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Resumen

En 1982, Pierre Pansu terminó su tesis doctoral [136], centrada en la ge-
ometría de los grupos de Heisenberg. Estos grupos, denotados por Hn, se
pueden ver como Cn × R junto con el producto de grupo dado por

(z, t) ∗ (w, s) =
(
z + w, t+ s+

n∑
i=1

Im(ziw̄i)
)
,

y una base global de campos vectoriales invariantes a izquierdas dados por

Xi =
∂

∂xi
+ yi

∂

∂t
, Yi =

∂

∂yi
− xi

∂

∂t
, T =

∂

∂t
.

El grupo de Heisenberg riemanniano se obtiene al considerar una métrica
riemanniana invariante a izquierda haciendo X1, Y1, . . . , Xn, Yn, T ortonor-
males. Remarcamos que X1, Y1, . . . , Xn, Yn satisfacen la llamada condición
de Hörmander. En su trabajo, Pansu probó que la dimensión de Hausdor�
de H1 con la métrica de Carnot-Carathéodory es 4, y obtuvo la desigualdad
isoperimétrica para conjuntos abiertos con frontera C1 dada por

H4(D) 6
(12

π

)1/3
H3(D)3/4,

dondeHs es la medida de Hausdor� s-dimensional con respecto a la distancia
de Carnot-Carathéodory. Además, Pansu probó que el exponente 3/4 es
óptimo mientras que la constante 12/π no lo es. Observó que, tomando una
geodésica conectando el origen con un punto (0, 0, p), todas las rotaciones de
γ sobre el eje vertical son también geodésicas conectando el origen y (0, 0, p)
y la unión de γ y todas sus rotaciones forman una esfera con curvatura media
constante. Pansu conjeturó que dichas esferas, posteriormente denominadas
esferas de Pansu, son las únicas regiones isoperimétricas en H1, conjetura
que sigue abierta en este momento.

El objetivo de esta tesis es el estudio de problemas variacionales ge-
ométricos en grupos de Lie nilpotentes con una estructura sub-�nsleriana.
Este ambiente extiende la geometría de �nsleriana al ámbito de la geometría
sub-riemanniana de los grupos de nilpotentes considerando una norma in-
variante a izquierda en la distribución horizontal del grupo.

xi



Resumen

En el capítulo 2 expondremos las principales características de los espa-
cios de Carnot-Carathéodory y de los grupos de Lie nilpotentes. Diremos
que una distribución H en un grupo de Lie nilpotente G es horizontal si al
tomar sucesivos corchetes de Lie de campos en H se obtiene el álgebra de Lie
g de G. Fijada una distribución horizontal invariante a izquierda H, dotare-
mos a G de estructura sub-�nsleriana tomando una norma en H0. En el caso
de tomar una norma euclídea se obtiene un a estructura sub-riemanniana.
Estructuras sub-�nslerianas simétricas han sido estudiadas recientemente,
especialmente relacionadas con el estudio de las geodésicas, en los trabajos
de Ardentov, Le Donne y Sachkov [8], y por Barilari, Boscain, Le Donne
y Sigalotti [12]. Pueden verse algunas propiedades de las distancias asoci-
adas a estructuras sub-�nslerianas asimétricas en [119; 120] y [40]. Tomando
una base X de H formada por campos invariantes a izquierda, daremos una
noción de (X,K)-perímetro relacionado con la estructura sub-�nsleriana me-
diante la variación de su función característica, siguiendo el procedimiento
establecido con Ritoré en [142] (véase también [69]). La noción de contenido
de Minkowski asociado a una estructura sub-�nsleriana fue introducida por
Sánchez [154]. Obtendremos una relación entre el (X,K)-perímetro con el
perímetro sub-riemanniano en el teorema 2.3.3.

En el capítulo 3 consideraremos un grupo de Lie nilpotente G con una
familia de campos vectoriales invariantes a izquierda X generando una dis-
tribución horizontal, y una norma | · |K invariante a izquierda asociada a un
cuerpo convexo K. Como parte de un trabajo en desarrollo, estudiaremos la
existencia de regiones isoperimétricas para cualquier volumen siguiendo los
argumentos de Galli y Ritoré en [77]. Además, se obtendrán propiedades ge-
ométricas de dichas regiones como su acotación o que su frontera topológica
y esencial coinciden.

Algunos resultados en geometría sub-riemanniana sobre la existencia de
dichas regiones isoperimétricas son los obtenidos por Galli y Ritoré en var-
iedades de contacto sub-riemannianas [77] y el resultado de Rigot y Leonardi
en grupos de Carnot [109]. De especial importancia es el lema de deforma-
ción, el cual aparece en una gran variedad de referencias en la literatura,
algunas de ellas en [6; 7; 77; 114; 122; 131; 134].

En el capítulo 4 expondremos los resultados obtenidos en [141]. Gener-
alizaremos la desigualdad de Brunn-Minkowski clásica sustituyendo la suma
de Minkowski de conjuntos por un producto ∗ : Rd × Rd → Rd de la forma

z ∗ w = z + w + (F1, F2(z, w), . . . , Fd(z, w)) = z + w + F (z, w), (*)

donde F1 es una constante y Fi son funciones continuas que dependen solo de
z1, . . . , zi−1, w1, . . . , wi−1 ∀i = 2, . . . , d. Aquí entendemos por un producto
cualquier operación binaria sin asumir más propiedades como la asociativi-
dad. Probaremos que para cada A,B ⊆ Rd conjuntos medibles tales que
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Resumen

A ∗B es medible, se tiene que

|A ∗B|1/d > |A|1/d + |B|1/d.

El producto de cualquier grupo de Lie nilpotente es de la forma (*) debido a
la expresión del producto del grupo en coordenadas exponenciales de primer
tipo. Este resultado generaliza al obtenido por Leonardi y Masnou [108] en
grupos de Heisenberg.

La desigualdad de Brunn-Minkowski tiene especial relevancia en la ge-
ometría convexa [156; 81]. Algunas de sus consecuencias más relevantes
están ligadas a las propiedades de las medidas de tipo gaussianas [21; 17],
así como en la teoría de transporte óptimo [102; 9; 13; 121]. Algunas pruebas
conocidas pueden verse en [81; 94; 104].

En geometría sub-riemanniana, Monti [124] probó que la generalización
de la desigualdad de Brunn-Minkowski multiplicativa en Hn no puede tener
exponente (2n + 2)−1, hecho que fue mejorado posteriormente por Juillet
[102], quien probó que no puede darse la desigualdad usando exponente
menor que (2n+1)−1. Leonardi y Masnou [108] probaron que la desigualdad
se da con exponente (2n + 1)−1, correspondiente a la dimensión topológica
de Hn, y �nalmente Tao [160; 161] explicó en una entrada en su blog como
producir una desigualdad de Prékopa-Leindler en cualquier grupo nilpotente,
desigualdad equivalente a la de Brunn-Minkowski. Posteriormente a la escrit-
ura del artículo [141], el autor fue informado de que Bobkov probó idéntico
resultado en [16].

En el capítulo 5 incluiremos los resultados obtenidos con Ritoré en [142].
Consideraremos puntos críticos del perímetro asociado a una estructura sub-
�nsleriana en el primer grupo de Heisenberg H1. En el caso de que la frontera
S de E sea una super�cie C1 o lipschitziana, el perímetro de E viene dado
por el funcional de área sub-�nsleriana

AK(S) =

�
S
|Nh|K,∗ dS,

donde | · |K,∗ es la norma dual de | · |K , Nh es la proyección ortogonal sobre la
distribución horizontal del vector unitario riemanniano N , y dS es la medida
riemanniana de S.

Si consideramos un cuerpo convexo K con frontera de clase C2 con cur-
vatura geodésica positiva, podemos calcular la primera variación del fun-
cional de área asociado a un campo vectorial U con soporte compacto en la
parte regular de S como

A′K(0) =

�
S
u
(

divS ηK
)
dS.

La funciónHK = divS ηK se denomina la curvatura media de S. Compro-
baremos que la curvatura media está localizada en las curvas horizontales de
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S. Probaremos que dichas curvas satisfacen una ecuación diferencial, por lo
que podremos clasi�car super�cies de curvatura media prescrita clasi�cando
soluciones de una ecuación diferencial ordinaria y mirando la interacción de
dichas curvas con el conjunto singular S0 de S, compuesto por aquellos pun-
tos donde el plano tangente es horizontal, como se hizo en [151] en el caso
del perímetro sub-riemanniano.

Un observación clave es que las rectas horizontales son soluciones de
HK = 0 mientras que los levantamientos horizontales de ∂K son soluciones
de HK = 1. La convexidad estricta de K junto a la invarianza de la ecuación
por traslaciones a izquierda y dilataciones implica que todas las soluciones
son de dicho tipo.

De ésta manera, construiremos el conjunto BK obtenido como el conjunto
encerrado por los levantamientos horizontales de todas las traslaciones de la
curva ∂K que contienen a 0. Comprobaremos que de esta manera se obtiene
una esfera topológica SK con dos polos sobre la misma recta vertical, que
es la unión de dos grafos. Además, la frontera de BK es C2 fuera de los
polos, mientras que tiene regularidad C2 sobre los polos. Cuando K = D
es el disco unidad, estos conjuntos fueron construidos por P. Pansu [137]
y son comúnmente denominadas esferas de Pansu. Dichas esferas son de
clase C2 pero no C3 cerca de los puntos singulares, como se puede ver en la
proposición 3.15 en [46].

Figure 1: El conjunto BK cuando K es la bola unidad de la r-norma

||(x, y)||r =
(
|x|r + |y|r

)1/r
, r = 1.5

Observamos que estas esferas tienen curvatura media constante. Por
tanto, son puntos críticos del funcional de área sub-�nsleriano bajo una re-
stricción de volumen. En la sección 5.5 probaremos que, bajo una condición
geométrica, todo conjunto de perímetro �nito con el mismo volumen que BK
tiene mayor perímetro o igual que dicho conjunto BK .
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Resumen

Figure 2: El conjunto BK cuandoK es una aproximación regular de la norma
triangular

Algunos resultados parciales sobre la conjetura de Pansu pueden verse en
[125; 126; 124; 151; 34; 147; 31; 33; 68; 108], asumiendo que los candidatos
pertenecen a una cierta familia de conjuntos. La monografía [27] proporciona
un estudio bastante completo de los resultados conocidos.

El capítulo 6 está dedicado a los resultados obtenidos con Giovannardi y
Ritoré en [87]. En dicho capítulo, estudiaremos grafos horizontales enteros
que sean area-minimizantes en H1 con una estructura sub-�nsleriana invari-
ante a izquierda. Dichos ejemplos están basados en los correspondientes
en el caso sub-riemanniano obtenidos en [146], y la mayoría de ellos tienen
una regularidad únicamente lipschitziana. Además se expondrán ejemplos
de conos area-minimizantes, en el espíritu de [91].

El capítulo 7 está dedicado a algunos de los resultados obtenidos du-
rante la estancia en la Università di Trento en colaboración con Giovan-
nardi, Pinamonti y Verzellesi. Estudiaremos la ecuación de curvatura media
prescrita para t-grafos en un grupo de Heisenberg Hn con una estructura
sub-�nsleriana invariante a izquierda. Consideraremos el funcional

I(u) =

�
Ω
|∇u+ F |K0,∗ dxdy +

�
Ω
Hudxdy, (i)

donde | · |K0,∗ denota la norma dual de | · |K0
. En particular, cuando F (x, y) =

(−y, x) el primer término de (i) coincide con el área sub-�nsleriana del t-grafo
de u. Además, si K0 es la bola euclídea centrada en el origen y H = 0 en-
tonces (i) expresa el funcional de área sub-riemanniano para t-grafos en el
grupo de Heisenberg, como se puede ver en [33; 99] y las referencias con-
tenidas. Decimos que el grafo de u tiene K0-curvatura media prescrita H en
Ω si u es un minimizante de I. La ecuación de Euler-Lagrange asociada a
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fuera del conjunto singular, ésto es, los puntos donde ∇u+F se anula, viene
dada por

div(πK0(∇u+ F )) = H, (ii)

donde πK0 es una cierta función 0-homogénea de�nida en (2.1.5). Nuestro
resultado más importante es el teorema 7.4.1, donde probamos que, bajo
ciertas condiciones de regularidad en el dato al borde, existe una solución
lipschitziana al problema de Dirichlet para la ecuación de curvatura media
prescrita siempre que H sea constante y veri�que que

|H| < HK0,∂Ω(z0) (iii)

para cada z0 en ∂Ω, donde HK0,∂Ω denota la curvatura media �nsleriana
a la frontera ∂Ω ⊂ Rn × Rn. La acotación (iii) de H en términos de la
curvatura media �nsleriana del borde del dominio es la condición análoga a
la condición clásica de solución del problema de Dirichlet para la ecuación de
curvatura media en el espacio euclídeo, como puede verse en [158], [84] o [83]
(véase también [85, Theorem 16.11]). Éste problema ha sido estudiado en el
primer grupo de Heisenberg riemanniano en [2] bajo la misma condición de
H. En el caso sub-riemanniano, dicho problema de Dirichlet con H = 0 ha
sido estudiado en [138; 35; 33; 32; 58; 139].

La demostración del teorema 7.4.1 sigue el esquema desarrollado en [2].
Estudiaremos la familia de ecuaciones elípticas

div

(
πK0(∇u+ F ) |∇u+F |2∗

(ε3+|∇u+F |3∗)
2
3

)
= H, (iv)

donde 0 < ε < 1. Dicha familia de ecuaciones se obtienen considerando
una sucesión de cuerpos convexos Kε en R2n+1 conteniendo el origen y con-
vergiendo a K0 con la distancia de Hausdor�. La elección de Kε no es arbi-
traria. Consideramos para cada 0 < ε < 1 la norma invariante a izquierda
en THn asociada a Kε, cuyo funcional del área �nsleriana viene dado por

Iε(u) =

�
Ω

(
ε3 + |∇u+ F |3K0,∗

) 1
3 dxdy +

�
Ω
Hudxdy.

Dado un dato al borde ϕ ∈ C2,α(Ω̄), la resolución del problema de Dirichlet
asociado a la ecuación res:I se reduce a probar estimaciones C1(Ω̄) a pri-
ori. Dichas estimaciones se reducen de forma habitual a probar tres pasos:
estimar el supremo de |u|, estimar el gradiente de u la frontera y estimar
el gradiente de u en el interior. Las dos primeras estimaciones se siguen
usando un argumento de barreras, las cuales dependen de la distancia �nsle-
riana desde la frontera ∂Ω. Remarcamos que dichas estimaciones se siguen en
el caso de considerar la curvatura H no constante y lipschitziana. En el caso
de que H no sea constante, para obtener la estimación de |u| asumiremos
que existe δ ∈ (0, 1] tal que∣∣∣∣�

Ω
Hv dxdy

∣∣∣∣ 6 (1− δ)
�

Ω
|∇v|K0,∗ dxdy (v)
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para cada v ∈ C∞c (Ω). La condición (v) con δ = 0 puede verse que es
necesaria al integrar por partes la ecuación (iv). Además, en el espacio
euclídeo, Giusti [90] probó que es también su�ciente para la existencia de
soluciones para la ecuación de curvatura media prescrita. Además, probamos
que para el caso δ > 0, la condición (v) es redundante cuando H = 0
es constante. El único paso en el que usaremos de manera crucial que H
es constante es al usar un principio del máximo para el gradiente de una
solución que permite reducir la estimación del gradiente en el interior a su
estimación en la frontera. Una observación clave es que las estimaciones C1

obtenidas son independientes de ε, por lo que podremos usar el teorema de
Arzelà-Ascoli para obtener la existencia de un minimizante lipschitziano del
problema de Dirichlet para la curvatura media.

xvii





Chapter 1

Introduction

1.1 State of the art

The decade of 50 saw the dawn of the branch in mathematics known nowa-
days as Geometric Measure Theory. In 1952, Renato Caccioppoli published
his workMisura e integrazione sugli insiemi dimensionalmente orientati [23],
where among other results, he studied the family of sets approximable by
polyhedral domains of �nite perimeter and called a set F of �nite perimeter
whenever the minimum limit of the perimeters of the polyhedra approxi-
mating F in media is �nite. Caccioppoli also de�ned the perimeter using
the notion of function of bounded variation on several variables developed
by Lamberto Cesari [29] in 1936. Thus a set F has �nite perimeter if, and
only if, its characteristic function has bounded variation. In 1954 Ennio de
Giorgi published Su una teoria generale della misura (r-1)-dimensionale in
uno spazio ad r dimensioni [50], where he proved that smoothing the charac-
teristic function of a set F , the limit of the variation of the approximations
is precisely the perimeter of F . Moreover, he established a divergence the-
orem for F as a limit in the divergence formula of the approximations. In
the following years, De Giorgi developed the theory of �nite perimeter sets
in [51; 52], proving that the perimeter is supported in the so called reduced
boundary. In 1958, after the death of Caccioppoli, he started to use the
name Caccioppoli sets for �nite perimeter sets.

Later on in the 60s, another keystone on Geometric Measure Theory was
developed, the introduction of recti�able and integral currents. In the paper
Normal and Integral Currents [63], Federer and Fleming used the de�nition
of currents given by Rham in 1955, to show that Plateau's problem has solu-
tion in the class of integral currents. The name Geometric Measure Theory
was probably �rst used by Federer, and in 1969, he published his famous
book Geometric Measure Theory [61], one of the most cited text books in
mathematics, devoted to recti�ability and integral currents. Federer showed
that Caccioppoli sets are normal currents of dimension n in n-dimensional
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space. It is worth mentioning that, although the theory of Caccioppoli sets
can be studied as part of the theory of currents, it is usual to use the approach
of functions of bounded variation.

Soon after these results, contemporary authors encountered the di�cult
problem of regularity. This problem consists in proving that Caccioppoli sets
or k-dimensional currents satisfying an area minimizing condition are neces-
sarily locally smooth manifolds of dimension k, except for a set of singular
points with small Hausdor� dimension. The �rst important results on this
problem are due to Reifenberg [144] and De Giorgi [53], who proved that
the singular set of a locally area minimizing set has k-dimensional Hausdor�
measure 0. Almgren proved [3] in the decade of the 60s almost everywhere
regularity for Plateau's problem and a broader class of geometric variational
problems. In the particular case of k = n − 1, the existence of singular
points is closely related to the question of whether hyperplanes are the only
n − 1-dimensional cones in Rn which are locally minimal. It is natural to
think that the answer is positive, and Fleming proved in [65] that it is true
in dimension n = 3, a result later generalized by De Giorgi, Almgren and
Simons to dimension n 6 7, so that area minimizer Caccioppoli sets have
no singular points in dimension n 6 7. However, in dimension 8 Bombieri,
De Giorgi and Giusti provided a counterexample in [18], the Simons' cone.
This cone is given in R8 = R4 × R4 by |x| = |y|, where x and y are in R4.
As it was showed in [18], Simons' cone is locally area minimizing with a sin-
gular point at its vertex 0. This result also implies a negative answer for the
Bernstein problem in dimension 8. By these contributions to the Bernstein
problem, and contributions on number theory, Enrico Bombieri was awarded
the Fields medal in 1974. Federer generalized this result to dimension > 8
in [62], proving that the singular set has Hausdor� dimension at most n− 8.

At the same time of the advances in the problem of regularity, Lars
Hörmander started his study on hypoelliptic operators. In 1967, he published
Hypoelliptic second order di�erential equations [98], where he proved that,
given a family of vector �elds X1, . . . , Xk under the so called Hörmander's
condition, then the following Cauchy problem has a fundamental solution{ ∂u

∂t (t, x) = F (u(t, x)), t > 0, x ∈ Rd,

u(0, ·) = f(·),

where F = 1
2

∑n
i=1X

2
i +X0 and X0 is a vector �eld. The main goal of [98]

is that, even when this operator is not elliptic, there exists a fundamental
solution under the weaker Hörmander's condition. His contributions on par-
tial di�erential equations and, in particular, hypoelliptic operators, led him
to win the Fields Medal in 1962. It was in the year 1985 when Hörmander's
condition regained interest due to the work of Nagel, Stein and Wainger Balls
and metrics de�ned by vector �elds I: Basic properties [133]. In this paper,
they consider a family of vector �elds X1, . . . , Xk in Rn satisfying Hörman-
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der's condition. Due to the previous results of Carathéodory [28], Chow [37]
and Rashevskii [143], it is possible to connect any pair of points p and q by a
curve moving in the directions of the distribution generated by X1, . . . , Xk.
Thus, taking the in�mum of the length of unit-speed curves joining two given
points we obtain a distance, called the Carnot-Carathéodory distance. The
relevance of this distance is exposed by the property that, for any compact
set K, there exists two constants C1 > 0, C2 > 0 and m > 1 such that for
any two points p and q in K, there holds

C1|q − p| 6 d(p, q) 6 C2|q − p|m,

where | · | stands for the Euclidean norm. In particular, Carnot-Carathéodory
distance does not come from any Riemannian metric on Rn.

We stop the timeline to introduce some isoperimetric problems, central in
this thesis. The classical isoperimetric problem in Euclidean space consists
on proving existence and characterizing those sets E in Rn such that P (E) 6
P (F ) for all F in Rn with �nite perimeter and the same volume as E. Those
sets satisfying the previous condition are called isoperimetric regions. The
problem is harder when we choose a more general de�nition of perimeter.
Some of the best known proofs of the solution are the proofs of Steiner
[159] and Schwarz [157] by means of symmetrization procedures and the
direct proof based on the Brunn-Minkowski inequality with the notion of
perimeter given by the Minkowski content. Two classical proofs of the Brunn-
Minkowski inequality, are the one by Hadwiger and Ohman [94] and the one
by Knothe [104]. This inequality was used by Borell in [19] to solve this
isoperimetric problem in Rn with the Gaussian area. A function related
to isoperimetric problems in a Riemannian manifold M is the isoperimetric
pro�le in M , de�ned as the function IM : (0, |M |)→ R given by

IM (v) = inf{P (F ) : F ⊆M, |F | = v}.

A lower bound on the isoperimetric pro�le is called an isoperimetric inequal-
ity. Throughout analytic properties of IM it is possible to obtain information
on isoperimetric regions, as stated by Chavel [30] and Gallot [80] (see also
[148]). We remark this relation stating a result proven by Christophe Bavard
and Pierre Pansu in 1986 [15]: in a Riemannian manifold M , of volume v
with Ω ⊂M isoperimetric region of volume 0 < t < v, then the isoperimetric
pro�le IM has left and right derivatives everywhere. Moreover, if H is the
mean curvature of ∂Ω, then

I ′+(t) 6 2H 6 I ′−(t).

The Wul� problem constitutes another problem closely related to the
classical isoperimetric problem. Considering a norm ‖ · ‖ in Euclidean space
with dual norm ‖ · ‖∗ and a C1 surface S, we consider the integral�

S
‖N‖∗dS,
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where N is a unit normal vector to S and dS is the Riemannian area element.
This Functional represents the Gibbs free energy, which is proportional to
the area of the surface of contact and the surface tension of an anisotropic
interface separating two �uids or gases. Minimizing the free energy for a
drop of given volume it is obtained an equilibrium state. Solutions of this
problem where described by G. Wul� in 1895: they are translations and
dilations of the unit ball related to the norm ‖ · ‖, known as Wul� shapes of
the free energy. The �rst proof of this fact was given by Dinghas in [56] and,
later on, by Busemann [22] and Taylor [162]. More recent proofs are due to
Fonseca [66] and Fonseca and Müller [67].

In 1982, Pansu completed his Ph.D. [136], focused on the geometry of
Heisenberg groups. These groups, denoted by Hn, can be seen as Cn × R
together with the group product ∗ given by

(z, t) ∗ (w, s) =
(
z + w, t+ s+

n∑
i=1

Im(ziw̄i)
)
,

where z = (z1, . . . , zn) and w = (w1, . . . , wn), and a global basis of left-
invariant vector �elds is given by

Xi =
∂

∂xi
+ yi

∂

∂t
, Yi =

∂

∂yi
− xi

∂

∂t
, T =

∂

∂t
,

where i = 1, . . . , n. The Riemannian Heisenberg group is obtained by taking
a left-invariant Riemannian metric g making X1, Y1, . . . , Xn, Yn, T orthonor-
mal. Notice that the vector �elds X1, Y1, . . . , Xn, Yn satisfy Hörmander's
condition. On this work [136], Pansu proved that the Hausdor� dimension
of H1 with the Carnot-Caratheodory metric is 4, and obtained an isoperi-
metric inequality for open sets D with C1 boundary

H4(D) 6
(12

π

)1/3
H3(D)3/4,

where Hs is the s-dimensional Hausdor� measure with respect to the Carnot
Carathéodory distance. Pansu also proved that the exponent 3/4 is optimal
but the constant (12/π)1/3 is not. He noticed that, taking a geodesic conect-
ing the origin in the �rst Heisenberg group with a point (0, 0, p), all the
rotations of γ about the vertical axis are also geodesics conecting the origin
and (0, 0, p) and the union of γ and all its rotations forms a ball with con-
stant mean curvature. Pansu conjetured that this balls, later called Pansu
balls, are the only isoperimetric regions in H1, a conjeture that remains open
at this moment.

The decade of the 90s was marked by the blossom of Di�erential Geome-
try. Using their tools, new proofs of classical isoperimetric inequalities were
provided. By means of the regularity results obtained by Almgren [3], Fed-
erer [62], and Gonzalez, Massari and Tamanini [92; 117], the isoperimetric
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problem can be restricted to sets with smooth boundary up to dimension
n 6 7, which makes it a problem more suited to study in Riemannian man-
ifolds. The study of the �rst and second variation of perimeter can be used
to characterize minima of perimeter with smooth boundary under a volume
constraint up to second order. This pathway was �rst used by Do Carmo and
Barbosa [10] to solved the isoperimetric problem in Euclidean space, and in
the sphere and hyperbolic space by Barbosa, Do Carmo and Eschenburg in
[11]. Ritoré and Ros studied stable surfaces in Space forms in [149], obtain-
ing a classi�cation of isoperimetric sets in the 3-dimensional projective space.
These advances continued in the 2000s, and among the results we remark
the characterization of isoperimetric regions on rotationally symmetric sur-
faces by Ritoré [145], existence and characterization of isoperimetric regions
in Euclidean cones by Ritoré and Rosales in [150] and the general proof by
Frank Morgan in [131] of existence of isoperimetric regions of any volume in
Riemannian manifolds which have compact quotient under the action of the
isometry group. The monograph [148] presents a quite complete collection
of di�erent existence results.

At the same time, Bruno Franchi, Raul Serapioni and Francesco Serra
Cassano started their work on the theory of BV functions depending on
vector �elds. In [70], they proposed a notion of the space BV depending
on a family of vector �elds, not necessarily satisfying a ellipticity condition
as Hörmander's condition, and prove that any function in this space can
be approximated by smooth functions. In [71], they studied the Heisenberg
group with the Carnot-Carathéodory metric and the intrinsic perimeter, and
dealt with the di�cult problem of recti�ability of Caccioppoli sets from an
intrinsic perspective. Later on, they continued working in Carnot groups
[72], that is, Lie groups with a family of vector �elds X1, . . . , Xk forming a
strati�cation on the Lie algebra g, that is, a decomposition as a direct sum
of subspaces

g = V0 ⊕ . . .⊕ Vr.

where V0 = span{X1, . . . , Xk} and Vi+1 = [V0, Vi]. Carnot groups can be
seen as Rn with a family of polynomial vector �elds satisfying a Hörmander
condition, those that can be equipped with a family of dilations. An isoperi-
metric inequality for BV spaces related to a family of vector �elds satisfying
a Hörmander condition was proven in [82] by Garofalo and Nhieu.

The Heisenberg group H1 has regained relevance in the context of Rie-
mannian geometry. It is one of the model spaces of the classi�cation up to
isometries of 3-dimensional homogeneous manifolds with isometry group of
dimension 4, the so called E(κ, τ)-spaces. An intense work is been devel-
oped on this spaces to clasify constant mean curvature surfaces (CMC) and
minimal surfaces since the work of Daniel [43] and Abresch and Rosenberg
[1]. For 3-dimensional homogeneous manifolds with 3-dimensional isome-
try group, Meeks, Mira, Pérez and Ros in [118] proved uniqueness of CMC



6 Introduction

spheres and studied the values of the curvature for this sphere to exist.
The sub-Riemannian Plateau's problem was �rst considered by Pauls

[138]. Under given Dirichlet conditions on p-convex domains, Cheng, Hwang
and Yang [35] proved existence and uniqueness of t-graphs which are Lips-
chitz continuous weak solutions of the minimal surface equation in H1. Later
on, Pinamonti, Serra Cassano, Treu and Vittone [140] obtained existence and
uniqueness of t-graphs on domains with boundary data satisfying a bounded
slope condition, thus showing that Lipschitz regularity is optimal at least
in the �rst Heisenberg group H1. Capogna, Citti and Manfredini [24] es-
tablished that intrinsic graphs of a Lipschitz continuous function which are
viscosity solutions of the sub-Riemannian minimal surface equation in H1 are
of class C1,α, with higher regularity in the case of Hn, n > 1, see [25]. It was
shown in [36] that the regular part of a t-graph of class C1 with continuous
prescribed Sub-Riemannian mean curvature in H1 is foliated by C2 char-
acteristic curves. Furthermore, in [79] the authors generalized the previous
result when the boundary S is a general C1 surface in a three-dimensional
contact sub-Riemannian manifold. Later on, Galli in [76] improved the re-
sult in [79] only assuming that the boundary S is Euclidean Lipschitz and
H-regular in the sense of [71]. Recently, in [88] the authors extended the
result in [76] to the sub-Finsler Heisenberg group.

Bernstein type problems for surfaces in H1 have also received a special
attention. The nature of the sub-Riemannian Bernstein's problem in the
Heisenberg group is completely di�erent from the Euclidean one even for
graphs. On the one hand the area functional for t-graphs is convex as in the
Euclidean setting. Therefore the critical points of the area are automatically
minimizers for the area functional. However, since t-graphs admit singular
points where the horizontal gradient vanishing their classi�cation is not an
easy task. Thanks to a deep study of the singular set for C2 surfaces in
H1, Cheng, Hwang, Malchiodi, and Yang [33] showed that minimal t-graphs
of class C2 are congruent to the hyperbolic paraboloid u(x, y) = xy or to
Euclidean planes. The same result was also obtained by Ritoré and Rosales
in [151]. If we consider the huge class of Euclidean Lipschitz t-graphs, the
previous classi�cation does not hold true since there are several examples of
area-minimizing surfaces of low regularity, see [146]. The complete classi-
�cation for C2 surfaces was established by Hurtado, Ritoré and Rosales in
[99] where they showed that a complete, orientable, connected, stable area-
stationary surface is congruent to u(x, y) = xy or to a Euclidean plane. As
well as in the Euclidean setting the stability condition is crucial in order to
discard some minimal surfaces such as helicoids and catenoids.

On the other hand, the situation for intrinsic graphs is completely dif-
ferent since their associated area functional is not convex. Indeed Danielli,
Garofalo, Nhieu in [45] discovered that the family of graphs uα(x, t) = αxt

1+2αx2

for α > 0 are area-stationary but unstable. In [128], Monti, Serra Cassano
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and Vittone provided an example of an area-minimizing intrinsic graph of
regularity C1/2(R2) that is an intrinsic cone. Therefore the Euclidean thresh-
old of dimension n = 8 fails in the sub-Riemannian setting. In [14], Barone
Adesi, Serra Cassano and Vittone classi�ed complete C2 area-stationary in-
trinsic graphs. Later Danielli, Garofalo, Nhieu and Pauls in [48] showed that
a C2 complete stable embedded minimal surface in H1 with empty charac-
teristic set must be a plane. In [78] Galli and Ritoré proved that a com-
plete, oriented and stable area-stationary C1 surface without singular points
is a vertical plane. Later, Nicolussi Golo and Serra Cassano [135] showed
that Euclidean Lipschitz stable area-stationary intrinsic graphs are vertical
planes. Recently, Giovannardi and Ritoré [89] showed that in the Heisen-
berg group H1 with a sub-Finsler structure, a complete, stable, Euclidean
Lipschitz surface without singular points is a vertical plane and Young [167]
proved that a ruled area-minimizing entire intrinsic graph in H1 is a vertical
plane by introducing a family of deformations of graphical strips based on
variations of a vertical curve. See also [24; 47; 128].

For minimal surfaces in sub-Riemannian geometry, existence was proved
by Garofalo and Nhieu [82] while Ritoré [146] gave examples in H1 of area-
minimizers of the perimeter with low regularity. Nevertheless, for sets with
boundaries with prescribed curvature and C1 regularity, Cheng, Hwang and
Yang [36] proved that they are indeed C2. This result was extended by Galli
and Ritoré in [79] to contact manifolds, while Galli [76] improved it assuming
only Euclidean Lipschitz regularity of the boundary.

Area-stationary surfaces in sub-Riemannian spaces are usually classi�ed
assuming a priori some regularity of the surface. In H1 it was studied by
Ritoré and Rosales [151] for C2 surfaces and completed by Hurtado, Ritoré
and Rosales in [99] while, later on, Galli and Ritoré gave the classi�cation
assuming C1 regularity in [78]. More classi�cation of area-stationary stable
surfaces in di�erent sub-Riemannian spaces are in [75; 100]. Rosales [153]
studied CMC surfaces with empty singular set in sub-Riemannian Sasakian
3-manifolds. Closely related to the study of minimal and stable surfaces
is the computation of variational formulas for the area, some of them can
be found in [38; 97; 74]. The works [44] and [5] present several results on
sub-Riemannian calculus for hypersurfaces in Carnot groups and intrinsic
hypersurfaces in Heisenberg groups respectively.

Regarding Pansu's conjeture, the boundaries of the conjectured solutions
to the isoperimetric problem inH1 are of class C2. While the characterization
of isoperimetric regions is still open, there are several partial results assuming
that the candidates are in a given family. The monograph [27] provides a
quite complete survey of progress on the subject. We remark the works of
Monti, where in [125] he solved the conjeture assuming the candidates are
radially symmetric, in [126] and together with Rickly, under the condition of
convexity, and in [124], where he proved that it is not possible to expect a
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Brunn-Minkowski inequality to hold with the exponent of the homogeneous
dimension, 4, otherwise geodesic balls would be isoperimetric regions, and it
is easy to check that it is false. A major advance in the conjeture was the
work by Ritoré and Rosales [151], where they solve the conjeture among sets
with C2 boundary. This proof, supported in the works of Cheng, Hwang,
Malchiodi and Yang [34] about the singular set of C1, would constitute
a complete proof if it were not for the di�cult problem of regularity in
sub-Riemannian geometry. We also remark the proof of Ritoré [147] that
constitutes the only known proof of Pansu's conjeture that does not restrict
to a particular family of sets, but to be enclosed on a vertical circular cylinder
and containing the disk at the base. See also the works [31; 33; 68; 108]. For
isoperimetric inequalities, or the equivalent Sobolev inequalities, we remark
the articles by Garofalo and Nhieu [82] and Capogna, Danielli and Garofalo
[26].

Finally, we mention that sub-Riemannian geometry has been applied in
the study of the perceptual completion and formation of subjective surfaces
[39; 155].

1.2 Summary and conclusions

The aim of this thesis is to study variational geometric problems in nilpo-
tent Lie groups with a sub-Finsler structure. This setting extends Finsler
geometry to the sub-Riemannian nilpotent groups by considering a left-
infariant norm in the horizontal distribution. We will give a notion of (X,K)-
perimeter related to a sub-Finsler structure and provide examples of area-
minimizing surfaces in H1 with low regularity, construct CMC spheres in H1

and prove a minimizing property together with regularity of such spheres,
and study the existence of solutions to the prescribed curvature equation
with Dirichlet conditions.

The structure of the manuscript is the following.

In Chapter 2 we state the main features of Carnot-Carathéodory spaces
(CC) and nilpotent groups. A sub-Finsler structure in a Carnot-Carathéodory
manifold with a completely non-integrable distribution H is de�ned by a
smooth norm on H. The case of a Euclidean norm is that of sub-Riemannian
geometry. Symmetric sub-Finsler structures in H1 have received intense in-
terest recently, specially the study of geodesics by Ardentov, Le Donne and
Sachkov [8] and by Barilari, Boscain, Le Donne and Sigalotti [12], see [123]
for the classical sub-Riemannian case. General asymmetric sub-Finsler struc-
tures have an associated asymmetric distance and might have di�erent metric
properties, see [119; 120] and [40].

In Section 2.3 we shall de�ne a notion of (X,K)-perimeter as the by
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means of the variation of its characteristic function, following the procedure
established with Ritoré in [142]. The perimeter associated to the Euclidean
norm | · | is the sub-Riemannian perimeter as it is de�ned in [82; 71; 70]. A
set has �nite perimeter for a given norm if and only if it has �nite perimeter
for the standard sub-Riemannian perimeter. Hence all known results in
the standard case apply to the sub-Finsler perimeter. We prove in 2.3.1 a
representation of the (X,K)- perimeter in terms of the sub-Riemannian one
as the dual norm of the horizontal unit normal. The notion of sub-Finsler
Minkowski content was introduced by Sánchez [154] in his Ph.D. thesis, while
the perimeter as the variation of the characteristic function in H1 was de�ned
by Pozuelo and Ritoré [142] and Franceschi et al. [69].

Di�erent notion of perimeter of a submanifold of �xed degree immersed
in a graded manifold, can be found in [38; 86; 115].

In Chapter 3 we shall consider a nilpotent group G with a set of left-
invariant vector �elds X satisfying a Hörmander condition, and an asym-
metric left-invariant norm | · |K associated to a convex body K, without the
assumption of been equipped with a family of dilations. The main result
of the chapter is the existence of isoperimetric regions for any given vol-
ume. Moreover, any isoperimetric region has a �nite number of connected
components.

This result is an extension of the existence result of Leonardi and Rigot
for nilpotent groups with no dilations and a sub-Finsler norm. The proof
follows the arguments in [77].

In sub-Riemannian geometry, apart from the compact case, there are
only two known results. Galli and Ritoré proved in [77] an existence re-
sult in contact sub-Riemannian manifolds. The argument followed Morgan's
structure and can be seen in [148]: they pick a minimizing sequence of sets
of volume v whose perimeters approach the in�mum of the perimeters of sets
of volume v. This sequence can be splitted into two subsequences. The �rst
subsequence is converging to a set, and it is proved that is isoperimetric for
its volume and bounded. Nevertheless, it might be a loss of mass at in�nity.
In this case, they use isometries to translate the second subsequence, which
is diverging, to recover some of the lost volume. An essential point is that
they always recover a �xed fraction of the volume. In Carnot groups, ex-
istence of isoperimetric regions was proven by Leonardi and Rigot in [109].
Dilations in a Carnot group G plays a key role, since from them it is direct
that the isoperimetric pro�le has the form IG(v) = Cvq, where C is a positive
constant and q ∈ (0, 1). In particular, the function IG is concave, a crucial
property to deduce that there is no loss of mass at in�nity.

At this point, we shall assume that given a �nite perimeter F ⊆ G with
�nite volume with nonempty interior, there exist C3 > 0 and a family of
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�nite perimeter sets {F λ} such that |F λ| > |F |+ λC3 and

PK(F λ)− PK(F ) 6 C3λ.

This result, called deformation lemma, can be seen in a variety of refer-
ences in literature, some of them in [6; 7; 77; 114; 122; 131; 134]. The proof
of this result usually relies on taking a vector �eld U and use the formulas for
the �rst variation of the volume and the area. In [77], Galli and Ritoré used
a calibration argument, exploiting that Pansu spheres in H1 have constant
mean curvature to construct, in a neighborhood of a given point, a horizontal
vector �eld with bounded divergence.

By a calibration argument, we obtain in Proposition 3.2.1 that the isoperi-
metric pro�le is non-decreasing. The sub-additiveness is proven in Corollary
3.3.3. We shall also extend the properties obtained in Carnot groups by
Leonardi and Rigot in [109], that isoperimetric regions are bounded and its
topological boundary and the essential boundary coincide.

In Chapter 4, we show the results obtained in [141]. We have generalized
the classical Brunn-Minkowski inequality to be suited to nilpotent groups.
The classical Brunn-Minkowski inequality in Euclidean space asserts that,
given A,B ⊂ Rd measurable sets such that A + B is also measurable, we
have

|A+B|1/d > |A|1/d + |B|1/d,

where | · | indicates the volume of a set, and A+B = {a+ b : a ∈ A, b ∈ B}
is the classical Minkowski addition of sets. Taking λ ∈ [0, 1], and replacing
A by λA and B by (1− λ)B, we get the equivalent inequality

|λA+ (1− λ)B|1/d > λ|A|1/d + (1− λ)|B|1/d.

First connected to the isoperimetric theorem, this inequality is a corner-
stone in convex geometry [156; 81]. Through the equivalent functional formu-
lation of the Brunn-Minkowski inequality, the Prékopa-Leindler inequality,
we can see some of the implications in the preservation of logarithmic con-
cavity under convolutions noticed by Brascamp and Lieb [21], as well as in
the work of Bobkov and Ledoux [17] where it is derived the concentration of
measure of Gaussian-like measures, Brascamp-Lieb and logarithmic Sobolev
inequalities.

There are several ways of generalizing the Brunn-Minkowski inequality.
In Lie groups we can de�ne the Minkowski addition of sets using the group
product and take as volume the Haar measure of the group. The Brunn-
Minkowski inequality obtained this way is called the multiplicative Brunn-
Minkowski inequality. In general metric measure spaces the notion of s-
intermediate points can be used to replace the convex combination of points
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in Euclidean space, see [152]. This leads to the geodesic Brunn-Minkowski
inequality.

A large number of proofs for the Brunn-Minkowski inequality in Eu-
clidean space are known, some of them can be found in [81; 94; 104]. Ri-
toré and Yepes [152] proved the geodesic Brunn-Minkowski inequality for
products of metric measures spaces. For Riemannian manifolds with a lower
bound on the Ricci curvature this inequality is proven in [41] employing tech-
niques of optimal transport. This techniques where latter applied to prove
this inequality for CD spaces (see [64]). While Juillet [102] proved that no
CD condition holds in sub-Riemannian Heisenberg groups Hn, the optimal
transport approach was followed by Balogh, Kristály and Sipos [9] and by
Barilari and Rizzi [13] to prove geodesic Brunn-Minkowski inequalities in the
sub-Riemannian setting (see also [121]).

In 2003, Monti [124] observed that the multiplicative Brunn-Minkowski
inequality in Hn cannot hold with exponent (2n+2)−1, corresponding to the
homogeneous dimension of Hn, since otherwise Carnot-Carathéodory balls
would be isoperimetric sets.

Leonardi and Masnou [108] proved in 2005 that this inequality holds
with exponent (2n + 1)−1, corresponding to the topological dimension of
Hn. Their proof was based on Hadwiger-Ohmann's proof of the classical
Brunn-Minkowski inequality given in [94].

Later on, Tao [160; 161] posted an entry in his blog in 2011 explaining
how to produce a Prékopa-Leindler inequality in any nilpotent Lie group of
topological dimension d, which provides a natural way to prove the multi-
plicative Brunn-Minkowski inequality with exponent d−1.

Juillet [102] gave examples of sets for which the multiplicative Brunn-
Minkowski inequality in Hn does not hold with exponent smaller than (2n+
1)−1.

In this chapter, we prove a generalization of the Brunn-Minkowski in-
equality in Euclidean space where the Minkowski addition of sets is replaced
by any product ∗ : Rd × Rd → Rd of the form

z ∗ w = z + w + (F1, F2(z, w), . . . , Fd(z, w)) = z + w + F (z, w), (*)

where F1 is a constant and Fi are continuous functions that depend only
on z1, . . . , zi−1, w1, . . . , wi−1 ∀i = 2, . . . , d. By a product here we mean a
binary operation without assuming any further properties such as associa-
tivity. We prove that for any A,B ⊂ Rd be measurable sets such that A ∗B
is measurable, we have

|A ∗B|1/d > |A|1/d + |B|1/d.

The product in any nilpotent Lie group is of the form * because of the
expression of the group product in exponential coordinates of the �rst kind.
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This result is an extension of the result obtained by Leonardi and Masnou
[108] in Heisenberg groups. While the proof of Leonardi and Masnou only
works in Heisenberg groups, their arguments can be seen as the �rst step of
an induction argument developed in this chapter. In this chapter, we shall
consider a product ∗ of the form (*), that not necessarily comes from a group
product, and change ∗ for another one ∗z1,w1 of the form (*), depending on
the sets A and B, that allows us to compare the volume of the Minkowski
addition of sets for the products ∗ and ∗z1,w1 , as a consequence of Lemma
4.1.1. When the product ∗ comes from a nilpotent group it is not true that
∗z1,w1 can de�ne a group product. Then, by an induction argument, we
will compare the volume of the Minkowski addition of sets A and B with
the volume of the Euclidean Minkowski addition of A and B, and establish
in Proposition 4.1.5 a su�cient condition in H1 for the strict inequality in
(4.0.1).

At the end of the chapter, we state several classical variations of inequal-
ity (4.0.1) in the case of Carnot groups, where dilations can be de�ned.

After [141] was completed, the author was informed that Theorem 4.0.1
was also proven by Bobkov [16] in 2011, where he used Knothe's map to
get the Brunn-Minkowski inequality for convex sets and obtained the gen-
eral result after proving the equivalent analytic version of the theorem, the
Prékopa-Leindler inequality.

In Chapter 5, we gather the results obtained with Ritoré in [142]. We
consider critical points of the perimeter associated to an asymmetric sub-
Finsler structure in the �rst Heisenberg group H1. Such a structure is de�ned
by means of an asymmetric left-invariant norm | · |K associated to a convex
body K ⊂ R2 containing 0 in its interior.

In case the boundary S of E is a C1 or Euclidean lipschitz surface, the
perimeter of E is given by the sub-Finsler area functional

AK(S) =

�
S
|Nh|K,∗ dS, (*)

where | · |K,∗ is the dual norm of | · |K , Nh is the orthogonal projection to
the horizontal distribution of the Riemannian unit normal N , and dS is the
Riemannian measure on S.

If we consider a convex set K with boundary of class C2
+ (i.e., so that

∂K is of class C2 and ∂K has positive geodesic curvature everywhere), we
may compute the �rst variation of the area functional associated to a vector
�eld U with compact support in the regular part of S to get

A′K(0) =

�
S
u
(

divS ηK
)
dS.

In this formula u = 〈U,N〉 is the normal component of the variation and
divS ηK is the divergence on S of the vector �eld ηK = πK(νh), where νh =
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Figure 1.1: The set BK when K is the unit ball of the r-norm ||(x, y)||r =(
|x|r + |y|r

)1/r
, r = 1.5

Nh/|Nh| is the horizontal unit normal and πK is the map projecting any
vector v 6= 0 to the intersection of the supporting line in the direction of v
with | · |K = 1 (the boundary of K). The strict convexity of | · |K implies
that this map is well-de�ned.

The function HK = divS ηK appearing in the �rst variation of perimeter
is called the mean curvature of S. Further calculations imply that HK is
equal to 〈DZηK , Z〉, where Z = −J(νh) is the horizontal direction on the
regular part of S. Hence the mean curvature function is localized on the
horizontal curves of S. It is not di�cult to check that a horizontal curve
in a surface with mean curvature HK must satisfy a di�erential equation
depending on HK . Hence we can reconstruct the regular part of a surface
with prescribed mean curvature by taking solutions of this di�erential equa-
tion. Furthermore, we might be able classify surfaces with prescribed mean
curvature by classifying solutions of this ordinary di�erential equation and
by looking at the interaction of these curves with the singular set S0 of S
composed of the points where the tangent plane is horizontal, as was done
in [151] for the standard sub-Riemannian perimeter.

Key observations are that horizontal straight lines are solutions of the
di�erential equation for HK = 0 and that horizontal liftings of ∂K are solu-
tions for HK = 1. The strict convexity of K together with the invariance of
the equation by left-translations and dilations imply that all solutions are of
this type.

Hence, given a convex body K ⊂ R2 containing 0 in its interior and
its associated left�invariant norm | · |K , we consider the set BK obtained as
the ball enclosed by the horizontal liftings of all translations of the curve ∂K
containing 0. It is not di�cult to prove that this way we obtain a topological
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Figure 1.2: The set BK when K is a smooth approximation of the triangular
norm

sphere SK with two poles on the same vertical line, that is the union of two
graphs. Moreover the boundary of BK is C2 outside the poles (indeed C` if
the boundary of K is of class C`, ` > 2) and of regularity C2 around the
poles. When K = D, these sets were build by Pansu [137] and are frequently
referred to as Pansu spheres. We remark that Pansu spheres' BD are of class
C2 but not C3 near the singular points, see Proposition 3.15 in [46] and
Example 3.3 in [151].

We observe that these objects have constant mean curvature. Hence
they are critical points of the sub-Finsler area functional under a volume
constraint. Further evidence that they have stronger minimization properties
is given in Section 5.5, where it is proven that, under a geometric condition,
a set of �nite perimeter E with volume equal to the volume of BK has
perimeter larger than or equal to the one of the ball BK . A slightly weaker
result for the Euclidean norm was proven in [147].

Chapter 6 is devoted to the results obtained with Giovannardi and Ri-
toré given in [87]. In this note, we provide examples of entire perimeter-
minimizing horizontal graphs for a �xed but arbitrary left-invariant sub-
Finsler structure in the �rst Heisenberg group H1. Our examples are inspired
by the corresponding sub-Riemannian ones in [146]. Of particular interest
are the conical examples invariant by the non-isotropic dilations of H1. In
the sub-Riemannian case these examples were investigated in [91] and [146].
In Theorem 5.2.1 of Section 6.1 we obtain a necessary and su�cient condi-
tion, based on Theorem 3.1 in [142], for a surface to be a critical point of the
sub-Finsler area. We assume that the surface is piecewise C2, composed of
pieces meeting in a C1 way along C1 curves. This condition will allow us to
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construct area-minimizing examples in Proposition 6.2.3 of Section 6.2, and
examples with low regularity in Proposition 6.2.4. The same construction,
keeping �xed the angle at one side of the singular line, provides examples of
area-minimizing cones, see Corollary 6.2.5. Finally, in Section 6.3 we provide
examples of area-minimizing cones in the spirit of [91]. These examples are
obtained in Theorem 6.3.2 from circular sectors of the area-minimizing cones
with one singular line obtained in Corollary 6.2.5.

Chapter 7 exposes some of the results obtained during the stay at Univer-
sità di Trento in colaboration with Giovannardi, Pinamonti and Verzellesi.
We study the prescribed mean curvature equation for t-graphs in the Heisen-
berg group Hn with an asymmetric left-invariant norm | · |K0

on the hori-
zontal distribution of Hn associated to a convex body K0 ⊂ R2n containing
the origin in its interior. Let Ω ⊂ R2n be a bounded open set, H ∈ L∞(Ω) ,
F ∈ L1(Ω,R2n) and u ∈W 1,1(Ω). We consider the functional

I(u) =

�
Ω
|∇u+ F |K0,∗ dxdy +

�
Ω
Hudxdy, (i)

where | · |K0,∗ denotes the dual norm of | · |K0
. In particular, when F (x, y) =

(−y, x) the �rst term in (i) coincides with the sub-Finsler area of the t-graph
of u. Moreover, if K0 is the Euclidean unit ball centered at the origin and
H = 0 then (i) boils down to the classical area functional for t-graphs in
Heisenberg group, see [33; 99] and references therein. We say that the graph
of u has prescribed K0-mean curvature H in Ω if u is a minimizer of I.
Indeed, the Euler-Lagrange equation associated to I out of the singular set
Ω0, i.e. the set of points where ∇u+ F vanishes, is given by

div(πK0(∇u+ F )) = H, (ii)

where πK0 is a suitable 0-homogeneous function de�ned in (2.1.5). When
we �x a boundary datum ϕ ∈ W 1,1(Ω), a solution to the Dirichlet problem
for the prescribed K0-mean curvature equation is a minimizer u of I such
that u − ϕ belongs to the Sobolev space W 1,1

0 (Ω). Our main result is The-
orem 7.4.1, where we prove, under suitable regularity assumptions on the
data, that there exists a Lipschitz solution to the Dirichlet problem for the
prescribed K0-mean curvature equation when H is constant and satis�es

|H| < HK0,∂Ω(z0) (iii)

for each z0 = (x0, y0) ∈ ∂Ω, where HK0,∂Ω denotes the Finsler mean cur-
vature of the boundary ∂Ω ⊂ Rn × Rn. Notice that the mean curvature
of the graph of u is computed with respect to the downward pointing unit
normal and the Finsler mean curvature of ∂Ω is computed with respect to
the inner unit normal. The upper bound (iii) of H in terms of the Finsler
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mean curvature of the boundary is the Finsler analogous of the standard
assumption for the solution to the Dirichlet problem for the classical mean
curvature equation in the Euclidean setting as stated in [158], [84] or [83]
(see also [85, Theorem 16.11]). The Dirichlet problem for constant mean
curvature in the �rst Riemannian Heisenberg group has been studied in [2]
under the same condition on the mean curvature. It is worth mentioning
that this is the �rst time that the existence of solutions to the sub-Finsler
Dirichlet problem has been studied when H 6= 0, even in the particular case
in which K0 is the unit disk centered at 0, where the sub-Finsler and the
sub-Riemannian frameworks coincide. Indeed, as far as we know, the sub-
Riemannian Dirichlet problem has been studied in [138; 35; 33; 32; 58; 139]
only in the case of minimal surface under the bounded slope condition or the
p-convexity assumption on Ω. In particular, we point out that when n = 1
our assumption (iii) implies that Ω ⊂ R2 is strictly convex, see Remark 7.3.7.
It is easy to check that our sub-Finsler functional I for H = 0 satis�es the
hypothesis of the area functional considered in [58]. Thus, assuming the
bounded slope condition we directly obtain the existence of Euclidean Lips-
chitz minimizer for Plateau's problem. The approach of the present chapter,
based on the Schauder �xed-point theory, follows the scheme developed in
[35] and extends its results both to the case of prescribed constant mean
curvature H 6= 0 and to the sub-Finsler setting. In Theorem 7.4.1 we can
not expect better regularity than Lipschitz.

Since equation (ii) is sub-elliptic degenerate and it is singular next the
singular set, inspired by [35; 138], we introduce a family of elliptic approxi-
mating equations given by

div

(
πK0(∇u+ F ) |∇u+F |2∗

(ε3+|∇u+F |3∗)
2
3

)
= H (iv)

for each 0 < ε < 1. A similar approximation scheme was considered in
the sub-Riemannian setting by [25; 24] to study the Lipschitz regularity for
non-characteristic minimal surfaces. To obtain this family of equations we
consider a 2n + 1 dimensional convex body Kε containing the origin in its
interior, that converges in the Hausdor� sense to the 2n dimensional convex
body K0 as ε tends to 0. The choice of the convex body Kε is not arbitrary.
Indeed, we need a speci�c shape in order to obtain an approximating equa-
tion well de�ned in the classical sense in the singular set. It is interesting to
point out that the Riemannian approximation of [35; 138; 25; 24] produces an
approximation of the unit disk D ⊆ R2n by ellipsoids in the sub-Riemannian
setting, and this approximation does not work in the sub-Finsler context.
For 0 < ε < 1, the convex body Kε de�nes a Finsler norm on THn whose
associated Finsler area functional is given by

Iε(u) =

�
Ω

(
ε3 + |∇u+ F |3K0,∗

) 1
3 dxdy +

�
Ω
Hudxdy.
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It is easy to see that the Euler-Lagrange equation associated to this func-
tional is elliptic and avoids singularities. Given a boundary datum ϕ ∈
C2,α(Ω̄), the solvability of the Dirichlet problem associated to (iv) is re-
duced by [85, Theorem 13.8] to a priori estimates in C1(Ω) of a related
family of problems. As usual the a priori estimates in C1(Ω) consist of three
parts: estimates of the supremum of |u|, boundary estimates of the gradient
of u and interior estimates of the gradient of u. Both the estimates of the
supremum and the boundary estimates of the gradient are obtained by a
barriers argument that depends on the Finsler distance from the boundary
∂Ω. Due to technical reasons in the construction of the barriers we need
to assume the strict inequality in (iii), avoiding the optimal case when H
coincides with HK0,∂Ω(z0) at a given point z0 ∈ ∂Ω. We emphasize that
these results hold even if the prescribed curvature H is non-constant and
Lipschitz. When H is non-constant, in order to obtain the estimates of the
supremum we assume that there exists δ ∈ (0, 1] such that∣∣∣∣�

Ω
Hv dxdy

∣∣∣∣ 6 (1− δ)
�

Ω
|∇v|K0,∗ dxdy (v)

for each v ∈ C∞c (Ω). Assumption (v) is a standard su�cient condition for
the estimates of the supremum of |u| (see [83] or [85]). Notice that (v) with
δ = 0 is a necessary condition obtained integrating by parts the elliptic
equation (iv). In the Euclidean space, Giusti [90] proved that (v) with δ = 0
is also a su�cient condition for the existence of solutions to the prescribed
mean curvature equation. This result was later generalized to weakly regular
domains in [111]. Moreover, in analogy with the Euclidean case, we show
that the su�cient condition (v) with δ > 0, which is a priori stronger than
the necessary condition with δ = 0, is redundant when H is constant. The
only crucial step where we need that H is constant is the maximum principle
for the gradient of the solution that allows us to reduce the interior estimates
of the gradient to its boundary estimates. Finally, once we realize that C1

estimates are independent of the approximation parameter ε, passing to the
limit as ε tends to 0 and using Arzelà-Ascoli Theorem we get the existence
of a Lispchitz minimizer for the sub-Finsler Dirichlet problem.

The analysis of the Dirichlet problem with H 6= 0 constant for t-graphs
is essential since it is strictly related to the isoperimetric problem in Hn. Re-
cently, similar results concerning CMC graphs and surfaces in the Euclidean
setting with an anisotropic norm have been obtained by [55; 54].

Appendix A contains an alternative proof of the representation of the
perimeter given in Theorem 2.3.3.





Chapter 2

Nilpotent groups and

sub-Finsler perimeter

The aim of this chapter is twofold. The �rst one is to introduce some back-
ground and notation that will be used throughout the thesis. The second is
to give di�erent notions of the (X,K)-perimeter as introduced in [142] and
[69].

In Section 2.1 it will be introduced the Carnot-Carathéodory spaces
(CC) and, with the notion of Minkowski norms of Subsection 2.1.1, the
sub-Finsler Carnot-Carathéodory spaces in Subsection 2.1.2. Relevant cases
of sub-Finsler CC spaces are sub-Finsler nilpotent groups, where X is taken
left-invariant and left-translations are isometries that preserves the perime-
ter. This groups are introduced in Section 2.2, while in Subsection 2.2.1 we
study sub-Finsler nilpotent groups with a suitable family of dilations.

In the second part of the chapter we introduce in Section 2.3 the notion of
(X,K)-variation of a function and proof the Divergence's theorem 2.3.2. In
Subsection 2.3.1 we give a proof of the representation of the (X,K)-perimeter
given in Theorem 2.3.3.

2.1 Carnot-Carathéodory spaces

Given a family of smooth vector �elds X = {X1, . . . , Xk} in Rd, we consider
the distribution generated byX, called the horizontal distributionH, de�ned
in a point p of Rd as

Hp = span{X1(p), . . . , Xk(p)}.

A smooth curve γ : [0, T ]→ Rd is called horizontal if γ̇(t) ∈ Hγ(t) for all
t. In that case, we can write

γ̇(t) =

k∑
i=1

γ̇i(t)Xi.
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Given p and q in Rd, we consider the quantity

d(p, q) = inf

{� T

0
|γ̇(t)|dt : γ is horizontal, γ(0) = p, γ(T ) = q

}
.

If there is no horizontal curve joining p and q, we de�ne d(p, q) = +∞.
In case that d is �nite for every p and q in Rd, it de�nes a distance

[93; 123] called the Carnot-Carathéodory distance. A standard condition on
X that guarantees that dX is �nite is Hörmander's condition, also called the
bracket generating condition or Chow's condition [37; 143]. We denote by
[U, V ] the Lie bracket of two C1 vector �elds U , V on Hn. We consider

H1(p) := H(p) + [H(p),H(p)],

H2(p) := H1(p) + [H1(p),H(p)],

. . . ,

(2.1.1)

then X satis�es Hörmander's condition if there exists r(p) > 0 such that
Hr−1
p 6= TpRd and Hrp = TpRd.

2.1.1 Minkowski norms

We say that | · | : Rd → R+ is a norm if veri�es

1. |x| = 0⇔ x = 0.

2. |sx| = s|x| ∀s > 0 and ∀x ∈ Rd.

3. |x+ y| 6 |x|+ |y| ∀x, y ∈ Rd.

We stress the fact that we are not assuming the symmetry property | − v| =
|v|.

The unit ball K = {x : |x| 6 1} is a convex, compact set such that
0 ∈ int(K). Reciprocally, given a convex compact set K such that 0 ∈ K,
we can de�ne the Minkowski norm associated to K as

|x|K := min{t : x ∈ tK}.

It is immediate that | · |K veri�es (1) and (2). Let us show that (3) is also
veri�ed. Given x and y in Rd we denote t1 = |x|K and t2 = |y|K . Let us see
that x+y

t1+t2
is in K, and hence |x+ y|K 6 t1 + t2 which is equivalent to (3).

x

t1 + t2
+

y

t1 + t2
=

t1
t1 + t2

x

t1
+

t2
t1 + t2

y

t2
.

Since x
t1
and y

t2
are in K and t1

t1+t2
+ t2
t2+t1

= 1, we have that x+y
t1+t2

is a convex

combination of elements of K and thus x+y
t1+t2

is in K.
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We write | · |K to indicate the dependence of the norm on K. The case of
a symmetric norm corresponds to a centrally symmetric convex body. The
norm associated to the closed unit disc D centered at 0 coincides with the
Euclidean norm and is denoted by | · |.

We say that a set K is a convex body if it is convex, compact and has
non-empty interior. We say that a convex body K is in Ck,α+ , for k ∈ N and
α ∈ [0, 1], if ∂K is of class Ck,α with strictly positive principal curvatures.

It is well known that any norm is equivalent to the Euclidean norm | · |,
that is, given a norm | · |K in Rd there exist constants 0 < c < C such that

c | · | 6 | · |K 6 C | · | . (2.1.2)

Given a norm | · |K and a scalar product 〈·, ·〉 in Rd, we consider the dual
norm | · |K,∗ of | · |K with respect to 〈·, ·〉, de�ned by

|u|K,∗ = sup
v∈K
〈u, v〉. (2.1.3)

The dual norm is the support function of the unit ball F with respect to the
scalar product 〈·, ·〉. Moreover, thanks to the above de�nitions the following
Cauchy-Schwarz formula holds:

〈u, v〉 6 |u|K,∗|v|K (2.1.4)

for any u, v ∈ Rd. If in addition we assumeK to be strictly convex and u 6= 0,
then the compactness and strict convexity of K guarantee the existence of a
unique vector πK(u) in ∂K where the supremum in (2.1.3) is attained, i.e.

|u|K,∗ = 〈u, πK(u)〉. (2.1.5)

It is easy to see that πK is a positively 0-homogeneous map, i.e. πK(λu) =
πK(u) for any λ > 0 and u ∈ Rd \ {0}, and that |πK(u)|K = 1 for any u ∈
Rd \{0}. Moreover, if we assume that K is C2

+, then πK |Sd−1 : Sd−1 → ∂K is
a C1 di�eomorphism whose inverse is the Gauss map NK of ∂K with respect
to the outer unit normal. Furthermore, we have that the norms | · |K and
| · |K,∗ belongs to Ck,α(Rd \ {0}) if and only if ∂K is Ck,α for k ∈ N and
0 6 α 6 1. For further details see [156, Section 2.5]. The relation between
the dual norm and the map πK is given by

∇|u|K,∗ = πK(u). (2.1.6)

Indeed, for any u ∈ Rd \ {0}

∇|u|K,∗ = ∇〈u, πK(u)〉 = πk(u) + u ·DπK(u) = πK(u),

where the last equality follows from the fact that 0-homogeneous functions
are radial.
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2.1.2 Sub-Finsler Carnot-Carathéodory spaces

Let X be a family of k linearly-independent vector �elds in Rd and K a
convex body in Rk with 0 ∈ int(K).

We extend the Minkowski norm | · |K to each �ber of H0 as(∣∣∣ k∑
i=1

fi(p)Xi(p)
∣∣∣
K

)
p

=
∣∣(f1(p), . . . , fk(p)

)∣∣
K
.

Similarly, we extend | · |K,∗ and πK to H0. When | · |K0
is C l with l > 2, all

norms (| · |K0
)p are C l.

We de�ne the sub-Finsler length of a piecewise smooth horizontal curve
γ : I → Rd by the formula

L(γ) =

�
I
|γ′(s)|K ds.

Under the assumption that any two given points p, q ∈ Rd can be joined by a
horizontal curve, we can de�ne the (asymmetric) distance dK(p, q) between p
and q as the in�mum of the length of horizontal piecewise C1 curves joining
p and q. This distance satis�es the properties

1. dK(p, q) 6 dK(p, r) + dK(r, q), for all p, q, r ∈ H1, and

2. dK(p, q) = 0 if and only if p = q.

The second property follows from comparison with the standard Carnot-
Carathéodory distance. This asymmetric distance does not satisfy the prop-
erty dK(p, q) = dK(q, p). We refer the reader to [119; 120] for properties of
asymmetric distances and their geodesics.

2.2 Nilpotent groups

We recall some results on nilpotent groups. For a quite complete description
of nilpotent Lie groups the reader is referred to Section 1.13 in [103].

The exponential map in a Lie group G of a left-invariant vector �eld X
will be denoted by exp(X), writing expG if specifying the group is needed.
Unless otherwise speci�ed, we shall write · for the group product of G. The
left-translation in G by q is the map `q(p) = q · p.

Let g be a Lie algebra. We de�ne recursively g0 = g, gi+1 = [g, gi] =
span{[X,Y ] : X ∈ g, Y ∈ gi}. The decreasing series

g = g0 ⊇ g1 ⊇ g2 ⊇ . . .

is called the lower central series of g. If gr = 0 and gr−1 6= 0 for some r,
we say that g is nilpotent of step r. A connected Lie group is said to be
nilpotent if its Lie algebra is nilpotent.

The following Lemma will be used in the sequel.
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Lemma 2.2.1. Let g be a nilpotent Lie algebra. Then there exists a basis
{Y1, . . . , Yd} of g such that

1. for each 1 6 n 6 d, hn = span{Yd−n+1, . . . , Yd} is an ideal of g,

2. for each 0 6 i 6 r − 1, hni = gi.

A basis verifying this is called a Malcev basis. This construction is
adapted from � 1.2 in [42]. Fixed a Malcev basis, the exponential map
centered at 0 provides a di�eomorphism between Rd and G, given by the
map

x = (x1, . . . , xd) 7→ exp(x1Y1 + ...+ xdYd).

This result can be found as Theorem 1.127 in [103]. The inverse of this map
provides coordinates called canonical coordinates of the �rst kind. The group
product can be recovered by the Hausdor�-Campbell-Baker formula as

(x1, . . . , xd) · (y1, . . . , yd) = exp−1(X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] + . . .),

where X =
∑
xiYi, Y =

∑
yiYi, (x1, . . . , xd) = exp(X) and (y1, . . . , yd) =

exp(Y ).
The structure of this product is given by the following theorem. It was

�rst proved by Malcev in 1949 [116], and a proof can be found as Theorem
4.1 in [165], or with some modi�cation as Proposition 1.2.7 in [42].

Theorem 2.2.2. Let G be a simply connected nilpotent group. Then the
multiplication map takes the following form:

z ∗ w = z + w + (P1(z, w), . . . , Pd(z, w)), (2.2.1)

where z = (z1, . . . , zd), w = (w1, . . . , wd), P1 is a constant and Pi is a
polynomial in the variables z1, . . . , zi−1, w1, . . . , wi−1 ∀ i = d−n1 + 1, . . . , d.

The next result we show that, slightly re�ning Theorem 2.2.2, the mul-
tiplication map acts as a sum in the coordinates corresponding to the com-
plement of g1. This arguments can be seen also in [107], Proposition 6.0.16.

Theorem 2.2.3. Let G be a simply connected nilpotent group and let n1 =
dim(g1). Then the multiplication map takes the following form:

z ∗ w = z + w + (0, . . . , 0, Pd−n1+1(z, w), . . . , Pd(z, w))

where z = (z1, . . . , zd), w = (w1, . . . , wd) and Pi is a polynomial in the
variables z1, . . . , zi−1, w1, . . . , wi−1 ∀ i = d− n1 + 1, . . . , d.

Proof. Let Z =
∑d

i=1 ziXi, W =
∑d

i=1wiXi. Since g1 is an ideal in g,
there is a normal Lie subgroup G1 ⊆ G whose Lie algebra is g1. Let q :
G → G/G1 denote the projection over the quotient, z̃ = q(z), w̃ = q(w),
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Z̃ = (dq)0(Z), W̃ = (dq)0(W ). Notice that ker(dq)0 = g1 and g/g1 is
a trivial Lie algebra with the induced product. Therefore, by the Baker-
Campbell-Hausdor� formula,

z̃ ∗ w̃ = z̃ + w̃. (2.2.2)

On the other hand, by Theorem 2.2.2 it holds that

expG/G1
(Z̃) expG/G1

(W̃ ) = q(expG(Z) expG(W )) =

q
(

expG
(
Z +W +

d∑
i=1

Pi(z, w)Xi

))
= expG/G1

(
Z̃ + W̃ +

d−n1∑
i=1

Pi(z, w)Xi

)
.

(2.2.3)

Taking logG/G1
in (2.2.3), we obtain

z̃ ∗ w̃ = z̃ + w̃ + (P1(z, w), . . . , Pd−n1(z, w), 0, . . . , 0). (2.2.4)

From (2.2.2) and (2.2.4), we obtain that Pi = 0 ∀i = 1, . . . , d− n1.

From Theorem 2.2.3 it can be proved that right translations are maps
whose Jacobian determinant is equal to 1 at any point, and the change of
variables gives us the following theorem. The interested reader can �nd the
details as Theorem 1.2.9 and Theorem 1.2.10 in [42].

Proposition 2.2.4. Let G be a simply connected nilpotent group. Then,
after having chosen a strong Malcev basis on g, the exponential takes the
Lebesgue measure on Rd to a Haar measure µ on G, that is, for any A ⊂ G
measurable and any f : G→ R integrable, one has

µ(A) = | log(A)| and
�
G
fdµ =

�
Rd

(f ◦ exp)(x)dx.

The Lebesgue measure of Rd will be denoted as | · | and, as we can see
Theorem 1.2.10 in [42], it coincides with the Haar measure on Rd with this
product.

From now on, we shall denote a simply connected nilpotent group as
(Rd, ·).

The dimension at in�nity D of a simply connected nilpotent group (Rd, ·)
is de�ned by

D =
∑

imi,

where mi := dim(gi−1)− dim(gi).
Given a simply connected nilpotent group (Rd, ·) and a system of linearly-

independent left-invariant vector �elds X = {X1, . . . , Xk}, we de�ne the
distributions

H := span(X) Hn := Hn−1 + [Hn−1,H0]
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where H0 = H. A vector �eld U is said to be horizontal if U(x) ∈ Hx for all
x in Rd. The local dimension of Rd and X, denoted by l, is de�ned as

l =
∑

im′i,

where m′i := dim(Hi−1)− dim(Hi−2) and m′1 := dim(H).
We consider a left-invariant Riemannian metric g := 〈·, ·〉 forming X an

orthonormal basis of H, and making orthogonal the subbundles H and V ,
where V is a complementary subbundle of H.

The following result can be seen in Section IV.5 of [164].

Theorem 2.2.5 (Proposition IV.5.6 and Proposition IV.5.7 in [164]). Let
(Rd, ·) be a simply connected nilpotent group with X a bracket-generating
system and D and l the dimension at in�nity and the local dimension respec-
tively. There exist positive constants α and β such that

α−1tl 6|B(0, t)| 6 αtl 0 6 t 6 1,

β−1tD 6|B(0, t)| 6 βtD t > 1.
(2.2.5)

In particular, we obtain the following inequality.

µ(B(x, s)) 6 C
(s
r

)l
µ(B(x, r)), (2.2.6)

where x ∈ Rd, 0 < r 6 s 6 1.
We shall denote by (Rd, ·, X,K) a simply connected sub-Finsler nilpotent

group, where · is the group product, X is a family of k linearly-independent
vector �elds and K ⊂ Rk is a convex body with 0 ∈ int(K).

2.2.1 Sub-Finsler Carnot groups

We refer the reader to [106] for the details on the rest of this section.
A strati�cation of a Lie algebra g is a direct-sum decomposition

g = V0 ⊕ . . .⊕ Vr,

for some integer r > 1, where Vr 6= {0}, [V0, Vi] = Vi+1 for all i ∈ {1, . . . , r}
and Vr+1 = {0}. We say that a Lie algebra is strati�able if there exists
a strati�cation on it. We say that a Lie algebra is strati�ed when it is
strati�able and endowed with a �xed strati�cation. We say that a Lie group
is strati�able if it is connected and simply connected and its Lie algebra is
strati�able.

The following lemma assures that any strati�able group is a nilpotent
group.
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Lemma 2.2.6. Let g = V0 ⊕ . . .⊕ Vr be a strati�ed Lie algebra. Then

gk−1 = Vk ⊕ . . .⊕ Vr.

In particular, g is a simply connected nilpotent Lie algebra of step r, and
g = V0 ⊕ g1.

It is worth noting that Theorem 2.2.3 manifests that the multiplication
map acts as a sum in the coordinates corresponding to V0.

Remark 2.2.7. In a strati�able group, not every subspace V0 such that
g = V0 ⊕ g1 generates a strati�cation. Moreover, not every nilpotent group
is strati�able (see Example 1.8 and 1.9 [106]).

Proposition 2.2.8. Let g be a strati�able Lie algebra with strati�cations

g = V0 ⊕ . . .⊕ Vr = W0 ⊕ . . .⊕Ws.

Then r = s and there exists a Lie algebra automorphism A : g→ g such that
A(Vi) = Wi for i = 1, . . . , r.

Proposition 2.2.8 guarantees that for a strati�able group (Rd, ·), the nat-
ural number

Q =

r∑
i=1

i dim(Vi),

does not depends on the particular strati�cation. Q is called the homoge-
neous dimension of (Rd, ·).

Remark 2.2.9. Given a simply connected nilpotent group (Rd, ·) with a
system of left-invariant vector �elds X, dimension at in�nity D and local
dimension l, it is clear that D > l. Moreover, D = l if and only if (Rd, ·) is
strati�able and X generates a strati�cation on g. Moreover, D = l = Q.

For λ > 0 we de�ne the dilation on g of factor λ as the unique linear
map δλ : g→ g such that

δλ(X) = λtX ∀X ∈ Vt ∀t ∈ {1, . . . , r}.

Remark 2.2.10. Dilations δλ : g→ g are Lie algebra isomorphisms.

The fact that (Rd, ·) is simply connected certi�es that there exists a
unique Lie groups automorphism δλ : Rd → Rd (denoted as the dilation on
the Lie algebra) whose di�erential at 0 is the dilation on g of factor λ. This
automorphism is called dilation on (Rd, ·) of factor λ.

Proposition 2.2.11. Let (Rd, ·) be a strati�ed group and let λ > 0. Then�
Rd
fdx = λQ

�
Rd

(f ◦ δλ)dx,

where Q is the homogeneous dimension of (Rd, ·).
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Let (Rd, ·) be a strati�ed group with strati�cation

g = V0 ⊕ V2 ⊕ . . .⊕ Vr,

We take the Malcev basis {Y1, . . . , Yd} given by Lemma 2.2.1. In particular,

span{Y1 . . . , Yk} = V0,

where k = d− dim(g1).
We can extend Y1, . . . , Yk to a family of linearly-independent left-invariant

vector �elds, also denoted by Y1, . . . , Yk. A strati�ed group (Rd, ·) with
X = {Y1, . . . , Yk} and a convex body K in Rk with 0 ∈ int(K) is called
sub-Finsler Carnot group, and is denoted by (Rd, ·,K). The sub-Finsler CC
distance is denoted by dK .

It is easy to check that dK is homogeneous with respect to δλ, that is,

dK(δλ(p), δλ(q)) = λdK(p, q) ∀λ > 0 ∀p, q ∈ Rd. (2.2.7)

Moreover, the sub-Finsler CC distance of two given points p and p′ is pre-
served by left translations. That is, for any q in Rd, we have

dK(`q(p), `q(p
′)) = dK(p, p′),

where `q(p) = q · p.
Given 0 < L 6 1, we denote gL the Riemannian metric making orthonor-

mal the basis
Ỹi = L

j
2Yi,

where Yi ∈ Vj . When L is 1 we shall omit the subindex L.
Thanks to Theorem 2.2.3, the projection over the �rst k coordinates q1

of the product is given by

q1

(
p exp(t

k∑
i=1

viYi)
)

= p1 + tv,

where v = (v1, . . . , vk) ∈ Rk, p = (p1, p2) ∈ Rk × Rd−k and t ∈ R. In
particular, it is easy to check that the projection of (d`p)0(v) over V =
span{ ∂

∂x1
, . . . , ∂

∂xk
}, qV , is given by

qV

(
(d`p)0(

k∑
i=1

viYi)
)

=

k∑
i=1

vi
∂

∂xi
.

In particular, we get

Yi =
∂

∂xi
+

d∑
j=k+1

fi,j
∂

∂xj

for some smooth functions fi,j .
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2.2.2 The Heisenberg group Hn

In this subsection we follow the notation and background given in [151]. We
de�ne the product ∗ in R2n+1 ≡ Cn × R given by

(z, t) · (z′, t′) := (z + z′, t+ t′ +
n∑
i=1

Im(zizi
′)),

where z = (z1, . . . , zn) and z′ = (z′1, . . . , z
′
n). The Lie group (R2n+1, ·) is

referred to as the n Heisenberg group and denoted by Hn. For p ∈ Hn,
the left translation by p is the di�eomorphism `p(q) = p · q. A basis of
left-invariant vector �elds is given by

Xi =
∂

∂xi
+ yi

∂

∂t
, Yi =

∂

∂yi
− xi

∂

∂t
, T =

∂

∂t
,

where i = 1 . . . , n and zi = (xi, yi) ∈ C. The horizontal distribution H in
Hn is the smooth planar distribution generated by X1, Y1, . . . , Xn, Yn. The
horizontal projection of a vector U onto H will be denoted by Uh. A vector
�eld U is called horizontal if U = Uh. A horizontal curve is a C1 curve
whose tangent vector lies in the horizontal distribution.

Note that [Xi, T ] = [Yi, T ] = 0, while [Xi, Yi] = −2T . The last equality
implies that H is a bracket generating distribution. Moreover, by Frobenius
Theorem we have that H is nonintegrable. The horizontal distribution H is
the kernel of the (contact) 1-form ω :=

∑n
i=1−yi dxi + xi dyi + dt.

We shall consider on Hn the (left invariant) Riemannian metric g = 〈· , ·〉
so that {X1, Y1, . . . , Xn, Yn, T} is an orthonormal basis at every point, and
the associated Levi-Civitá connection D. The modulus of a vector �eld U
with respect to this Riemannian metric will be denoted by |U |. The following
derivatives can be easily computed

DXiXj = 0, DYiYi = 0, DTT = 0,

DXiYj = −δi,jT, DXiT = Yi, DYiT = −Xi, (2.2.8)

DYiXj = δi,jT, DTX = Y, DTYi = −Xi

for any 1 6 i, j 6 n, where δi,j is the Kronecker delta. Setting J(U) = DUT
for any vector �eld U in Hn we get J(Xi) = Yi, J(Yi) = −Xi and J(T ) = 0.
Therefore −J2 coincides with the identity when restricted to the horizontal
distribution.

The Riemannian volume of a set E is, up to a constant, the Haar measure
of the group and is denoted by |E|. The integral of a function f with respect
to the Riemannian measure by

�
f dHn.

2.2.2.1 Immersed surfaces in H1

We consider oriented surfaces of class C2 immersed in H1 and we shall choose
a unit normal to S. In case S is the boundary of a domain Ω ⊂ H1, we always
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choose the outer unit normal. The singular set of S is denoted by S0 and it is
composed of the points in p ∈ S where the tangent space TpS coincides with
the horizontal distribution Hp. The horizontal unit normal νh is de�ned in
S \ S0 by

νh =
Nh

|Nh|
.

The vector �eld Z is de�ned by

Z = −J(νh).

The vector �eld Z is de�ned on S \S0 and it is tangent to S and horizontal.
It generates at every point p ∈ S \ S0 the subspace TpS ∩Hp.

2.3 (X,K)-variation and (X,K)-Caccioppoli sets

Let X = {X1, . . . , Xk} in Rd be a family of linearly-independent smooth
vector �elds and | · |K the norm associated to a convex body K ⊂ Rk with
0 ∈ int(K).

Given a horizontal vector �eld U in an open set Ω ⊂ Rd is said horizontal
if U(p) ∈ Hp for all p ∈ Ω. The set of horizontal vector �elds in Ω of class
C1
c (Ω) is denoted by H1

c(Ω).
Taking X ′ a family of d linearly-independent smooth vector �elds that

extends X, we consider the Riemannian metric g making X ′ an orthonormal
basis. We write the divergence of U =

∑k
i=1 uiXi ∈ H1(Ω) as

divU =
k∑
i=1

Xi(ui).

Remark 2.3.1. Fixed a distribution H and a Riemannian metric g in H,
div is independent of the chosen family X orthonormal at every point.

Given an open set Ω ⊂ Rd and a function u : Rd → R in L1(Ω), we
de�ne say that u has locally �nite (X,K)-variation in Ω if for any relatively
compact open set V ⊂ Ω we have

VK(u;V ) = sup

{�
Rd
udivU dx : U ∈ H1

c(V ), |U |K,∞ 6 1

}
< +∞.

In this expression, |U |K,∞ = supp∈V |Up|K . The integral is computed with
respect to the Lebesgue measure dx on Rd. If u is the characteristic function
of a measurable set E, we say that E is a locally (X,K)-Caccioppoli set or
a locally (X,K)-�nite perimeter set.

The quantity VK(u; Ω) is called the (X,K)-variation of u in Ω. Whenever
u is the characteristic function of a measurable set E, VK(u; Ω) is called the
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(X,K)-perimeter of E in Ω and is denoted by PK(E; Ω). When X de�nes
a structure of Carnot group, we call PK the K-perimeter. We shall write
PK(E) whenever Ω = Rd.

Let K,K ′ convex bodies with 0 in its interior. Then there exist constants
α, β > 0 such that

α|x|K′ 6 |x|K 6 β|x|K′ , for all x ∈ Rk.

Let Ω ⊂ Rd an open set, V ⊂ Ω a relatively open set and u : Rd → R in
L1(Ω). Take U ∈ H1

c(V ) with |U |K,∞ 6 1. Hence |αU |K′ 6 |U |K 6 1 and
�
E
udiv(U)dx =

1

α

�
E
udiv(αU) dx 6

1

α
VK(u;V ),

Taking supremum over the vector �elds in H1
c(V ) with | · |K 6 1, we get

VK(u;V ) 6 1
αVK′(u;V ). In a similar way we get 1

βVK′(u;V ) 6 VK(u;V ), so
that we have

1
βVK′(u;V ) 6 VK(u;V ) 6 1

αVK′(u;V ). (2.3.1)

As a consequence, u has locally �nite (X,K)-variation if and only if it has
locally �nite (X,K ′)-variation.

Let E ⊂ Rd be a set with locally �nite (X,K)-perimeter in Ω. We can
de�ne a linear functional L : C1

c (Ω,Rk)→ R by

L(h) = L((h1, . . . , hk)) =

�
E

div(h1X1 + . . .+ hkUk) dx.

For any relatively compact open set V ⊂ Ω we have

C(V ) := sup{L(h) : h ∈ C1
c (V,Rk), |h|K,∞ 6 1} < +∞,

We �x any compact subset C ⊂ Ω and take a relatively compact open
set V such that C ⊂ V ⊂ Ω. For each h ∈ Cc(Ω,Rk) with support in K we
can �nd a sequence of C1 functions (hi)i∈N with support in V such that hi
converges uniformly to h. Hence equality

L(h) = lim
i→∞

L(hi)

allows to extend L to a linear functional L : Cc(Ω,Rk)→ R satisfying

sup{L(h) : h ∈ Cc(Ω,Rk), supp(h) ⊂ C, |h|K,∞ 6 1} 6 C(V ) < +∞.

The proof of the Riesz Representation Theorem, see � 1.8 in [59], can
be adapted to obtain the existence of a Radon measure µK on Ω and a
µK-measurable function νK = (ν1, . . . , νk) : Ω→ Rk satisfying

L(h) =

�
Ω
〈h, νK〉 dµK .
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The measure µK is the total variation measure

µK(V ) = sup{L̄(h) : h ∈ Cc(Ω,Rk), supp(h) ⊂ V, |h|K,∞ 6 1}

that coincides with PK(E;V ) since L is a continuous extension of L. Hence-
forth we denote µK by |∂E|K and we shall drop the subscript K when the
convex is the unit disk D.

Let us check that

|(νK)p|K,∗ = 1 for |∂E|K-a.e. p. (2.3.2)

Here | · |K,∗ is the dual norm of | · |K . To prove (2.3.2) we take a relatively

compact open set V ⊂ Ω and h ∈ Cc(Ω,Rk) with supp(h) ⊂ V and |h|K,∞ 6
1. Since 〈h, νK〉 6 |νK |K,∗ we have

L(h) 6
�
V
|νK |K,∗d|∂E|K .

Taking supremum over such g we have

|∂E|K(V ) 6
�
V
|νK |K,∗d|∂E|K .

On the other hand, we can take a sequence (ϕi) = ((ϕ1)i, . . . , (ϕk)i) in
C1
c (V ) such that |ϕi|K 6 1 and 〈ϕi, νK〉 converges to |νK |K,∗ |∂E|K-a.e.

This is a consequence of Lusin's Theorem, see � 1.2 in [59], and follows
by approximating the measurable function πK(νK) by continuous uniformly
bounded functions. Then we would have

�
V
|νK |K,∗d|∂E|K = lim

i→∞
〈ϕi, νK〉d|∂E|K 6 |∂E|K(V ).

So we would have

|∂E|K(V ) =

�
V
|νK |K,∗d|∂E|K

and so |νK |K,∗ = 1 for |∂E|K-a.e. Observe that h = (h1, . . . , hk) and νK =

(ν1, . . . , νk) can be canonically identi�ed with the vector �elds
∑k

i=1 hiXi

and
∑k

i=1 νiXi. Thus we obtained the following result.

Theorem 2.3.2. Let E be a �nite perimeter set in Rd and U ∈ H1
c(Ω).

Then, there exists a measure |∂E|K and a |∂E|K-measurable function νK
with |νK |K,∗ = 1 such that

�
E

div(U)dx =

�
V
〈U, νK〉|∂E|K . (2.3.3)
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2.3.1 Representations of the (X,K)-variation

Given two convex sets K,K ′ ⊂ Rk containing 0 in their interiors, We shall
obtain the following representation formula for the sub-Finsler perimeter
measure |∂E|K and the vector �eld νK in terms of K ′ and νK .

Theorem 2.3.3. Given two convex sets K,K ′ ⊂ Rk with 0 in their interiors,

|∂E|K = |νK′ |K,∗|∂E|K′ , νK =
νK′

|νK′ |K,∗
. (2.3.4)

In particular, considering the unit disk D and its associated sub-Finsler
perimeter measure |∂E|, we have

PK(E) =

�
Rd
|ν|K,∗|∂E|, (2.3.5)

where ν = νD and |∂E| = |∂E|K .

Proof. From (2.3.1), there exist two positive constants λ,Λ such that

λ|∂E|K 6 |∂E|K′ 6 Λ|∂E|K .

This implies that each of the Radon measures |∂E|K , |∂E|K′ is absolutely
continuous with respect to the other one. Hence both Radon-Nikodym
derivatives exist. Take a relatively compact open set V ⊂ Ω and U ∈ H1

0(V ).
Then we have
�
V
〈U, νK′〉 d|∂E|K′ =

�
V
χE div(U) dH1

=

�
V
〈U, νK〉 d|∂E|K =

�
V
〈U, d|∂E|K

d|∂E|K′
νK〉 d|∂E|K′ .

(2.3.6)

By the uniqueness of νK′ we have

νK′ =
d|∂E|K
d|∂E|K′

νK , |∂E|K′-a.e. (2.3.7)

On the other hand, inserting U ∈ H1
0(V ) in (2.3.6) with |U |K 6 1 we get

�
V
〈U, νK〉d|∂E|K =

�
V
〈U, νK′〉 d|∂E|K′ 6

�
V
|νK′ |K,∗d|∂E|K′ .

Taking supremum over U we obtain

�
V

d|∂E|K
d|∂E|K′

d|∂E|K′ = |∂E|K(V ) 6
�
V
|νK′ |K,∗d|∂E|K′
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and, since V is arbitrary, we have

d|∂E|K
d|∂E|K′

6 |νK′ |K,∗ |∂E|K-a.e. (2.3.8)

Substituting (2.3.7) into (2.3.8) we have

d|∂E|K
d|∂E|K′

6 |νK′ |K,∗ =
d|∂E|K
d|∂E|K′

|∂E|K-a.e.

Hence we have equality and so

d|∂E|K
d|∂E|K′

= |νK′ |K,∗ |∂E|K-a.e. (2.3.9)

Hence we get from equation (2.3.4) from (2.3.9) and (2.3.7).

For the closed unit disk D ⊂ Rk centered at 0 we know that in the C1

case νD = νh and |Nh| = |Nh|D,∗. Hence we have

|∂E|K = |νh|K,∗d|∂E|, νK =
νh
|νh|K,∗

.

Here |∂E| is the standard sub-Riemannian perimeter measure.

Proposition 2.3.4. Let (Rd, ·,K) be a sub-Finsler Carnot group. Given Ω
and E open sets in Rd with S = ∂E Euclidean Lipschitz, then

PK(E; Ω) =

�
S∩Ω
|Nh(p)|K,∗dS(p), (2.3.10)

where Nh is the horizontal projection of the unit normal to S and dS is the
Riemannian measure on S.

Notes

Notes of � 2.3 1. In [115] and in [38] can be seen de�nitions of area for
immersed submanifold of �xed degree in strati�ed groups and in graded
manifolds respectively. A notion of perimeter for submanifolds with intrinsic
regularity in Heisenberg groups can be found in [73]. See also [86].

Notes of � 2.3.1 1. An alternative proof of (2.3.5) is given in Appendix A
using techniques of convex analysis developed by Bouchitté and Valadier in
[20]. This approach can be adapted to generalize the result to a CC space
with a di�erent norm in any subspace Hp, although we will restrict to the
case with only one �xed norm.





Chapter 3

Existence of isoperimetric

regions in sub-Finsler nilpotent

groups

This chapter contains the results of a work in progress.
We consider a sub-Finsler nilpotent group (Rd, ·, X,K). In this chapter

we prove the existence of minimizers of the perimeter functional PK associ-
ated to | · |K under a volume (Haar measure) constraint.

The privileged position of Carnot groups within geometric measure the-
ory is revealed by its characterization as the only metric spaces that are
locally compact, geodesic, isometrically homogeneous, and self-similar (i.e.
admitting a dilation). This characterization can be found as Theorem 1.1 in
[105]. Removing the self-similarity condition, sub-Finsler nilpotent groups
acquire relevant importance.

In sub-Riemannian geometry, apart from the compact case, there are few
known results. Galli and Ritoré proved in [77] an existence result in contact
sub-Riemannian manifolds. The argument followed Morgan's structure: they
pick a minimizing sequence of sets of volume v whose perimeters approach the
in�mum of the perimeters of sets of volume v. This sequence can be splitted
into two subsequences. The �rst subsequence is converging to a set, and it
is proved that is isoperimetric for its volume and bounded. Nevertheless,
it might be a loss of mass at in�nity. In this case, they use isometries to
translate the second subsequence, which is diverging, to recover some of the
lost volume. An essential point is that they always recover a �xed fraction
of the volume.

The main result of the chapter is the following theorem.

Theorem 3.0.1 (Existence of isoperimetric regions). Let (G,X,K) be a sub-
Finsler nilpotent group. Then, for any v > 0, there exists a �nite perimeter
set E such that |E| = v and IK(v) = PK(E). Moreover, E has a �nite
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number of connected components.

This result is an extension of the existence result of Leonardi and Rigot
for nilpotent groups with no dilations and a sub-Finsler norm. The proof
follows the arguments in [77]. As in [77], one of the main di�culties is to
prove a Deformation Lemma that allow us to increase the volume of any
�nite perimeter set while modifying the perimeter in a controlled way, more
precisely, the di�erence of the perimeters is linear with respect to the volume
we are adding.

We shall assume the validity of the following result.

Theorem 3.0.2 (Deformation Lemma). Let (G,X,K) be a sub-Finsler nilpo-
tent group. Let F ⊆ G be a �nite perimeter and �nite volume set and suppose
that there exists p ∈ int(F ). Then there exist C3 > 0 and a family of �nite
perimeter sets {F λ} such that |F λ| > |F |+ λC and

PK(F λ)− PK(F ) 6 C3λ. (3.0.1)

There are a large number of deformation lemmas in literature, some of
them in [7; 6; 77; 114; 122; 131; 134]. The proof of Theorem 3.0.2 usually
relies on taking a vector �eld U and use the formulas for the �rst variation
of the volume and the area. In [77], Galli and Ritoré used a calibration
argument, exploiting that Pansu spheres in H1 have constant mean curvature
to construct, in a neighborhood of a given point, a horizontal vector �eld with
bounded divergence.

By a calibration argument, we obtain in Proposition 3.2.1 that the isoperi-
metric pro�le is non-decreasing. One advantage of our proof of Theorem 3.0.2
is that the constant C depends only on the radius of a ball inside F . The
property of sub-additiveness of the isoperimetric pro�le is proven in Corol-
lary 3.3.3. We shall also extend the properties obtained in Carnot groups by
Leonardi and Rigot in [109], that isoperimetric regions are bounded and its
topological and essential boundaries coincide.

This chapter is organized as follows. In Section 3.1, we �x some no-
tation and give some background on sub-Finsler nilpotent groups and the
notion of K-perimeter. In Section 3.2, we prove Theorem 3.0.2 and study
some properties of the isoperimetric regions such as that they are open up
to a nullset (Corollary 3.2.3), bounded (Theorem 3.2.9) and its essential
and topological boundaries coincide (Theorem 3.2.8), and prove in Proposi-
tion 3.2.1 that the isoperimetric pro�le is non-decreasing. In Section 3.3, we
prove Theorem 3.0.1, the existence of isoperimetric regions and deduce that
the isoperimetric pro�le is a sub-additive function in Corollary 3.3.3.
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3.1 Preliminaries

We consider a left-invariant Riemannian metric g := 〈·, ·〉 forming X an
orthonormal basis of H0, and making orthogonal the subbundles H0 and V ,
where V is a complementary subbundle of H0.

From the de�nition and that the Lebesgue measure is invariant by left-
translations it follows that, for any p ∈ Rd,

P(X,K)(`p · E; `p · Ω) = P(X,K)(E; Ω).

We shall use exhaustively the following decomposition of theK-perimeter

PK(E) > PK(E ∩B) + PK(E \B)− 2C1P (E ∩B; ∂B), (3.1.1)

where B is any sub-Riemannian ball in Rd and P is the sub-Riemannian
perimeter. Indeed, we have

PK(E∩B) = PK(E∩B;B)+PK(E∩B;Bc) = PK(E;B)+PK(E∩B; ∂B).

From the above equation and the relation between the Euclidean and the
Minkowski norm (2.3.1), we obtain

PK(E;B) = PK(E ∩B)− PK(E ∩B; ∂B)

> PK(E ∩B)− C−1
1 P (E ∩B; ∂B).

(3.1.2)

Similarly, it holds

PK(E; B̄c) = PK(E \B)− PK(E \B; ∂B)

> PK(E \B)− C−1
1 P (E \B; ∂B)

= PK(E \B)− C−1
1 P (E ∩B; ∂B).

(3.1.3)

Adding (3.1.2) and (3.1.3), we obtain (3.1.1).
The following relation between the sub-Riemannian perimeter and the

derivative of the volume can be found as Lemma 3.5 in [4].

Lemma 3.1.1. Let (Rd, ·, X,K) be a sub-Finsler nilpotent group. Let F ⊆
Rd be a �nite (sub-Riemannian) perimeter set and Br the sub-Riemannian
ball of radius r centered in 0. Then for a.e. r > 0, we have

max{P (F ∩Br; ∂Br), P (F\Br; ∂Br)} 6 −
d

ds

∣∣∣
s=r
|F \Bs|. (3.1.4)

A measurable set F is said to have density s at a point x provided the
following limit exists and equals s

lim
t→0+

|F ∩B(x, r)|
|B(x, r)|

.

The set of points where de density of F is s is denoted by Fs. The essential
boundary of F is Rd \ (F1 ∪ F0).
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3.1.1 Isoperimetric inequality for small volumes

A fundamental tool in a metric measure space (X, d, µ) is the existence of
a (1, 1)-Poincaré Inequality, that is, the existence of constants C > 0 and
λ > 1 such that

�
B(p,r)

|f − fp,r|dµ 6 Cr

�
B(p,λr)

|∇f |dµ, (3.1.5)

for all f locally Lipschitz, where B(p, r) is the metric ball of center p and
radius r, fp,r := 1/|B(p, r)|

�
B(p,r) fdµ and |∇f | is an upper gradient of

f in the sense of Heinonen and Koskela [96]. In the context of connected
Lie groups with polynomial volume growth, a (1, 1)-Poincaré inequality was
proven by Varopoulos in [163], and in Rd with a Lie bracket generating
system by Jerison in [101]. As stated by Hajlasz and Koskela in Theorem
5.1 and 9.7 in [95], the (1, 1)-Poincaré inequality (3.1.5) together with (2.2.6)
implies the following Sobolev inequality.

( 
B(p,r)

|f − fp,r|l/(l−1)dµ
)(l−1)/l

6 C̃r

 
B(p,r)

|∇f |dµ. (3.1.6)

From Inequality (3.1.6) and (2.3.1), the relative isoperimetric inequality eas-
ily follows (see also Theorem 1.18 in [82]).

Theorem 3.1.2 (Relative Isoperimetric inequality). Let (Rd, ·, X,K) be a
sub-Finsler nilpotent group with local dimension l. There exists C > 0 such
that if F ⊂ Rd is any �nite perimeter, then

C min{|F ∩B(p, r)|, |B(p, r) \ F |}(l−1)/l 6 PK(F ;B(p, r)), (3.1.7)

for any p ∈ Rd and 0 < r 6 1.

From a classical covering argument, we obtain the following isoperimetric
inequality for small volumes. The proof follows identically as in Lemma 3.10
of [77]. It is also proven in Proposition 3.20 [7], in the context of PI-spaces,
that is, metric measure spaces satisfying a weak (1, 1)-Poincaré inequality
and doubling property, which are uniformly s-Ahlfors regular.

Theorem 3.1.3 (Isoperimetric inequality for small volumes). Let (Rd, ·, X,K)
be a sub-Finsler nilpotent group with local dimension l. There exists C2 > 0
and v0 > 0 such that if F ⊆ Rd is any �nite perimeter set and |F | < v0,
then

C2|F |l−1/l 6 PK(F ). (3.1.8)
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3.2 Properties of isoperimetric regions

Throughout this section, (Rd, ·, X,K) denotes a nilpotent group with X a
Lie bracket generating system, K denotes a convex body in H0

0 containing 0
in its interior, B(p, r) the sub-Riemannian ball centered in p of radius r > 0.
We shall see that an isoperimetric region E is open up to a nullset and its
topological and essential boundary coincide, using the arguments developed
in [109; 49]. We shall also prove that isoperimetric regions are bounded.
Moreover, we shall prove a Deformation Lemma.

The isoperimetric pro�le is de�ned as

IK(v) := inf{PK(E) : E ⊆ Rd is a �nite perimeter set and |E| = v}.

Proposition 3.2.1. Let (Rd, ·, X,K) be a sub-Finsler nilpotent group. The
isoperimetric pro�le is non-decreasing.

Proof. We recall from the previous section that we can take X1 in X \ g1, D
be the distribution orthogonal to X1 and S a hypersurface passing through 0
with TS = D. Moreover, S is orientable. Let S+ and S− the open regions in
Rd with boundary S and horizontal normal vectors X1 and −X1 respectively.

Fix v > w > 0 and let En ⊆ Rd such that |En| = v and PK(En) =
IK(v) + 1

n . Let pn be such that |`pnEn ∩ S+| = w. By abuse of notation,
we will write En and E−n for `pnEn and `pnEn ∩ S− respectively. Let U ∈
ΠK(X1) be a projection over K, that is, satisfying (??). Applying (2.3.3) to
E−n and U , we get

�
E−n

divUdx = −
�
En∩S

〈πK(X1), X1〉d|∂E−n |K +

�
E−n

〈U, ν〉d|∂E−n |K .

Since U has constant coordinates in X, divU = 0. Therefore, from (2.3.5)
we get

PK(En ∩ S+;S) =

�
E−n

〈U, ν〉d|∂E−n |K 6 PK(En;S−). (3.2.1)

Adding PK(En;S+) to both sides of Equation (3.2.1), we get

IK(w) 6 PK(En ∩ S+) 6 PK(En) = IK(v) +
1

n
.

We shall need the following Lemma proven in [109] for Carnot groups.

Lemma 3.2.2. Let E be an isoperimetric region, p ∈ Rd and 0 < r 6 1.
Then there exists ε > 0 such that if r−l|B(p, r) \ E| 6 ε, then

|B(p, r/2) \ E| = 0,

where is B(p, r) the sub-Riemannian ball centered in p of radius r > 0.
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Proof. Let |E| = v. Suppose that r−l|B(p, r) \ E| 6 ε. Let t > 0, B :=
B(p, t), Et := E ∪B and m(t) := |B \ E|. It is clear that

PK(E) > PK(E;B) + PK(E; B̄c)

= PK(E;B) + PK(Et; B̄
c).

It follows that
PK(Et; B̄

c) 6 PK(E)− PK(E;B).

Then

PK(Et) = PK(Et;B) + PK(Et; B̄
c) + PK(Et; ∂B)

6 PK(E)− PK(E;B) + PK(Et; ∂B),
(3.2.2)

where we used that PK(Et;B) = 0. On the other hand, using (3.1.4) and
that −|Ec \B|′ = m′(t), we get

PK(Et; ∂B) 6 C1P (Et; ∂B) = C1P (Ec \B; ∂B) 6 C1m
′(t). (3.2.3)

Using again (3.1.4),

PK(E;B) = PK(B \ E)− PK(B \ E; ∂B) > PK(B \ E)−m′(t). (3.2.4)

Since |Et| > |E| and E is an isoperimetric region, Proposition 3.2.1 gives us

PK(E) 6 PK(Et). (3.2.5)

Substituting (6.2.4), (6.2.5) and (6.2.6) in (3.2.2), it follows that

PK(B \ E) 6 (1 + C1)m′(t).

From the Isoperimetric Inequality (3.1.8),

Cm(t)l−1/l 6 m′(t). (3.2.6)

The above inequalities holds for a.e. t > 0. Suppose that m(t) > 0 for
all t ∈ [r/2, r], otherwise there is nothing to prove. Then we can rewrite
Inequality (3.2.6) as

C 6
m′(t)

m(t)l−1/l
,

and integrating between r/2 and r,

r 6 C(m(r)1/l −m(r/2)1/l) 6 Cm(r)1/l 6 Cε1/lr.

This is impossible for ε small enough, and we get a contradiction. Therefore
|B(x, r/2) \ E| = 0.

Corollary 3.2.3. Let E be an isoperimetric region. Then there exists an
open set E0 that coincides with E almost everywhere.
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Proof. Let p be in E1. By (2.2.6) we get

|B \ E|
|B|

> C̃
|B \ E|
rl

> 0

for r small enough. Since the left hand side of the above inequality converges
to 0, we can apply Lemma 3.2.2.

Remark 3.2.4. From now on we shall assume that an isoperimetric region
E is exactly E1, and therefore an open set.

Remark 3.2.5. Notice that in the proof of Corollary 3.2.4 is important to
have the same exponent l in (2.2.6) and in (3.1.8).

Remark 3.2.6. The constant C3 depends on the radius of the ball B(p, r)
taken inside F . Therefore, if r > 0 and F1 and F2 are two �nite perimeter
sets with �nite volume such that B(p1, r) ⊆ F1 and B(p2, r) ⊆ F2 for some
p1 and p2, then we can take C3 > 0 satisfying (3.0.1).

In Lemma 3.2.2 we proved that if we have a ball that is almost contained
in an isoperimetric region E, then the ball of half the radius is in E. Following
again the arguments in [109] and using the Deformation Lemma 3.0.2, we
prove in Lemma 3.2.7 the analog result when the starting ball is almost
outside E.

Lemma 3.2.7. Let E be an isoperimetric region, p ∈ Rd and 0 < r 6 1.
Then there exists ε > 0 such that if r−l|E ∩B(p, r)| 6 ε, then

|E ∩B(p, r/2)| = 0.

where is B(p, r) the sub-Riemannian ball centered in x of radius r > 0.

Proof. Let t > 0, B := B(p, t) and m(t) = |E ∩ B|. Under the assumption
that r−l|E ∩ B(x, r)| 6 ε, m(t) is small enough to de�ne Et := (E \ B)m(t)

as the set given by the Deformation Lemma 3.0.2 with volume |Et| = |E|.
Thus

PK(E) 6 PK(Et).

On the other hand, reasoning as in Lemma 3.2.2 and using the Deformation
Lemma, we get

PK(Et) 6 PK(E \B) + C3m(t)

6 PK(E)− PK(E ∩B) + (1 + C1)m′(t) + C3m(t)

6 PK(E)−m(t)l−1/l + (1 + C1)m′(t) + C3m(t).

The above inequalities gives us

m(t)l−1/l − (1 + C1)m(t) 6 C3m
′(t).
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For m(t) small enough, there exists C > 0 such that

Cm(t)l−1/l 6 m(t)l−1/l − (1 + C1)m(t),

and
C ′m(t)l−1/l 6 m′(t).

Again, supposing that m(t) > 0 for all t ∈ [r/2, r], we have

C ′ 6
m′(t)

m(t)l−1/l
,

and integrating over r/2 and r, we get a contradiction for ε > 0 small
enough.

Let E be an isoperimetric region, we de�ne the sets

E1 = {p ∈ Rd : ∃r > 0 such that |B(p, r) \ E| = 0}
E0 = {p ∈ Rd : ∃r > 0 such that |E ∩B(p, r)| = 0}
S = {p ∈ Rd : min{|E ∩B(p, r)|, |B(p, r) \ E|} > ε ∀r 6 1}.

Theorem 3.2.8. Let (Rd, ·, X,K) be a sub-Finsler nilpotent group and let
E be a isoperimetric region. Then the topological and essential boundaries
of E coincide.

Proof. By Lemma 3.2.2 and 3.2.7, the sets E0, E1 and S form a partition of
Rd. Since E1 and E0 are open and disjoint, ∂E1 ∪ ∂E0 ⊆ S. On the other
hand, if p ∈ S and r > 0, B(p, r) ∩ E1 6= ∅ then B(p, r) ∩ E0 6= ∅, otherwise
p ∈ int(E1), and p ∈ ∂E1 ∩ ∂E0.

Theorem 3.2.9 (Boundedness). Any isoperimetric region in a sub-Finsler
nilpotent group (Rd, ·, X,K) is bounded.

Proof. Let E be an isoperimetric set of volume v, B the sub-Riemannian
ball centered in 0 of radius r > 0, and m(r) = |E \ B|, and (E ∩ B)m(r) be
the family given by Lemma 3.0.2. Since |(E ∩B)m(r)| = v, we have

PK(E) 6 PK((E ∩B)m(r)). (3.2.7)

Using the Deformation Lemma (3.0.1), the Isoperimetric inequality (3.1.8)
and Equations (3.1.4) and (3.1.1), we get

PK((E ∩B)m(r)) 6PK(E ∩B) + C3m(r)

6PK(E)− PK(E \B) + 2C1P (E ∩B; ∂B) + C3m(r)

6PK(E)− PK(E \B)− 2C1m
′(r) + C3m(r)

6PK(E)− C2m(r)l−1/l − 2C1m
′(r) + C3m(r).

(3.2.8)
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Subtracting Inequality (3.2.7) in (3.2.8), we get

−2C1m
′(r) > C2m(r)l−1/l − C3m(r).

As m(r) tends to 0 as r tends to ∞, for r big enough there exists C > 0
such that

C2m(r)l−1/l − C3m(r) > Cm(r)l−1/l.

Let r > 1 and suppose that m(r) > 0. Then

−m′(r)
m(r)l−1/l

> C, (3.2.9)

Since
� r

1

−m′(s)
m(s)l−1/l

= −
� m(r)

m(1)

1

sl−1/l
ds = m(1)1/l −m(r)1/l. (3.2.10)

Integrating (3.2.9) between 1 and r and using (3.2.10), we get

m(1)1/l > Cr +m(r)1/l

and r is bounded.

3.3 Existence of isoperimetric regions

Throughout this section, K shall denote a convex body in H0
0 containing 0

in its interior and B(p, r) the sub-Riemannian ball centered in p of radius
r > 0. We shall follow the arguments of Galli and Ritoré [77].

The following lemma can be found in [109] for Carnot groups, and in
the context of sub-Finsler nilpotent groups the proof can be done mutatis
mutandis.

Lemma 3.3.1 (Concentration Lemma). Let F be a set with �nite perimeter
and volume. Suppose that there exists m ∈ (0, |B(0, 1)|/2) such that |F ∩
B(p, 1)| < m for all p ∈ Rd. Then there exists C > 0 depending only on l
such that

C|F |lPK(F )−l 6 m.

The following Lemma can be found in [110].

Lemma 3.3.2. Let {En} be a sequence of uniformly bounded perimeter sets
of volumes {vn} converging to v > 0. Let E be the limit in L1

loc(Rd) of
En. Then there exists a divergence sequence of radii {rn} such that, setting
Fn = En \B(0, rn) and up to a subsequence, it is satis�ed

|E|+ lim inf
n→∞

|Fn| = v,

PK(E)+ lim inf
n→∞

PK(Fn) 6 lim inf
n→∞

PK(En).
(3.3.1)
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Proof. Take {sn} increasing with sn − sn+1 > n. We claim that there exists
rn in [sn, sn+1] such that

P (En ∩ ∂B(0, rn); ∂B(0, rn)) < vn/n,

where P and B(0, r) are the sub-Riemannian perimeter and ball of center 0
and radius r respectively. Otherwise, by Inequality (3.1.4) we have

vn <

� sn+1

sn

P (En ∩ ∂B(0, t))dt 6
� sn+1

sn

d

ds
|s=t|En ∩B(0, s)|dt 6 vn.

Therefore, by Inequality (3.1.1) we get

PK(En) >PK(En ∩B(0, rn)) + PK(En \B(0, rn))

− 2C1P (En ∩ ∂B(0, rn); ∂B(0, rn))

>PK(En ∩B(0, rn)) + PK(Fn)− 2C1vn/n.

(3.3.2)

On the other hand,

|En| = |En ∩B(0, rn)|+ |En \B(0, rn)|. (3.3.3)

Taking inferior limits in n in (3.3.2) and (3.3.3), and using the lower semi-
continuity, we have the result.

Proof of Theorem 3.0.1. Let {En}k∈N be a minimizing sequence of sets with
|En| = v and PK(En) 6 IK(v)+ 1

n . By compactness, the sequence converges
in L1

loc(Rd) to a set E0. Let v0 := |E0|. By Lemma 3.3.2, we can �nd a
sequence of divergence radii rn such that, denoting Fn := En \ B(0, rn), we
have

v0+ lim inf
n→∞

|Fn| = v,

PK(E0)+ lim inf
n→∞

PK(Fn) 6 IK(v).
(3.3.4)

If v0 = v, then the Theorem is proven. If v0 < v, we claim that E0 is
isoperimetric for its volume. Otherwise, we can �nd O ⊆ G such that |O| =
v0 and PK(O) < PK(E0). By Theorem 3.2.8, O is bounded and by de�nition
of Fn, we can �nd n0 such that ∀n > n0, O and Fn are disjoint. Then

lim inf
n→∞

|O ∪ Fn| = |O|+ lim inf
n→∞

|Fn| = v.

By Equation (3.3.4),

IK(v) 6 lim inf
n→∞

PK(O ∪ Fn)

= PK(O) + lim inf
n→∞

PK(Fn)

< PK(E0) + lim inf
n→∞

PK(Fn)

6 IK(v),
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and we have a contradiction.
Step two. If v0 < v we apply Lemma 3.3.1 to �nd a divergent sequence

of points {p1
n} such that |Fn ∩ B(pn, 1)| > m0|Fn|. The sets `−pnFn con-

verge in L1
loc(Rd) to a set E1 of volume v1 6 limn→∞ |Fn| = v − v0. By

Lemma 3.3.2, we can �nd a divergent sequence {r′n} of radii so that the sets
F ′n := (`−pnFn) \B(0, r′n) veri�es

v1+ lim inf
n→∞

|F ′n| = v − v0,

PK(E1)+ lim inf
n→∞

PK(F ′n) 6 lim inf
n→∞

PK(Fn).
(3.3.5)

Since E0 in bounded, we can suppose that E0 ∩E1 = ∅. If v1 = v− v0, then
|E0 ∪ E1| = |E0|+ |E1| = v and

PK(E0 ∪ E1) = PK(E0) + PK(E1) 6 PK(E0) + lim
n→∞

PK(Fn) 6 I(v).

Thus E0 ∪ E1 is the isoperimetric region of volume v. If v1 < v − v0, then
E0 ∪ E1 is isoperimetric for its volume. Otherwise there exists O ⊂ G such
that |O| = v0 + v1 and PK(O) < PK(E0) + PK(E1). Then

IK(v) 6 lim inf
n→∞

PK(O ∪ F ′n)

= PK(O) + lim inf
n→∞

PK(F ′n)

< PK(E0) + PK(E1) + lim inf
n→∞

PK(F ′n)

6 PK(E0) + lim inf
n→∞

PK(Fn)

6 IK(v),

and we have a contradiction.
By induction, we get a sequence of sets E0, . . . , En pairwise disjoint of

volumes v0, . . . , vn whose union is isoperimetric for its volume
∑n

i=1 vi. Sup-
pose that there exists a in�nite number of pieces Ei. Then

∑∞
i=0 vi 6 v. Let

j and k with vj > vi for all i and vk small enough so we can take (Ej)vk the

family de�ned in 3.0.2 and there exists C > 0 with Cvl−1/l
k > C3vk. Then,

by the Deformation Lemma (3.0.1) and the Isoperimetric Inequality (3.1.3),
we get

IK(
∑
i

vi) 6
∑
i 6=j,k

PK(Ei) + PK((Ej)vk) 6
∑
i 6=k

PK(Ei) + C3vk

<
∑
i 6=k

PK(Ei) + Cv
l−1/l
k 6

∑
i 6=k

PK(Ei) + PK(Ek) = IK(
∑
i

vi),

which is a contradiction. Therefore there are a �nite number of pieces, r,
until

∑r
i=1 vi > v, and E0∪E1 . . .∪Er is the isoperimetric region of volume

v.
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Corollary 3.3.3. Let (Rd, ·, X,K) be a sub-Finsler nilpotent group. The
isoperimetric pro�le IK is sub-additive.

Proof. Let v0, . . . , vn > 0. Take Ek isoperimetric region of volume vk. By
Theorem 3.2.9, Ek is bounded and we can take Ej ∩ Ei = ∅. Therefore

IK(v0 + . . .+ vn) 6 PK(
n⋃
k=1

Ek) =
n∑
k=1

PK(Ek) =
n∑
k=1

IK(vk).



Chapter 4

The Brunn-Minkowski

inequality in Nilpotent Lie

groups

In this chapter we show the results obtained in [141]. We shall prove a
generalization of the Brunn-Minkowski inequality in Euclidean space where
the Minkowski addition of sets is replaced by any product ∗ : Rd×Rd → Rd
of the form

z ∗ w = z + w + (F1, F2(z, w), . . . , Fd(z, w)) = z + w + F (z, w), (*)

where F1 is a constant and Fi are continuous functions that depend only on
z1, . . . , zi−1, w1, . . . , wi−1 ∀i = 2, . . . , d. By a product here we mean a binary
operation without assuming any further properties such as associativity.

Theorem 4.0.1 (Brunn-Minkowski inequality for (*) products). Let ∗ :
Rd×Rd → Rd be a product of the form (*) and let A,B ⊂ Rd be measurable
sets such that A ∗B is measurable. Then we have

|A ∗B|1/d > |A|1/d + |B|1/d. (4.0.1)

Any nilpotent Lie group veri�es the hypothesis of Theorem 4.0.1 because
of the expression of the group product in exponential coordinates of the �rst
kind. In this chapter, we shall consider a product ∗ of the form (*), that not
necessarily comes from a group product, and change ∗ for another one ∗z1,w1

of the form (*), depending on the sets A and B, that allows us to compare
the volume of the Minkowski addition of sets for the products ∗ and ∗z1,w1 , as
a consequence of Lemma 4.1.1. When the product ∗ comes from a nilpotent
group it is not true that ∗z1,w1 can de�ne a group product. Then, by an
induction argument, we will compare the volume of the Minkowski addition
of sets A and B with the volume of the Euclidean Minkowski addition of A
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and B, and establish in Proposition 4.1.5 a su�cient condition in H1 for the
strict inequality in (4.0.1).

At the end of the chapter, we state several classical variations of inequal-
ity (4.0.1) in the case of Carnot groups, where dilations can be de�ned.

4.1 The Brunn-Minkowski inequality

We have seen that any simply connected nilpotent group is isomorphic to
Rd with a product of the form (2.2.1). Now we prove the Brunn-Minkowski
inequality for any product ∗ : Rd × Rd → Rd of the form (*). This product
does not necessarily de�nes a group structure in Rd. Given such a map F
and z′1, w

′
1 ∈ R, we can de�ne another product ∗z′1,w′1 : Rd × Rd → Rd, by

z ∗z′1,w′1 w = z + w + F ((z′1, z̃), (w
′
1, w̃)),

where z̃ = (z2, . . . , zd), w̃ = (w2, . . . , wd). We de�ne the map F(z′1,w
′
1) :

Rd−1 × Rd−1 → Rd−1 by

F(z′1,w
′
1)(z̃, w̃) := (F2, . . . , Fd)((z

′
1, z̃), (w

′
1, w̃)). (4.1.1)

Notice that Fi((z′1, z̃), (w
′
1, w̃)) only depends on the �rst i− 2 variables of z̃

and w̃ and so F2((z′1, z̃), (w
′
1, w̃)) is constant. Thus the product ∗̃ : Rd−1 ×

Rd−1 → Rd−1 given by

z̃ ∗̃ w̃ = z̃ + w̃ + F(z′1,w
′
1)(z̃, w̃), (4.1.2)

has the form (*). Notice that the product ∗̃ depends on the choice of z′1, w
′
1.

We hall denote | · |n the Lebesgue measure in Rd. We will drop the
subscript when n coincides with the topological dimension.

Lemma 4.1.1. Let ∗ : Rd × Rd → Rd be a product of the form (*) and let
A,B ⊂ Rd be A = I × Ã, and B = J × B̃, where I, J are compact intervals
in R and Ã, B̃ ⊂ Rd−1 are compact. Then

|A ∗B| > |I + J |1|Ã ∗̃ B̃|d−1, (4.1.3)

where ∗̃ is the product described in (4.1.2) for certain z′1 ∈ I and w′1 ∈ J .
Moreover, if F does not depends on z1, w1, then equality holds in (4.1.3).

Proof. Notice that A ∗ B and Ã ∗̃ B̃ are compact, and so measurable. Let
I = [a, b], J = [a′, b′] and l = b− a, l′ = b′ − a′. The product is

A ∗B =
{
z + w + F (z, w) : z1 ∈ I, w1 ∈ J, z̃ ∈ Ã, w̃ ∈ B̃

}
.
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We de�ne a di�eomorphism φ : R2 → R2 by (s, z) 7→ (z, s− z). The inverse
φ−1(z, w) = (z + w, z) is a di�eomorphism between the sets I × J and
{(s1, z1) : s1 ∈ I + J, z1 ∈ I ∩ (s1 − J) = K(s1)}. Hence, we clearly have

A ∗B =
{

(s1, z̃ + w̃) + (F1, Fφ(s1,z1))(z̃, w̃) : s1 ∈ I + J,

z̃ ∈ Ã, z1 ∈ K(s1), w̃ ∈ B̃
}
.

Now we use Fubini's theorem and we obtain

|A ∗B| =
�
I+J

h(s1)ds1, (4.1.4)

where h : I + J → R+
0 is the function

h(s1) =
∣∣{p̃ ∈ Rd−1 : (s1 + F1, p̃) ∈ A ∗B}

∣∣
d−1

=

∣∣∣∣∣ ⋃
z1∈K(s1)

D(s1,z1)

∣∣∣∣∣
d−1

,

(4.1.5)
and

D(s1,z1) = {z̃ + w̃ + Fφ(s1,z1)(z̃, w̃) : z̃ ∈ Ã, w̃ ∈ B̃}. (4.1.6)

Now we compare h(s1) with the measure of D(s1,z1) for some z1. Let
z1 : I + J → R be the function

z1(s1) = tl + a,

where t = s1−(a+a′)
l+l′ . It is clear that 0 6 t 6 1, hence z1(s1) ∈ I. Moreover,

tl + a = s1 − tl′ − a′,

and therefore z1(s1) ∈ s1 − J . Then z1(s1) ∈ K(s1).
Let f : I + J → R+

0 be the map given by f(s1) =
∣∣D(s1,z1(s1))

∣∣
d−1

. It is
easy to check that f is continuous, and hence f reaches its minimum at a
certain value s′1. Thus, we get

�
I+J

h(s1)ds1 >
�
I+J

f(s1)ds1 >
�
I+J

f(s′1)ds1 = |I + J |1f(s′1). (4.1.7)

Denoting by z′1 := z1(s′1) and w′1 := s′1−z′1, we can write Fφ(s′1,z
′
1) = F(z′1,w

′
1).

Hence we have that D(s′1,z
′
1) = Ã ∗̃ B̃ and

f(s′1) = |Ã ∗̃ B̃|d−1. (4.1.8)

From (4.1.4), (4.1.7) and (4.1.8) we obtain (4.1.3).
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Suppose that F does not depend on z1, w1, let us prove that equality
holds in (4.1.3). It is enough to prove equality in (4.1.7). For any s1 ∈ I +J
and z1 ∈ K(s1), we have that

Fφ(s′1,z
′
1) = Fz′1,w′1 = Fz1,w1 = Fφ(s1,z1),

where w1 = s1 − z1. Therefore

D(s′1,z
′
1) = D(s1,z1) =

⋃
z1∈K(s1)

D(s1,z1). (4.1.9)

Hence, from (4.1.5) and (4.1.9) we get that f(s′1) = h(s1) for all s1 ∈ I + J .
Thus equality holds in (4.1.7) and the result follows.

Remark 4.1.2. The product ∗z′1,w′1 does not depend on z1, w1 and Lemma
4.1.1 guarantees

|A ∗B| > |I + J |1|Ã ∗̃ B̃|d−1 = |A ∗z′1,w′1 B|. (4.1.10)

Recall that ∗z′1,w′1 acts as a sum in the �rst two coordinates, and someway
(4.1.10) allows us to compare the measure of A ∗ B with the measure of a
set more similar to the Euclidean Minkowski addition of A and B.

Proof of Theorem 4.0.1. The proof is divided into three steps.
Step 1. We �rst claim that (4.0.1) holds for a pair of d-rectangles A and

B, that is,

A =I1 × · · · × Id
B =J1 × · · · × Jd,

where Ii, Jj are compact intervals ∀ 1 6 i, j 6 d. We shall see that

|A ∗B| > |I1 + J1|1 . . . |Id + Jd|1 = |A+B|, (4.1.11)

and the classical Brunn-Minkowski inequality in Rd would imply (4.0.1).
In order to prove (4.1.11), we use Lemma 4.1.1 to obtain

|A ∗B| > |I1 + J1|1|Ã ∗̃ B̃|d−1,

but now Ã = I2× (I3× . . .× Id), B̃ = J2× (J3× . . .×Jd) and ∗̃ has the form
(*), and so we can apply Lemma 4.1.1 to the sets Ã and B̃. Iterating this
process, we get (4.1.11).

Step 2. Now we consider the case where A and B are �nite unions of
dyadic d-rectangles, that is, A = A1 ∪ . . . ∪ An, B = B1 ∪ . . . ∪ Bm where
Ai = Ii1 × . . . × Iid, Bj = J j1 × . . . × J

j
d and, for any k = 1, . . . , d and r 6= s

(p 6= q), it is satis�ed that either int(Irk) ∩ int(Isk) = ∅ or Irk = Isk (either
int(Jpk ) ∩ int(Jqk) = ∅ or Jpk = Jqk), where int(I) denotes the interior of I.
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We proceed by induction on the total number n + m of d-rectangles. If
n+m = 2, then A and B are d-rectangles and we can apply step 1. Suppose
that the theorem holds for n + m − 1, where n + m > 3. Then we can
�nd a hyperplane P : {zi = ai} such that some Ar ⊂ {zi > ai} and some
As ⊂ {zi 6 ai}.

If the hyperplane has as equation P : {z1 = a1}, the proof is the same as
the classical proof of Hadwiger and Ohmann for the addition of sets in Rd.
We include it for the sake of completeness. The sets

A+ = A ∩ {z1 > a1}, A− = A ∩ {z1 6 a1}

are unions of d-rectangles whose sum is strictly less than n. We choose a
parallel hyperplane Q : {z1 = b1} verifying that

|B±|
|B|

=
|A±|
|A|

, (4.1.12)

where B+ and B− are the sets given by

B+ = B ∩ {z1 > b1}, B− = B ∩ {z1 6 b1}.

Moreover, B+ and B− are disjoint unions of d-rectangles whose sum is at
mostm. We apply the induction hypothesis to the pairs A+, B+ and A−, B−,
and we obtain

|A+ ∗B+| > (|A+|1/d + |B+|1/d)d

|A− ∗B−| > (|A−|1/d + |B−|1/d)d.
(4.1.13)

On the other hand, P ∗ Q is contained in another vertical plane {z1 =
a1 + b1} ⊂ Rd, A+ ∗ B+ ⊂ (P ∗ Q)+, and A− ∗ B− ⊂ (P ∗ Q)−. Therefore
A+ ∗B+ and A− ∗B− are disjoint sets (up to a null set) in A∗B. Combining
this with (4.1.12) and (4.1.13) we get the inequality

|A ∗B| > |A+ ∗B+|+ |A− ∗B−|
> (|A+|1/d + |B+|1/d)d + (|A−|1/d + |B−|1/d)d

= (|A+|+ |A−|)

[
1 +

(
|B|
|A|

)1/d
]d

= (|A|1/d + |B|1/d)d,

and the theorem is proved for such A and B.
If there is no such hyperplane with equation P : {z1 = a1} but with

equation P : {z2 = a2}, then for any u, v, p, q, Iu1 = Iv1 = I1, J
p
1 = Jq1 = J1
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and for some r 6= s, int(Ir2) ∩ int(Is2) = ∅, and we can write

A =
⋃
i

I1 × Ii2 × . . .× Iid = I1 ×

(⋃
i

Ii2 × . . .× Iid

)
= I1 × Ã

B =
⋃
j

J1 × J j2 × . . .× J
j
d = J1 ×

⋃
j

J j2 × . . .× J
j
d

 = J1 × B̃.

We have seen in (4.1.10) that

|A ∗B| > |A ∗z′1,w′1 B|.

Now we repeat the above argument, where now we apply the induction hy-
pothesis to the product ∗z′1,w′1 , thus the sets A

+ ∗z′1,w′1 B
+ and A− ∗z′1,w′1 B

−

are disjoint (up to a null set). Hence, by (4.1.10) we obtain

|A∗B| > |A∗z′1,w′1B| > |A
+∗z′1,w′1B

+|+ |A−∗z′1,w′1B
−| > (|A|1/d+ |B|1/d|)1/d

and the result is proved.
Repeating this reasoning we have covered the general case where P :

{zi = ai}.
Step 3. Let us prove (4.0.1) for A and B are measurable sets such that

A ∗ B is measurable. We can suppose that A, B and A ∗ B have �nite
measure, since otherwise the inequality is trivial. Fix ε > 0 and take an
open set O such that A ∗ B ⊂ O and |O \ A ∗ B| < ε. Take open sets
OA ⊃ A and OB ⊃ B such that |OA \ A| < ε and |OB \ B| < ε. Since ∗ is
continuous, we can assume also that OA ∗ OB ⊂ O. Now we approximate
the open sets OA and OB from inside by dyadic d-rectangles, DA and DB so
that |OA \DA| < ε, |OB \DB| < ε. Using step 2 for DA and DB, we obtain

(|A ∗B|+ ε)1/d > |O|1/d > |OA ∗OB|1/d > |DA ∗DB|1/d

> |DA|1/d + |DB|1/d > (|A| − 2ε)1/d + (|B| − 2ε)1/d.

Taking ε→ 0 we obtain (4.0.1).

As a particular case, we have the Brunn-Minkowski inequality in nilpo-
tent groups.

Theorem 4.1.3 (Brunn-Minkowski inequality in nilpotent groups). Let G
be a simply connected nilpotent group of topological dimension d with Haar
measure µ and let A,B ⊂ G be measurable sets such that A ·B is measurable.
Then we have

µ(A ·B)1/d > µ(A)1/d + µ(B)1/d. (4.1.14)
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Proof. We denote A = log(A), B = log(B). Using Proposition 2.2.4 and
Theorem 4.0.1, we have

µ(A ·B) = | log(A ·B)| = | log(exp(A) · exp(B))| = |A ∗ B|
> (|A|1/d + |B|1/d)d = (µ(A)1/d + µ(B)1/d)d.

Remark 4.1.4. Since the right-hand side of (4.1.14) is symmetric in A and
B, it follows

min{µ(A ·B), µ(B ·A)}1/d > µ(A)1/d + µ(B)1/d.

An example where µ(A ·B) and µ(B ·A) are di�erent can be found in [108].

4.1.1 A su�cient condition for strict inequality in the Heisen-

berg group

A set A in the Heisenberg group H1 of the form A = A1×A2, where A1 is a
measurable set in R2 and A2 is a measurable set in R is called a generalized
cylinder.

In this subsection we prove in Proposition 4.1.5 that the Brunn-Minkowski
inequality (4.1.14) is strict in H1 for a pair of generalized cylinders A and B
such that the volumes of A1 and B1 are positive.

Recall that a point a in Rd is a density point of A if

lim
r→0+

|A ∩B(a, r)|
|B(a, r)|

= 1,

where B(a, r) is the ball of center a and radius r with the CC distance.
The set of density points of a set A will be denoted as Ao. We can always
normalize a set by including its density points in the set. The existence of a
density point in A implies that the volume of A is positive.

Proposition 4.1.5. Let A,B ⊂ H1 be generalized cylinders such that A ·B
and A+B are measurable. Suppose that |A1| > 0 and |B1| > 0. Then

|A ·B| > |A+B|. (4.1.15)

Proof. By Fubini's theorem, we have

|A ·B| =
�
A1+B1

h(s1)ds1,

where h(s1) = |{t + t′ + Im(z(s1 − z)) : t ∈ A2, t
′ ∈ B2, z ∈ K(s1)}|1 and

K(s1) = I∩(s1−J). Denoting s1 = (sx, sy) , we can see that Im(z(s1 − z)) =
Im(zs1) = ysx − xsy. We write

Is1 = {ysx − xsy : (x, y) ∈ K(s1)}.
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By the Brunn-Minkowski inequality in R,

h(s1) = |{s2 + Im(zs1) : s2 ∈ A2 +B2, z ∈ K(s1)}|1
= |{s2 + a : s2 ∈ A2 +B2, a ∈ Is1}|1
> |A2 +B2|1 + |Is1 |1.

We assert that if |K(s1)|2 > 0, then |Is1 |1 > 0. To see that, we can take
the di�eomorphism φ : R2 → R2 given by (x, y) 7→

(
ysx − xsy, x

2sx
− y

2sy

)
.

Then |Jac(φ)| = 1 and applying the change of variables formula to φ−1, we
have

0 < |K(s1)|2 =

�
R2

χK(s1)(z)dz =

�
R2

χφ(K(s1))(z)dz = |φ(K(s1))|2.

Now we use that, for any set O ⊆ R2 with |O|2 > 0, it holds that |π1(O)|1 > 0
where π1(x, y) = x, since |π1(O)|1 = 0 implies |O|2 6 |π1(O) × R|2 = 0.
Hence

|Is1 |1 = |π1(φ(K(s1)))|1 > 0.

To complete the proof it remains to show that {s1 ∈ A1 +B1 : |K(s1)|2 >
0} has positive measure. Let a ∈ Ao1, b ∈ Bo

1 and s1 = a + b ∈ Ao1 + Bo
1 .

Then a = s1 − b is a density point in s1 − B1 and therefore a is a density
point in A1 ∩ (s1 − B1) = K(s1) which implies that |K(s1)|2 > 0. Finally
Ao1+Bo

1 ⊆ A1+B1 has positive measure since |Ao1+Bo
1|2 > |Ao1|2 = |A1|2 > 0,

and

|{s1 ∈ A1 +B1 : |K(s1)|2 > 0}|2 > |{s1 ∈ Ao1 +Bo
1 : |K(s1)|2 > 0}|2 > 0.

Remark 4.1.6. In order to characterize the equality in (4.1.14) for gener-
alized cylinders, we can distinguish several cases. If A and B lie in parallel
vertical hyperplanes, then |A ·B| = 0 and we have equality in (4.1.14). If A
and B are convex and homothetic then either |A1|2 > 0 and B1 is a point and
the equality holds, or |A1|2 > 0 and |B1|2 > 0, and therefore, by Proposition
4.1.5 jointly with the (Euclidean) Brunn-Minkowski inequality, equality does
not hold in (4.1.14). The same argument works if A and B lie in horizontal
hyperplanes with |A1|2 > 0 and |B1|2 > 0. The case in which A and B lie
in horizontal hyperplanes with |A1|2 = 0 is not known in general.

4.2 Consequences

Another equivalent version of the Brunn-Minkowski inequality in Euclidean
space is the Prékopa-Leindler inequality. Now we show how the proof of
the Prékopa-Leindler inequality from the Brunn-Minkowski inequality can
be adapted to the case of nilpotent groups.
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Theorem 4.2.1 (Prékopa-Leindler inequality in nilpotent groups). Let G
be a simply connected nilpotent group of topological dimension d with Haar
measure µ. Let f, g, h : G → R+

0 be measurable functions and 0 < α < 1
verifying

h(a · b) > f(a)1−αg(b)α ∀a, b ∈ G. (4.2.1)

Then

�
G
hdµ >

1

(1− α)d(1−α)αdα

(�
G
fdµ

)1−α(�
G
gdµ

)α
. (4.2.2)

Proof. We proceed by induction on d.
Let d = 1 and a · b ∈ {f > λ} · {g > λ}. Then we have h(a · b) >

f(a)1−αg(b)α > λ, and as a consequence

{h > λ} ⊃ {f > λ} · {g > λ}.

Now we can apply Theorem 4.1.3 to get

µ({h > λ}) > µ({f > λ}) + µ({g > λ}).

Integrating in λ and using Cavalieri's Principle,

�
G
hdµ =

� ∞
0

µ({h > λ})dλ >
� ∞

0

(
µ({f > λ}) + µ({g > λ})

)
dλ =

�
G
fdµ+

�
G
gdµ. (4.2.3)

Now we use the weighted inequality between the geometric and arithmetic
means, �

G
fdµ+

�
G
gdµ >

(�
G fdµ

1− α

)1−α(�
G gdµ

α

)α
. (4.2.4)

From (4.2.3) and (4.2.4) we have (4.2.2).
Suppose that Theorem 4.2.1 holds for d − 1. We shall prove (4.2.4)

for the functions f, g, h composed with exp and use Proposition 2.2.4. Let
z′ = (z1, . . . , zd−1), w′ = (w1, . . . , wd−1) ∈ Rd−1. By (2.2.1), we can write
(z′, zd)∗(w′, wd) = (z′∗′w′, zd+wd+Pd(z

′, w′)). Recall that Rd is isomorphic
to g once we �x the strong Malcev basis {X1, . . . , Xd}, and Xd spans an ideal
H1 in g. Thus g/H1

∼= (Rd−1, ∗′) is a nilpotent group. Now we de�ne the
functions f̃ , g̃, h̃ : R→ R+

0 by

f̃(zd) = (f ◦ exp)(z′, zd),

g̃(wd) = (g ◦ exp)(w′, wd),

h̃(t) = (h ◦ exp)(z′ ∗′ w′, t+ Pd(z
′, w′)).
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Let us see that these functions verify (4.2.1):

h̃(zd + wd) = (h ◦ exp)((z′, zd) ∗ (w′, wd)) = h(exp(z′, zd) · exp(w′, wd))

> (f ◦ exp)1−α(z′, zd)(g ◦ exp)α(w′, wd) = f̃1−α(zd)g̃
α(wd). (4.2.5)

By induction hypothesis,
�
R
h̃(t)dt >

1

(1− α)(1−α)αα

(�
R
f̃(zd)dzd

)1−α(�
R
g̃(wd)dwd

)α
. (4.2.6)

By the invariance of the 1-dimensional Lebesgue measure by translations we
get �

R
(h ◦ exp)(z′ ∗′ w′, t)dt =

�
R
h̃(t)dt. (4.2.7)

Inequality (4.2.5) is valid for any z′, w′ ∈ Rd−1, and we can de�ne the func-
tions F,G,H : Rd−1 → R+

0 given by

F (z′) =
1

(1− α)

�
R
f̃(zd)dzd

G(w′) =
1

α

�
R
g̃(wd)dwd

H(z′) =

�
R

(h ◦ exp)(z′, t)dt.

(4.2.8)

Applying (4.2.7) we can rewrite (4.2.6) as

H(z′ ∗′ w′) =

�
R
h̃(t)dt > F (z′)1−αG(w′)α ∀z′, w′ ∈ Rd−1,

and again by the induction hypothesis, we get
�
Rd−1

H(z′)dz′ >

1

(1− α)(d−1)(1−α)α(d−1)α

(�
Rd−1

F (z′)dz′
)1−α(�

Rd−1

G(w′)dw′
)α

.

The result now follows from Fubini's theorem.

The Prékopa-Leindler inequality in Rd is usually stated using h((1−α)x+
αy) instead of h(x+y) in order to eliminate the factor ((1−α)d(1−α)αdα)−1.
This can be done when dilations are de�ned, and in this case, this inequality
take a more pleasant expression.

Corollary 4.2.2. Let G be a strati�able group of topological dimension d
with Haar measure µ and homogeneous dimension Q. Let f, g, h : G → R+

0

be measurable functions, and 0 < α < 1 verifying

h(δ(1−α)a · δαb) > f(a)1−αg(b)α ∀a, b ∈ G.
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Then

�
G
hdµ > (1− α)(Q−d)(1−α)α(Q−d)α

(�
G
fdµ

)1−α(�
G
gdµ

)α
.

Proof. For the sake of simplicity, δλ(a) will be just written as λa for any
λ > 0 and a ∈ G. We denote a′ = (1− α)a, b′ = αb, f1−α(a) = f( a

1−α) and
gα(a) = g( aα). Then we have

h(a′ · b′) > f(a)1−αg(b)α = f

(
a′

1− α

)1−α
g

(
b′

α

)α
= f1−α(a′)1−αgα(b′)α.

By Theorem 4.2.1, we have

�
G
hdµ >

1

(1− α)d(1−α)αdα

(�
G
f1−αdµ

)1−α(�
G
gαdµ

)α
.

Using now Proposition 2.2.11,

�
G
f1−α(a)dµ(a) =

�
G
f

(
a

1− α

)
dµ(a) = (1− α)Q

�
G
f(a′)dµ(a′),

and after using also Proposition 2.2.11 for the integral of gα, we obtain

�
G
hdµ > (1− α)(Q−d)(1−α)α(Q−d)α

(�
G
fdµ

)1−α(�
G
gdµ

)α
.

As we can �nd in [156], there are several equivalent statements for the
Brunn-Minkowski inequality in Euclidean space. Similarly, we have the fol-
lowing result.

Corollary 4.2.3 (Multiplicative Brunn-Minkowski inequalities in Carnot
groups). Let G be a Carnot group of topological dimension d with Haar mea-
sure µ and homogeneous dimension Q. Let A,B ⊂ G be measurable sets
such that A ·B is measurable, and 0 < α < 1. Then

µ(δ(1−α)A · δαB)1/d > (1− α)Q/dµ(A)1/d + αQ/dµ(B)1/d.

µ(δ(1−α)A · δαB) > (1− α)(Q−d)(1−α)α(Q−d)αµ(A)1−αµ(B)α.

Proof. We use Theorem 4.1.3 with the sets δ(1−α)A and δαB, and from
Proposition 2.2.11 we get the �rst inequality.

For the second one, we take f = χA, g = χB and h = χδ(1−α)A·δαB and
apply Corollary 4.2.2, obtaining the result.
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Notes

Notes of � 4.1 1. Theorem 4.0.1 is an extension of the result obtained by
Leonardi and Masnou [108] in Heisenberg groups. They prove the theorem
�rst for the case where A and B are cubes in R2n+1 of the form A1 ×
A2 where A1 is a dyadic cube in R2n and A2 is a measurable set in R,
then when A and B are unions of a �nite number of cubes, using then an
approximation argument. This has the crucial property that either exists a
vertical hyperplane that separates cubes or the union is a cube itself. We
call a hyperplane vertical when is also a hyperplane after left multiplication.
Then we can consider only vertical hyperplanes to separate cubes. In Rd
with a product of the form (*) this property is not true, since the union of
the cubes takes the form

⋃
i

I1× . . .× In1 × Iin1+1× . . .× Iid = I1× . . .× In1 ×

(⋃
i

Iin1+1 × . . .× Iid

)
.

This set is not of the form A1×A2 and the argument fails. While the proof of
Leonardi and Masnou only works in Heisenberg groups, this arguments can
be seen as the �rst step of an induction argument developed in this chapter.

The exponent of (4.0.1) cannot be improved to Q−1. Indeed, if we replace
the exponent d−1 by Q−1, Monti [124] proved that geodesic balls would
be isoperimetric sets among su�ciently regular sets, which are not. By
su�ciently regular sets we refer to sets whose Minkowski content coincides
with its perimeter, a property that holds whenever the boundary is C2, see
[127].

Juillet [102] developed a method to disprove Brunn-Minkowski inequal-
ities, �rst connected to the geodesic Brunn-Minkowski inequality and the
measure contraction property of metric measure spaces. He used this method
to disprove the Brunn-Minkowski inequality in Hn with any exponent be-
tween (2n+ 1)−1 and (2n+ 2)−1.

After [141] was completed, the author was informed that Theorem 4.0.1
was also proven by Bobkov [16] in 2011, where he used Knothe's map to
get the Brunn-Minkowski inequality for convex sets and obtained the gen-
eral result after proving the equivalent analytic version of the theorem, the
Prékopa-Leindler inequality.

Notes of � 4.2 1. Terence Tao [160; 161] posted an entry in his blog in 2011
explaining how to produce a Prékopa-Leindler inequality in any nilpotent Lie
group of topological dimension d, which provides a natural way to prove the
multiplicative Brunn-Minkowski inequality with exponent d−1. We remark
that the path developed in this chapter is the opposite and is equivalent.



Chapter 5

Pansu-Wul� shapes in H1

This chapter gather the results obtained with Ritoré in [142].
We consider a convex set K with boundary of class C2

+ (i.e., so that
∂K is of class C2 and ∂K has positive geodesic curvature everywhere) and
an open region Ω ⊆ H1 with boundary ∂Ω = S of class C2. We compute
the �rst variation of the area functional associated to a vector �eld U with
compact support in the regular part of S to get

A′K(0) =

�
S
u
(

divS ηK
)
dS.

In this formula u = 〈U,N〉 is the normal component of the variation and
divS ηK is the divergence on S of the vector �eld ηK = πK(νh), where νh =
Nh/|Nh| is the horizontal unit normal and πK is the projection map de�ned
in Subsection 2.1.1.

The function HK = divS ηK is called the mean curvature of S. Further
calculations imply that HK is equal to 〈DZηK , Z〉, where Z = −J(νh) is
the horizontal direction on the regular part of S. Hence the mean curvature
function is localized on the horizontal curves of S. It is not di�cult to check
that a horizontal curve in a surface with mean curvature HK must satisfy a
di�erential equation depending on HK . Hence we can reconstruct the regu-
lar part of a surface with prescribed mean curvature by taking solutions of
this di�erential equation. Furthermore, we might be able classify surfaces
with prescribed mean curvature by classifying solutions of this ordinary dif-
ferential equation and by looking at the interaction of these curves with
the singular set S0 of S composed of the points where the tangent plane is
horizontal, as was done in [151] for the standard sub-Riemannian perimeter.

Key observations are that horizontal straight lines are solutions of the
di�erential equation for HK = 0 and that horizontal liftings of the curve
| · |K = 1 are solutions for HK = 1. The strict convexity of ∂K together
with the invariance of the equation by left-translations and dilations imply
that all solutions are of this type.
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Hence, given a convex body K ⊂ R2 containing 0 in its interior and
its associated left�invariant norm | · |K , we consider the set BK obtained as
the ball enclosed by the horizontal liftings of all translations of the curve ∂K
containing 0. It is not di�cult to prove that this way we obtain a topological
sphere SK with two poles on the same vertical line, that is the union of two
graphs. Moreover the boundary of BK is C2 outside the poles (indeed C`

if the boundary of K is of class C`, ` > 2) and of regularity C2 around
the poles. When K = D, these sets were build by P. Pansu [137] and are
frequently referred to as Pansu spheres. We remark that Pansu spheres' BD
are of class C2 but not C3 near the singular points, see Proposition 3.15 in
[46] and Example 3.3 in [151].

Figure 5.1: The set BK when K is the unit ball of the r-norm ||(x, y)||r =(
|x|r + |y|r

)1/r
, r = 1.5

We observe that these objects have constant mean curvature. Hence
they are critical points of the sub-Finsler area functional under a volume
constraint. Further evidence that they have stronger minimization properties
is given in Section 5.5, where it is proven that, under a geometric condition,
a set of �nite perimeter E with volume equal to the volume of BK has
perimeter larger than or equal to the one of the ball BK . A slightly weaker
result for the Euclidean norm was proven in [147]. Moreover, at the end of
Section 5.5 it is proven that

This chapter is organized into several sections. In the next one we �x no-
tation and give some background, focusing specially in properties of the sub-
Finsler perimeter. In Section 5.2 we compute the �rst variation of perimeter
for surfaces of class C2 and prove the property that the regular part of
the surface is foliated by horizontal liftings of translations of homothetic
expansions of ∂K. In Section 5.3 we de�ne the Pansu-Wul� shapes and
compute some examples and prove regularity properties of these objects. In
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Figure 5.2: The set BK when K is a smooth approximation of the triangular
norm

Section 5.4 we study some geometric properties of the Pansu-Wul� shapes
and in Section 5.5 we obtain a minimization property of these Pansu-Wul�
shapes. Finally, in Subsection 5.5.1 we prove that Pansu-Wul� shapes are
the only minimizers of perimeter under a slightly stronger geometric condi-
tion. This property indicates that these shapes are good candidates to be
solutions of the sub-Finsler isoperimetric problem in H1.

5.1 The pseudo-hermitian connection

The pseudo-hermitian connection ∇ on H1 is the only a�ne connection sat-
isfying the following properties:

1. ∇ is a metric connection,

2. Tor(U, V ) = 2 〈J(U), V 〉T for all vector �elds U, V .

The existence of the pseudo-hermitian connection can be easily obtained
adapting the proof of existence of the Levi-Civita connection, see Theorem
3.6 in [57].

We shall use the following relation between the pseudo-hermitian and the
Levi-Civita connections.

Lemma 5.1.1. Let U , V and W be vector �elds where V and W are hori-
zontal. Then the following equation holds

〈∇UV,W 〉 = 〈DUV,W 〉+ 〈J(W ), V 〉〈T,U〉. (5.1.1)

In particular
∇UV = DUV − 〈T,U〉J(V ). (5.1.2)
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Proof. By Koszul formula, see � 3 in [57]. The terms in the �rst two lines
are equal to 〈DUV,W 〉. The last three terms can be computed using the
expression for the torsion to get

〈J(W ), V 〉〈T,U〉.

This proves (5.1.1).

Using Koszul formula it can be easily seen that ∇X = ∇Y = 0.

Corollary 5.1.2. Let γ : I → S be a curve on H1 and let ∇/ds, D/ds
be the covariant derivatives induced by the pseudo-hermitian connection and
the Levi-Civita connection in γ, respectively. Let V be a vector �eld along γ.
Then we have

∇
ds
V =

D

ds
V − 〈γ̇, T 〉J(V ). (5.1.3)

In particular, if γ is a horizontal curve, the covariant derivatives coincide.

5.2 First variation of sub-Finsler area

In this section we �x a convex body K ⊂ R2 containing 0 in its interior
with C2

+ boundary and consider its associated left-invariant norm | · |K in
H1. Since the convex body is �xed, we drop the subscript along this section.

Let S be an oriented C2 surface immersed in H1. Let U be a C2 vector
�eld with compact support on S, normal component u = 〈U,N〉 and associ-
ated one-parameter group of di�eomorphisms {ϕs}s∈R. In this subsection we
compute the �rst variation of the sub-Finsler area A(s) = A(ϕs(S)). More
precisely

Theorem 5.2.1. Let S be an oriented C2 surface immersed in (H1,K). Let
U be a C2 vector �eld with compact support on S, normal component u =
〈U,N〉 and {ϕs}s∈R the associated one-parameter group of di�eomorphisms.
Let η = π(νh). Then we have

d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

�
S

(
udivS η − 2u〈N,T 〉〈J(Nh), η〉

)
dS

−
�
S

divS
(
uη>

)
dS,

(5.2.1)

where divS is the Riemannian divergence in S, and the superscript > indi-
cates the tangent projection to S.

In the proof of Theorem 5.2.1 we shall make use of the following Lemma
and its consequences.
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Lemma 5.2.2. Let γ : I → H1 be a C1 curve, where I ⊂ R is an open
interval, and V a horizontal vector �eld along γ. We have

d

ds
|V |∗ = 〈D

ds
V, π(V )〉+ 〈γ′, Tγ〉〈V, J(π(V ))〉. (5.2.2)

Proof. We �x s0 ∈ I and let p = γ(s0). Assume that π(V (s0)) = aXp + bYp,
for some a, b ∈ R. Take the vector �eld W (s) := aXγ(s) + bYγ(s) along γ.
It coincides with π(V (s0)) when s = s0, and it is the restriction to γ of the
left-invariant vector �eld aX + bY . In particular, |(aX + bY )γ(s)|γ(s) = 1 for
all s ∈ I. Hence

|V (s)|∗ > 〈V (s), (aX + bY )γ(s)〉 for all s ∈ I,

and, since equality holds in the above inequality when s = s0, we have

d

ds

∣∣∣∣
s=s0

|V (s)|∗ =
d

ds

∣∣∣∣
s=s0

〈V (s), (aX + bY )γ(s)〉

= 〈 ∇
ds

∣∣∣∣
s=s0

V (s), π(V (s0))〉

since
∇
ds

∣∣∣∣
s=s0

(aX + bY )γ(s) = a∇γ′(s0)X + b∇γ′(s0)Y = 0.

The result follows from the relation between the covariant derivatives given
in Equation (5.1.3).

Remark 5.2.3. In the proof of Lemma 5.2.2 we have obtained the equality

d

ds
|V |∗ = 〈 ∇

ds
V, π(V )〉

for a horizontal vector �eld V along a curve γ. Since∇ is a metric connection,
we also have

d

ds
|V |∗ = 〈 ∇

ds
V, π(V )〉+ 〈V, ∇

ds
π(V )〉.

Hence we get

〈V, ∇
ds
π(V )〉 = 0 (5.2.3)

for a horizontal vector �eld V along γ, where ∇/ds is the covariant deriva-
tive induced by the pseudo-hermitian connection on γ. Taking into account
the relation between the Levi-Civita and pseudo-hermitian connections we
deduce from (5.2.3) and (5.1.3)

〈V, D
ds
π(V )− 〈γ̇, Tγ〉J(π(V ))〉 = 0. (5.2.4)

The following is an easy consequence of Lemma 5.2.2
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Corollary 5.2.4. Let F be a vector �eld tangent to S and γ an integral
curve of F . We have

〈D
ds
ηγ , νh〉 = −〈F, T 〉〈η, J(νh)〉. (5.2.5)

In particular, if F is horizontal,

〈D
ds
ηγ , νh〉 = 0. (5.2.6)

Proof. We take V = νh and we get (5.2.5) from equation (5.2.4).

Proof of Theorem 5.2.1. Standard variational arguments, see the proof of
Lemma 4.3 in [151], yield

A′(0) =
d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

�
S

(
d

ds

∣∣∣∣
s=0

|(Ns)h|∗ + |Nh|∗ divS U

)
dS,

where Ns is a smooth choice of unit normal to ϕs(S) for small s. We �x a
point p ∈ S and consider the curve γ(s) = ϕs(p). Lemma 5.2.2 now implies

d

ds

∣∣∣∣
s=0

|(Ns)h|∗ = 〈D
ds

∣∣∣∣
s=0

(Ns)h, ηp〉+ 〈Up, Tp〉〈(Nh)p, J(ηp)〉,

By the de�nition of (Ns)h we also have

D

ds

∣∣∣∣
s=0

(Ns)h =
D

ds

∣∣∣∣
s=0

(
Ns − 〈Ns, T 〉T

)
,

where Ns is the Riemannian unit normal to ϕs(S). A well-known lemma in
Riemannian geometry implies

D

ds

∣∣∣∣
s=0

Ns = −(∇Su)(p)−AS(U>p ),

where AS is the Weingarten endomorphism of S. Since D
ds

∣∣
s=0

T = J(Up)
and η is horizontal, calling

B(U) = −〈N,T 〉〈J(U), η〉+ 〈U, T 〉〈Nh, J(η)〉,

we get

D
ds

∣∣
s=0
|(Ns)h|∗ =

(
〈−∇Su−AS(U>), η〉

)
p

+B(Up)

= −〈∇Su, η〉p +B(U⊥p ) +
(
− 〈AS(U⊥), η〉p +B(U>p )

)
=
(
− 〈∇Su, η〉 − 2u〈N,T 〉〈J(Nh), η〉

)
p

+ U>p (|Nh|∗).
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Observe that

−〈∇Su, η〉 = udivS η − divS(uη)

= udivS η − divS(uη>)− divS(u〈N, η〉N)

= udivS η − divS(uη>)− u|Nh|∗ divS N.

Hence we get

A′(0) =

�
S

(
udivS η − 2u〈N,T 〉〈J(Nh), η〉

)
dS

+

�
S

divS
(
|Nh|∗U> − uη>

)
dS.

From here we obtain formula (5.2.1) since the integral
�
S |Nh|∗U>dS is equal

to 0 by the divergence theorem for Lipschitz vector �elds.

Now we simplify the �rst term appearing in the �rst variation formula
(5.2.1).

Lemma 5.2.5. Let S be a C2 surface immersed in (H1,K) with unit normal
N horizontal unit normal νh. Let Z = J(νh). Then we have

divS η − 2〈N,T 〉〈J(Nh), η〉 = 〈DZη, Z〉. (5.2.7)

Proof. Let us consider the orthonormal basis in S \ S0 given by the vector
�elds Z = −J(νh) and E = 〈N,T 〉νh − |Nh|T = aνh + bT . Using equation
(5.2.5) with F = E, we get

〈DEη,E〉 = a〈DEη, νh〉+ b〈DEη, T 〉
= −a〈E, T 〉〈η, J(νh)〉+ b

(
E(〈η, T 〉)− 〈η,DET 〉

)
= −ab〈η, J(νh)〉 − ab〈η, J(νh)〉
= −2ab〈η, J(νh)〉,

as DET = J(E) = aJ(νh) = −aZ. From ab = −〈N,T 〉|Nh| we obtain

〈DEη,E〉 = 2〈N,T 〉〈η, J(Nh)〉.

Taking into account this equation and that divS η = 〈DZη, S〉 + 〈DEη,E〉,
we obtain equation (5.2.7).

De�nition 5.2.6. Given an oriented surface S immersed in (H1,K) endowed
with a smooth strictly convex left-invariant norm | · |K , its mean curvature
is the function

H = 〈DZηK , Z〉, (5.2.8)

de�ned on S \ S0.
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Corollary 5.2.7. Let S be an oriented C2 surface immersed in (H1,K). Let
U be a C2 vector �eld with compact support on S \ S0, normal component
u = 〈U,N〉 and associated one-parameter group of di�eomorphisms {ϕs}s∈R.
Then

d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

�
S
uH dS,

where H is the mean curvature of S de�ned in (5.2.8).

By equation (5.2.8), a unit speed horizontal curve Γ contained in the
regular part of a surface S satisfy the equation

〈D
ds
π(J(Γ̇)), Γ̇〉 = H, (5.2.9)

where D/ds is the covariant derivative along Γ. Uniqueness of curves Γ
satisfying (5.2.9) with given initial conditions Γ(0), Γ̇(0) cannot be obtained
from (5.2.9). In the next result we prove that the horizontal components of
Γ satisfy indeed an ordinary di�erential equation, thus providing uniqueness
with given initial conditions.

Corollary 5.2.8. Let S be a C2 oriented surface immersed in (H1,K) with
mean curvature H. Let Γ : I → S \ S0 be a horizontal curve in the regular
part of S parameterized by arc-length with Γ(s) = (x1(s), x2(s), t(s)). Then
γ(s) = (x1, x2) satis�es a di�erential equation of the form

γ̈ = F (γ̇), (5.2.10)

where F (γ̇) = H [A(γ̇)](γ̇) and A is a nonsingular C1 matrix of order 2.

Proof. Let D
ds be the covariant derivative along the curve Γ. Since Γ is

horizontal and parameterized by arc-length, the vector �eld D
ds Γ̇ along Γ is

proportional to J(Γ̇). Then there exists a function λ : I → R such that

D
ds Γ̇ = λJ(Γ̇).

Taking scalar product with η = π(J(Γ̇)) we get

λ =
〈Dds Γ̇, π(J(Γ̇))〉
|J(Γ̇)|∗

=
d
ds〈Γ̇, π(J(Γ̇))〉 −H

|J(Γ̇)|∗
.

Hence we have
|J(Γ̇)|∗ Dds Γ̇− ḟ J(Γ̇) = −HJ(Γ̇), (5.2.11)

where f = 〈Γ̇, π(J(Γ̇))〉. Since Γ̇ = ẋ1X + ẋ2Y , D
ds Γ̇ = ẍ1X + ẍ2Y , and

J(Γ̇) = −ẋ2X + ẋ1Y , equation (5.2.11) is equivalent to the system

|J(Γ̇)|∗ ẍ1 + ḟ ẋ2 = Hẋ2,

|J(Γ̇)|∗ ẍ2 − ḟ ẋ1 = −Hẋ1.
(5.2.12)
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Let us compute ḟ = df/ds. Writing π(aX + bY ) = π1(a, b)X + π2(a, b)Y we
have

f = 〈Γ̇, π(J(Γ̇))〉 = ẋ1π1(−ẋ2, ẋ1) + ẋ2π2(−ẋ2, ẋ1)

and so:

ḟ =

(
π1 + ẋ1

∂π1

∂x2
+ ẋ2

∂π2

∂x2

)
ẍ1 +

(
π2 − ẋ1

∂π1

∂x1
− ẋ2

∂π2

∂x1

)
ẍ2 = gẍ1 + hẍ2,

where the functions π1, π2 are evaluated at (−ẋ2, ẋ1). Hence equation (5.2.12)
is equivalent to(

|J(Γ̇)|∗ + gẋ1 hẋ2

−gẋ1 |J(Γ̇)|∗ − hẋ1

)(
ẍ1

ẍ2

)
= H

(
ẋ2

−ẋ1

)
(5.2.13)

The determinant of the square matrix in (5.2.13) is equal to

|J(Γ̇)|∗
(
|J(Γ̇)|∗ + (gẋ1 − hẋ1)

)
.

Since

gẋ1 − hẋ2 =
(
π1ẋ2 − π2ẋ1

)
+

2∑
i,j=1

ẋiẋj
∂πi
∂xj

= −|J(Γ̇)|∗ +

2∑
i,j=1

ẋiẋj
∂πi
∂xj

we get that the determinant is equal to

|J(Γ̇)|∗
2∑

i,j=1

ẋiẋj
∂πi
∂xj

and we write

2∑
i,j=1

ẋiẋj
∂πi
∂xj

=
(
ẋ1 ẋ2

)(∂π1/∂x1 ∂π1/∂x2

∂π2/∂x1 ∂π2/∂x2

)(
ẋ1

ẋ2

)
.

Since the kernel of
(
∂πi/∂xj

)
ij
is generated by (−ẋ2, ẋ1), we have(

∂π1/∂x1 ∂π1/∂x2

∂π2/∂x1 ∂π2/∂x2

)(
ẋ1

ẋ2

)
6= 0,

and, since the image of
(
∂πi/∂xj

)
ij
is generated by (ẋ1, ẋ2), we get

(
ẋ1 ẋ2

)(∂π1/∂x1 ∂π1/∂x2

∂π2/∂x1 ∂π2/∂x2

)(
ẋ1

ẋ2

)
6= 0.

So we can invert the matrix in (5.2.13) to get (5.2.10).
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Remark 5.2.9. It is not di�cult to prove that

D
dsπ(J(Γ̇)) = HΓ̇− |J(Γ̇)|∗ T.

Indeed it is only necessary to show that 〈Ddsπ(J(Γ̇)), J(Γ̇)〉 = 0, which follows
from (5.2.6) using that J(Γ̇) = νh. Observe that the above equation is
equivalent to [

D
dsπ(J(Γ̇))

]
h

= HΓ̇.

Writing Γ̇ = ẋX + ẏY , we have(
∂π1/∂x1 ∂π1/∂x2

∂π2/∂x1 ∂π2/∂x2

)(
−ÿ
ẍ

)
= H

(
ẋ
ẏ

)
.

However, since the determinant of the square matrix is 0 we cannot invert
it to obtain an ordinary di�erential equation for (ẍ, ÿ).

Lemma 5.2.10. Let K be a C2
+ convex body in R2 with 0 ∈ int(K). Let

γ : I → R2 be a unit speed clockwise parameterization of a translation of the
unit sphere of ∂K by a vector v ∈ R2. Let Γ be a horizontal lifting of z.
Then Γ satis�es the equation

1 = 〈Ddsπ(J(Γ̇)), Γ̇〉. (5.2.14)

Proof. We have π(J(Γ̇)) = π1(J(γ̇))X + π2(J(γ̇))Y . Since J(γ̇) is the outer
normal to the unit sphere at γ − v we have γ − v =

(
π1(J(Γ̇)), π2(J(Γ̇))

)
.

Hence D
dsπ(J(Γ̇)) = ẋX + ẏY and we get (5.2.14).

Lemma 5.2.11. Let K be a C2
+ convex body in R2 with 0 ∈ int(K) and Γ a

horizontal curve parameterized by arc-length satisfying the equation

〈Ddsπ(J(Γ̇)), Γ̇〉 = H,

with H ∈ R. Then σ(s) = hλ(Γ(s/λ)) is parameterized by arc-length and
〈Ddsπ(J(σ̇)), σ̇〉 = H/λ.

Proof. We have σ̇(s) = Γ̇(s/λ) and J(σ̇(s)) = J(Γ̇(s/λ)).

Remark 5.2.12. Horizontal straight lines are solutions of

〈Ddsπ(J(Γ̇)), Γ̇〉 = 0

since Γ̇ is the restriction of a left-invariant vector �eld in H1 and so they are
J(Γ̇) and π(J(Γ̇)).
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Theorem 5.2.13. Let K be a C2
+ convex body in R2 with 0 ∈ int(K). Let

Γ be a horizontal curve satisfying the equation

〈Ddsπ(J(Γ̇)), Γ̇〉 = H, (5.2.15)

for some H > 0. Then Γ is either a horizontal straight line if H = 0 or
the horizontal lifting of a dilation and traslation of a unit speed clockwise
parameterization of ∂K in case H > 0.

Proof. Horizontal straight lines and horizontal liftings of translations and
dilations of ∂K satisfy equation (5.2.15). Uniqueness follow since the pro-
jection to t = 0 satisfy equation (5.2.10) and, by using translations and
dilations, we can obtain any prescribed initial condition.

Remark 5.2.14. The result in Theorem 5.2.13 includes that constant mean
curvature surfaces for the sub-Riemannian area in the Heisenberg group are
foliated by geodesics.

To �nish this section we prove the following result, that holds trivially
for variations supported in the regular part of S.

Proposition 5.2.15. Let S be a compact C2 oriented surface in (H1,K)
enclosing a region E. Assume that S has constant mean curvature H and a
�nite number of singular points. Then

1. S is a critical point of the sub-Finsler area for any volume-preserving
variation.

2. S is a critical point of the functional A−H | · |.

Proof. It is only necessary to prove that if U is a smooth vector �eld with
compact support in H1 and {ϕs}s∈R is its associated �ow, then

d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

�
S
HudS.

From formula (5.2.1) this is equivalent to proving that
�
S

divS
(
uη>

)
dS = 0.

To compute the integral
�
S uη

>dS we consider the �nite number of singular
points p1, . . . , pn, and take small disjoint balls Bi(pi) centered at the points
pi. For ε > 0 small enough so that the balls Bε(pi) are contained in Bi we
have

�
S\

⋃n
i=1Bε(pi)

div uη> dS =
n∑
i=1

�
∂Bε(pi)

〈ξi, uη>〉 d(∂Bε(pi)),
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where ξi is the unit inner normal to ∂Bε(pi). Since uη> is bounded and the
lengths of ∂Bε(pi) go to 0 when ε→ 0 we have

lim
ε→0

n∑
i=1

�
∂Bε(pi)

〈ξi, uη>〉 d(∂Bε(pi)) = 0.

Since the modulus of

divS(uη>) = 〈∇Su, η>〉+ udivS η
>

= 〈∇Su, η>〉+ u (divS η − 〈η>, N〉 divS N)

is uniformly bounded, the dominated convergence theorem implies�
S

divS uη
>dS = lim

ε→0

�
S\

⋃n
i=1Bε(pi)

div uη> dS

= lim
ε→0

n∑
i=1

�
∂Bε(pi)

〈ξi, uη>〉 d(∂Bε(pi)) = 0.

Corollary 5.2.16 (Minkowski formula). Let S be a compact C2 oriented
surface in (H1,K) enclosing a region E. Assume that S has constant mean
curvature H and a �nite number of singular points. Then

3A(S)− 4H|E| = 0. (5.2.16)

Proof. We consider the vector �eld W = x ∂
∂x + y ∂

∂y + 2 ∂
∂t and its associated

�ow ϕs((x, y, t)) = (esx, esy, e2st). Since

d

ds

∣∣∣∣
s=0

A(ϕs(S)) = 3A(S),
d

ds

∣∣∣∣
s=0

|ϕs(E)| = 4|E|,

Proposition 5.2.15 implies

0 =
d

ds

∣∣∣∣
s=0

A(ϕs(S))−H d

ds

∣∣∣∣
s=0

|ϕs(E)| = 3A(S)− 4H|E|.

5.3 Pansu-Wul� spheres and examples

We consider a convex body K ⊂ R2 containing 0 in its interior and the
associated norm | · |K in H1.

De�nition 5.3.1. Consider a clockwise-oriented L-periodic parameteriza-
tion γ : R → R2 of ∂K. For �xed v ∈ R take the translated curve
u 7→ γ(u + v) − γ(v) and its horizontal lifting Γv : R → H1 with initial
point (0, 0, 0) at u = 0.

The set SK is de�ned as

SK =
⋃

v∈[0,L)

Γv([0, L]). (5.3.1)

We shall refer to SK as the Pansu-Wul� sphere associated to the left-invariant
norm | · |K .



Pansu-Wul� spheres and examples 71

When K = D, the closed unit disk centered at the origin in R2, the
Pansu-Wul� sphere SD is Pansu's sphere, see [136; 137].

Remark 5.3.2. In the construction of the Pansu-Wul� sphere we are not as-
suming any regularity on the boundary of K. Since ∂K is a locally Lipschitz
curve, its horizontal lifting is well de�ned.

Remark 5.3.3. The set SK is union of curves leaving from (0, 0, 0) that
meet again at the point (0, 0, 2|K|). Since γ is L-periodic, the construction
is L-periodic in v and so SK is the image of a continuous map from a sphere
to H1.

Example 5.3.4. Given the Euclidean norm | · | in R2 and a = (a1, a2),
where a1, a2 > 0, we de�ne the norm:

||(x1, x2)||a = |(x1a1 ,
x2
a2

)|.

-3
-1.5

 0
 1.5

 3 -2
-1

 0
 1

 2

Figure 5.3: The Pansu-Wul� sphere associated to the norm || · ||a with a =
(1, 1.5). Observe that the projection to the horizontal plane t = 0 is an
ellipse with semiaxes of lengths 2 and 3.

The unit ball Ka for this norm is an ellipsoid with axes of length a1 and
a2. We parameterize clockwise ∂K by

γ(s) = (a1 sin(s), a2 cos(s)), s ∈ R.
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This parameterization is injective of period 2π. The translation of this curve
to the origin by the point −γ(v) is given by the curve

Λv(u) = γ(u+ v)− γ(v).

The horizontal lifting of Λv is given by (Λv(u), tv(u)), where

tv(u) =

� u

0

[
Λv(ξ) · J(Λ̇v(ξ))

]
dξ.

Since
Λv(ξ) · J(Λ̇v(ξ)) = (γ(ξ + v)− γ(v)) · J(γ̇(ξ + v)),

we get

tv(u) = a1a2

(
u+ sin(v) cos(u+ v)− cos(v) sin(u+ v)

)
.

Hence a parameterization of SKa is given by

x(u, v) = a1

(
sin(u+ v)− sin(v)

)
y(u, v) = a2

(
cos(u+ v)− sin(v)

)
,

t(u, v) = a1a2

(
u+ sin(v) cos(u+ v)− cos(v) sin(u+ v)

)
.

Example 5.3.5. Given any convex set K containing 0 in its interior, we can
parameterize its Lipschitz boundary ∂K as

γ(s) =
(
x(s), y(s)

)
= r(s)

(
sin(s), cos(s)

)
, s ∈ R.

where r(s) = ρ(sin(s), cos(s)) and ρ is the radial function of K de�ned as
ρ(u) = sup{λ > 0 : λu ∈ K} for any vector u of modulus 1 in R2.

A horizontal lifting of the curve γ passing through the point (γ(0), 0) can
be obtained computing

t(s) =

� s

0
γ(ξ) · J(γ̇(ξ)) dξ =

� s

0
r2(ξ) dξ,

since J(γ̇(s)) = r(s) (sin(s), cos(s))+ ṙ(s) (− cos(s), sin(s)). Hence the curve

Γ(s) =
(
x(s), y(s), t(s)

)
=
(
γ(s),

� s

0
r2(ξ) dξ

)
is a horizontal lifting of the curve γ.

Now we translate all these curves to pass through the origin of H1. This
way we get the parameterization ΦK of SK given by

(u, v) 7→ `−Γ(v)(Γ(u+ v))

for (u, v) ∈ [0, 2π]2. Since

`(x0,y0,t0)(x, y, t) =
(
x+ x0, y + y0, t+ t0 + (xy0 − x0y)

)
,
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computing the left-translation using the expression for Γ obtained before we
get

x(u, v) = r(u+ v) sin(u+ v)− r(v) sin(v),

y(u, v) = r(u+ v) cos(u+ v)− r(v) cos(v),

t(u, v) = r(v)r(u+ v)
(

sin(v) cos(u+ v)− cos(v) sin(u+ v)
)

+
� u+v
v r2(ξ) dξ.

(5.3.2)

The parameterization given by equations (5.3.2) is useful to obtain reg-
ularity properties of SK . If ∂K is of class C`, ` > 0, its radial function
r(s) = (x(s)2 + y(s)2)1/2 is of class C` and hence the parameterization ΦK

is an immersion of class C` for 0 < u < 2π.

Example 5.3.6. Let ` > 1. We consider the `-norm in R2 de�ned as

||(x1, x2)||` =
(
|x1|` + |x2|`

)1/`
.

Denote by K` the unit ball for this `-norm. We can parametrize the unit
circle || · ||` = 1 using (5.3.2). In this case

ρ(x, y) =
1(

|x|` + |y|`
)1/` , |(x, y)| = 1.

By the previous example, the Pansu-Wul� sphere SK` is parameterized by
equations (5.3.2).

Remark 5.3.7. Assume we have a sequence of of convex sets (Ki) converg-
ing in Hausdor� distance to a limit convex set K. Then the radial functions
rKi uniformly converge to the radial function r of the limit set K. Hence
equations (5.3.2) imply that the Pansu-Wul� spheres SKi converge in Haus-
dor� distance to a ball bounded by the horizontal liftings of translations of
a parameterization γ of ∂K.

Since lim`→1 || · ||` = || · ||1 and lim`→∞ || · ||` = | · |∞, we can use the
previous argument to show that the Pansu-Wul� spheres SK` converge to the
two spheres S1 and S∞. Under these conditions, it is not di�cult to check
that the corresponding perimeters converge to the limit perimeter.
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-2
-1

 0
 1

 2
-2

-1

 0

 1

 2

Figure 5.4: The Pansu-Wul� sphere SK` for the `-norm, ` = 1.5. The
horizontal curve is the projection of the equator to the plane t = 0. We
observe that the Pansu-Wul� sphere projects to the set | · |` 6 2 in the t = 0
plane.

Figure 5.5: The sphere S1 obtained as Hausdor� limit of the Pansu-Wul�
spheres SKr of the `-norm when ` converges to 1.
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Figure 5.6: The sphere S∞ obtained as Hausdor� limit of the Pansu-Wul�
spheres SKr of the `-norm when ` converges to ∞

Example 5.3.8. Let us consider the equilateral triangle T in the plane R2

de�ned as the convex envelope of the points a1 = (0, 1), a2 = (
√

3/2,−1/2),
a3 = (−

√
3/1,−1/2). We can de�ne a norm | · |T by the equality

|x|T = max
{
〈x, ai〉 : i = 1, 2, 3

}
, x ∈ R2.

The unit ball of the norm | · |T is the triangle T . It is neither smooth nor
strictly convex. However we may consider the approximating norms

|x|T,` =

( 3∑
i=1

max{〈x, ai〉, 0}`
)1/`

.

These norms are smooth and strictly convex and lim`→∞ |x|T,` = |x|T . Hence
the Pansu-Wul� spheres SKT,` converge in Hausdor� distance when ` → ∞
to the sphere ST obtained by traslating ∂T to touch the origin and lifting
the obtained curves as horizontal ones to H1.
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Figure 5.7: The Pansu-Wul� sphere ST,` for the norm || · ||T,`, with r = 2.

Figure 5.8: The sphere ST obtained as limit of the Pansu-Wul� spheres ST,`
when r →∞.
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5.4 Geometric properties of the Pansu-Wul� spheres

In this section we show several geometric properties of the Pansu-Wul�
spheres SK associated with a left-invariant norm | · |K . We start by look-
ing at the projection of the sphere to the t = 0 plane. This projection is
determined by the geometry of the convex set K.

Given a convex body K ⊂ Rn, the di�erence body of K is the set

DK = K −K = {x− y : x, y ∈ K}.

The di�erence body DK is a centrally symmetric convex body. This means
that −x ∈ DK whenever x ∈ DK. If hK is the support function of K then
the support function of DK is given by

hDK(u) = hK(u) + hK(−u),

see [156, p. 140]. This is the width of K in the direction of u.

Lemma 5.4.1. Let K ⊂ Rn be a convex body with 0 ∈ int(K). We consider
the set

K0 =
⋃
p∈∂K

(−p+K). (5.4.1)

Then we have

1. 0 ∈ K0.

2. K0 is a convex body.

3. K0 is the di�erence body of K. In particular, K0 is centrally symmet-
ric.

4. If K is centrally symmetric then K0 = 2K.

5. We have ⋃
p∈∂K

(−p+K) =
⋃
p∈∂K

(−p+ ∂K).

Proof. To prove 1 take into account that 0 = −p + p ∈ −p + K ⊂ K0 for
any p ∈ ∂K.

To prove 2, we take p1, p2 ∈ ∂K, q1, q2 ∈ K and λ ∈ [0, 1]. Then

λ(−p1 + q1) + (1− λ)(−p2 + q2) = −pλ + qλ,

where
pλ = λp1 + (1− λ)p2, qλ = λq1 + (1− λ)q2.

If pλ = qλ then −pλ+ qλ = 0 ∈ K0. Otherwise the segment [pλ, qλ] is not
trivial and contained in K. Let µ0 > 1 such that qλ+µ0(pλ−qλ) ∈ ∂K. The
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value µ0 is computed as the supremum of the set {µ > 0 : qλ + µ(pλ − qλ) ∈
K}. We have

−pλ + qλ = −(qλ + µ0(pλ − qλ)) + (qλ + (µ0 − 1)(pλ − qλ)).

The point qλ + µ0(pλ − qλ) belongs to ∂K by the choice of µ0 and the point
qλ+(µ0−1)(pλ−qλ) belongs toK since 0 6 µ0−1 6 µ0. Hence−pλ+qλ ∈ K0

and so K0 is convex.
To prove 3, we take a vector v with 〈v, v〉 = 1. Let q ∈ ∂K0 such that

hK0(v) = 〈q, v〉 > 〈z, v〉 ∀ z ∈ K0. (5.4.2)

By the de�nition of K0, there exists p ∈ ∂K such that q ∈ −p + K. We
claim that q ∈ −p + ∂K: otherwise p + q ∈ int(K) and there exists ε > 0
such that p+ q + εv ∈ K. So we have

〈−p+ (p+ q + εv), v〉 = 〈q + εv, v〉 = 〈q, v〉+ ε > 〈q, v〉.

Since p + q + εv ∈ K this yields a contradiction. Hence q ∈ −p + ∂K =
∂(−p+K) for some p ∈ ∂K.

Since −p+K ⊂ K0 and q is a boundary point for both sets, we deduce
that v is a normal vector to −p+K at q. As h−p+K(v) = −〈p, v〉+hK(v),we
have

hK0(v) = h−p+K(v) = hK(v) + 〈p,−v〉.

It remains to prove that hK(−v) = 〈p,−v〉. Assume by contradiction
that 〈p,−v〉 < hK(−v) = 〈x,−v〉 for some x ∈ ∂K. Then we have

〈−x+ (p+ q), v〉 = 〈−x+ p, v〉+ 〈q, v〉 > 〈q, v〉,

that cannot hold by (5.4.2) since p+q ∈ K and so −x+p+q ∈ −x+K ⊂ K0.
To prove 4, we note that hK(v) = hK(−v) when K is centrally symm-

metric and, by 3, hK0 = 2hK . Hence K = 2K0.
Finally, to prove 5 we notice that

⋃
p∈∂K(−p+K) ⊃

⋃
p∈∂K(−p+ ∂K).

To prove the remaining inclusion we take p ∈ ∂K and u ∈ K such that q =
−p+ u ∈

⋃
p∈∂K(−p+K). Then Lemma 5.4.2 allows us to �nd p1, u1 ∈ ∂K

such that q = −p+ u = −p1 + u1. Hence q ∈
⋃
p∈∂K(−p+ ∂K).

Lemma 5.4.2. Let K ⊂ R be a convex body, and a, b ∈ K. Then there exist
p, q ∈ ∂K such that b− a = q − p.

Proof. If a = b or a, b ∈ ∂K the result follows trivially. Henceforth we
assume a 6= b and that at least a or b is an interior point of K. We pick
a point c ∈ K out of the line ab. Let P be the plane containing a, b, c and
W = K ∩ P . The set W is a convex body in P and the boundary of W
in P is contained in ∂K. We take orthogonal coordinates (x, y) in P so
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that (b − a) points into the positive direction of the y-axis. Let I be the
orthogonal projection in P of W onto the x-axis.

Given x ∈ I, de�ne the set W (x) as {y ∈ R : (x, y) ∈ W}. A simple
application of Kuratowski criterion, see Theorem 1.8.8 in [156], implies that
W (xi) converges to W (x) in Hausdor� distance when xi converges to x.
Hence the function x ∈ I 7→ |W (x)| is continuous and takes a value larger
than |b− a| at the projection of a, b over the x-axis. If |W (x)| = |b− a| for
some x ∈ I, we take as p, q the extreme points of the interval W (x) chosen
so that q − p = b − a to conclude the proof. Otherwise, we would have
|W (x0)| > |b − a| at an extreme point x0 of I. We may choose two points
p, q ∈W (x0) such that the length |[p, q]|1 = |b− a| and q − p = b− a. Since
W (x0) is contained in the boundary of W in P , it is contained in ∂K and
so p, q ∈ ∂K.

Now we re�ne the results in Lemma 5.4.1 when K is strictly convex and
has boundary of class C`+, ` > 2. We say that a convex body K is of class
C`+, ` > 1, when ∂K is of class C` and its normal map NK : ∂K → S1 is a
di�eomorphism of class C`−1.

Corollary 5.4.3. Let K ⊂ R2 be a convex body with 0 ∈ int(K). Then

1. If K ⊂ R2 is strictly convex, then K0 is strictly convex.

2. If K is of class C`+, ` > 2, then K0 is of class C`+.

Proof. To prove that K0 is strictly convex, we take two di�erent points
x1−x2, y1−y2 ∈ ∂K0, with xi, yi ∈ K, i = 1, 2. Then the four points belong
to the boundary of K. For any λ ∈ (0, 1), we write the convex combination
λ(x1 − x2) + (1− λ)(y1 − y2) as

xλ − yλ = (λx1 + (1− λ)y1)− (λx2 + (1− λ)y2).

Since x1 6= y1 or x2 6= y2, the strict convexity of K implies that xλ or yλ is an
interior point of K. Then xλ− yλ is an interior point of K0. Since λ ∈ (0, 1)
and the boundary points are arbitrary, the set K0 is strictly convex.

To prove the boundary regularity of K0 we follow Schneider's arguments
[156, p. 115] and observe that the support function hK of K is de�ned, when
u 6= 0, by

hK(u) = 〈u,N−1
K (u)〉,

where NK : ∂K → S1 is the Gauss map, a di�eomorphism of class C`−1

since K is of class C`+. By Corollary 7.1.3 in [156]

∇hK(u) = N−1
K

(
u

|u|

)
, (5.4.3)
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and so hK is of class C`. This implies that the support function of K0,
hK0(u) = hK(u) + hK(−u), is of class C`. Hence the polar body K∗0 of K0

has boundary of class C`. The Gauss map NK∗0 of K∗0 can be described as

NK∗0 : ρ(K∗0 , u)u 7→
N−1
K (u)

|N−1
K (u)|

,

where ρ(K∗0 , ·) = h−1
K (·) is the radial function of K∗0 , of class C

`−1. Hence
NK∗0 is a di�eomorphism of class C`−1 and so K∗0 is of class C`+. Now
the support function of K∗0 is of class C`+ and we reason in the same way
interchanging the roles of K∗0 and K0 to get the result.

Remark 5.4.4. If K ⊂ R2 is a centrally symmetric convex body, for any
p ∈ ∂K, the line passing through p and−p dividesK into two regions of equal
area. Hence the line through 0 and −2p divides −p+K into two regions of
the same area. When p moves along ∂K, the point −2p parametrizes ∂(2K).

Let K be a convex set of class C`+, ` > 2, C = ∂K and γ : R → R2 an
L-periodic clockwise arc-length parameterization of C, with L = length(C).
The set K0 =

⋃
p∈C(−p + K) has smooth boundary C0. For any v ∈ R,

we denote by γv(u) = γ(u + v) − γ(v). Let Γv = (γv, tv) be the horizontal
lifting of γv with tv(0) = 0. If we call Ωv(u) the planar region delimited
by the segment [0, γv(u)] and the restriction of γv to [0, u] then a standard
application of the Divergence Theorem to the vector �eld x ∂

∂x + y ∂
∂y implies

tv(u) =

� u

0
〈γv, J(γ̇v)〉(ξ) dξ = 2 |Ωv(u)|.

Our next goal is to prove that SK is the union of two graphs de�ned in
K0 of class C2 and coinciding on ∂K0.

Theorem 5.4.5. Let K ⊂ R2 be a convex body with C`+ boundary, ` > 2.
Then

1. SK is of class C` outside the poles.

2. There exist two functions g1, g2 : K0 → R of class C` on int(K0) such
that

SK = graph(g1) ∪ graph(g2),

with g1 > g2 on int(K0) and g1 = g2 on C0. This imples that SK is an
embedded surface.

Moreover, if K is centrally symmetric then g1 + g2 = 2|K| and hence
SK is symmetric with respect to the horizontal Euclidean plane t = |K|.

De�nition 5.4.6. The domain delimited by the embedded sphere SK is a
ball BK that we call the Pansu-Wul� shape of | · |K .
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Proof of Theorem 5.4.5. That SK is C` outside the singular set follows from
the parameterization (5.3.2) since the function r(s) is of class C`. This proves
1.

We break the proof of 2 into several steps. Recall that C = ∂K and
C0 = ∂K0.

Step 1. Given x ∈ K0\{0}, we claim that x ∈ C − p for some p ∈ C
if and only if the segment [p, p + x] is contained in K and p, p + x ∈ C.
This means that the number of curves C − p, with p ∈ C, passing through
x 6= 0 coincides with the number of segments parallel to x of length |x| and
boundary points in C. This step is trivial.

Step 2. Given x ∈ K0 \ {0}, the number of segments [p, p+ x] contained
in K with p, p+x ∈ C is either 1 or 2. The �rst case corresponds to maximal
length and happens if and only if x belongs to C0.

To prove this we consider v = x/|x| and a line L orthogonal to v. For any
z in L we consider the intersection Iz = Lz ∩K, where Lz is the line passing
through z with direction v. The set J = {z ∈ L : Iz 6= ∅} is a non-trivial
segment in L. The strict convexity of K implies that the map F : J → R
de�ned by F (z) = |Iz| is strictly concave. Since F vanishes at the extreme
points of J , it has just one maximum point z0 ∈ int(J) and each value in the
interval (0, F (z0)) is taken by two di�erent points in J . The observation that
there is a bijective correspondence between the segments [p, p+x] contained
in K with p, p+ x ∈ C and the points z ∈ L with F (z) = |x| proves the �rst
part of the claim.

K

L

Lz

z

p

p+ x

Figure 5.9: Construction of the map F

To prove the second part of the claim we �x some x ∈ K0. We take p ∈ C
such that the segment [p, p+ x] is contained in K and p, p+ x ∈ C. Assume
�rst that x ∈ C0. If there were a larger segment [q, q + µx] contained in K
with q, q + µx ∈ C and µ > 1 then we would have µx ∈ C − q ⊂ K0, a
contradiction. Hence the length of [p, p + x] is is the largest possible in the
direction of x. Assume now that the length of [p, p+x] yields the maximum
of length of intervals contained in K in the direction of x. If x 6∈ C0 then
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x is an interior point of K0 and, since 0 ∈ int(K0), there would exist λ > 1
such that λx ∈ K0. Hence there is some q ∈ C such that λx ∈ C − p and
the segment [q, q + λx] ⊂ C and has length larger than |x|, a contradiction
that proves that x ∈ C0.

Step 3. Given any point x ∈ int(K0), there are exactly two points in SK at
heights g1(x) > g2(x). In case K is centrally symmetric then g1(x)+g2(x) =
2|K|.

By the previous steps, there are exactly two points p, q ∈ C so that
p + x, q + x ∈ C and the segments [p, p + x], [q, q + x] are contained in K.
We may assume that p, p + x, q + x, q are ordered clockwise along C. The
heights of the points in SK projecting over x are given by twice the areas of
the sets A and B, where A is determined by the portion of C from p to p+x
and the segment [p+ x, p], and B is determined by the portion of C from q
to q + x and the segment [q + x, q]. Since A is properly contained in B we
have g2(x) = 2|A| < 2|B| = g1(x).

In case K is centrally symmetric, the central symmetry maps p + x to
q and q + x to p since [p, p + x] and [q, q + x] are the only segments in K
of length |x| with boundary points on C. Hence |A| + |B| = |K| and so
g1(x) + g2(x) = 2|K|.

Step 4. The functions g1, g2 are of class C` in int(K0) \ {0}.
This follows from the implicit function theorem since SK is C` outside

the poles.

Theorem 5.4.7. Let K ⊂ R2 be a convex body of class C2
+. Then SK is of

class C2 around the poles.

Proof. We consider a horizontal lifting Γ = (x, y, t) of a clockwise arc-
length parametrization γ of ∂K. Then a parameterization of SK is given
by (x,y, t)(u, v) = `−Γ(v)(Γ(u+ v)). This means

x(u, v) = x(u+ v)− x(v),

y(u, v) = y(u+ v)− y(v),

t(u, v) = t(u+ v)− t(v)− x(u+ v)y(v) + y(u+ v)x(v).

(5.4.4)

The tangent vectors ∂/∂u, ∂/∂u are the image of (1, 0) and (0, 1) under the
parameterization and are given by

∂

∂u
= ẋ(u+ v)X + ẏ(u+ v)Y.

∂

∂v
=
(
ẋ(u+ v)− ẋ(v)

)
X +

(
ẏ(u+ v)− ẏ(v)

)
Y + h(u, v)T,

where

h(u, v) = 2
(
ẋ(v)(y(u+ v)− y(v))− ẏ(v)(x(u+ v)− x(v))

)
. (5.4.5)
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Geometrically, h(u, v) is the scalar product of the position vector (x(u +
v) − x(v), y(u + v) − y(v)) with J((ẋ, ẏ)), that is always negative for u >
0. A Riemannian unit normal vector N can be easily computed from the
expressions of ∂/∂u and ∂/∂v and is given by

N =
h
(
ẏ(u+ v)X − ẋ(u+ v)Y

)
+ gT(

h2 + g2
)1/2 , (5.4.6)

where
g(u, v) = ẋ(v)ẏ(u+ v)− ẏ(v)ẋ(u+ v). (5.4.7)

We have

|Nh| =
|h|(

h2 + g2
)1/2 , 〈N,T 〉 =

g(
h2 + g2

)1/2
Let us see that SK is a C2 surface near the south pole (0, 0, 0). The

arguments for the north pole of are similar. To see that SK is C1 near the
south pole, it is enough to check that N extends continuously to u = 0. Let
us see that

lim
(u,v)→(0,v0)

N(u, v) = −T. (5.4.8)

Since g < 0, from the expression (5.4.6) it is enough to prove that

lim
(u,v)→(0,v0)

h

g
(u, v) = 0. (5.4.9)

Since x and y are functions of class C2, we use Taylor expansions around v
to get

x(u+ v) = x(v) + ẋ(v)u+R(u, v)u, y(u+ v) = y(v) + ẏ(v)u+R(u, v)u,

ẋ(u+ v) = ẋ(v) + ẍ(v)u+R(u, v)u, ẏ(u+ v) = ẏ(v) + ÿ(v)u+R(u, v)u.

In the above equations R denotes a continuous functions of (u, v) (depending
on the equation) that converges to 0 when u → 0 independently of v. This
follows from the integral expression for the reminder in Taylor's expansion.
Then we have

lim
(u,v)→(0,v0)

h

g
(u, v) = lim

(u,v)→(0,v0)

R(u, v)u

−κ(v)u+R(u, v)u

= lim
(u,v)→(0,v0)

R(u, v)

−κ(v) +R(u, v)
= 0,

where
κ(v) =

(
ẏẍ− ẋÿ

)
(v)

is the (positive) geodesic curvature of γ. This proves (5.4.9) and so SK is of
class C1 around (0, 0, 0).
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To prove that SK is of class C2 around the origin it is enough to show
that the Riemannian second fundamental form of SK converges to 0 when
(u, v)→ (0, v0). We �rst compute

lim
(u,v)→(0,v0)

D∂/∂uN.

Since

D∂/∂uN =
∂

∂u

(
hẏ(u+ v)√
h2 + g2

)
X − ∂

∂u

(
hẋ(u+ v)√
h2 + g2

)
Y +

g√
h2 + g2

J( ∂
∂u)

+

(
∂

∂u

(
g√

h2 + g2

)
+

h√
h2 + g2

)
T.

(5.4.10)

A direct computation taking into account ∂h
∂u = 2g yields

∂

∂u

(
h√

h2 + g2

)
=

2g3 − gh ∂g∂u
(h2 + g2)3/2

,
∂

∂u

(
g√

h2 + g2

)
=
h2 ∂g

∂u − 2g2h

(h2 + g2)3/2
.

It is straightforward to check from the Taylor expressions that

lim
(u,v)→(0,v0)

h

g2
(u, v) = lim

(u,v)→(0,v0)

−κ(v0)u2 +R(u, v)u2

κ(v0)2u2 +R(u, v)u2
=
−1

κ(v0)
.

Then we immediately get, dividing by −g3,

lim
(u,v)→(0,v0)

∂

∂u

(
h√

h2 + g2

)
= lim

(u,v)→(0,v0)

−2 + h
g2

∂g
∂u

((hg )2 + 1)3/2
= −1

and

lim
(u,v)→(0,v0)

∂

∂u

(
g√

h2 + g2

)
= lim

(u,v)→(0,v0)

−h
g
h
g2

∂g
∂u + 2hg

((hg )2 + 1)3/2
= 0.

Taking limits in (5.4.10) we get

lim
(u,v)→(0,v0)

D∂/∂uN = J( ∂
∂u)− J( ∂

∂u) + 0 = 0.

We complete ∂
∂v to an orthonormal basis of the tangent plane by adding

the vector

E =
∂
∂v − 〈

∂
∂u ,

∂
∂v 〉

∂
∂u

(1− 〈 ∂∂u ,
∂
∂v 〉2)1/2

.

Since lim(u,v)→(0,v0)
∂
∂v = 0, we have

lim
(u,v)→(0,v0)

DEN = lim
(u,v)→(0,v0)

D∂/∂vN

= lim
(u,v)→(0,v0)

(
− ∂

∂v

(
h√

h2 + g2

)
J( ∂

∂u) +
∂

∂v

(
g

(h2 + g2)1/2

))
.
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A computation shows that

∂

∂v

(
h√

h2 + g2

)
=
g2 ∂h

∂v − gh
∂g
∂v

(h2 + g2)3/2
,

∂

∂v

(
g√

h2 + g2

)
=
h2 ∂g

∂v − gh
∂h
∂v

(h2 + g2)3/2
.

We trivially have

lim
(u,v)→(0,v0)

∂h

∂v
(u, v) = lim

(u,v)→(0,v0)

∂g

∂v
(u, v) = 0.

Hence

lim
(u,v)→(0,v0)

∂

∂v

(
g√

h2 + g2

)
= lim

(u,v)→(0,v0)

−h
g
h
g2
∂g
∂v + h

g2
∂h
∂v

((hg )2 + 1)3/2
= 0.

On the other hand

lim
(u,v)→(0,v0)

∂

∂v

(
h√

h2 + g2

)
= lim

(u,v)→(0,v0)

−1
g
∂h
∂v + h

g2
∂g
∂v

(h2 + g2)3/2
= 0.

This equality holds from the Taylor expansions since

lim
(u,v)→(0,v0)

1

g

∂h

∂v
(u, v) = lim

(u,v)→(0,v0)

R(u, v)u

−κ(v)u+R(u, v)u
= 0.

So we conclude that lim(u,v)→(0,v0)DEN = 0.

5.5 Minimization property of the Pansu-Wul� shapes

We prove in this section a minimization property satis�ed by the balls BK .
Let K be a convex body containing 0 in its interior. We assume that K is
of class C`+, with ` > 2.

De�nition 5.5.1. Given SK , we let g : K0 → R be the function g(x) =
(g1(x) + g2(x))/2, where g1 and g2 are the functions obtained in Theo-
rem 5.4.5.

We also introduce the notation S+
K := SK ∩ {(x, t) : t > g(x)}, S−K :=

S ∩ {(x, t) : t 6 g(x)} and D0 = {(x, g(x)) : x ∈ K0}.

Theorem 5.5.2. Let K ⊂ R2 be convex body of class C`+, with ` > 2 and
0 ∈ int(K). Let r > 0 and h : rK0 → R a C0 function. Consider a subset
E ⊂ H1 with �nite volume and �nite K-perimeter such that

graph(h) ⊆ E ⊂ rK0 × R.

Then
|∂E|K > |∂BE |K , (5.5.1)

where BE is the Wul� shape in (H1,K) with |E| = |BE |.
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Proof. Let gr : rK0 → R the function de�ned by gr(x) = r2g(1
rx), where g is

the function in De�nition 5.5.1. Let D be the graph of gr. We know that D
divides the Wul� shape rSK into two parts rS+

K and rS−K . Let W
+ and W−

the vector �elds in rK0 × R \ L de�ned by translating vertically the vector
�elds

πK(ν0)
∣∣
rS+K

, πK(ν0)
∣∣
rS−K

,

respectively. Here ν0 is the horizontal unit normal to SK .
As a �rst step in the proof we are going to show that if F ⊂ rK0 × R is

a set of �nite volume and K-perimeter so that rel int(D) ⊂ int(F ), then the
inequality

1
r |F | 6

�
D
〈W+ −W−, ND〉dD + |∂F |K (5.5.2)

holds, where ND is the Riemannian normal pointing down and dD is the
Riemannian measure of D. Equality holds in (5.5.2) if and only if W+ =
πK(νh) |∂KF |-a.e. on F+ = F ∩ {t > gr} and W− = πK(νh) |∂KF |-a.e. on
F− = F ∩ {t 6 gr}. Here νh is the horizontal unit normal to F .

To prove (5.5.2) we consider two families of functions. For 0 < ε < 1 we
consider smooth functions ϕε, depending on the Riemannian distance to the
vertical axis L = {x = y = 0}, so that 0 6 ϕε 6 1 and

ϕε(p) = 0, d(p, L) 6 ε2,

ϕε(p) = 1, d(p, L) > ε,

|∇ϕε(p)| 6 2/ε, ε2 6 d(p, L) 6 ε.

Again for 0 < ε < 1 we consider smooth functions ψε, depending on the
Riemannian distance to the Euclidean hyperplane Π0 = {t = 0}, so that
0 6 ψε 6 1 and

ψε(p) = 1, d(p,Π0) 6 ε−1/2,

ψε(p) = 0, d(p,Π0) > ε−1/2 + 1,

|∇ψε(p)| 6 2, ε−1/2 6 d(p,Π0) 6 ε−1/2 + 1.

For any ε > 0, the vector �eld ϕεψεW has compact support.
It is easy to prove that F+ and F− have �niteK-perimeter. Since F+ has

also �nite (sub-Riemannian) perimeter, applying the Divergence Theorem to
F+ and the horizontal vector �eld ϕεψεW+, we have�

F+

div(ϕεψεW
+)dH1 =

�
D
〈ϕεψεW+, ND〉dD

+

�
{t>gr}

〈ϕεψεW+, νh〉d|∂F |.
(5.5.3)

Where ND is the Riemannian unit normal to D pointing into F−, dD is the
Riemannian area element on D, and νh is the outer horizontal unit normal
to F .



Minimization property of the Pansu-Wul� shapes 87

We take limits in the left hand side of Equation (5.5.3) when ε→ 0. We
write�

F+

div(ϕεψεW
+)dH1 =

�
F+

ϕεψε divW+dH1 +

�
F+

〈∇(ϕεψε),W
+〉dH1.

(5.5.4)
Since 〈ϕε∇ψε,W+〉 is bounded and converges pointwise to 0, and�

F+

〈ψε∇ϕε,W+〉 6
�
{(x,t):ε2<|x|<ε, 0<t<ε−1/2+1}

ψε|∇ϕε|dH1,

we have

lim
ε→0

�
F+

〈∇(ϕεψε),W
+〉dH1 = 0. (5.5.5)

On the other hand, divW+ = 1
r , the mean curvature of rBK . We consider

the orthonormal vectors Z = −J(νh), E = 〈N,T 〉 νh−|νh|T and N , globally
de�ned on (rK0×R)\L by vertical translations. We know from Lemma 5.2.5
that

〈DZW
+, Z〉 = 1

r , 〈DEW
+, E〉 = 2 〈N,T 〉|Nh| 〈W+, J(νh)〉.

It remains to compute 〈DNW
+, N〉. We express N = λE + µT as a linear

combination of E and T , where λ = |Nh|/〈N,T 〉, µ = 1/〈N,T 〉. Observe
that 〈N,T 〉 6= 0 on int(K0) since rS+

K is a t-graph. So we have

〈DNW
+, N〉 = λ〈DEW

+, N〉+ µ〈DTW
+, N〉

= λ2〈DEW
+, E〉+ λµ〈DEW

+, T 〉+ µ〈J(W+), Nh〉
= λ2〈DEW

+, E〉 − λµ〈N,T 〉〈W+, J(νh)〉 − µ|Nh|〈W+, J(νh)〉

=

(
|Nh|
〈N,T 〉

)2

〈DEW
+, E〉 − 1

〈N,T 〉2
〈DEW

+, E〉

= 〈DEW
+, E〉,

where we have used that DTW
+ = J(W+) sinceW+ is a linear combination

of W+, Y multiplied by functions that do not depend on t. Hence

divW+ = 〈DZW
+, Z〉+ 〈DEW

+, E〉+ 〈DNW
+, N〉 =

1

r

on int(K0). Since ϕεψε divW+ is uniformly bounded, F+ has �nite volume
and limε→0 ϕεψε = 1, we can apply Lebesgue's Dominated Convergence
Theorem to get

lim
ε→0

�
F+

ϕεψε divW+dH1 = 1
r |F

+|. (5.5.6)

So we get from (5.5.4), (5.5.5) and (5.5.6)

lim
ε→0

�
F+

div(ϕεψεW
+) dH1 = 1

r |F
+|. (5.5.7)



88 Pansu-Wul� shapes in H1

Now we treat the remainings terms in (5.5.3). Using the representation
of perimeter obtained in (2.3.4) for sets of �nite K-perimeter sets we have

�
{t>gr}

〈W+, νh〉d|∂F | 6
�
{t>gr}

|νh|∗d|∂F | = |∂F+|K , (5.5.8)

with equality if and only if W+ = π(νh) |∂F |-a.e. on {t > gr}. From
equations (5.5.7) and (5.5.8), taking limits in Equation (5.5.3) when ε→ 0,

1
r |F

+| 6
�
D
〈W+, ND〉dD + |∂F+|K , (5.5.9)

with equality if and only if W+ = π(νh) |∂F |-a.e. on ∂F ∩ {t > gr}.
We consider now the foliation of rK0×R by vertical translations of rS−K .

Reasoning as in the previous case we get

1
r |F
−| 6 −

�
D
〈W−, ND〉dD + |∂F−|K . (5.5.10)

with equality if and only if W− = π(νh) |∂F |-a.e. on ∂{t < gr}. Hence,
adding (5.5.9) and (5.5.10), and taking into account |∂F |K(H1 \D) = |∂F |K
and that F ∩D does not contribute to the volume of F , we get

1
r |F | 6

�
D
〈W+ −W−, ND〉dD + |∂F |K ,

and so (5.5.2) holds, with equality if and only if equalities (5.5.9) and (5.5.10)
hold. This completes the �rst part of the proof.

Recall that h : rK0 → R is a function so that D = graph(h) ⊂ E. We
take two values tm < tM such that

h+ tm < gr < h+ tM .

We apply inequality (5.5.2) to the set B = B− ∪B0 ∪B+, where

� B0 = {(x, t) : x ∈ rK0, |t− gr| 6 (tM − tm)/2},

� B+ = rB+
K + (0, (tM − tm)/2),

� B− = rB−K − (0, (tM − tm)/2).

By construction, D = graph(gr) ⊂ B0. Since the lateral boundary of
B0 is contained in ∂(rK0 × R) and the outer unit normal to ∂(rK0 × R)
coincides with W+ and W−, the lateral K-boundary area of B0 is equal to

(tM − tm)

�
∂(rK0)

|ν0|∗d(∂(rK0)), (5.5.11)
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gr + tM−tm
2

gr − tM−tm
2

gr

h+ tM

gr

h+ tm

rS+
K

rS−K

E+

E−

Figure 5.10: Geometric construction in the proof of Theorem 5.5.2

where d(∂(rK0)) is the Riemannian length element of the C1 curve ∂(rK0).
Hence we get

|∂B|K = (tM − tm)

�
∂(rK0)

|ν0|∗d(∂(rK0)) + |∂(rBK)|K .

On the other hand, since

|B| = |rBK |+ |rK0|(tM − tm),

we obtain

1
r (|rBK |+ |rK0|(tM − tm)) =

�
D
〈W+ −W−, ND〉dD

+ (tM − tm)

�
∂(rK0)

|ν0|∗d∂(rK0) + |∂(rBK)|K .
(5.5.12)

Now we apply (5.5.2) to the set E consisting on the union of E+ =
E ∩ {t > h} translated by the vector (0, tM ), E− = E ∩ {t 6 h} translated
by the vector (0, tm) and the vertical �lling in between the two sets. We
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reason as before to get

1
r (|E|+ |rK0|(tM − tm)) 6

�
D
〈W+ −W−, ND〉dD

+ (tM − tm)

�
∂D
|ν0|∗d∂D0 + |∂E|K .

(5.5.13)

From (5.5.12) and (5.5.13) we get

|∂E|K > |∂(rBK)|K + 1
r (|E| − |rB|).

Let f(ρ) = |∂(ρBK)|K + 1
ρ(|E| − |ρB|). Since ρBK has mean curvature

1
ρ , Theorem 5.2.15 guarantees that the Wul� shape ρBK is a critical point

of A − 1
ρ | · | for any variation. Therefore |∂(ρBK)|′K −

1
ρ |ρBK |

′ = 0 where
primes indicates the derivative with respect to ρ. Hence we have

f ′(ρ) = − 1
ρ2

(|E| − |ρBK |).

So the only critical point of f corresponds to the value ρ0 so that |ρ0BK | =
|E|. Since the function ρ 7→ |ρBK | is strictly increasing and takes its values
in (0,+∞), we obtain that f(ρ) is a convex function with a unique minimum
at ρ0. Hence we obtain

|∂E|K > f(r) > f(ρ0) = |∂(r0BK)|K , (5.5.14)

which implies (5.5.1).

5.5.1 A uniqueness result in rK0 × R

We consider a horizontal lifting Γ = (x, y, t) of a clockwise arc-length parametriza-
tion γ of ∂K. Then a parameterization of SK is given by (x,y, t)(u, v) =
`−Γ(v)(Γ(u+ v)). This means

x(u, v) = x(u+ v)− x(v),

y(u, v) = y(u+ v)− y(v),

t(u, v) = t(u+ v)− t(v)− x(u+ v)y(v) + y(u+ v)x(v).

(5.5.15)

As can be seen in the proof of Theorem 5.4.5, there is a unique value v′(v) ≡
v′ such that

γv(v
′) ∈ ∂K0, (5.5.16)

where γv(u) = γ(v + u)− γ(v). We shall use the notation

S−K =
⋃

v∈[0,L)

Γv(0, v
′], S+

K =
⋃

v∈[0,L)

Γv[v
′, L),

where Γv is the horizontal lifting of γv(u) and L is the length of γ. We write
ν0 to denote the horizontal unit normal vector to SK . It is easy to see that

|ν0(u, v)|∗ = |J(γ̇v(u))|∗ = |J(γ̇(u+ v))|∗ = |γ(u+ v)|. (5.5.17)
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Lemma 5.5.3. Let β an arc-length parametrization of ∂K0. The map ψ :
[0, L]→ ∂K0 given by

ψ(v) = γv(v
′)

is bijective, C1 and (β−1 ◦ ψ)′ > 1.

Proof. Fixed v0, the curve γ(v′0) − γ(·) is in K0 and equal to ψ at v0, and
we can take s0 such that

β(s0) = ψ(v0), β̇(s0) = −γ̇(v0).

In particular, we have

ψ(v0) = β
(
β̇−1(−γ̇(v0)

)
and ψ = β ◦ β̇−1 ◦ −γ̇. Hence ψ is bijective. Since ∂K0 has less curvature
than ∂K and β̇(s0) = −γ̇(v0), it follows that

β̇−1(−γ̇(v0 + t)) > −γ̇−1(−γ̇(v0 + t)) = v0 + t.

Hence we get
(β−1 ◦ ψ)(v0 + t)− (β−1 ◦ ψ)(v0) > t,

and it follows that (β−1 ◦ ψ)′ > 1.

Given f ∈ C0(∂K0), we shall abuse the notation and write f ≡ f ◦ ψ
when the domain is [0, L). We de�ne the sets

S−f =
⋃

v∈[0,L)

Γv(0, v
′] + (0, 0, f(v))

S+
f =

⋃
v∈[0,L)

Γv[v
′, L) + (0, 0, f(v)).

(5.5.18)

Lemma 5.5.4. Let f and g be Euclidean Lipschitz functions in ∂K0. Then

|S−f |K + |S+
g |K − |∂BK |K >� L

0
(f ′(v)− g′(v))

( � v′(v)

0
|γ(v + u)|du

)
dv, (5.5.19)

where v′(v) is de�ned in (5.5.16). Moreover, equality holds in (5.5.19) if and
only if f ′ = g′ = 0 almost everywhere.

Proof. Let Φ is the parametrization of SK given in (5.5.15). The map
Φf (u, v) = Φ(u, v) + (0, 0, f(v)) is a parametrization of Sf . By the represen-
tation of the sub-Finsler perimeter for Euclidean Lipschitz surfaces (2.3.10),
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we have

|S−f |K =

� L

0

� v′

0
|∂uΦf × ∂vΦf |

∣∣∣(∂uΦf × ∂vΦf

)
h

|∂uΦf × ∂vΦf |

∣∣∣
∗
dudv

=

� L

0

� v′

0
|(∂uΦf × ∂vΦf )h|∗dudv

=

� L

0

� v′

0
|(∂uΦ× ∂vΦ + ∂uΦ× (0, 0, f ′))h|∗dudv.

Let τ0 = (∂uΦ× ∂vΦ)h and τf ′ = τ0 + (∂uΦ(u, v)× f ′(v))h. By de�nition of
Φ, it is clear that

(∂uΦ(u, v)× f ′(v))h = f ′(v)J(γ̇(u+ v)).

Since τ0/|∂uΦ× ∂vΦ| and J(γ̇(u+ v)) are the horizontal part of the normal
to SK and the horizontal unit normal to SK respectively, they are the same
vector but for a multiplicative constant. Hence π(τ0(u, v)) = π(J(γ̇(u+v))).
Using (5.5.17) and the de�nition of π, we conclude that

|S−f |K =

� L

0

� v′

0
〈τf ′(u, v), π(τf ′(u, v))〉dudv

>
� L

0

� v′

0
〈τf ′(u, v), π(τ0(u, v))〉dudv

=

� L

0

� v′

0
〈τ0(u, v), π(τ0(u, v))〉dudv

+

� L

0

� v′

0
f ′(v)〈J(γ̇(u+ v)), π(τ0(u, v))〉dudv

=|S−K |K +

� L

0
f ′(v)

� v′

0
|γ(v + u)|dudv.

(5.5.20)

Reasoning similarly for |S+
g |K and adding we get

|S−f |K + |S+
g |K − |∂BK |K

>
� L

0
f ′(v)

� v′

0
|γ(v + u)|dudv +

� L

0
g′(v)

� L

v′
|γ(v + u)|dudv

=

� L

0
(f ′(v)− g′(v))

� v′

0
|γ(v + u)|dudv +

� L

0
g′(v)dv

� L

0
|γ(v + u)|du

=

� L

0
(f ′(v)− g′(v))

� v′

0
|γ(v + u)|dudv.

where we used that
� L

0 |γ(v + u)|du is independent of v and h is L-periodic.
Equality holds in (5.5.20) if and only if π(τf ′) = π(τ0) almost everywhere.

We know that τf ′(u, v) = λ(u, v)τ0(u, v) for some λ. Let v0 and ε > 0
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such that f ′(v0) exists and f ′(v0) = −ε. Notice that Φ(u, v0) tends to a
singular point as u tends to L. Hence limu→L τ0(u, v0) = 0. Let u0 and
Ω ⊂ [0, L[×[0, L[ open such that, for any u and v in Ω it holds

|τ0(u0, v0)| < ε/4

|τ0(u, v)− τ0(u0, v0)| < ε/4

|f ′(v)− f ′(v0)| < ε/2.

Then |τ0(u, v)| < ε/2 < |f ′(v)||J(γ̇(u + v))| and τf ′(u, v) = λ(u, v)τ0(u, v)
for λ(u, v) < 0. It follows that π(τf ′) 6= π(τ0) in Ω.

The vector �elds U+ and U− in (rK0 × R) \ L are de�ned by vertical
translations of

J
(
ν0|S+ρ0

)
, J

(
ν0|S−ρ0

)
.

For any (x, y, t) in the interior of (rK0 × R) \ L we can write locally U+ as

U+ = r
(
ẋ(u + v)X + ẏ(u + v)Y

)
,

where (u,v) = (x,y)−1, u > v′ is well de�ned by Theorem 5.4.5. Therefore
there exists a unique integral curve of U+ passing through (x, y, t). Given
q ∈ ∂(rK0) × R, we consider the vertical translation containing q of the
horizontal lifting of a parametrization of ∂(rK0). Such a curve is denoted by
Ψq and assume that Ψq(0) = q, and is also an integral curve of U+. Hence
an integral curve of U+ in ∂(rK0)×R can move along ∂(rK0)×R or move
into int(rK0)× R.

Theorem 5.5.5. Let r > 0 and h : rK0 → R a C0 function. Consider a
subset E ⊂ H1 with �nite volume and K-perimeter such that

graph(h) ⊆ E ⊂ rK0 × R.

Moreover, assume that there exists h−, h+ : ∂rK0 → R Euclidean Lipschitz
functions with h− 6 h+ such that

i) graph(h±) ⊂ ∂E,

ii) C := {(z, t) : z ∈ ∂K0, h−(z) 6 t 6 h+(z)} ⊂ ∂E,

iii) There exists {tn} ↘ 0 such that for any q ∈ graph(h+) and p ∈
graph(h−),

Ψq(tn) /∈ ∂E, Ψp(−tn) /∈ ∂E,

where Ψq is the vertical translation of the horizontal lifting of a clockwise
parametrization of ∂(rK0)× R passing through q at 0. Then, equality holds
in (5.5.1) if and only if the sets E and BE coincide.
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Proof. We proof of Theorem 5.5.5 is divided into several steps. We shall use
the notation used in the proof of Theorem 5.5.2.

Step 1. Equality holds in (5.5.14) and by convexity r = ρ0. Moreover,
equality also holds in (5.5.13) and πK(νh) coincides with W+ in (∂E ∩ {t >
gr})\L, and with W− in (∂E∩{t 6 gr})\L, where νh is the horizontal unit
normal to E. Hence νh = λν0 with λ > 0 by the strict convexity of K. Since
ν0 and νh has unit norm we get νh = ν0. By [129, Theorem 1.2], ∂E \L is a
H-regular hypersurface and by [147, Lemma 2.5] the integral curves of J(νh)
starting from points in (∂E ∩ {t > gr}) \ L are contained in ∂E \ L. Such a
curve is also an integral curve of U+ or U−. Thus, by hypothesis, the sets
rS+

hr,+
, rS+

hr,−
and C are contained in ∂E, where hr,±(x) = r2h±(xr ). Hence

|∂E|K > |rS+
hr,+
|K + |rS−hr,− |K + |C|K . (5.5.21)

Step 2. Let us denote ϕ(v) =
� v′

0 |γ(v + u)|du and φ = hr,+ − hr,−.
Thanks to Lemma 5.5.4 and the homogeneity of the K-perimeter, we get

|rS+
hr,+
|K + |rS−hr,− |K − |∂Bρ0 |K > r3

� L

0
φ′ϕdv. (5.5.22)

From the expression for the lateral perimeter (5.5.11), Lemma 5.5.3 and
(5.5.17), we have

|C|K =

�
∂K0

(h+ − h−)|ν0|∗d(∂rK0) > r3

� L

0
φ(v)|γ(v′ + u)|dv. (5.5.23)

Moreover, taking the derivative of ϕ we get |γ(v′ + u)| = ϕ′(v) + |γ(v)|.
Hence we obtain

� L

0
φ′ϕdv +

� L

0
φ(v)|γ(v′ + u)|dv >

� L

0
φ′ϕdv +

� L

0
φϕ′dv +

� L

0
φ|γ|dv

= [φϕ]L0 +

� L

0
φ|γ|dv =

� L

0
φ|γ|dv. (5.5.24)

Substituting (5.5.22) and (5.5.23) in (5.5.21) and using (5.5.24), we get

|∂E|K > |∂Bρ0 |K + r3

� L

0
φ(v)|γ(v)|dv > |∂Bρ0 |K . (5.5.25)

If equality holds then we have equality in (5.5.25) and in (5.5.19) from where
we obtain that h+ = h− and h+ and h− are constant. Hence rS+

hr,+
∪ rS+

hr,−

is a translation of rSK \ rS0
K and rSK \ rS0

K ⊆ ∂E.
Step 3. We claim that Bρ0 ⊆ Ē. To prove this we shall show that

Bρ0 \ L ⊆ Ē reasoning by contradiction. If Bρ0 \ L * Ē, since rSK =
∂Bρ0 ⊆ ∂E, there is a point p in the interior of Bρ0 \ L so that p /∈ Ē.
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The Euclidean orthonormal projection x of p over t = 0 lies in D ⊆ E.
Hence there is a point q in the segment [p, x] ⊆ Bρ0 that belongs to ∂E \ L.
As ∂E \ L is H-regular, the perimeter of ∂E in a small ball contained in
the interior of Bρ0 \ L and centered at q is positive, and so, |∂E| > |∂Bρ0 |,
which contradicts our assumption that equality holds in (5.5.1). This implies
Bρ0 ⊆ Ē. As |Bρ0 | = |E| we obtain Bρ0 = Ē by the normalization of E.

Remark 5.5.6. Hypothesis i), ii) and iii) in Theorem 5.5.5 holds as soon
as the intersection of ∂E with ∂rK0 × R is an Euclidean Lipschitz curve.

Notes

Notes of � 5.2 1. In [154], the author obtained an expression of the mean
curvature of a C2 surface in terms of a parametrization when H1 is endowed
with the left-invariant norm | · |∞, and de�ned a notion of distributional
mean curvature for polygonal norms.

The result in Theorem 5.2.13 includes that constant mean curvature sur-
faces for the sub-Riemannian area in the Heisenberg group are foliated by
geodesics. This result can be found, with slight variations, in [33; 36; 34; 79;
78].

Notes of � 5.5 1. Theorem 5.5.2 di�ers from Theorem 3.1 in [147] in two
aspects when restricted to the sub-Riemannian case. On the one hand, in
Theorem 5.5.2 we consider sets with a membrane not necessarily the same
as the one of the Pansu-Wul� shape, but any continuous function over the
cylinder. But on the other hand, we do not characterize those sets for which
equality holds in (5.5.1).





Chapter 6

Area-minimizing t-graphs with
low-regularity in H1

This chapter is devoted to the results obtained with Giovannardi and Ritoré
given in [87].

We consider (H1,K) and provide examples of entire area-minimizing hor-
izontal graphs which are locally Lipschitz in Euclidean sense. A large num-
ber of them fail to have further regularity properties. The examples are
obtained prescribing as singular set a horizontal line or a �nite union of hor-
izontal half-lines extending from a given point. Of particular interest are
the conical examples invariant by the non-isotropic dilations of H1. In the
sub-Riemannian case these examples were investigated in [91] and [146].

The chapter is organized the following way. In Section 6.1 we obtain
a necessary and su�cient condition, based on Theorem 5.2.1, for a surface
to be a critical point of the sub-Finsler area. We assume that the sur-
face is piecewise C2, composed of pieces meeting in a C1 way along C1

curves. This condition will allow us to construct area-minimizing exam-
ples in Proposition 6.2.3 of Section 6.2, and examples with low regularity in
Proposition 6.2.4. The same construction, keeping �xed the angle at one side
of the singular line, provides examples of area-minimizing cones, see Corol-
lary 6.2.5. Finally, in Section 6.3 we provide examples of area-minimizing
cones in the spirit of [91]. These examples are obtained in Theorem 6.3.2
from circular sectors of the area-minimizing cones with one singular line
obtained in Corollary 6.2.5.

6.1 The �rst variation formula and a stationary

condition

In this section we present some consequences of the �rst variation formula.
We consider (H1,K), where K is of class C2

+ with 0 ∈ int(K).
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Using Theorem 5.2.1 we can prove the following necessary and su�cient
condition for a surface S to be AK-stationary. When a surface S of class C1

is divided into two parts S+, S− by a singular curve S0 so that S+, S− are
of class C2 up to the boundary, the tangent vectors Z+, Z− can be chosen
so that they parameterize the characteristic curves as curves leaving from
S0, see Corollary 3.6 in [33]. In this case η+ = π(νh) = π(J(Z+)) and
η− = π(J(Z−)).

Corollary 6.1.1. Let S be an oriented surface of class C1 such that the
singular set S0 is a C1 curve. Assume that S r S0 is the union of two
surfaces S+, S− of class C2 meeting along S0. Let η+, η− the restrictions of
η to S+ and S−, respectively. Then S is area-stationary if and only if

1. HK = 0, and

2. η+ − η− is tangent to S0.

In particular, condition HK = 0 implies that S r S0 is foliated by horizontal
straight lines.

Proof. We may apply the divergence theorem to the second term in (5.2.1)
to get

d

ds

∣∣∣∣
s=0

AK(ϕs(S)) =

�
S\S0

HKu dS −
�
S0

u 〈ξ, (η+ − η−)>〉 dS,

where ξ is the outer unit normal to S+ along S0. Hence the stationary
condition is equivalent to H = 0 on S rS0 and 〈ξ, η+− η−〉 = 0. The latter
condition is equivalent to that η+ − η− be tangent to S0.

That HK = 0 implies that S r S0 is foliated by horizontal straight lines
was proven in Theorem 3.14 in [142].

Since ν+ = J(Z+), ν− = J(Z−), where Z+ and Z− are the extensions of
the horizontal tangent vectors in S+, S−, we have that the second condition
in Corollary 6.1.1 is equivalent to

π(J(Z+))− π(J(Z−)) is tangent to S0. (6.1.1)

So a natural question is, given a C2
+ convex body K containing 0 in its

interior, and a unit vector v ∈ S1, can we �nd a pair of unit vectors Z+, Z−

such that (6.1.1) is satis�ed? If such vectors exist, how many pairs can we
get? The answer follows from next Lemma.

Lemma 6.1.2. Let K be a convex body of class C2
+ such that 0 ∈ int(K).

Given v ∈ R2 \ {0}, let L ⊂ R2 be the vector line generated by v. Then, for
any u ∈ ∂K, we have the following possibilities

1. The only w ∈ ∂K such that w − u ∈ L is w = u, or
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2. There is only one w ∈ ∂K, w 6= u such that w − u ∈ L.

The �rst case happens if and only if L is parallel to the support line of K at
u.

Proof. Let T be the translation in R2 of vector u. Then T (L) is a line
that meets ∂K at u. The line T (L) intersects ∂K only once when L is the
supporting line of T (K) at 0; otherwise L intersects ∂K at another point
w 6= u so that w − u ∈ L.

Remark 6.1.3. We use Lemma 6.1.2 to understand the behavior of char-
acteristic curves meeting at a singular point p ∈ S0. Let Z+, Z− be the
tangent vectors to the characteristic lines starting from p. Let ν+, ν− be
the vectors J(Z+), J(Z−), and L the line generated by the tangent vector
to S0 at p. The condition that S is stationary implies that η+ − η− ∈ L.
If w = η+ and u = η− are equal then ν+ = ν− are orthogonal to L, which
implies that Z+, Z− lie in L. This is not possible since characteristic lines
meet tranversaly the singular line, again by Corollary 3.6 in [33].

Hence η+ 6= η− and η+ is uniquely determined from η− by Lemma 6.1.2.
Obviously the roles of η+ and η− are interchangeable.

L

T (L) = L+ u

0

w = η+

ν+

Z+

u = η−

ν−Z−

∂K
u = w

ν+ = ν−

Figure 6.1: Geometric construction to obtain w = η+ from u = η− so that
the stationary condition is satis�ed. The case ν+ = ν− cannot hold.

6.2 Examples of entireK-perimeter minimizing hor-

izontal graphs with one singular line

Remark 6.1.3 implies that Z− can be uniquely determined from Z+ when S
is a stationary surface. Let us see that this result can be re�ned to provide
a smooth dependence of the oriented angle ∠(v, Z−) in terms of ∠(v, Z+).
We use complex notation for horizontal vectors assuming that the horizontal
distribution is positively oriented by v, J(v) for any v ∈ Hr {0}.
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Lemma 6.2.1. Let K be a convex body of class C2
+ with 0 ∈ int(K). Con-

sider a unit vector v ∈ R2 and let L ⊂ R2 be the vector line generated by
v. Then, for any α ∈ (0, π) there exists a unique β ∈ (π, 2π) such that if
Z+ = veiα, Z− = veiβ, then π(J(Z+))− π(J(Z+)) belongs to L.

Moreover the function β : (0, π) → (π, 2π) is of class C1 with negative
derivative.

Proof. We change coordinates so that L is the line y = 0. We observe that
Z+ = veiα implies that J(Z+) = vei(α+π/2). We de�ne (x, y) : S1 → ∂K by

(x(α), y(α)) = N−1
K (vei(α+π/2)),

where NK : ∂K → S1 is the (outer) Gauss map of ∂K. The functions x, y
are C1 since NK is C1. The point (x(α), y(α)) is the only one in ∂K such
that the clockwise oriented tangent vector to ∂K makes an angle α with the
positive direction of the line L. A line parallel to L meets ∂K at a single
point only when α + π/2 = π/2 or α + π/2 = 3π/2. Hence, for α ∈ (0, π),
there is a unique β ∈ (π, 2π) such that

(x(β), y(β))− (x(α), y(α)) ∈ L.

Observe that, for α ∈ (0, π), we have dy/dα > 0 and, for β ∈ (π, 2π), we get
dy/dβ < 0. we can use the implicit function theorem (applied to y(β)−y(α))
to conclude that β is a C1 function of α. Moreover

dβ

dα
=
dy/dα

dy/dβ
< 0.

Now we give the main construction in this section.
We �x a vector v ∈ R2 r {0} and the line Lv = {λv : λ ∈ R}. For every

λ ∈ R, we consider two half-lines, r+
λ , r

−
λ ⊂ R2, extending from the point

p = λv ∈ Lv with angles α(λ) and β(λ) respectively. Here α : R → (0, π)
is a non-increasing function and β(λ) is the composition of α(λ) with the
function obtained in Lemma 6.2.1. Hence β(λ) is a non-decreasing function.
The line Lv can be lifted to the horizontal straight line Rv = Lv ×{0} ⊂ H1

passing through the point (0, 0, 0), and the half-lines r±λ can be lifted to
horizontal half-lines R±λ starting from the point (λv, 0) in the line Rv.

The surface obtained as the union of the half-lines R+
λ and R−λ , for λ ∈

R, is denoted by Σv,α. Since any R±λ is a graph over r±λ and
⋃
λ∈R(r+

λ ∪
r−λ ) covers the xy-plane, we can write the surface Σv,α as the graph of a
continuous function uα : R2 → R. Writing v = eiα0 , the surface Σv,α can be
parametrized by Ψ : R2 → R3 as follows

Ψ(λ, µ) =

{(
λeiα0 + µei(α0+α(λ)),−µλ sinα(λ)

)
, µ > 0,(

λeiα0 + |µ|ei(α0+β(λ)),−|µ|λ sinβ(λ)
)
, µ 6 0.

(6.2.1)
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Lv
α

2π − β(α)

Figure 6.2: The planar con�guration to obtain the surface Σv,α. Here α is
a constant function and K is the unit disc D. Such surfaces were called
herringbone surfaces by Young [166] as they are the union of horizontal rays
that branch out of a horizontal line.

Example 6.2.2. An special example to be considered is the sub-Riemannian
cone Σα, where α ∈ (0, π). The projection of Σα to the horizontal plane t = 0
is composed of the line y = 0 and the half-lines starting from points in y = 0
with angles α and −α. This cone can be parametrized, for s ∈ R, t > 0, by

(u, v) 7→ (u+ v cosα, v sinα,−uv sinα)

when y > 0, and by

(u+ v cosα,−v sinα, uv sinα)

when y 6 0. A straigthforward computation implies that Σα is the t-graph
of the function

uα(x, y) = −xy + cotα y|y|. (6.2.2)

Observe that

lim
α→0

uα(x, y) =


+∞, y > 0,

0, y = 0,

−∞, y < 0,

(6.2.3)

so that the subgraph of Σα converges pointwise locally when α → 0 to a
vertical half-space.

The following lemma provides some properties of uα when α(λ) is a
smooth function of λ.

Proposition 6.2.3. Let α ∈ Ck(R), k > 2, be a non-decreasing function.
Then

i) uα is a Ck function in R2 \ Lv,

ii) uα is merely C1,1 near Lv when β 6= α+ π.

iii) uα is C∞ in any open set I of values of λ when β = α+ π on I.
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iv) Σv,α is K-perimeter-minimizing when β = β(α).

v) The projection of the singular set of Σv,α to the xy-plane is Lv.

Proof. i), ii), iii) and v) are proven in Lemma 3.1 in [146].
We prove iv) by a calibration argument. We shall drop the subscript α to

simplify the notation. Let E be the subgraph of u and F ⊆ H1 such that F =
E outside a Euclidean ball centered at the origin. Let P = {(z, t) : 〈z, v〉 =
0}, P 1 = {(z, t) : 〈z, v〉 > 0} and P 2 = {(z, t) : 〈z, v〉 < 0}. We de�ne two
vector �elds U1, U2 on P 1, P 2 respectively by vertical translations of the
vectors π(νE)|P 1 = η+ and π(νE)|P 2 = η−. They are C2 in the interior of the
halfspaces and extend continuously to the boundary plane P . As div(U j)(z,t)

coincides with the sub-Finsler mean curvature of the translation of Σv,α

passing through (z, t) as de�ned in (5.2.8), and this surfaces are foliated by
horizontal straight lines in the interior of the halfspaces, by Theorem 5.2.13
we get

divU j = 0 j = 1, 2.

Here divU is the Riemannian divergence of the vector �eld U . We apply the
divergence theorem (Theorem 2.1 in [146]) to get

0 =

�
F∩P j∩B

divU j =

�
F
〈U j , νP j∩B〉|∂(P j ∩B)|+

�
P j∩B

〈U j , νF 〉|∂F |.

Let C = P ∩ B̄. Then, for every p ∈ C, we have νP 1∩B = J(v) is a normal
vector to the plane P and νP 2∩B = −J(v), U1 = η+ and U2 = η−. Hence,
by Lemma 6.2.1, we get

〈U1, νP 1∩B〉+ 〈U2, νP 2∩B〉 = 〈η+ − η−, J(v)〉 = 0 p ∈ C.

Adding the above integrals we obtain

0 =
∑
j=1,2

�
F
〈U j , νB〉d|∂B|+

�
B∩int(P j)

〈U j , νF 〉d|∂F |. (6.2.4)

From the Cauchy-Schwarz inequality and the fact that |∂F | is a positive
measure, we get that∑

j=1,2

�
B∩P j

〈U j , νF 〉d|∂F | 6 PK(F,B). (6.2.5)

In particular, if we apply the same reasoning to E, equality holds and

0 =
∑
j=1,2

�
E
〈U j , νB〉d|∂B|+ PK(E,B). (6.2.6)

From (6.2.4), (6.2.5), (6.2.6) and the fact that F = E in the boundary of B,
we get

PK(E,B) 6 PK(F,B).
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The general properties of Σv,α when α is only continuous are given in the
following proposition.

Proposition 6.2.4. Let α : R → R be a continuous and non-decreasing
function. Then

i) uα is locally Lipschitz in Euclidean sense,

ii) Eα is a set of locally �nite perimeter in H1, and

iii) Σv,α is K-perimeter-minimizing in H1.

Proof. i) and ii) are proven in [146], Proposition 3.2. Let

αε(x) =

�
R
α(y)δε(x− y)dy

the usual convolution, where δ is a Dirac function and δε = δ(x/ε)
ε . Then

αε is a C∞ non-decreasing function and αε converges uniformly to α on
compact sets of R. By Lemma 6.2.1, βε = β(αε) is a C1 non-decreasing
function. Since β is C1 with respect to α it follows the uniform convergence
on compact sets of βε to a function β̄.

Taking F ⊂ H1 so that F = E outside a Euclidean ball centered at the
origin. We follow the arguents of the proof of iv) in Proposition 6.2.3 and
de�ne vector �elds div(U jε ) translating vertically π(νEε), where Eε is the
subgraph of Σαε , to obtain by the divergence theorem∑

j=1,2

�
B∩int(P i)

〈U jε , νEε〉|∂Eε| =
∑
j=1,2

�
B∩int(P i)

〈U jε , νF 〉|∂F |,

the left hand side is the K-perimeter of Eε, while the right hand side is
trivially bounded by the K-perimeter of F . Therefore

PK(Eε, B) 6 PK(F,B).

Since Eε converges uniformly in compact sets to E, we obtain the result.

We study now with some detail the case when Σv,α is a C∞ surface.

Corollary 6.2.5. When α is constant, the surface Σv,α is a K-perimeter-
minimizing cone in H1 of class C1,1. The singular set is a horizontal straight
line and the regular part of Σv,α is a C∞ surface.

The following lemma extends the already known notion that in the sub-
Riemannian setting the surfaces Σv,π/2 are C∞.

Lemma 6.2.6. Let v ∈ R2 r {0} and α ∈ (0, π) be �xed. If K is centrally
symmetric with respect to O = 1

2η
+ + 1

2η
− then β(α) = α + π, where η+ =

π(J(veiα)) and η− = π(J(veiβ)).
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Proof. Let K be centrally symmetric with respect to O. Then η− is the
symmetric point of η+. On the other hand, the convex body K − O is
symmetric with respect to the origin. Then the dual norm is even and,
in particular, πK−O(−ν+) = −πK−O(ν+). Now, since a translation takes
symmetric points on K − O with respect to the origin to symmetric points
of K with respect to O, we get ν− = −ν+, that is, β(α) = α+ π.

The existence of a convex body K of class C2
+ such that 0 ∈ int(K) for

which Σv,α is C∞ is studied in Corollary 6.2.7 and Proposition 6.2.8.

Corollary 6.2.7. Let v ∈ R2r{0} and α ∈ (0, π) be �xed. Then there exists
a convex body K of class C2

+ with 0 ∈ int(K) such that Σv,α is C∞.

Proof. To construct the convex bodyK, �x a point p ∈ {(x, y) : 〈(x, y), veiα〉 >
0} and O ∈ J(L)+p∩L, where L is the vector line generated by v. Then any
K of class C2

+ centrally symmetric with respect to O containing the origin
such that p ∈ ∂K and veiα⊥Tp∂K satis�es the hypothesis of Lemma 6.2.6,
where η+ = p and η− is the symmetric of η+ with respect to O. Thus, by
(iii) in Proposition 6.2.3 we get that Σv,α is C∞.

Proposition 6.2.8. Given a convex body K of class C2
+ with 0 ∈ int(K),

there exists v ∈ R2 such that Σv,π/2 is C∞.

Proof. Let p and q be points in K at maximal distance. Then the lines
through p and q orthogonal to q−p are support lines to K. Taking v = q−p
and setting p = η+ we have q = η−, while the vectors ν+ and ν− are over
the line L(v), that is, Z+ Z− make angles π/2 and 3π/2 with L(v).

For �xed v ∈ R2, we de�ne the surface Σ+
v,α as the one composed of all

the horizontal half-lines R+
λ and R−λ ⊆ R2 extending from the lifting of the

point p = λv ∈ Lv, λ > 0, to H1. The surface Σ+
v,α has a boundary composed

of two horizontal lines and its singular set is the ray L+
v = {λv : λ > 0}. We

present some pictures of such surfaces.
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Figure 6.3: The surface Σ+
π/3,π/6 associated to the norm | · |D, where D is

the unit disk. The singular set corresponds to the purple ray of angle eiπ/3.

Figure 6.4: The surface Σ+
π/3,π/6 associated to the p-norm with p = 1.5. The

left part of the �gure coincides with the left part of Figure 6.3, while the
angle β is bigger. Notice that also the height has increased.

Figure 6.5: The surface Σ+
π/3,π/6 with β = α + π. There existence of K is

granted by Corollary 6.2.7.
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6.3 Area-Minimizing Cones in H1

We proceed now to construct examples of K-perimeter minimizing cones
in H1 with an arbitrary �nite number of horizontal half-lines meeting at the
origin. The building blocks for this construction are lifting of circular sectors
of the cones considered in Corollary 6.2.5.

We �rst prove the following result.

Lemma 6.3.1. Let K be a convex body of class C2
+ such that 0 ∈ int(K).

Let u,w ∈ S1, θ = ∠(u,w) > 0. Then there exists v ∈ S1 such that the
vector line Lv generated by v splits the sector determined by u and w into
two sectors of oriented angles α and β such that α + β = θ. Moreover, the
stationary condition π(J(u))− πK(J(w)) ∈ Lv is satis�ed.

Proof. Let νu = J(u), νw = J(w) and ηu = π(νu), ηw = π(νw), ηu 6= ηw
since π is a C1 di�eomorphism. Thus there exists a unique line L̃ passing
through ηu and ηw and L = L̃ − ηu is a straight line passing though the
origin. Notice that L̃ splits ∂K in two connect open components ∂K1 and
∂K2. There exist two points η1 ∈ ∂K1 and η2 ∈ ∂K2 such that L + η1

(resp. L+η2) is the support line at η1 (resp. η2). Setting v1 = N∂K(η1) and
v2 = N∂K(η2) we gain that vi for i = 1, 2 is perpendicular to L. Without loss
of generality we set that −J(v1) belongs to the portion of plane identi�ed
by the θ and −J(v2) belongs to the portion of plane identi�ed by the 2π−θ.
Then we set v = −J(v1). Notice that v splits θ in two angles β = ∠(u, v),
α = ∠(v, w) with θ = α+ β and L = Lv.

Now we proceed with the construction inspired by the sub-Riemannian
construction in [91]. For k > 3 consider a �xed angle θ0 and family of positive
oriented angles θ1, . . . , θk such that θ1 + · · ·+ θk = 2π. Consider the planar
vectors u0 = (cos(θ0), sin(θ0)) and

ui = (cos(θ0 + θ1 + · · ·+ θi), sin(θ0 + θ1 + · · ·+ θi)), i = 1, . . . , k.

Observe that uk = u0. For every i ∈ {1, . . . , k} consider the vectors ui−1, ui
and apply Lemma 6.3.1 to obtain a family of k vectors vi in S1 between ui−1

and ui. We lift the half-lines Li = {λvi : λ > 0} to horizontal straight lines
passing through (0, 0, 0) ∈ H1, and we also lift the half-lines

λvi + {ρui−1 : ρ > 0}, λvi + {ρui : ρ > 0},

to horizontal straight lines starting from (λvi, 0). This way we obtain a
surface

CK(θ0, θ1, . . . , θk)

with the following properties
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Theorem 6.3.2. The surface CK(θ0, θ1, . . . , θk) is K-perimeter-minimizing
cone which is the graph of a C1 function.

Proof. CK(θ0, θ1, . . . , θk) is a cone by construction. It is an entire graph since
it is composed of horizontal lifting of straight half-lines in the xy-plane that
covered the whole plane without interesecting themselves transversally. The
K-perimeter-minimizing property follows in a similar way to from Propo-
sition 2.4 in [91]. That it is the graph of a C1 function is proven like in
Proposition 3.2(4) in [91].

Example 6.3.3. A particular example of area-minimizing cones are those
who uses the sub-Riemannian cones Cα restricted to the circular sector with
θ ∈ (−α, α) as as model piece of the cone. Taking K = D, k > 3 and
angleα = π/k, we de�ne

C(k) = CD
(π
k
,
2π

k
, . . . ,

2π

k

)
.

Let us denote by uk the functions in R2 whose graph is C(k). The be-
haviour when k tends to in�nity of uk in a disk is analyzed in the folowing
Proposition.

Proposition 6.3.4. The sequence uk converge to 0 uniformly on compact
subsets of R2. Moreover, the sub-Riemannian area of uk converges locally to
the sub-Riemannian area of the plane t = 0. Moreover the sub-Riemannian
area of uk converges to the one of the plane t = 0.

Proof. Since uk is obtained by collating of uα, where α = π/k, we can esti-
mate the height of uk by the height of uα. By (6.2.2), using polar coordinates
(r, θ), where θ ∈ [−α, α] and r < r0, we get

|uα| 6 2r2
0| sin(π/k)|

on D(r0) = B(0, r0). The claim follows since limk→∞ sin(π/k) = 0.
The sub-Riemannian area of the graph of uk over D(r0) is given by

AD(uk, r0) =

�
D(r0)

|∇uk + (−y, x)|dxdy.

Since the sub-Riemannian perimeter is rotationally invariant, we can decom-
pose the above integral as k times the area of the cone Cα in the circular
sector with θ ∈ (−α, α) and r < r0. By (6.2.2), it is immediate that

|∇uk(x, y) + (−y, x)| = 2|y| sin−1(α).

A direct computation shows that

AD(uk, r0) =
4πr3

0

3

1− cosπ/k

(π/k) sinπ/k
.

Then AD(uk, r0) tends to 2πr30
3 as k → +∞.
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Figure 6.6: The cone C(4). The singular set is composed of the red rays of
angle 0, π/2, π, (3π)/2, while the rays of angles π/4, (3π)/4, (5π)/4), (7π)/4,
where two pieces of the construction meet, are depicted in cyan.

Figure 6.7: The cones C(8) and C(16). They are depicted at the same in
this Figure and the previous one. As the number of angles increases, the
cone produces more oscilations of smaller height.



Chapter 7

The prescribed mean curvature

equation for t-graphs in Hn

This chapter exposes the some of the results obtained during the stay at Uni-
versità di Trento in colaboration with Giovannardi, Pinamonti and Verzellesi.

The aim of this chapter is to study the prescribed mean curvature equa-
tion for t-graphs in the sub-Finsler Heisenberg group (Hn,K0). Let Ω ⊂ R2n

be a bounded open set, H ∈ L∞(Ω) , F ∈ L1(Ω,R2n) and u ∈W 1,1(Ω). We
consider the functional

I(u) =

�
Ω
|∇u+ F |K0,∗ dxdy +

�
Ω
Hudxdy, (7.0.1)

where | · |K0,∗ denotes the dual norm of | · |K0
. In particular, when F (x, y) =

(−y, x) the �rst term in (7.0.1) coincides with the sub-Finsler area of the t-
graph of u, see [142; 69]. Moreover, if K0 is the Euclidean unit ball centered
at the origin and H = 0 then (7.0.1) boils down to the classical area func-
tional for t-graphs in Heisenberg group, see [33; 99] and references therein.
We say that the graph of u has prescribed K0-mean curvature H in Ω if u is
a minimizer of I. Indeed, the Euler-Lagrange equation associated to I out
of the singular set Ω0, i.e. the set of points where ∇u+ F vanishes, is given
by

div(πK0(∇u+ F )) = H, (7.0.2)

where πK0 is a suitable 0-homogeneous function de�ned in (2.1.5). When
we �x a boundary datum ϕ ∈ W 1,1(Ω), a solution to the Dirichlet problem
for the prescribed K0-mean curvature equation is a minimizer u of I such
that u − ϕ belongs to the Sobolev space W 1,1

0 (Ω). Our main result is The-
orem 7.4.1, where we prove, under suitable regularity assumptions on the
data, that there exists a Lipschitz solution to the Dirichlet problem for the
prescribed K0-mean curvature equation when H is constant and satis�es

|H| < HK0,∂Ω(z0) (7.0.3)
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for each z0 = (x0, y0) ∈ ∂Ω, where HK0,∂Ω denotes the Finsler mean cur-
vature of the boundary ∂Ω ⊂ Rn × Rn. Notice that the mean curvature
of the graph of u is computed with respect to the downward pointing unit
normal and the Finsler mean curvature of ∂Ω is computed with respect to
the inner unit normal. The upper bound (7.0.3) of H in terms of the Finsler
mean curvature of the boundary is the Finsler analogous of the standard
assumption for the solution to the Dirichlet problem for the classical mean
curvature equation in the Euclidean setting as stated in [158], [84] or [83]
(see also [85, Theorem 16.11]). The approach of the present chapter, based
on the Schauder �xed-point theory, follows the scheme developed in [35] and
extends its results both to the case of prescribed constant mean curvature
H 6= 0 and to the sub-Finsler setting. In Theorem 7.4.1 we can not expect
better regularity than Lipschitz, as exhibit in Chapter 6.

Since equation (7.0.2) is sub-elliptic degenerate and it is singular next
the singular set, inspired by [35; 138], we introduce a family of elliptic ap-
proximating equations given by

div

(
πK0(∇u+ F ) |∇u+F |2∗

(ε3+|∇u+F |3∗)
2
3

)
= H. (7.0.4)

for each 0 < ε < 1. To obtain this family of equations we consider a 2n +
1 dimensional convex body Kε containing the origin in its interior, that
converges in the Hausdor� sense to the 2n dimensional convex body K0 as
ε→ 0. The choice of the convex body Kε is not arbitrary. Indeed, we need
a speci�c shape in order to obtain an approximating equation well de�ned
in the classical sense in the singular set. For 0 < ε < 1, the convex body Kε

de�nes a Finsler norm on THn whose associated Finsler area functional is
given by

Iε(u) =

�
Ω

(
ε3 + |∇u+ F |3K0,∗

) 1
3 dxdy +

�
Ω
Hudxdy.

It is easy to see that the Euler-Lagrange equation associated to this func-
tional is elliptic and avoids singularities. Given a boundary datum ϕ ∈
C2,α(Ω̄), the solvability of the Dirichlet problem associated to (7.0.4) is re-
duced by [85, Theorem 13.8] to a priori estimates in C1(Ω) of a related
family of problems. As usual the a priori estimates in C1(Ω) consist of three
parts: estimates of the supremum of |u|, boundary estimates of the gradient
of u and interior estimates of the gradient of u. Both the estimates of the
supremum and the boundary estimates of the gradient are obtained by a
barriers argument that depends on the Finsler distance from the boundary
∂Ω. Due to technical reasons in the construction of the barriers we need
to assume the strict inequality in (7.0.3), avoiding the optimal case when
H coincides with HK0,∂Ω(z0) at a given point z0 ∈ ∂Ω. We emphasize that
these results hold even if the prescribed curvature H is non-constant and
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Lipschitz. When H is non-constant, in order to obtain the estimates of the
supremum we assume that there exists δ ∈ (0, 1] such that∣∣∣∣�

Ω
Hv dxdy

∣∣∣∣ 6 (1− δ)
�

Ω
|∇v|K0,∗ dxdy (7.0.5)

for each v ∈ C∞c (Ω). Assumption (7.0.5) is a standard su�cient condition for
the estimates of the supremum of |u| (see [83] or [85]). Moreover, in analogy
with the Euclidean case, we show that the su�cient condition (7.0.5) with
δ > 0, which is a priori stronger than the necessary condition with δ = 0,
is redundant when H is constant. The only crucial step where we need that
H is constant is the maximum principle for the gradient of the solution that
allows us to reduce the interior estimates of the gradient to its boundary
estimates. Finally, once we realize that C1 estimates are independent of the
approximation parameter ε, passing to the limit as ε tends to 0 and using
Arzelà-Ascoli Theorem we get the existence of a Lispchitz minimizer for the
sub-Finsler Dirichlet problem.

The chapter is organized as follows. In Section 7.1 we introduce some
preliminary de�nitions and results, such as the Minkowski norm, the Finsler
geometry of a hypersurface in R2n, the Heisenberg group, the sub-Finsler
perimeter and the sub-Finsler functional I. Section 7.2 is dedicated to the
Finsler approximation by theKε convex body of the sub-Finsler convex body
K0. Section 7.3 deals with the a priori estimates for the C1 norm of the solu-
tion to the approximating elliptic equations. In particular, Proposition 7.3.4
deals with the a priori estimates of |u| when H is Lispchitz and veri�es
the integral condition (7.0.5), in Proposition 7.3.6 we deduce the boundary
estimates of the gradient when H is Lispchitz, in Proposition 7.3.5 we es-
tablish the maximum principle for the gradient for H constant, and �nally,
in Proposition 7.3.8 we achieve a priori estimates of |u| when H is constant.
To conclude, Section 7.4 contains the main Theorem 7.4.1.

7.1 Preliminaries

Unless otherwise speci�ed, we let n, d ∈ N, n, d > 1. Given two open sets
A,B ⊆ Rd, we write A b B whenever A ⊆ B.

7.1.1 Finsler geometry of hypersurfaces in Euclidean space

LetK ⊂ Rd be a convex body in C2
+, 0 ∈ intK and Ω ⊆ Rd be a bounded do-

main with boundary ∂Ω = Σ of class C2. Let N be the inner unit normal to
Σ. Then the derivative map (WK,Σ)p = −dp(πK ◦N) : TpΣ→ TπK(N(p))∂K
is called the K-Weingarten map. Let γ ⊆ ∂K be a di�erentiable curve with
γ(0) = πK(p) and γ′(0) ∈ TπK(p)∂K. By de�nition of πK , the function

f(t) = 〈γ(t), p〉
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has a maximum at 0 and therefore 〈γ′(0), p〉 = f ′(0) = 0, which gives
TπK(p)∂K = TpSd−1. Moreover it is well known that (dN)q is an endo-
morphism of TqΣ and therefore WK,Σ;p is an endomorphism of TpΣ. We
de�ne the K-mean curvature of Σ as

HK,Σ = Trace(WK,Σ) = −divΣ(πK ◦N),

where divΣ is the divergence in the tangent directions to Σ. We remark that
WK,Σ is neither necessarily self-adjoint nor symmetric. Let us check that
WK,Σ is diagonalizable. Indeed, given a parametrization X of Σ, dN has
a symmetric matrix representation S in the basis B = {∂x1X, . . . , ∂xdX}.
On the other hand, πK = N−1

K and, since K is in C2
+, the matrix A which

represents d(N−1
K ) with respect to B is positive de�nite. Therefore, there

exists an invertible matrix P such that A = P tP . Notice that the matrices
P tPS and PSP t has the same spectrum, and equal to the spectrum ofWK,Σ.
Since S is symmetric we can apply the criterion of Sylvester to obtain that
all the eigenvalues of PSP t are real. The eigenvalues of WK,Σ are called
K-principal curvatures and the eigenvectors of WK,Σ are called K-principal
directions.

7.1.1.1 Finsler distance from the boundary and the Eikonal equa-

tion

In this and the following section we want to rely on some results by [113;
112], and so we assume that K is in C∞+ , i.e. ∂K is of class C∞ with
strictly positive principal curvatures. Let Ω ⊆ Rd be a bounded domain
with boundary ∂Ω = Σ of class C2,α, for 0 < α 6 1, and inner unit normal
N . We shall adapt Theorem 4.26 in [130] and the remarks at the end of
Section 4.5 in [130] to prove existence of a tubular neighborhood of Σ and
compute theK-mean curvature of parallel hypersurfaces. The interior signed
K-distance to Σ is the function dK,Σ : Rd → R given by

dK,Σ(p) =

{
min{|p− q|K : q ∈ Σ} if p ∈ Ω

−min{|p− q|K : q ∈ Σ} if p /∈ Ω.

Throughout this chapter, we shall use the notation BK(p, r) to denote the
ball of radius r > 0 in Rd associated to the distance dK,p. It is easy to check
that |p|K = | − p|−K for any p ∈ Rd, so that

B−K(p, r) = {q ∈ Rd : |p− q|K 6 r} (7.1.1)

for any p ∈ Rd and r > 0.
Consider the map F : Σ× R→ Rd given by

F (q, t) = q + t(πK ◦N)(q).
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For any v ∈ TqΣ, we have (dF )(q,t)(v, 0) = v+td(πK◦N)(q) and (dF )(q,t)(0, 1) =
(πK ◦N)(q). Since K contains the origin,

〈πK(N), N〉 > 0

and dF is invertible at t = 0. Thus F is locally a di�eomorphism and, being
Σ a compact hypersurface, F is a di�eomorphism in a domain Σ × (−δ, δ).
The set F (Σ× (−δ, δ)) is called a tubular neighborhood of Σ. Notice that if
p = F (q, t), then

p− q = t(πK ◦N)(q) (7.1.2)

and, taking the K-norm, we obtain that dK,Σ(p) = t. We know (cf. [113])
that, under our assumptions, there exists δ̄ > 0 such that

dK,Σ ∈ C2,α(F (Σ× (−δ, δ))).

for any δ < δ̄. Given |t| < δ, we let

Σt = {p ∈ Rd : p = F (q, t) for some q ∈ ∂K}. (7.1.3)

Proposition 7.1.1. Let Ω ⊆ Rd be a bounded domain with boundary ∂Ω = Σ
of class C2 and let F (Σ × (−δ, δ)) be a tubular neighborhood of Σ. The K-
mean curvature of Σt at p ∈ Σt is given by

HK,Σt(p) =
d−1∑
i=1

κi(q)

1− tκi(q)
, (7.1.4)

where q ∈ Σ satis�es p = F (q, t) and κ1(q), . . . , κd−1(q) are the K-principal
curvatures of Σ at q.

Proof. Let {e1, . . . , ed−1} be a basis of K-principal directions of Σ. Then
(dF )(q,t)(ei, 0) = (1 − tκi)ei. Therefore a basis of principal directions in Σt

is { e1
1−tκ1 , . . . ,

ed−1

1−tκd−1
}. Since we have

−d(πK ◦N)q

(
ei

1− tκi

)
=

κi
1− tκi

ei

for each i = 1, . . . , d− 1 we obtain the result.

Remark 7.1.2. From (7.1.4), we obtain that the K-mean curvature is in-
creasing in t. In particular, given q ∈ Σ and p = F (q, t) for t > 0, it holds
that

HK,Σt(p) > HK,Σ(q). (7.1.5)

The following Eikonal equation can be deduced using classical arguments.
We include the proof for sake of completeness.
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Proposition 7.1.3. It holds that

|∇dK,Σ(p)|K,∗ = 1 (7.1.6)

for any p where dK,∂Ω is di�erentiable.

Proof. It is clear that, for any p, p′ in Rd, we have

dK,Σ(p′) 6 |p′ − p|K + dK,Σ(p).

Taking p′ = p+ tv where t > 0, we get

dK,Σ(p+ tv)− dK,Σ(p) 6 |tv|K .

Therefore,
〈v,∇dK,Σ(p)〉 6 |v|K . (7.1.7)

Taking v = πK(∇dK,Σ(p)) in (7.1.7), we obtain

|∇dK,Σ(p)|K,∗ 6 1.

On the other hand, let γ(t) = F (q0, t). By (7.1.2) we have that

dK,Σ(γ(t)) = t.

Taking derivatives in the previous equation, we obtain

〈γ′(t),∇dK,Σ(γ(t))〉 = 1.

Since γ′(t) = (πK ◦N)(q0), we get that |γ′(t)|K = 1. Using (2.1.4), we get

|∇dK,Σ(γ(t))|K,∗ > 1.

Given a tubular neighborhood O of ∂Ω and p = F (q, t) ∈ Ω, we denote
Nt(p) the inner unit normal to Σt at p. Let us explicitly compute div(πK ◦
Nt)(p). Let us recall that, to the 0-homogeneity of πK , we get that

q ·DπK(q) = 0

for any q ∈ Rd. In particular, taking q = Nt, we obtain

Nt ·D(πK ◦Nt) = Nt ·DπK(Nt) ·DNt = 0,

which implies that

−div(πK ◦Nt)(p) = −divΣ(πK ◦Nt)(p) = HK,Σt(p) > HK,∂Ω(q). (7.1.8)

With the next result we better understand the relationship between the
Finsler mean curvature of Σ, the Euclidean curvatures of Σ and the Euclidean
principal curvatures of K.
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Proposition 7.1.4. Let K be a convex body in C2
+, 0 ∈ intK. Let Ω ⊂ Rd

be a bounded domain with ∂Ω = Σ of class C2 and let Nq be the inner unit
normal to Σ at q. Then we have

HK,Σ(q) = −
d−1∑
i=1

〈DeiNq, ei〉
kKi (πK(Nq))

(7.1.9)

where kKi are the Euclidean principal curvatures of ∂K and e1, . . . , ed−1 is
an orthonormal basis of Euclidean principal directions of ∂K.

Proof. We shall drop the subscript for πK . Let q in Σ and e1, . . . , ed−1 be
an orthonormal basis of Rd−1 = Tπ(Nq)∂K such that

(dNK)π(Nq)ei = kKi (π(Nq))ei.

By hypothesis, kKi > 0 for i = 1, . . . , d−1. Here NK denotes the Gauss map
of ∂K. Then we have

HK,Σ(q) = −divΣ(π(Nq)) = −
d−1∑
i=1

〈Deiπ(Nq), ei〉,

where D is the Levi-Civita connection in Rd. We claim that Deiπ(Nq) =
dπ(DeiNq). Indeed, let γ : (ε, ε) → Σ such that γ(0) = q and γ̇(0) = ei for
i = 1, . . . , d− 1. Then we have

Deiπ(Nq) =
D

ds

∣∣∣
s=0

π(Nγ(s)) =

d∑
j=1

d

ds

∣∣∣
s=0

πj(Nγ(s))
∂

∂xj

=

d∑
j=1

∇πj(Nq)
D

ds

∣∣∣
s=0

Nγ(s)
∂

∂xj
= (dπ)NqDeiNq.

Moreover, since dπ is a symmetric matrix we gain

HK,Σ(q) = −
d−1∑
i=1

〈(dπ)NqDeiNq, ei〉 = −
d−1∑
i=1

〈DeiNq, (dπ)Nqei〉. (7.1.10)

Since π = N−1
K we obtain dπ = (dNK)−1 and

ei = dN−1
K dNK(ei) = dN−1

K (kKi (π(Nq))ei) = kKi (π(Nq))dπ(ei),

by linearity. Therefore, we have dπ(ei) = (kKi (π(Nq)))
−1ei. Hence, plugging

this last equality in (7.1.10) we gain (7.1.9).
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7.1.1.2 The Ridge of the Finsler distance

In the previous section we obtained some regularity and geometric properties
of dK,∂Ω in a tubular neighborhood of ∂Ω. We shall see that some of these
properties holds outside a tubular neighborhood. We �x a convex body
K ∈ C∞+ and a bounded domain Ω ⊆ Rd with C2,1 boundary. For any
p ∈ Ω, we let D(p) := {q ∈ ∂Ω : dK,∂Ω(p) = |p − q|K}. Since dK,∂Ω is
continuous, then clearly D(p) 6= ∅ for any p ∈ Ω. Accordingly, we de�ne the
set

Ω1 := {p ∈ Ω : D(p) is a singleton}, (7.1.11)

and we de�ne the Ridge of Ω by

R := Ω \ int Ω1.

We know, again thanks to [113], that, under our assumptions on K and Ω,

dK,∂Ω ∈ C2,1(int Ω1 ∪ ∂Ω). (7.1.12)

Moreover, in [112, Corollary 1.6] it is proven that the Hausdor� dimension
of R is at most d− 1. This fact implies that R has empty interior, so that

∂(int Ω1) = ∂Ω ∪R. (7.1.13)

The following result is inspired partially by [60, Lemma 3.4].

Proposition 7.1.5. Let p ∈ Ω, let q ∈ D(p) and let

(p, q) := {tp+ (1− t)q : t ∈ (0, 1)}.

Then (p, q) ⊆ int Ω1 and
D(γ) = {q} (7.1.14)

for any γ ∈ (p, q).

Proof. Let p, q be as in the statement, and �x γ ∈ (p, q). We already know
that D(γ) 6= ∅. On the other hand, assume that there exists q′ 6= q such that
q′ ∈ D(γ). Let us notice that p, q, q′ cannot lie on the same line. Indeed,
if by contradiction this was the case, then the only possibility is that p is a
convex combination of γ and q′. But then the strict convexity of K would
imply that

|γ − q′|K 6 |γ − q|K < |p− q|K 6 |p− q′|K < |γ − q′|K ,

which is a contradiction. This in particular implies that p, γ, q′ do not lie on
the same line. Therefore, thanks again to the strict convexity of K, we get
that

|p− q′|K < |p− γ|K + |γ − q′|K 6 |p− γ|K + |γ − q|K = |p− q|K ,
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a contradiction with q ∈ D(p). Hence (7.1.14) is proved. Assume by con-
tradiction that γ ∈ R. By Corollary 4.11 in [112], any point of the form
q+ λ(γ− q) with λ > 1 has a point in ∂Ω closer than q. On the other hand,
taking w the midpoint of p and γ, then by (7.1.14) it holds that D(w) = {q}.
A contradiction then follows.

Let us take a point p ∈ int Ω1, and let q ∈ D(p). Thanks to Proposi-
tion 7.1.5, we know that

dK,∂Ω(z) = |z − q|K

for any z in (p, q). Recalling that (p, q) ⊆ int Ω1, together with (7.1.12), and
Proposition 7.1.3 it is easy to see that ∇dK,∂Ω(z) 6= 0. Thus, at least locally,
the level set ΣdK ,∂Ω(p) is a well de�ned C2 hypersurface. Reasoning as in
Section 7.1.1.1 we conclude that

−div(πK ◦NdK ,∂Ω)(p) > HK0,∂Ω(q) (7.1.15)

for any p ∈ int Ω1, where q ∈ D(p).

7.1.2 Sub-Finsler area

Let K0 ⊆ R2n be a C2
+ convex body with 0 ∈ intK0 and let | · |K0

, | · |K0,∗
and πK0 be the associated left-invariant extensions to H0 (see � 2.1.2). In the
following we shall write | · |∗ and π instead of | · |K0,∗ and πK0 respectively.
Given a horizontal vector �eld U of class C1, we de�ne π(U) as the C1

horizontal vector �eld satisfying

|U |∗ = 〈U, π(U)〉.

Proceeding as in � 2.1.1, it is easy to see that the projection satis�es

π

(
n∑
i

fiXi + giYi

)
= N−1

K0

(
(f, g)√
|f |2 + |g|2

)
,

where |f |2 = 〈f, f〉.
Recall that, by Proposition 2.3.4, if E has C1 boundary ∂E, then

PK0(E) =

�
∂E
|Nh|∗dσ =: AK0(∂E),

where Nh is the projection on the horizontal distribution H of the Rie-
mannian normal N with respect to the metric g and dσ is the Riemannian
measure of ∂E.
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As a signi�cant example, we consider a bounded open set Ω ⊆ R2n and
a C1 function u : Ω→ R. Let Gr(u) = {(x, y, t) ∈ Hn : u(x, y)− t = 0} be
the graph of u. Then we have

Nh =

∑n
i=1(uxi − y)Xi + (uyi + x)Yi√

1 + |∇u+ F |2
and dσ =

√
1 + |∇u+ F |2 dxdy,

where ∇u(x, y) is the Euclidean gradient of u(x, y) and F (x, y) = (−y, x).
Therefore we get

AK0(Gr(u)) =

�
Ω
|∇u+ F |∗ dxdy.

7.1.3 The sub-Finsler prescribed mean curvature equation

Inspired by the previous computation and the sub-Riemannian problem stud-
ied by [35] we consider the following problem. Let Ω ⊂ R2n be a bounded
open set and let F ∈ L1(Ω,R2n), ϕ ∈ W 1,1(Ω) and H ∈ L∞(Ω). Then we
set

I(u) =

�
Ω
|∇u+ F |∗ dxdy +

�
Ω
Hudxdy (7.1.16)

for each u ∈W 1,1(Ω) such that u− ϕ ∈W 1,1
0 (Ω). We say that u ∈W 1,1(Ω)

is a minimizer for I if

I(u) 6 I(v)

for all v ∈W 1,1(Ω) such that v−ϕ ∈W 1,1
0 (Ω). In [35, Section 3] the authors

investigate the �rst variation of the functional I when | · |∗ is the Euclidean
norm | · |, taking into account the bad beaviour of the singular set

Ω0 = {(x, y) ∈ Ω : (∇u+ F )(x, y) = 0}. (7.1.17)

In the next result we derive the Euler-Lagrange equation associated to I for
C2 minimizers.

Proposition 7.1.6. Let K0 be a C2
+ convex body such that 0 ∈ int(K0).

Let u ∈ C2(Ω) be a minimizer for I de�ned in (7.1.16). Assume that F ∈
C1(Ω,R2n). Let Ω0 be the singular set de�ned in (7.1.17). Then u satis�es

div(π(∇u+ F )) = H (7.1.18)

in Ω \ Ω0.

Proof. Given v ∈ C∞c (Ω \ Ω0), by [142, Lemma 3.2] the �rst variation is
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given by

d

ds

∣∣∣
s=0
I(u+ sv) =

�
Ω\Ω0

d

ds

∣∣∣
s=0
|∇(u+ sv) + F |∗ dxdy +

�
Ω\Ω0

Hv dxdy

=

�
Ω\Ω0

d

ds

∣∣∣
s=0
|∇u+ F + s∇v|∗ dxdy +

�
Ω\Ω0

Hv dxdy

=

�
Ω\Ω0

〈∇v, π(∇u+ F ))〉 dxdy +

�
Ω\Ω0

Hv dxdy

=

�
Ω\Ω0

v (H − div(π(∇u+ F ))) dxdy.

Remark 7.1.7. When K0 is the unit disk D0 ⊂ R2n centered at 0 of radius
1 we have

πD0(∇u+ F ) =
∇u+ F

|∇u+ F |
and (7.1.18) is equivalent to

div

(
∇u+ F

|∇u+ F |

)
= H.

7.2 The Finsler approximation problem

In this section we develop the Finsler approximation scheme in order to get
rid of the singular nature of equation (7.1.18). To this aim, given K0 a
convex body in C2

+ such that 0 ∈ intK0 and ε ∈ (0, 1), we denote by Kε the
set

Kε :=

{
(x, y, t) ∈ R2n+1 :

(
|t|
ε

) 3
2

+ |(x, y)|
3
2
K0

6 1

}
. (7.2.1)

Notice that Kε ⊂ R2n+1 ≡ T0Hn (here T0Hn denotes the tangent space
of Hn at p = 0) is a strictly convex body with 0 ∈ int(Kε). Moreover ∂Kε is
of class C1. Indeed it is a level set of the C1 function

gε(x, y, t) :=

(
|t|
ε

) 3
2

+ |(x, y)|
3
2
K0
,

whose gradient never vanishes on ∂Kε. Hence, the projection πKε is well
de�ned and continuous. We shall write | · |ε, | · |ε,∗ and πε instead of | · |Kε ,
| · |Kε,∗ and πKε respectively. The map πhε is de�ned as the �rst 2n compo-

nents of πε. By abuse of notation, we write πhε (x, y) = πhε (x, y,−1) when
there is no confusion.

Proposition 7.2.1. Let K0 be a convex body in C2
+ such that 0 ∈ intK0, and

let Kε ⊆ R2n+1 be the set de�ned in (7.2.1). Then the following assertions
hold:
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(i) The map πhε : R2n r {0} → R2n satis�es

πhε (x, y) = π(x, y)
|(x, y)|2∗

(ε3 + |(x, y)|3∗)
2
3

.

(ii) The map πhε can be extended to a C1 map in R2n by setting πhε (0, 0) =
(0, 0).

(iii) |(x, y,−1)|Kε,∗ =
(
ε3 + |(x, y)|3∗

) 1
3 .

Proof. Let us prove that

πε(x, y,−1) = (απ(x, y),−ε(1− α3/2))2/3 (7.2.2)

for some 0 < α(x, y) < 1. Given (x, y) in R2n \ {0}, we denote by t0 the
2n + 1 coordinate of πε(x, y,−1) and we let Kt0 ⊂ R2n be the convex set
de�ned by

Kt0 := {(x′, y′) : (x′, y′, t0) ∈ Kε}.
Then we have

Kt0 × {t0} =
{( |t0|

ε

) 3
2

+ |(x′, y′)|
3
2
K0

6 1
}

=

|(x′, y′)|K0 6

(
1−

(
|t0|
ε

) 3
2

) 2
3

 .

Hence there exists ᾱ = ᾱ(x, y) such that Kt0 = ᾱK0 and πt0 = ᾱπ. On
the other hand, since πε is the inverse of the Gauss map, we can see that
(x, y,−1) is normal to ∂Kε at πε(x, y,−1) and so (x, y) is normal to ∂Kt0 at
πhε (x, y). Since Kt0 is strictly convex, the projection is unique and πhε = πt0 .
Hence (7.2.2) follows. Taking the scalar product of (x, y,−1) with the curve
β(s) = (sπ(x, y),−ε(1− s3/2)2/3), we get

〈(x, y,−1), β(s)〉 = s|(x, y)|∗ + ε(1− s3/2)2/3.

Notice that β is in ∂Kε and β(α) is πε. Hence in s = α the maximum of the
scalar products of (x, y,−1) with an element of Kε is attained. Thus we can
take derivatives in s = α and equal to 0, and get

0 = |(x, y)|∗ − ε
α

1
2

(1− α3/2)
1
3

.

Then we obtain

α =
|(x, y)|2∗

(ε3 + |(x, y)|3∗)2/3

and we get (i). Since |(x, y,−1)|Kε,∗ = 〈(x, y,−1), πε(x, y,−1)〉, a straight-
forward computation shows (iii). Finally, (ii) follows from (i) and the 2-
homogeneity of the map π(·) | · |2∗.
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Lemma 7.2.2. Let u, v ∈ T0Hn and s ∈ R. Then we have

d

ds

∣∣∣
s=0
|u+ sv|ε,∗ = 〈v, πε(u)〉. (7.2.3)

Proof. Let f(s) = |u+ sv|ε,∗ and g(s) = 〈u+ sv, πε(u)〉. Notice that f(s) >
g(s) for each s ∈ R, since by de�nition |u+sv|ε,∗ > 〈u+sv, πε(u)〉 and f(0) =
|u|ε,∗ = 〈u, πε(u)〉 = g(0). Therefore, by a standard argument f ′(0) = g′(0),
and the thesis follows.

Given K0 ⊂ R2n a convex body in C2
+ with 0 ∈ int(K0), and Kε de�ned

as in (7.2.1), we extend the reasoning of � 2.1.2 to de�ne a left-invariant
norm | · |ε on TH by means of the equality∣∣∣ n∑

i=1

fiXi + giYi + hT
∣∣∣
ε,p

= |(f(p), g(p), h(p))|ε,

for any p ∈ Hn with f = (f1, . . . , fn) and g = (g1, . . . , gn). Again, | · |ε,∗ and
πε can be extended to the tangent bundle in the usual way.

De�nition 7.2.3. Given a measurable set E ⊂ Hn we say that E has �nite
Kε-perimeter if

PKε(E) = sup

{�
E

div(U) dHn, U ∈ X0(Hn), |U |Kε,∞ 6 1

}
< +∞,

where |U |Kε,∞ = supp∈Hn |Up|ε and X0(Hn) is the space of C1 compactly
supported vector �elds in Hn.

Remark 7.2.4. Notice that we are abusing the notation PKε since it is
related to the left-invariant basis {X1, Y1, . . . , Xn, Yn, T} of all the tangent
bundle of Hn instead of the horizontal distribution H0.

Remark 7.2.5. If E has C1 boundary ∂E, then

PKε(E) =

�
∂E
|N |ε,∗dσ = Aε(∂E),

where N is the Riemannian normal with respect to the metric g and dσ is
the Riemannian measure of ∂E. Indeed by the divergence theorem we have

PKε(E) = sup

{�
E

div(U) dHn, U ∈ X0(Hn), |U |Kε,∞ 6 1

}
= sup

{�
∂E
〈U,N〉 dHn, U ∈ X0(Hn), |U |Kε,∞ 6 1

}
=

�
∂E
|N |ε,∗dσ,

where the last equality can be proved proceeding exactly as in [71; 82].
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7.2.1 The Finsler prescribed mean curvature equation

We are ready to derive the Finsler prescribed mean curvature equation, essen-
tially in the same way as in the previous section. To this aim, let Ω ⊂ {t = 0}
be a bounded open set and u : Ω→ R be a C2 function. Then we have

N =

∑n
i=1(uxi − y)Xi + (uyi + x)Yi − T√

1 + |∇u+ F |2

dσ =
√

1 + |∇u+ F |2 dxdy,

where F (x, y) = (−y, x). Therefore we get

AKε(Gr(u)) =

�
Ω
|(∇u+ F,−1)|ε,∗ dxdy.

Therefore, inspired by this computation and thanks to Proposition 7.2.1,
given F ∈ L1(Ω,R2n), ϕ ∈ W 1,1(Ω) and H ∈ L∞(Ω), we de�ne the approx-
imating Finsler functional Iε by

Iε(u) =

�
Ω

(
ε3 + |(∇u+ F )|3∗

) 1
3 dxdy +

�
Ω
Hudxdy, (7.2.4)

for any u ∈ W 1,1(Ω) such that u − ϕ ∈ W 1,1
0 (Ω). Arguing as in the

previous section, and thanks to Lemma 7.2.2, we are able to deduce the
Euler-Lagrange equation associated to (7.2.4). Indeed, given v ∈ C∞c (Ω), by
Lemma 7.2.2, the �rst variation is given by:

d

ds

∣∣∣
s=0
Iε(u+ sv)

=

�
Ω

d

ds

∣∣∣
s=0
|(∇(u+ sv) + F,−1)|ε,∗ dxdy +

�
Ω
Hv dxdy

=

�
Ω

d

ds

∣∣∣
s=0
|(∇u+ F,−1) + s(∇v, 0)|ε,∗ dxdy +

�
Ω
Hv dxdy

=

�
Ω
〈(∇v, 0), πε((∇u+ F,−1))〉 dxdy +

�
Ω
Hv dxdy

=

�
Ω
〈∇v, πhε (∇u+ F )〉 dxdy +

�
Ω
Hv dxdy

=

�
Ω
v(H − div(πhε (∇u+ F ))) dxdy.

Then the Finsler prescribed mean curvature equation for the graph of u is
given by

div(πhε (∇u+ F )) = H in Ω. (7.2.5)
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7.3 A priori estimates for the Finsler Prescribed

Mean Curvature Equation

In this section we want to �nd classical solutions to the Finsler approximating
Dirichlet problem associated to (7.2.5), that is{

div
(
πhε (∇u+ F )

)
= H in Ω

u = ϕ in ∂Ω,
(7.3.1)

where Ω ⊆ R2n is a bounded domain with C2,α boundary for 0 < α < 1,
K0 is a convex body in C2,α

+ with 0 ∈ intK0, H ∈ Lip(Ω), F ∈ C1,α(Ω)
and ϕ ∈ C2,α(Ω). To this aim, let us �x some notation. It is easy to see
that the map G : R2n \ {0} → R2n de�ned by G(p) = π(p)|p|2∗ can be
extended to a 2-homogeneous and C1 map setting G(0) = 0. Moreover, for
any i = 1, . . . , 2n

Di(| · |3∗) = 3Gi(·),
where G = (G1, . . . , G2n). Thanks to Proposition 7.2.1, we can write (7.2.5)
in the form

div

(
π(∇u+ F ) |∇u+F |2∗

(ε3+|∇u+F |3∗)
2
3

)
= H.

An easy computation yields

1

(ε3 + |∇u+ F |3∗)
5
3

(
(ε3 + |∇u+ F |3∗) div(G(∇u+ F ))−

− 2G(∇u+ F )(D2u+DF )G(∇u+ F )T
)

= H.

Therefore, we can write (7.2.5) in the familiar form

2n∑
i,j=1

Aεi,j(z,∇u;F )Di,ju+Bε(z,∇u;F ) = H,

where the coe�cients Aεi,j and B
ε are de�ned by

Aεi,j(z, p;F ) :=
1

(ε3 + |p+ F |3∗)
2
3

DjGi(p+ F )

− 2

(ε3 + |p+ F |3∗)
5
3

Gi(p+ F )Gj(p+ F )

and

Bε(z, p;F ) :=
1

(ε3 + |p+ F |3∗)
2
3

2n∑
i,j=1

DjGi(p+ F )DiFj

− 2

(ε3 + |p+ F |3∗)
5
3

G(p+ F )DF G(p+ F )T .
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for any z ∈ Ω and p ∈ R2n. Therefore (7.2.5) is a second-order quasi-linear
equation. Moreover, thanks to the computations of the previous section
and (iii) in Proposition 7.2.1, we know that (7.2.5) is the Euler-Lagrange
equation associated to the functional

u 7→
�

Ω

(
ε3 + |∇u+ F |3∗

) 1
3 + uH dz.

Since the function (ε3 + | ·+F |3∗)1/3 is strictly convex we get that (7.2.5) is
elliptic. Finally, it is easy to see that the matrix Aε is symmetric. There-
fore we are in position to apply the classical theory for quasi-linear elliptic
equation of [85]. In particular, we wish to rely on the following fundamental
result, which is a direct consequence of [85, Theorem 13.8] and subsequent
remarks.

Proposition 7.3.1. Let Ω ⊆ R2n be a bounded domain with C2,α bound-
ary, for some 0 < α < 1, and let ϕ ∈ C2,α(Ω). Let us assume that
Aεi,j(·, ·;σF ), Bε(·, ·;σF ) ∈ Cα(Ω × R2n) for any σ ∈ [0, 1], and that the
maps

σ 7→ Aεi,j(·, ·;σF ), σ 7→ Bε(·, ·;σF )

are continuous as maps from [0, 1] to Cα(Ω×R2n). If there exist a constant
M > 0 such that, for any σ ∈ [0, 1], any solution u ∈ C2,α(Ω) to the problem{

div(πhε (∇u+ σF )) = σH in Ω

u = σϕ in ∂Ω
(7.3.2)

satis�es
‖u‖C1(Ω) 6M,

then {
div(πhε (∇u+ F )) = H in Ω

u = ϕ in ∂Ω
(7.3.3)

admits a solution in C2,α(Ω).

Our aim is to prove a priori estimates for the C1 norm of solutions to
(7.3.2). As a consequence of this procedure we will get C1 estimates for
solutions to (7.3.3) which are uniform in ε ∈ (0, 1). First of all we need to
guarantee the requested regularity for the coe�cients of the equation.

Lemma 7.3.2. Let K0 be a convex body in C2,α
+ with 0 ∈ intK0. Let F ∈

C1,α(Ω). Then there exists 0 < β < 1 such that Aεi,j(·, ·;σF ), Bε(·, ·;σF ) ∈
Cβ(Ω× R2n) for any σ ∈ [0, 1]. Moreover, the maps

σ 7→ Aεi,j(·, ·;σF ), σ 7→ Bε(·, ·;σF )

are continuous as maps from [0, 1] to Cβ(Ω× R2n).
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Proof. The second statement follows easily from the de�nition of the coe�-
cients. Let us prove the �rst statement. It is clear, thanks to our assumptions
on K0 and F , that Aεi,j(·, ·, σF ) and Bε(·, ·, σF ) belong to C0(Ω × R2n) for
any σ ∈ [0, 1]. Moreover, notice that for any i, j = 1, . . . , 2n

Dj(Gi(p)) =

{
2|p|∗πj(p)πi(p) + |p|2∗Diπj(p) if p 6= 0

0 if p = 0

is Cα(R2n \ 0) since ∂K0 is C2,α. Finally, we get

lim
p→0

|DjGi|(p)
|p|α

= 0.

Indeed, we have

|DjGi|(p)
|p|α

= 2
|p|∗
|p|α
|πj(p)πi(p) + |p|2∗Diπj(p)|

6 2
|p|α∗
|p|α
|p|1−α∗ (|πj(p)πi(p)|+ |p|∗|Diπj(p)|)

6 C|p|1−α∗ → 0

as p→ 0, since |p|
α
∗

|p|α is bounded and the last factor in the previous inequality is

0-homogeneous, thus in particular bounded. ThenDjGi belongs to Cα(R2n).
Since Aεi,j and B

ε are obtained as composition, sum and product of Hölder
functions, the conclusion follows.

Therefore we are in position to try to apply Proposition 7.3.1. First of
all we want to obtain estimates for the C0 norm of solutions to (7.3.2). In
order to do this, inspired by [84], we assume that there exists δ ∈ (0, 1] such
that ∣∣∣∣�

Ω
Hvdz

∣∣∣∣ 6 (1− δ)
�

Ω
|∇v|∗dz (7.3.4)

for any non-negative function v ∈ C∞c (Ω). To justify this assumption, as-
sume that we have a function u ∈ C2(Ω) which solves (7.3.1). Then, multi-
plying (7.3.1) by a test function v ∈ C∞c (Ω) and integrating over Ω, we get
that∣∣∣∣�

Ω
Hv dz

∣∣∣∣ =

∣∣∣∣�
Ω
v div(πhε (∇u+ F ))dz

∣∣∣∣ 6 �
Ω
|〈πhε (∇u+ F ),∇v〉| dz

6
�

Ω
|∇v|∗dx. (7.3.5)

Notice that, as already pointed out in the introduction, (7.3.4) is slightly
stronger than (7.3.5). We begin by proving a technical lemma.
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Lemma 7.3.3. Let σ ∈ [0, 1] and ε ∈ (0, 1). Then

〈p, πhε (p+ σF )〉 > |p|∗ − 1− |F |∗ − | − F |∗ (7.3.6)

for any p ∈ R2n and z ∈ Ω.

Proof. Let us �x z ∈ Ω and p ∈ R2n. If p = 0 or p + σF = 0, then the
thesis is trivial. Therefore, assume p, p + σF 6= 0. It is clear, recalling
Proposition 7.2.1 and using the Cauchy -Schwarz formula (2.1.4), that

〈p, πhε (p+ σF )〉 = 〈p+ σF, πhε (p+ σF )〉 − 〈σF, πhε (p+ σF )〉

>
|p+ σF |3∗

(ε3 + |p+ σF |3∗)
2
3

−
(
|p+ σF |3∗

ε3 + |p+ σF |3∗

) 2
3

|σF |∗

>
|p+ σF |3∗

(ε3 + |p+ σF |3∗)
2
3

− |F |∗.

Hence, noticing that

|p+ σF |∗ > |p|∗ − | − σF |∗ > |p|∗ − | − F |∗

by the triangle inequality, it su�ces to prove that

|p+ σF |3∗
(ε3 + |p+ σF |3∗)

2
3

> |p+ σF |∗ − 1. (7.3.7)

When |p+σF |∗ 6 1 (7.3.7) is trivial. Therefore let us assume |p+σF |∗ > 1.
Notice that (7.3.7) is equivalent to

|p+ σF |
9
2
∗ > (|p+ σF |∗ − 1)

3
2 (ε3 + |p+ σF |3∗).

Since ap − bp > (a − b)p when 0 < b < a and p > 1, it is enough to check
that

|p+ σF |9/2∗ > (|p+ σF |3/2∗ − 1)(ε3 + |p+ σF |3∗)

= ε3|p+ σF |3/2∗ + |p+ σF |9/2∗ − ε3 − |p+ σF |3∗,

which is clearly true since |p+ σF |∗ > 1 and ε < 1.

Proposition 7.3.4. Let α ∈ (0, 1) and K0 be a convex body in C2,α
+ with

0 ∈ intK0. Let Ω ⊆ R2n be a bounded open set, ϕ ∈ C2(Ω), H ∈ L∞(Ω)
and F ∈ C0(Ω). If condition (7.3.4) is satis�ed then there exists a constant
C1 = C1(n,K0,Ω, ϕ, F, δ) > 0, independent of σ ∈ [0, 1] and ε ∈ (0, 1), such
that, for any solution u ∈ C2(Ω) to (7.3.2), it holds that

‖u‖L∞(Ω) 6 C1.
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Proof. Let us notice that (7.3.6), the equivalence between | · |∗ and the Eu-
clidean norm and the boundedness of F allow to �nd constants a0, a2 > 0,
independent of σ ∈ [0, 1] and ε ∈ (0, 1), such that

〈p, πhε (p+ σF )〉 > a0|p| − a2

for any z ∈ Ω and p ∈ R2n. This fact, together with the boundedness
of H, suggests to relay on [85, Lemma 10.8] to limit ourselves to estimate
‖u‖L1(Ω). Indeed, it is not di�cult to show that [85, Lemma 10.8] remains
true when condition (10.23) of [85] allows a positive coe�cient multiplying
|p|. Moreover, its proof can be easily adapted to achieve estimates from
above of supΩ−u in terms of ‖u−‖L1(Ω) for any solution of Qu = 0 where
Q is de�ned in (10.5) of [85]. In the end it su�ces to estimate ‖u+‖L1(Ω)

and ‖u−‖L1(Ω). We only estimate ‖u+‖L1(Ω), being the other case analogous.
Moreover, up to replacing u by u − ‖ϕ‖∞,∂Ω, we can assume that u 6 0 in
∂Ω. Let us set v = u+. Then it is clear that v ∈ W 1,∞(Ω) ∩W 1,1

0 (Ω), and
moreover ∇v exists in the classical sense for almost every z ∈ Ω. Therefore,
since u is in particular a weak solution to

div(πhε (∇u+ σF )) = σH,

it follows that

�
Ω
〈∇v, πhε (∇u+ σF )〉dz = −

�
Ω
vσHdz. (7.3.8)

We claim that

〈∇v, πhε (∇u+ σF )〉 > |∇v|∗ − 1− |F |∗ − | − F |∗ (7.3.9)

holds in any point where ∇v exists in the classical sense. Indeed, in such
points ∇v is either 0 or ∇u. In the �rst case (7.3.9) is trivial, while in
the second case it follows from Lemma 7.3.3. It is well known that, since
v > 0 and v ∈ W 1,1

0 (Ω), there exists a sequence of non-negative functions
(vk)k ⊆ C∞c (Ω) converging to v strongly in W 1,1

0 (Ω). Moreover, thanks to
(7.3.4) it holds that

∣∣∣∣�
Ω
Hvkdz

∣∣∣∣ 6 (1− δ)
�

Ω
|∇vk|∗ dz.

Hence, passing to the limit in the previous equation, and recalling that | · |∗
is equivalent to the Euclidean norm, we conclude that (7.3.4) holds for v.
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Combining this information with (7.3.8) and (7.3.9) we get that

0 =

�
Ω
−〈∇v, πhε (∇u+ σF )〉 dz −

�
Ω
vσH dz

6
�

Ω
−|∇v|∗ + 1 + |F |∗ + | − F |∗ dz +

∣∣∣∣�
Ω
vH dz

∣∣∣∣
6
�

Ω
−|∇v|∗ + 1 + |F |∗ + | − F |∗ + (1− δ)|∇v|∗ dz

6
�

Ω
1 + |F |∗ + | − F |∗ − δ|∇v|∗ dz,

which implies

δ

�
Ω
|∇v|∗ dz 6

�
Ω

1 + |F |∗ + | − F |∗ dz.

Thanks to the Poincaré inequality and the equivalence between | · |∗ and
the Euclidean norm, we conclude that there exists a constant c1, independent
of σ ∈ [0, 1] and ε ∈ (0, 1). Such that

�
Ω
u+ dz 6 c1.

Since in the same way we can achieve an estimate for u−, the thesis follows.

The next step is to achieve gradient estimates, again in the C0 norm,
for solutions to (7.3.2). As customary in this framework, we want to reduce
ourselves to boundary gradient estimates via a suitable maximum principle.
To this aim, arguing as in [35], we need to assume the existence of scalar
functions f1, . . . , f2n ∈ C1(Ω) such that

DkFi = Difk for any i, k = 1, . . . , 2n. (7.3.10)

Thanks to this assumption, the following maximum principle, which is the
Finsler counterpart of [35, Proposition 4.3], holds.

Proposition 7.3.5. Let K0 be a convex body in C2,α
+ for 0 < α < 1 with

0 ∈ intK0. Let Ω ⊆ R2n be a bounded domain. Let F ∈ C1(Ω,R2n) be such
that (7.3.10) holds. Let H be a constant. Let u ∈ C2(Ω) be a solution to
(7.3.2). Then

‖∇u‖∞,Ω 6 ‖∇u‖∞,∂Ω + 2‖f‖∞,Ω, (7.3.11)

where f = (f1, . . . , f2n) is as in (7.3.10).
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Proof. Fix σ ∈ [0, 1] and ε ∈ (0, 1). Let v ∈ C2
c (Ω) and �x k ∈ {1, . . . , 2n}.

Then, multiplying (7.3.2) by Dkv, using Proposition 7.2.1, integrating over
Ω, integrating by parts and exploiting the properties of F , it holds that

0 =

�
Ω

(
div

(
π(∇u+ σF ) |∇u+σF |2∗

(ε3+|∇u+σF |3∗)
2
3

)
− σH

)
Dkv dz

=

�
Ω

div

(
π(∇u+ σF ) |∇u+σF |2∗

(ε3+|∇u+σF |3∗)
2
3

)
Dkv dz

= −
2n∑
i=1

�
Ω

(
πi(∇u+ σF ) |∇u+σF |2∗

(ε3+|∇u+σF |3∗)
2
3

)
DiDkv dz

= −
2n∑
i=1

�
Ω

(
πi(∇u+ σF ) |∇u+σF |2∗

(ε3+|∇u+σF |3∗)
2
3

)
DkDiv dz

=

2n∑
i=1

�
Ω
Dk

(
πi(∇u+ σF ) |∇u+σF |2∗

(ε3+|∇u+σF |3∗)
2
3

)
Div dz

=

2n∑
i,j=1

�
Ω
aε,σi,j (x,∇u)Dk(Dju+ σFj)Div dz

=
2n∑
i,j=1

�
Ω
aε,σi,j (x,∇u)Dj(Dku+ σfk)Divdz,

where

aε,σi,j (x, p) =
Dj(Gi)(p+ σF )(ε3 + |p+ σF |3∗)− 2Gi(p+ σF )Gj(p+ σF )

(ε3 + |p+ σF |3∗)
5
3

.

Therefore we proved that

2n∑
i,j=1

�
Ω
aε,σi,j (x,∇u)Dj(Dku+ σfk)Div dz = 0 (7.3.12)

for any v ∈ C2
c (Ω). Arguing as in [35, Proposition 4.3] it is easy to show

that (7.3.12) actually holds for any v ∈ C1
c (Ω). Therefore we proved that

Dku+ σfk is a weak solution to the linear elliptic equation

div(aε,σi,j Djw) = 0.

Hence, being aε,σi,j (x,∇u) bounded over Ω, thanks to [85, Theorem 8.1] with
bi, ci, d = 0 we can conclude that

‖∇u+ σf‖∞,Ω 6 ‖∇u+ σf‖∞,∂Ω,

which in particular implies that

‖∇u‖∞,Ω 6 ‖∇u‖∞,∂Ω + 2‖f‖∞,Ω. (7.3.13)
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Finally we are left to provide boundary gradient estimates for solutions
to (7.3.2). Therefore, inspired by [84], we have to impose some constraints
on the values of H depending on the Finsler mean curvature of ∂Ω. More
precisely, we require that

|H|(z0) < HK0,∂Ω(z0) (7.3.14)

for any z0 ∈ ∂Ω, whereHK0,∂Ω is theK0-mean curvature as de�ned in � 7.1.1.
Here and in the rest of this section we assume that K0 is a convex body in
C∞+ such that 0 ∈ intK0, since we need to apply the results of � 7.1.1.1 and
� 7.1.1.2.

Proposition 7.3.6. Let K0 be a convex body in C∞+ with 0 ∈ intK0. Let
Ω ⊆ R2n be an open and bounded set with C2,α boundary, for some 0 <
α < 1. Let ϕ ∈ C2(Ω), F ∈ C0(Ω) and H ∈ Lip(Ω) satisfying (7.3.14).
Finally, assume that there exists a constant C̃1 = C̃1(n,K0,Ω, ϕ, F,H) > 0,
independent of σ ∈ [0, 1] and ε ∈ (0, 1), such that, for any solution u ∈ C2(Ω)
to (7.3.2), it holds that

‖u‖∞,Ω 6 C̃1. (7.3.15)

Then, there exists a constant C2 = C2(n,K0,Ω, ϕ, F, C̃1, H) > 0, indepen-
dent of σ ∈ [0, 1] and ε ∈ (0, 1), such that, for any solution u ∈ C2(Ω) to
(7.3.2), it holds that

‖∇u‖∞,∂Ω 6 C2. (7.3.16)

Proof. First of all we notice that, being ∂Ω compact and HK0,∂Ω continuous,
(7.3.14) implies the existence of a positive constant C3 such that

|H(z0)| 6 HK0,∂Ω(z0)− 2C3 (7.3.17)

for any z0 ∈ ∂Ω. In order to prove this result we use a barriers argument as in
[85, Chapter 14]. Therefore, for any z0 ∈ ∂Ω, we have to �nd a neighborhood
N of z0 in Ω and two functions w+, w− ∈ C2(N ), called upper barrier and
lower barrier respectively, such that

w+(z0) = w−(z0) = σϕ(z0),

w−(z) 6 u(z) 6 w+(z)

for any z ∈ ∂N ,
div(πhε (∇w+ + σF )) 6 σH

for any z ∈ N and
div(πhε (∇w− + σF )) > σH

for any z ∈ N . In this proof we deal only with the upper barrier, being
the other case analogous. In order to �nd an upper barrier, we consider a
tubular neighborhood O of ∂Ω and we let Γµ := {x ∈ Ω : dK0,∂Ω(x) < µ},
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where µ > 0 is small enough to ensure that Γµ b O and dK0,∂Ω denotes
the Finsler distance from the boundary. We de�ne w+ : ΓµR by w+(z) :=
kdK0,∂Ω(z) +σϕ(z), where k > 0 has to be chosen. First, thanks to (7.1.12),
w+ ∈ C2(Γµ), and for any z ∈ Γµ there exists a unique z0 ∈ ∂Ω such that
dK0,∂Ω(z) = |z − z0|K0 . Moreover, it is clear that w+(z0) = σϕ(z0) for any
z0 ∈ ∂Ω. Thanks to (7.3.15), if we choose

k >
C̃1 + ‖ϕ‖∞,Ω

µ
,

it follows that w+(z) > u(x) for any z ∈ Ω with dK0,∂Ω(z) = µ, and so we
conclude that u(z) 6 w+(z) for any z ∈ ∂Γµ. We are left to show that w+

is a subsolution to (7.3.2). Therefore it su�ces to show that

(ε3 + |∇w+ + σF |3∗)
5
3 (div(πhε (∇w+ + σF ))− σH) 6 0

on Γµ. Taking k > supΩ |−F |∗, (7.1.6) ensures that k∇dK0,∂Ω(z)+σF (z) 6= 0
for any z ∈ Γµ and σ ∈ [0, 1]. Let us notice that Proposition 7.2.1 and a
simple computation imply that

(ε3+|∇w+ + σF |3∗)
5
3 div(πhε (∇w+ + σF ))

=(ε3 + |∇w+ + σF |3∗)
5
3 div

(
π(∇w+ + σF )|∇w+ + σF |2∗

(ε3 + |∇w+ + σF |3∗)
2
3

)
=(ε3 + |∇w+ + σF |3∗) div(π(∇w+ + σF )|∇w+ + σF |2∗)︸ ︷︷ ︸

A

+ (ε3 + |∇w+ + σF |3∗)
5
3

|∇w+ + σF |2∗〈π(∇w+ + σF ),∇
(
ε3 + |∇w+ + σF |3∗)−

2
3

)
〉︸ ︷︷ ︸

B

.

We estimate separately A and B. In the following computations we let
d := dK0,∂Ω and Rσ := σ∇ϕ + σF . We are going to exploit the fact that,
thanks to the homogeneity properties of the equation, the contribution of
Rσ as k →∞ is negligible. Let us notice that by (7.1.6) and (2.1.6) we get

π(∇dK0,∂Ω) ·D2dK0,∂Ω = 0. (7.3.18)

Hence, thanks to (7.1.6), (7.3.18), the 1-homogeneity of | · |∗, the 0-homogeneity
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of π, the −1-homogeneity of Dπ and the properties of | · |∗, it holds that

A =|k∇d+Rσ|2∗
2n∑
i=1

Di (πi(k∇d+Rσ))

+
2n∑
i=1

πi(k∇d+Rσ)Di

(
|k∇d+Rσ|2∗

)
=|k∇d+Rσ|2∗

2n∑
i,j=1

Diπj(k∇d+Rσ)(kDijd+DiRσ,j)

+ 2|k∇d+Rσ|∗π(k∇d+Rσ) · (kD2d+DRσ) · π(k∇d+Rσ)T

=k2

∣∣∣∣∇d+
Rσ
k

∣∣∣∣2
∗

2n∑
i,j=1

Diπj

(
∇d+

Rσ
k

)(
Dijd+

DiRσ,j
k

)

+ 2k2

∣∣∣∣∇d+
Rσ
k

∣∣∣∣
∗
π

(
∇d+

Rσ
k

)
·
(
D2d+

DRσ
k

)
· π
(
∇d+

Rσ
k

)T
=k2(1 + o(1))(div(π(∇d)) + o(1))

+ 2k2(1 + o(1))(π(∇d) ·D2d · π(∇d)T + o(1))

=k2 div(π(∇d)) + o(k2),

which allows to infer that

(ε3 + |∇w+ + σF |3∗)A = k5 div(π(∇d)) + o(k5)

as k → ∞, where o(k2) is uniform with respect to z ∈ Γµ, ε ∈ (0, 1) and
σ ∈ [0, 1]. Now, exploiting the same properties as above, we estimate B.

(ε3 + |k∇d+Rσ|3∗)
5
3B

= −2|k∇d+Rσ|4∗〈π(k∇d+Rσ),∇(|k∇d+Rσ|∗)〉
= −2|k∇d+Rσ|4∗π(k∇d+Rσ) · (kD2d+DRσ) · π(k∇d+Rσ)T

= −2k5

∣∣∣∣∇d+
Rσ
k

∣∣∣∣4
∗
π

(
∇d+

Rσ
k

)
·
(
D2d+

DRσ
k

)
· π
(
∇d+

Rσ
k

)T
= −2k5(1 + o(1))(π(∇d) ·D2d · π(∇d)T + o(1))

= −2k5(1 + o(1))o(1)

= o(k5).

as k → ∞ and uniformly with respect to ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Γµ.
Finally, it is easy to see that

−(ε3 + |∇w+ + σF |3∗)
5
3σH 6 (ε3 + |∇w+ + σF |3∗)

5
3 |H| = k5|H|+ o(k5)
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as k →∞ and uniformly with respect to ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Γµ. In
the end we get that

(ε3+|∇w++σF |3∗)
5
3 (div(πhε (∇w++σF ))−σH) 6 k5(div(π(∇d))+|H|)+o(k5)

as k →∞ and uniformly with respect to ε ∈ (0, 1), σ ∈ [0, 1] and z ∈ Γµ.
Now, let z ∈ Γµ and let z0 ∈ ∂Ω be such that d(z) = |z − z0|K0 . Thanks

to the Lipschitz continuity of H and the equivalence between | · |K0
and the

Euclidean norm, there exists a constant C4 such that

|H|(z) = |H|(z0) + |H|(z)− |H|(z0) 6 |H|(z0) + C4d(z) 6 |H|(z0) + C4µ
(7.3.19)

Hence, thanks to Remark 7.1.4, (7.1.8) and (7.3.17), we conclude that

div(π(∇d))(z) + |H|(z0) + C4µ = divΣd(z)(π(∇d))(z) + |H|(z0) + C4µ

6 div∂Ω(π(∇d))(z0) + |H|(z0) + C4µ

= −HK0,∂Ω(z0) + |H|(z0) + C4µ

6 −C3 < 0,

provided that µ 6 C3
C4
. Hence we found an upper barrier, from which the

thesis follows.

Remark 7.3.7. Assume that n = 1, let Ω ⊂ R2 and K0 ∈ C2
+ be a con-

vex body of R2. If (7.3.14) holds then Ω is strictly convex. Indeed, by
Proposition 7.1.4 we have

0 6 |H| < −〈De1Nz0 , e1〉
kK0(π(Nz0))

=
k∂Ω(z0)

kK0(π(Nz0))
,

where kK0 and k∂Ω are the the Euclidean geodesic curvature of ∂K and
∂Ω. Since kK0 is strictly positive we obtain k∂Ω(z0) > 0, hence Ω is strictly
convex.

To conclude this section, inspired by [158] we want to show that, in the
particular case in which H is constant, then we can exploit (7.3.14) in order
to obtain uniform estimates of the function, without requiring the validity
of (7.3.4). Again, in order to apply the results of � 7.1.1.1 and � 7.1.1.2,
we assume that K0 is a convex body in C∞+ such that 0 ∈ intK0 and ∂Ω
belongs to C2,1.

We denote by BK(p, r) the ball of radius r > 0 in Rd associated to
the distance dK,p and R the Ridge of Ω as de�ned in �7.1.1.1 and �7.1.1.2
respectively.

Proposition 7.3.8. Let K0 be a convex body in C∞+ with 0 ∈ intK0. Let
Ω ⊆ R2n be a bounded domain with C2,1 boundary, let ϕ ∈ C2(Ω) and
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let H be a constant which satis�es (7.3.14). There exists a constant C1 =
C1(n,K0,Ω, ϕ,H, F ) > 0, independent of σ ∈ [0, 1] and ε ∈ (0, 1), such that,
for any solution u ∈ C2(Ω) to (7.3.2), it holds that

‖u‖∞,Ω 6 C1.

Proof. Let us de�ne the function v : int Ω1R by

v(z) := sup
∂Ω
|ϕ|+ kdK0,∂Ω(z)

for any z ∈ Ω1, where k > 0 has to be chosen and Ω1 is the set de�ned in
(7.1.11). We already know (cf. (7.1.12)) that v ∈ C2(int Ω1). We repeat
the computations of the proof of Proposition 7.3.6, avoiding (7.3.19) thanks
to the fact that H is constant, to �nd k > 0, independent of ε ∈ (0, 1),
σ ∈ [0, 1] and z ∈ Ω1, such that v is a subsolution to (7.3.2) on int Ω1.
Therefore, arguing as in the proof of [85, Theorem 10.7], it follows that
w := u − v is a weak supersolution on int Ω1 to a linear elliptic equation of
the form

2n∑
i,j=1

Di(ai,j(z)Djw(z)) +

2n∑
i=1

ci(z)Diw(z) = 0.

Hence, thanks to [85, Theorem 8.1] and recalling (7.1.13), it follows that

sup
Ω1

(u− v) 6 sup
∂Ω∪R

((u− v)+).

Noticing that u− v 6 0 on ∂Ω and that int Ω1 = Ω, we obtain that

u(z)− v(z) 6 sup
Ω

(u− v) = sup
Ω1

(u− v) 6 sup
∂Ω1

((u− v)+) = sup
R

((u− v)+)

for any z ∈ Ω. We are left to show that supR((u− v)+) 6 0. Indeed, assume
by contradiction that supR((u− v)+) > 0. Since R is compact, there exists
z0 ∈ R such that

u(z0)− v(z0) = sup
R

((u− v)+) = sup
R

(u− v).

Moreover, z0 is a maximum point for u − v on Ω. Let us �x y0 ∈ ∂Ω such
that dK0,∂Ω(z0) = |z0 − y0|K0 . Then, thanks to Proposition 7.1.5, it is easy
to see that

dK0,∂Ω(z) = |z − y0|K0 (7.3.20)

for any z belonging to (y0, z0), the segment connecting y0 and z0. Let now
ν := y0−z0

|y0−z0| . By (7.3.20) it holds that v(z) < v(z0) for any z ∈ (y0, z0), and
moreover

D+
ν v(z0) := lim

h→0+

v(z0 + hν)− v(z0)

h
< 0. (7.3.21)
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Since z0 is a maximum point of u− v, it holds in particular that D+
ν u(z0) 6

D+
ν v(z0), which implies, together with (7.3.21), that D+

ν u(z0) = Dνu(z0) <
0. This proves that Du(z0) 6= 0. Since then z0 is a regular point for u, the
level set {z ∈ Ω : u(z) = u(z0)} is locally a C2 hypersurface. Therefore
there exists a small Euclidean ball Beu such that Beu is tangent to the level
set at z0 and moreover Beu ⊆ {z ∈ Ω : u(z) > u(z0)}. Now, since by our
assumptions the Finsler balls relative to −K0 are uniformly convex and C2,
there exists η > 0 and x0 ∈ Ω such that

B−K0(x0, η) ⊆ {z ∈ Ω : u(z) > u(z0)} (7.3.22)

and B−K0(x0, η) is tangent to Beu at z0. Indeed, �x a Finsler ball tangent
to Beu at z0 relative to −K0, say BF . On one hand, the principal curvatures
of ∂Beu at z0 are �xed. On the other hand, noticing that the principal
curvatures of a C2

+ convex set admit a positive lower bound, we can dilate
and translate BF to make the curvature of BF as big as we want to ensure
that (7.3.22) holds. Notice that

dK0,∂Ω(z) > dK0,∂Ω(z0) (7.3.23)

for any z ∈ B−K0(x0, η). Indeed, if by contradiction there exists z ∈
B−K0(x0, η) such that dK0,∂Ω(z) < dK0,∂Ω(z0), then (7.3.22) would imply

u(z)− kdK0,∂Ω(z) > u(z0)− kdK0,∂Ω(z) > u(z0)− kdK0,∂Ω(z0),

a contradiction with the maximality of z0. Let now w0 ∈ ∂Ω be such that
dK,∂Ω(x0) = |x0 − w0|K0 , and let b0 be the unique point of intersection
between ∂B−K0(x0, η) and the segment joining w0 and x0. Then by (7.1.1),
(7.3.20), (7.3.23), the choice of b0 and the strict convexity of K0, it holds
that

dK0,∂Ω(x0) = |x0 − w0|K0 = |x0 − b0|K0 + |b0 − w0|K0

= η + dK0,∂Ω(b0) > η + dK0,∂Ω(z0).

On the other hand, (7.1.1) and the triangle inequality imply

dK0,∂Ω(x0) 6 |x0 − y0|K0 6 |x0 − z0|K0 + |z0 − y0|K0 = η + dK0,∂Ω(z0).

Putting together the previous inequalities we get that

dK0,∂Ω(x0) = |x0 − y0|K0 = |x0 − z0|K0 + |z0 − y0|K0 , (7.3.24)

from which in particular we conclude, exploiting again the strict convexity of
K0, that x0 lies on (y0, x0). Therefore, thanks to this fact, the �rst equality
in (7.3.24) and Proposition 7.1.5, we conclude that z0 ∈ int Ω1, which is a
contradiction. In the end we proved that

sup
Ω
u 6 sup

∂Ω
|ϕ|+ kmax

Ω
dK0,∂Ω.

Since the converse estimate can be obtained in a similar way, the thesis is
proved.
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7.4 Existence of Lipschitz minimizer for the sub-

Finsler functional I

Thanks to the a priori estimates of the previous section, together with
Proposition 7.3.1 and the uniformity of the estimates with respect to ε ∈
(0, 1), we are in position both to solve the Finsler Prescribed Mean Curva-
ture Equation and to pass to the limit and �nd a solution to the Sub-Finsler
Prescribed Mean Curvature equation.

Theorem 7.4.1. Let K0 ∈ C∞+ be a convex body such that 0 ∈ intK0. Let
Ω ⊂ R2n be a bounded domain with C2,1 boundary. Let ϕ ∈ C2,α(Ω), for
0 < α < 1, and let F ∈ C1,α(Ω) be such that (7.3.10) is satis�ed. Assume
that H is a constant such that (7.3.14) holds. Then, for any ε ∈ (0, 1), the
exists a function uε ∈ C2,α(Ω) which solves (7.3.1). Moreover, there exists
a constant M > 0, independent of ε ∈ (0, 1), such that any solution uε to
(7.3.1) satis�es

sup
Ω
|uε|+ sup

Ω
|∇uε| 6M. (7.4.1)

Finally, there exists a Lipschitz continuous minimizer u0 ∈ Lip(Ω) for I with
u0 = ϕ on ∂Ω.

Proof. Let 0 < ε < 1. By Proposition 7.3.8, Proposition 7.3.5 and Proposi-
tion 7.3.6, there exists a constant M > 0 such that, for any σ ∈ [0, 1], any
solution u ∈ C2,α(Ω) to the problem (7.3.2) satis�es

sup
Ω
|u|+ sup

Ω
|∇u| 6M.

Then by Proposition 7.3.1 there exists a solution uε ∈ C2,α(Ω̄) to{
div(πhε (∇u+ F )) = H in Ω

u = ϕ in ∂Ω.

Again by Proposition 7.3.8, Proposition 7.3.5 and Proposition 7.3.6, we have
that

sup
Ω
|uε|+ sup

Ω
|∇uε| 6M, (7.4.2)

where the constant M > 0 is uniform in 0 < ε < 1. Let {εj}j∈N ⊂ (0, 1) be
a sequence such that εj → 0 as j → ∞. Since M is uniform in ε by (7.4.2)
we gain that supΩ |uεj | 6M and that for any x, y ∈ Ω

|uεj (x)− uεj (y)| 6M |x− y|. (7.4.3)

Then, by Ascoli-Arzelà theorem there exists u0 ∈ C(Ω) such that uεj → u0

uniformly in Ω. It is clear that u = ϕ on ∂Ω. Moreover, taking the limit as
j → 0 in (7.4.3), we gain that

sup
x 6=y

|u0(x)− u0(y)|
|x− y|

6M,
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thus u0 is Lipschitz. We claim that u0 is a minimizer for I de�ned in (7.1.16).
Indeed, we have that ‖uεj‖W 1,1(Ω) 6 M |Ω|, ‖u0‖W 1,1(Ω) 6 M |Ω| and uεj
converge to u0 in L1(Ω). Moreover, the function (p, (x, y))→ |p+ F (x, y)|∗
is positive, continuous and convex in p. Therefore, by [132, Theorem 4.1.2] I,
is lower semicontinuous with respect to the strong L1-topology, from which
we have that

I(u0) 6 lim inf
j→∞

I(uεj ). (7.4.4)

For each v ∈W 1,1(Ω) such that v − ϕ ∈W 1,1
0 (Ω), it follows that

I(uεj ) =

�
Ω
|∇uεj + F |∗ dz +

�
Ω
Huεj dz

6
�

Ω
(ε3
j + |∇uεj + F |3∗)

1
3 dz +

�
Ω
Huεj dz

6
�

Ω
(ε3
j + |∇v + F |3∗)

1
3 dz +

�
Ω
Hv dz

6 εj |Ω|+
�

Ω
|∇v + F |∗ dz +

�
Ω
Hv dz,

(7.4.5)

where we have used the fact that the Dirichlet solution uεj ∈ C2α(Ω̄) is

a minimizer for the functional v →
�

Ω(ε3
j + |∇v + F |3∗)

1
3 +

�
ΩHv for each

v ∈ W 1,1(Ω) s.t. v − ϕ ∈ W 1,1
0 (Ω). Passing to the liminf in (7.4.5) and

taking into account (7.4.4), we obtain I(u0) 6 I(v) for each v ∈ W 1,1(Ω)
s.t. v − ϕ ∈W 1,1

0 (Ω).

Remark 7.4.2. A deeper look to [113; 112] suggests that it should be possi-
ble to prove that the aforementioned results still hold only assuming that K0

is a convex body in C2,α
+ with 0 ∈ intK0, for some 0 < α < 1. Accordingly,

it is reasonable that in Theorem 7.4.1 the regularity of ∂K0 can be weakened
to C2,α, for some 0 < α < 1.





Appendix A

Alternative proof of

Theorem 2.3.3

Given a measure µ, we say that a family of measurable functions H is PCU -
stable if for every family {α1, . . . , αn} of C1(Rd) that forms a partition of
unity at all p in Rd, and every subset {v1, . . . , vn} in H, then

∑
i αivi is an

element of H.
A normal convex integrad is a measurable function j : Ω × Rk → R ∪

{+∞,−∞} such that for every p in Ω, j(p, ·) is convex and lower semi-
continuous.

The family
H = {g ∈ C1

c (V ;Rk) : |g|K,+∞ 6 1}

is PCU -stable, since

|
∑
i∈I

αi(p)gi(p)| =
∑
i∈I

αi(p)|gi(p)| 6 1.

We consider the normal convex functional

j(p, z) = −〈z, νh(p)〉.

Given p in Rd, let us prove that

inf
g∈−H

j(p, g(p)) = −|νh(p)|−K,∗.

It is clear from the de�nition of the norm that |g|K = | − g|−K . Thus, for
g ∈ −H we have

−〈g, νh〉 > −|νh|−K,∗.

On the other hand, let ϕ ∈ C1
c (Rk) such that ϕ(p) = 1 and 0 6 ϕ(q) 6 1

for every q ∈ Rd. Thereore the function ϕπ−K(νh) is in C1
c (Rd;Rk) and

|ϕπ−K(νh)|−K,+∞ 6 1. Moreover,

〈ϕ(p)π−K(νh(p)), νh(p)〉 = |νh(p)|−K,∗.

139
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Taking the in�mum in H, we get

inf
g∈H

g(p) 6 |νh(p)|∗.

Therefore, by Theorem 1 in [20], we get

sup
v∈H

�
Rd
〈U, νh〉d|∂E| = inf

v∈−H

�
Rd
−〈U, νh〉d|∂E|

=

�
Rd
−|νh|−K,∗d|∂E| =

�
Rd
|νh|K,∗d|∂E|.

By (2.3.3) and the de�nition of perimeter, we get (2.3.5).
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