the split criterion in Decision Trees (see Equation (4.22)), has been suc-
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cessfully employed in such models for studying the correlation of an attribute
with the class variable, especially with noisy data.

In this section, corresponding to our work [121], we define a new feature
selection method to select a subset of informative features. This method will
be based on the IIG measure in a forward way to add features. The new
feature subset selection algorithm will be called the Forward Feature Selection
based on Imprecise Information Gain (FFSIIG). Our principal aim is to show that
if we build a BN from data using the FFSIIG in a previous step, then we obtain
a better representation of the data than the BN built with no previous subset
feature selection. Moreover, we will also show that the BN built with the
features selected by the FFSIIG is also more representative of the data than a
similar BN built with CFS, one of the most used and successful procedures to
select variables.

A.2.2 Methodology

A.2.2.1 Bayesian Networks

A Bayesian Network (BN) [172] is a graphical model which encodes a joint
probability distribution, being composed of a qualitative part, a directed acyclic
graph which represents the dependencies among the variables, and a quanti-
tative part, a collection of numerical parameters, commonly conditional prob-
ability tables.

The common practice is to learn a BN automatically from a dataset, al-
though it can be built manually from an expert. There are also mixed methods
to build a Bayesian Network where the network can be learned automatically
from data and manually refined by an expert. In this sense, the problem of
learning automatically a BN from data is to find the network that, in some
sense, best represents the data.

Once we have obtained a BN, we usually need to determine various prob-
abilities of interest as we get new information or evidence. For example, in
a credit scoring problem, we want to know the probability of grant a credit
given the data of a new client. Thus, we can define the probability propaga-
tion or probabilistic inference [172, 190] as the computation needed to obtain
the posterior probability of one or several variables (e.g., grant a credit or not)
given the values of other variables (e.g., new client data).
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A.2.2.2 New feature selection method

Our proposed Forward Feature Selection based on Imprecise Information
Gain method (FFSIIG) uses the maximum entropy on IDM credal sets to es-
timate the gain of information of the class variable when we have a set of
attributes.

Hence, in order to evaluate the goodness of a subset of attributes, FFSIIG
considers the information gain of the class variable given such attributes,
where the uncertainty-based information about the class variable is repre-
sented via the maximum entropy on the corresponding IDM credal set.

FFSIIG uses a greedy procedure to select the attributes correlated with the
class variable. At each step of such a procedure, among the attributes not
selected yet, the one that gives rise to the maximum gain of information of the
class variable given the new subset resulting from adding the attribute.

A.2.2.3 Procedure

• We have utilized five well-known credit scoring datasets used in other
works in the literature such as [9, 151]. A detailed description about
these datasets can be seen in Table 2 of [121]. To work with BNs, these
datasets have been discretized by using Fayyad and Irani discretization
method [88]. After that discretization process, a few continuous vari-
ables have been discretized into a single value and, consequently, such
variables have been removed.

• For each one of these discretized datasets, we have applied two feature
selectors: CFS and FFSIIG. The CFS algorithm was already implemented
in Weka. We have added the necessary structured and methods for FF-
SIIG. The IDM parameter was set to s = 1 because it is one of the recom-
mended by Walley [209] and requires a low computational cost.

• After the preprocessing stage, we have used the Elvira System [elvira]
to build BNs via different methods. Three different approaches have
been utilized to learn the structure of the BNs: (1) the score-based K2

algorithm [61]; (2) a local search approach with the BDeu metric [42]; (3)
the PC algorithm [193]. The performance measure used is the Kullback-
Leibler divergence [132], defined as the distance between the joint prob-
ability distributions associated with a candidate network and with the
available data set. This measure is accepted as a standard measure of
error in the Bayesian networks literature [112, 172].
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A.2.3 Comments on the results

The obtained results are shown in Tables 3-6 of [121]. The following points
should be remarked about these results:

• For the three learning methods considered here, the BNs represent the
data much better when we apply a previous feature selection (CFS or
FFSIIG). In fact, for all datasets, the KL divergence to the original data is
considerably higher for the BNs learned with all features. Therefore, we
can observe that the redundant and/or irrelevant features yields a less
representative model of the data.

• Comparing the two best feature selection methods, the KL divergence
is lower of the BNs learned with the features selected by FFSIIG than
the divergence of the BNs learned after selecting features via CFS for
all datasets, except for the ‘German’ dataset. So, in general, the results
obtained with FFSIIG are better than those obtained with CFS. FFSIIG is
better in 4 out of 5 datasets. Moreover, for the German dataset, where
the KL divergence is lower for the CFS, the difference is not as significant
as in the rest of the datasets, where the KL divergences for the CFS are
considerably higher than the ones obtained with the FFSIIG.

• Furthermore, the number of features selected by FFSIIG is generally far
lower than the number of attributes selected by CFS. In consequence,
the BNs obtained with FFSIIG, as a previous step, are more simple and
explicative because they are built with a lower number of features than
the ones built previously using the CFS method.
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