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This paper considers a system consisting of a number of interacting living entities whose

state at the microscopic scale is heterogeneously distributed among the said entities.
This state includes, in addition, the classical mechanical variables, such as position and
velocity, also a behavioral variable which is modified by interactions. It is shown how
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the pioneering ideas proposed in Bellomo et al. [Towards a mathematical theory of

behavioral swarms, ESAIM Control Optim. Calc. Var. 26 (2020) 125] can be developed
towards modeling behavioral swarms within a quest towards a mathematical theory of

living systems. The first part of the paper presents a qualitative analysis of the emerging

behaviors predicted by the model in aforementioned work. Some simulations follow to
depict the said emerging behaviors. The last part of the paper is devoted to derive a

new, more general theory in view of applications to model living systems.

Keywords: Active particles; complexity; emerging behaviors; living systems; swarms.

AMS Subject Classification 2020: 82D99, 91D10

1. Plan of the Paper

This paper is motivated by a quest towards a mathematics for living systems

through an approach which develops the mathematical theory of swarms to model

the dynamics of large systems of interacting living entities. We are aware that we

are facing a goal that is too ambitious to actually be achieved. On the other hand,

we believe that some very preliminary efforts deserve to be developed and that the

achievement of, even if partial, results would be ultimately worth to be chased.

A strategy for pursuing this goal is available in Ref. 8 and references therein. This

strategy lies in the derivation of a mathematical structure capturing the complexity

features of living systems made up of several interacting entities and in specializing

this framework towards the modeling of specific systems by means of the math-

ematical description of the interactions involving the said entities. This approach

should be developed within a multiscale framework33 according to a unified vision

of all physical systems at all representation and modeling scales,26 see also Refs. 15,

20 and the application.16 The survey8 reports about all technical aspects of the

so-called kinetic theory of active particles which has promoted several applications,

just mentioning a few of them, in biology,14 economics,9, 30 crowd dynamics.10, 11

This approach is somewhat based on the methods of statistical physics,2, 19, 32

but it differs from classical kinetic theories mainly in that the state at the micro-

scopic scale of the interacting entities includes behavioral variables in addition to

the classical ones, such as position and velocity. Borrowing some definitions of active

particle methods, the aforementioned entities can be viewed as active particles,

shortly a-particles, while the behavioral variable can be called activity. The key fea-

ture of the method, called kinetic theory of active particles,8 is the modeling of inter-

actions which, beyond binary interactions, are nonlocal and nonlinearly additive.

However, the method requires the continuity of the distribution function, which

can be valid only for very large number of a-particles. Therefore, it is worth devel-

oping a critical revisiting to account for small numbers of interacting entities.

Because of these criticisms, some authors have used systems with discrete states, for

instance,9 which certainly contributes to a technical improvement of the approach,

but this matter needs, according to the authors’ opinion, further understanding.

As an alternative, a recent paper13 has proposed a new approach to the model-

ing swarms with active heterogeneous internal variables by following the idea of

swarms with internal thermodynamical variables, see Refs. 24, 25 and for further
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developments.22, 23 The search for a mathematical theory of behavioral swarms is

also motivated by a recent literature on the applications of swarm theory to model

social and economic systems.1, 4, 5, 30

Our paper aims at developing a conceptual alternative to Ref. 8 within the

framework of a quest to a mathematical theory of living systems.8 In more details,

we consider a system constituted by a number N of interacting living entities whose

state at the microscopic scale is heterogeneously distributed among the said enti-

ties. This micro-state includes, in addition the classical mechanical variables, for

instance, localization and velocity, also a behavioral variable.

We consider a system in absence of birth–death dynamics. Then, the number of

interacting entities is a constant of the system. However, some reasonings are devel-

oped to include in the approach also proliferative–destructive interactions which

make N depending on time, however finite. Indeed, this is the first step to show how

the pioneering ideas proposed in Ref. 13 can be developed towards a mathematical

theory of behavioral swarms. The plan of this paper is as follows.

Section 2 presents class of behavioral swarms consistent with the general frame-

work proposes in Ref. 13. The main feature of these models is that the micro-scale

state of each a-particles is defined by position, velocity and a behavioral variable

called activity which is modified by interactions and, in turn, modifies the mechani-

cal dynamics. The derivation is based on a pseudo-Newtonian framework, where the

dynamics is induced for each a-particle, through interactions, by the surrounding

a-particles. We consider both first and second order, where the dynamics corre-

sponds, respectively, to velocity and acceleration. Models undergoing topological

interactions are also considered, where this term is used to indicate that a-particles

interact with a fixed number of individual entities within their sensitivity domain.7

Section 3 develops a qualitative analysis of the first-order models13 mainly focus-

ing on the trend to the asymptotic emerging behavior of the system with special

attention to flocking dynamics. First, a reformulation about consensus of activity

variables is proposed, then the cases of constant and time-varying activity variables

are studied.

Section 4 develops the same qualitative analysis referring now to second-order

models, where acceleration is induced by interactions and is referred to a pseudo-

inertia. As in Sec. 3, the key feature of the qualitative study consists in understand-

ing how the activity variable modifies the emerging collective behaviors.

Section 5 presents some sample simulations that provide a quantitative picture

of the asymptotic behavior of the system based on the proofs delivered in Secs. 3

and 4. First, some specific case studies are selected corresponding to well-defined

theorems in the preceding sections, then simulations show both the asymptotic

trend and the emerging patterns.

Section 6 is devoted to research perspectives focusing on modeling topics by

showing how the mathematical theory can lead to the derivation of models for

well-defined systems. The dynamics of human crowds is selected as a specific exam-
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ple. Then, some perspective ideas are proposed towards further development of the

mathematical theory.

2. On the Derivation of Planar Behavioral Swarms

In this section, we present a new class of planar swarm models consistent with

the mathematical structures proposed in Sec. 2 of Ref. 13, but more general than

those used in the simulations in Sec. 4 of the same paper. The model accounts for

the influence, over the collective motion, of a heterogeneously distributed activity

variable corresponding to a specific social state. The activity variable is modified

by the interaction dynamics. The derivation accounts for the so-called topological

interactions introduced in Ref. 7, see also the analytic formulation.12 Actually,

these simulations have empirically shown some interesting emerging behaviors that

motivate the analytical study proposed in our paper.

The contents of this section are focused on the derivation of first- and second-

order models which will be studied in the following sections. We also discuss, how

this class of models has some interest in specific applications, for instance to depict

the dynamics which appears in crowds.3, 10, 11

2.1. Presentation of modeling spirit

The derivation of models is here developed with the aim of showing, by a number of

simple case studies, how the dynamics of the activity variable modifies the patterns

of the flow dynamics. Specific models can be derived within the following framework:

(1) The state of the system is given by the whole set of directions (heading angles)

θi, rotation speeds σi and activities ui of all a-particles with i ∈ [N ] :=

{1, . . . , N}. Each ith a-particle in the swarm, shortly i-particle, moves with

the same speed v = v0 = 1. The activity ui is supposed to correspond to the

level of a specific behavioral variable with ui ∈ [0, 1], where ui = 0 and ui = 1

define, respectively, the minimal and maximal admissible level. An example of

behavioral variable is the stress which, in living systems, can be generated by

the perception of stress.

(2) Each a-particle has a visibility angle 2θv which is symmetric with respect to

the velocity direction. Hence, it has a visibility domain Ωvi = [θi − θv, θi + θv]

supposed to be a circular sector with radius R. Each a-particle interacts only

with other particles in Ωvi or even with a fixed “small” number of entities within

a sensitivity domain Ωsi ⊆ Ωvi corresponding to a sector with radius Rs. This

sensitivity radius is finite and depends on the number of particles selected for

the interaction.8

(3) Each i-particle, has an individual movement with direction νi, corresponding

to θi, but all of them share a common trend νν , corresponding to θν , while each

ith a-particle is subject to an attraction towards the mean velocity direction
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ϕvi (or ϕsi ) of the particles in Ωvi (or Ωsi ). This attraction depends also on the

behavioral state of a-particles in the said domains.

(4) The decision process by which a-particles modify their motion according to

the following behavioral sequence: first the a-particle modifies the activity and

subsequently the direction of motion.

(5) The dynamics of the social state depends on the specific features of the spe-

cific behavioral variable under consideration. A simple case corresponds to a

consensus dynamics with respect to the a-particles in Ωi or Ωsi .

Remark 2.1. We consider the case Ωsi ⊆ Ωvi although in some special case it

might even be Ωvi ⊆ Ωsi , see Ref. 8 to discuss this critical case. Figure 1 shows the

case Ωsi ⊆ Ωvi . If we consider the case Ωsi = Ωvi , notations can be simplified by

considering interactions in the generic domain Ωi for both Ωvi and Ωsi . An additional

case, often considered in literature, as well as in the following section, corresponds

to interactions of the ith particles with all particles, i.e. Ωi includes all particles.

Let us now transfer these simple rules into interactions models, to be inserted

into the general structures proposed in Sec. 2 in Ref. 13, where some technical cases

are here implemented.

The assumption that the same unit speed is shared by all particles defines the

velocity of the i-particle yields:

vi = cos θii+ sin θij ⇒
dvi
dt

= (−sin θii+ cos θij)σi,

where i and j denote the unit vectors of an orthogonal frame and θi ∈ [0, 2π)

denotes the velocity direction (heading angle).

In addition, the following physical quantities can be defined:

• The mechanical state of each particle is defined by the flight direction θi and rota-

tional speed σi, i.e. the time derivative of θi. In addition, the following notations

Fig. 1. (Color online) Sensitivity and interaction domain.
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are used:

x = (x1, . . . ,xN ), Θ = (θ1, . . . , θN ) and U = (u1, . . . , uN ),

which define a spatial, angular and activity configuration vectors, respectively.

• The rate ηij of interaction between the i- and j-particles can be supposed a

constant quantity, i.e. ηij ≡ η0. In general, ηij might be proportional to the

distance between the interacting entities:

gij = gij(x) =
φij(x)∑

k∈Ωi
φik(x)

with φij(x) := φ(||xj − xi‖),

where φ : R+ → R+ is a positive, Lipschitz continuous and non-increasing weight

function. An explicit example is as follows:

φij(x) = exp(−α‖xj − xi‖) or φij(x) =
1

(1 + ‖xi − xj‖2)
δ/2

δ ≥ 0.

• The attraction direction ϕsi by the a-particles in Ωi is given by the weighted sum

of θj ’s by gij .

ϕsi = ϕsi (x,Θ) =
∑
j∈Ωi

gij(x)θj .

• The direction ωi, which effectively attracts the movement direction of the

i-particle, is defined by the convex combination of θν and ϕsi weighted by the

activity

ωi = ωi(x,Θ, U ; θν) := ui θ
ν + (1− ui)ϕsi (x,Θ),

where θν is the angle related to commonly preferred direction, while ωi ought

to be referred either to the visibility or the sensitivity domain as indicated in

Remark 2.1.

• The dynamics by the consensus of the i-particle to the j-particles in Ωi depends

on a parameter β as follows:

dui
dt

= β
∑
j∈Ωi

ψij(uj − ui), (2.1)

where ψij = ψ(‖xj − xi‖) is a positive, analytic and non-increasing function in

its argument. When we go beyond the consensus dynamics, then different models

of interaction can be considered keeping, however, the form as in (2.1).

2.2. First-order model

Consider a class of first-order models where the rotational speed is phenomeno-

logically modeled by a first-order differential equation describing the alignment

attraction of θi to ωi:

dθi
dt

= γ
(
ωi(x,Θ, U ; θν)− θi

)
,

where γ is a parameter measuring the inverse of relaxation coefficient.
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Let us specialize the components of x by x = (x, y) and transfer the aforemen-

tioned assumptions into the mathematical structure to get

dui
dt

= β
∑
j∈Ωi

ψij(uj − ui),

dxi
dt

= (cos θi, sin θi),

dθi
dt

= γ

ui θν +
1− ui∑

k∈Ωi
φik(x)

∑
j∈Ωi

φij(x)θj − θi

.
(2.2)

In the sequel, we consider some special case of the dynamics as well as some

simplification. Suppose that all the activity variables have unity initially:

ui(0) = 1 for all i ∈ [N ].

Then, it is easy to see that

ui(t) = 1, t > 0, i ∈ [N ].

Hence, system (2.2) becomes
dxi
dt

= (cos θi, sin θi),

dθi
dt

= γ(θν − θi).
(2.3)

By direct calculation, one has an alignment: for t ≥ 0,

|θi(t)− θν | = |θ0
i − θν |e−γt

and

‖xi(t)− xj(t)‖ ≤ ‖x0
i − x0

j‖+

√
2

γ
(1− e−γt).

2.3. Second-order models

Consider second-order models in which the rotational dynamic is modeled by an

acceleration term involving the rotational speed σi, i.e. the time derivative of θi. In

more details, we consider the following specific acceleration model:

dσi
dt

= γa(ωi(x,Θ, U ; θν)− θi)− γb
dθi
dt

corresponding to an acceleration induced by the chased flight directions reduced by

a viscous action. Here, γa and γb are positive parameters. This phenomenological
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assumption yields

dui
dt

= β
∑
j∈Ωi

ψij(uj − ui),

dxi
dt

= (cos θi, sin θi),

dθi
dt

= σi,

dσi
dt

= γa

ui θν +
1− ui∑

k∈Ωi
φik(x)

∑
j∈Ωi

φij(x)θj − θi

− γb dθi
dt
.

(2.4)

The same case studies, i.e. constant activity and attractions to the high or low

values of the activity can be treated by technical calculations analogous to those in

Sec. 2.1.

2.4. Topological interactions

The concept of topological interactions was introduced in Ref. 7 according to a

conjecture that interactions involve only a fixed numberm of the n i-particles within

the visibility domain Ωvi are involved in the interaction. This conjecture defines the

sensitivity domain Ωs. In agreement with Remark 2.1, m < n and Rs < Rv. In

addition, the spatial dependence of the activity can be neglected in the modeling

of interactions as m is of a smaller order with respect to n, do that Rs is also small

with respect to the visibility radius Rv. In this case, the model is simply written as

follows: 

dui
dt

= β
∑
j∈Ωsi

(uj − ui),

dxi
dt

= (cos θi, sin θi),

dθi
dt

= γ

uiθν + (1− ui)
∑
j∈Ωsi

(θj − θi)


(2.5)

while analogous calculations can be applied to the structures corresponding to the

case of a constant activity.

2.5. Further remarks

The different classes of models reported in this section can be viewed as particular

cases of the mathematical approach in Ref. 13. A key topic to be investigated con-

sists in understanding how far these models can be particularized in well-defined

applications and, looking forward, further developments of the mathematical frame-

work can be further developed within a continuing quest towards a mathematical
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theory of dynamical systems which aims at modeling the complex behavior of living

systems.

These two topics are treated in Sec. 6 specifically with focus on the first topic,

by referring to the modeling of human crowds in crisis situations, for instance evac-

uation under stress conditions10 or under contagion risk.27–29 Then, the second

topic is treated still by looking at real-world applications and by taking advantage

of the qualitative analysis developed in the following sections. In view of this quali-

tative analysis we report, for sake of completeness, a technical result related to the

Gronwall lemma in Ref. 21.

Lemma 2.1. (Ref. 21) (i) Let y : R+∪{0} → R+∪{0} be a differentiable function

satisfying

y′ ≤ −αy + f, t > 0, y(0) = y0,

where α is a positive constant and f : R+ ∪ {0} → R is a continuous function

decaying to zero as its argument goes to infinity. Then y satisfies

y(t) ≤ 1

α
max

s∈[t/2,t]
|f(s)|+ y0e

−αt +
‖f‖L∞
α

e−
αt
2 , t ≥ 0.

(ii) Let y : R→ R+ ∪ {0} be a differentiable function satisfying

y′ ≤ −py + q,

where p and q are non-negative integrable functions. Then y satisfies

y(t) ≤ y0e
−

∫ t
0
p(τ)dτ + e

−
∫ t
t
2
p(τ)dτ

∫ t
2

0

q(τ)dτ + q

(
t

2

)∫ t

t
2

e−
∫ t
s
p(τ)dτds,

t ≥ 0.

3. Emergent Dynamics of the First-Order Flocking Model

This section presents an analytic study of qualitative behaviors, mainly focused on

alignment and flocking dynamics, of the dynamics of the class of first-order models

presented in Sec. 2.2 for different types of activity and space interactions. First, in

Sec. 3.2 we consider all-to-all couplings, where the interaction domain Ωi becomes

Ωi := {1, . . . , N}, i ∈ [N ]. (3.1)

Then, we study some aspects of the dynamics in the case of nearby interactions in

Sec. 3.3. We refer to the concepts proposed in Remark 2.1. Before we move on, we

define several time-dependent indices and diameter variables as follows:

M1,t := argmax
i∈[N ]

ui(t), m1,t := argmin
i∈[N ]

ui(t),

M2,t := argmax
i∈[N ]

θi(t), m2,t := argmin
i∈[N ]

θti ,

M3,t := argmax
i∈[N ]

|θ̃i(t)|,
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uM1,t
(t) := max

1≤i≤N
ui(t), um1,t

(t) := min
1≤i≤N

ui(t),

D(U(t)) := uM1,t(t)− um1,t(t), D(Θ) := θM2,t(t)− θm2,t(t).

For notational simplicity, we suppress t dependence in the above indices, e.g.

uM1 := uM1,t , um1 := um1,t .

Note that these extremal variables, e.g. uM1
(t), are Lipschitz continuous, so they

are differentiable a.e. in t.

3.1. Structure and reformulation of system

Here, we define the global flocking in active swarm particle model.

Definition 3.1. Let P := {(ui,xi, θi)} be a time-dependent state for a-particle

system. Then, the ensemble P exhibits a global (asymptotic) flocking if the following

three conditions hold:

(1) Activity variables tend to zero asymptotically:

lim
t→∞

max
1≤i,j≤N

|ui(t)− uj(t)| = 0.

(2) Relative positions are uniformly bounded:

sup
0≤t<∞

max
1≤i,j≤N

‖xi(t)− xj(t)‖ <∞.

(3) Relative heading angles tend to zero asymptotically:

lim
t→∞

max
1≤i,j≤N

|θi(t)− θj(t)| = 0.

Remark 3.1. For the generalized state P̃ := {(ui,xi, θi, σi)}, a global flocking can

be defined similarly by adding an extra condition:

lim
t→∞

max
1≤i,j≤N

|σi(t)− σj(t)| = 0.

By the definition of the dynamics of activity particles xi, the relative positions

can be controlled by the relative heading angles, which makes flocking estimates

more simpler.

Lemma 3.1. Let {(ui,xi, θi)} be a solution to the first-order a-particle system

(2.2). Then, one has

d

dt
D(x(t)) ≤

√
2D(Θ(t)), a.e. t ≥ 0,

where D(x(t)) := max1≤i,j≤N |xi(t)− xj(t)|.

Proof. By the mean-value theorem, one has

|cos θi − cos θj | ≤ |θi − θj |
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and

|sin θi − sin θj | ≤ |θi − θj |.

This yields∣∣∣∣ ddt (xi − xj)
∣∣∣∣ = |(cos θi − cos θj , sin θi − sin θj)| ≤

√
2|θi − θj |.

Hence, one has ∣∣∣∣ ddtD(x)

∣∣∣∣ ≤ √2D(Θ).

Remark 3.2. Lemma 3.1 implies that the exponential decay of D(Θ) guarantees

the uniform boundedness of D(x), which satisfies the second condition for flocking.

On the other hand, note that the third equation of (2.2) can be rewritten as

follows:

dθi
dt

= γ

uiθν +
1− ui∑

k∈Ωi
φik(x)

∑
j∈Ωi

φij(x)θj − θi


= γ

uiθν +
1− ui∑

k∈Ωi
φik(x)

∑
j∈Ωi

φij(x)(θ̃j + θν)− (θ̃i + θν)


= γ

(
uiθ

ν + (1− ui)θν +
1− ui∑

k∈Ωi
φik(x)

×
∑
j∈Ωi

φij(x)θ̃j − uiθ̃i + (1− ui)θ̃i − θν


= γ

−uiθ̃i +
1− ui∑

k∈Ωi
φik(x)

∑
j∈Ωi

φij(x)(θ̃j − θ̃i)

.
Motivated by this, we set

θ̃i := θi − θν , i ∈ [N ].

Then, system (2.2) becomes

dui
dt

= β
∑
j∈Ωi

ψij(uj − ui),

dxi
dt

= (cos θi, sin θi),

dθ̃i
dt

= γ

−uiθ̃i +
(1− ui)∑
k∈Ωi

φik(x)

∑
j∈Ωi

φij(x)(θ̃j − θ̃i)

,
(3.2)
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and this form of the system is useful for the easy computation in flocking analysis.

So, we will usually deal with this form.

3.2. All-to-all interactions

In this section, we consider system (3.2) in the case of all-to-all coupling (3.1):

dui
dt

=
β̃

N

N∑
j=1

ψij(uj − ui),

dxi
dt

= (cos θi, sin θi),

dθ̃i
dt

= γ

−ui θ̃i +
1− ui∑N
k=1 φik(x)

N∑
j=1

φij(x)(θ̃j − θ̃i)

,
(3.3)

where β = β̃
N . One of the benefits for all-to-all coupling is that the whole activity

variables make the consensus, exponentially fast, at the value which can be pre-

computed at the beginning.

Lemma 3.2. Let {(ui,xi, θi)} be a solution to (3.3). Then, one has

N∑
i=1

ui(t) =

N∑
i=1

u0
i , t ≥ 0.

Proof. The sum of (3.3)1 overall i yields

d

dt

N∑
i=1

ui =
β̃

N

N∑
i,j=1

ψij(uj − ui) = − β̃
N

N∑
i,j=1

ψij(uj − ui) = 0,

where we used the skew-symmetry of ψij(uj − ui) under the index exchange trans-

formation (i, j)↔ (j, i).

Remark 3.3. If all ui tend to the same constant u∞, then u∞ must be equal to
1
N

∑N
i=1 u

0
i .

Now, we are ready to study the consensus of activity variables using a diameter

functional.

Proposition 3.1. Suppose that ψ has a positive lower bound

inf
0≤r<∞

ψ(r) ≥ ψ∗ > 0, (3.4)

and let {(ui,xi, θ̃i)} be a solution to (3.3). Then, one has

D(U(t)) ≤ D(U0)e−β̃ψ∗t, t ≥ 0,

where D(U0) := D(U(0)).
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Proof. Note that since the right-hand side of (3.3)1 is analytic, ui is also analytic.

So for each pair (i, j), the zero set of ui−uj must be finite in any finite-time interval.

Therefore, for given t ∈ (0,∞), we can decompose the time interval [0, t) into a

finite union of subintervals ∪ni=1[ti−1, ti) such that

0 = t0 < t1 < · · · < tn = t

and extremal indices Mt and mt are constant on each subinterval [ti−1, ti).

For each subinterval [ti−1, ti), it follows from (3.3)1 that for t ∈ [ti−1, ti),

duM1

dt
≤ β̃

N
ψ(D(x))

N∑
j=1

(uj − uM1),
dum1

dt
≥ β̃

N
ψ(D(x))

N∑
j=1

(uj − um1).

This yields

d

dt
D(U) ≤ −β̃ψ(D(x))D(U) ≤ −β̃ψ∗D(U), t ∈ [ti−1, ti).

Then, we use the continuity of D(U) across the time t = ti and we apply Gronwall’s

lemma in each subinterval [ti−1, ti) to derive the desired exponential convergence

to zero.

Remark 3.4. The result of this lemma yields the exponential convergence of ui to

u0
c := 1

N

∑N
i=1 ui(0) and the condition (3.4) for ψ can be relaxed to include zero in

the range of ψ.

Now, we consider the asymptotic behavior of activity particles in terms of pre-

ferred direction.

Theorem 3.1. Let {(ui,xi, θi)} be a solution to (3.3). Then, the distances between

directions and preferred direction have exponential decay estimate:

|θi(t)− θν | = |θ̃i| ≤ |θ̃M3.0(0)|e−γut,

where u is a positive constant defined by

u := min
1≤i≤N

ui(0).

Moreover, if u > 0, every activity particle keeps in some boundary of the particle

which only follows the preferred direction, i.e.

‖xi(t)− x0
i − vνt‖ ≤

√
2|θ̃M3,0

(0)|
γu

,

where vν := (cos θν , sin θν).

Proof. If follows from (3.3) that

dθ̃M3

dt
= −γuM3 θ̃M3 + γ(1− uM3)

N∑
j=1

φM3j(x)∑N
k=1 φM3k(x)

(θ̃j − θ̃M3). (3.5)
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We multiply sgn(θ̃M3
) to the above equation to find

d|θ̃M3 |
dt

≤ −γuM3
|θ̃M3
|, (3.6)

where we used the relation

(θ̃j − θ̃M3)sgn(θ̃M3) ≤ 0, ∀ j ∈ [N ].

Since sgn(θ̃M3
) is discontinuous at the instant in which θ̃M3

= 0, the derivation

of (3.6) from (3.5) needs a justification. In fact, this can be done rigorously using

the smooth approximations of sgn(θ̃M3
) following the modification procedure (see

Ref. 17 for detailed arguments). This yields

|θ̃M3(t)| ≤ |θ̃M0
3
(0)|e−γut, t ≥ 0,

which implies the first assertion. Next, one has

‖vi(t)− vν‖ ≤ |cos θi − cos θν |+ |sin θi − sin θν |

≤
√

2|θi(t)− θν | ≤
√

2|θ̃M0
3
(0)|e−γut.

Therefore, one has

‖xi(t)− x0
i − vνt‖ =

∣∣∣∣∫ t

0

(
dxi(s)

ds
− vν

)
ds

∣∣∣∣ ≤ ∫ t

0

‖vi(s)− vν‖ds

≤
√

2|θ̃M0
3
(0)|

∫ t

0

e−γusds =

√
2|θ̃M0

3
(0)|

γu
(1− e−γut),

which shows the second assertion.

Remark 3.5. Theorem 3.1 guarantees the exponential decay of D(Θ) and uniform

boundedness of D(x). With Proposition 3.1, we can have the flocking estimate.

Although we already have the flocking estimate for (3.3), we would like to

show the improved decay rate of D(Θ) for the special case, constant activity vari-

ables. If the activity variables are the same constant, of which situation is almost

like when the consensus of them is reached, the decay rate more speeds up.

Consider constant activity variables, i.e. ui ≡ u for all i. This is actually just the

case of (3.3) with the specific initial data ui(0) = uj(0) for all i 6= j. The system

(3.3) can be simplified as follows:

dxi
dt

= (cos θi, sin θi),

dθ̃i
dt

= γ

−uθ̃i + (1− u)

N∑
j=1

φij(x)∑N
k=1 φik(x)

(θ̃j − θ̃i)

. (3.7)
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Theorem 3.2. Suppose φ has an upper bound φ∞ and let {xi, θ̃i} be a solution to

(3.7). Then, the following flocking estimates hold :

(i) sup
0≤t<∞

D(x(t)) ≤ D∞ for some constant D∞ > 0,

(ii) D(Θ̃(t)) ≤ D(Θ̃0) exp

[
−
(
γu+

γ(1− u)

φ∞
φ(D∞)

)
t

]
, t ≥ 0.

Proof. Using the relation

N∑
j=1

φij(x)∑N
k=1 φik(x)

≥ φ(D(x))

Nφ∞

one can derive

d

dt
D(Θ̃(t)) ≤ −γuD(Θ̃(t))− γ(1− u)

φ(D(x))

φ∞
D(Θ̃(t)). (3.8)

By ignoring the last negative term in (3.8) temporarily, we know that D(Θ)

decreases exponentially fast by Gronwall’s lemma, which means there exists an

upper bound D∞ of D(x). Then, putting D∞ instead of D(x) in (3.8) yields the

desired result.

3.3. Networks with topological distance

In this section, we consider the first-order model where a-particles undergo the so-

called topological interactions which, as we have seen in Sec. 2.4, are taken into

account by the terms φ, φij that can be defined as network functions. These denote

the quantity of influence from the particle j to i within the sensitivity domain Ωs.

The model is the so-called the closest neighbors model, following the convention

of the name in Ref. 18, where every particle is affected only by a fixed number

q closest neighbors. In terms of differential equations, it can be seen taking the

advantage of the meaning of Ωi = Ωsi . Here, Ωi = Ωi(t) depends on time and

is chosen to contain only the closest q particles. (Ties are dealt by selecting the

particles with smaller index.) That is, j ∈ Ωi(t) if and only if

#{l 6= i, j : ‖xi − xl‖ < ‖xi − xj‖}+ #{i 6= l < j : ‖xi − xl‖ = ‖xi − xj‖} < q.

We assume i ∈ Ωi. For a technical reason, we only consider the case of constant

activity variables, i.e. ui ≡ u with constant weight function φ.

Consider system (2.5) with ui ≡ u ∈ [0, 1) for all i. Then, (2.5) is simplified as

follows: 

dxi
dt

= (cos θi, sin θi),

dθi
dt

= γ

uθν + (1− u)
∑
j∈Ωi

(θj − θi)

. (3.9)
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In order to use the digraph theory, we adopt a matrix representation for Ωi:

aij =


1 if j ∈ Ωi,

0 otherwise.

Now, the system can be rewritten as

dxi
dt

= (cos θi, sin θi),

dθi
dt

= γ

uθν + (1− u)

N∑
j=1

aij(θj − θi)

. (3.10)

Throughout this section, the representation Ωi and aij will be used interchange-

ably. When we deal with the topological interactions, it is useful to use some linear

algebra knowledge related to graph. Here, we recall some definitions related to

graph and provide the useful lemma.

Definition 3.2. Let A = (aij)N×N be a non-negative matrix.

(1) The matrix A is scrambling if for any pair i, j of indexes there exists l such that

ail, ajl > 0.

(2) The ergodicity coefficient of A is

µ(A) := min
i,j

N∑
l=1

min{ail, ajl}.

Remark 3.6. (1) A matrix A is scrambling if and only if µ(A) > 0.

(2) If A is scrambling, µ(A) ≥ min{aij : aij > 0}.

Lemma 3.3. (Ref. 18) Let A = (aij)N×N be a non-negative matrix such that

each row sum is equal to n. For any vector v = (v1, . . . , vN ) ∈ RN , we set w =

(w1, . . . , wN ) ∈ Rn such that x = Av. Then, we have

max
i,j
|wi − wj | ≤ (n− µ(A))max

l,m
|vl − vm|.

The key idea to prove our result is based on Gronwall’s lemma. Hence, we start

by obtaining the needed relation.

Lemma 3.4. The following estimates hold : for a.e. t ≥ 0,

d

dt
‖xi − xj‖ ≤ 2

∣∣∣∣sin(θi − θj2

)∣∣∣∣, d

dt
D(Θ) ≤ −γ(1− u)µ(t)D(Θ),

where µ(t) := µ(A(t)) represents the ergodicity coefficient of A(t).
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Proof. Consider the first inequality, for almost every t,

d

dt
‖xi − xj‖2 = 2〈xi − xj , (cos θi − cos θj , sin θi − sin θj)〉

= 2‖xi − xj‖
√

2− 2 cos(θi − θj) = 4‖xi − xj‖ ·
∣∣∣∣sin(θi − θj2

)∣∣∣∣
and

d

dt
‖xi − xj‖2 = 2‖xi − xj‖

d

dt
‖xi − xj‖.

Hence, one has

d

dt
‖xi − xj‖ ≤ 2

∣∣∣∣sin(θi − θj2

)∣∣∣∣, a.e. t ≥ 0.

Next, we return to the second inequality.

d

dt
|θi − θj |2 = 2〈θi − θj , θ̇i − θ̇j〉

= 2

〈
θi − θj , γ(1− u)

(
N∑
l=1

ail(θl − θi)−
N∑
l=1

ajl(θl − θj)

)〉

= 2γ(1− u)

〈
θi − θj ,

(
N∑
l=1

ailθl −
N∑
l=1

ajlθl

)
− (q + 1)(θi − θj)

〉

≤ 2γ(1− u)

∣∣∣∣∣
N∑
l=1

ailθl −
N∑
l=1

ajlθl

∣∣∣∣∣ |θi − θj | − 2γ(1− u)(q + 1)|θi − θj |2

= 2γ(1− u)((q + 1)− µ(t))D(Θ)|θi − θj | − 2γ(1− u)(q + 1)|θi − θj |2,

where we used Lemma 3.3 in the last equality. Since the above relation holds for

any i, j, one can derive

d

dt
D(Θ)2 ≤ 2γ(1− u)((q + 1)− µ(t))D(Θ)2 − 2γ(1− u)(q + 1)D(Θ)2

= −2γ(1− u)µ(t)D(Θ)2.

This yields the desired estimate.

As one can easily expect, the dynamics of system (3.10) heavily depends on

fixed number q, which denote the interaction particle number. So, we will show the

dynamics result into the two cases, one for more than half and one for less than

half.

• Case A: q ≥ 1
2 (N − 1). First, we consider the case in which the number of parti-

cles interacting with each particle is more than half. In this case, since all particles

are organically related, we can easily expect for them to exhibit a global asymp-

totic flocking. Actually, there is no required condition for the asymptotic flocking.

The following theorem tells it.
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Theorem 3.3. Assume u ∈ [0, 1) and q ≥ 1
2 (N − 1). Then, the relative head-

ing angle goes to zero exponentially fast, and the relative positions are uniformly

bounded.

Proof. Note that A(t) is scrambling for all t ≥ 0 from q ≥ 1
2 (N − 1). So, we have

µ(A) ≥ min{aij : aij > 0} = 1.

From this, we obtain

D(Θ(t)) ≤ D(Θ(0))e−γ(1−u)
∫ t
0
µ(s)ds ≤ D(Θ(0))e−γ(1−u)t, t ≥ 0,

where the first inequality comes from Lemma 3.4. By Remark 3.2, we have the

uniform boundedness of spatial diameter.

• Case B: q < 1
2 (N − 1). In this case, we use the notion of disturbed subgraph to

prove our goal (Theorem 3.4). The following definitions and notions follow the

convention in Ref. 18. Recall that a digraph G = (V, E) consists of a finite set

V = {1, . . . , k} of vertices and a set E ⊂ V × V of arcs.

Definition 3.3. For a given ρ > 0, the disturbed subgraphHρ of the initial digraph

G(0) is defined asHρ := G(Aρ) = (V, Eρ) where Aρ = (ãij) to satisfy the followings:

(1) for all i ≤ k, ãii = 1 and

(2) for i 6= j, ãij = 1 if and only if

#{l 6= j, i : ‖xi(0)− xl(0)‖ < ‖xi(0)− xj(0)‖+ 2ρ} < q

and ãij = 0 otherwise.

If Hρ is a rooted digraph, dρ and Rρ are defined to be its smallest depth and

the set of the roots r of Hρ such that dr = dρ, respectively. Also, let rρ to be the

cardinality of Rρ and for each α > 0,

aρα :=
rρ

e(q+1)α

eα − dρ−1∑
n=1

αn

n!

 and ā := γ(1− u) sup
ρ>0

sup
α>0

aρα · ρ
α
·

Here, we provide a technical lemma which will be used crucially to show the

exponential decay of D(Θ). This lemma regards θi as the velocity of some variable,

which we will denote by χi, and derive the partial conservation of graph depending

on the relations between χi. For i ∈ [N ], we define

χi(t) :=

∫ t

0

θi(s)ds with χi(0) = 0.
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Then, we can consider the system (3.10) as follows:

dxi
dt

= (cos θi, sin θi),

dχi
dt

= θi,

dθi
dt

= γ

uθν + (1− u)

N∑
j=1

aij(θj − θi)

.
(3.11)

Note that the emergence of variable χi has no effect on our original system (3.10).

It is just introduced to use the following lemma.

Lemma 3.5. (Ref. 18) Let {xi, χi, θi} be a solution to system (3.11) such that for

some t > 0 and for any 1 ≤ i, j ≤ N,

‖χi(t)− χj(t)| − |χ0
i − χ0

j‖ < ρ.

Then, Hρ ⊆ G(A(t)), that is, Aρ ≤ A(t).

We can obtain this result by modifying the proof of Lemma 3.2 in Ref. 18, so

we omit details. Now, we are ready to state and prove our result.

Theorem 3.4. Assume u ∈ [0, 1), q < 1
2 (N−1) and D(Θ0) < ā. Then, the relative

heading angles go to zero exponentially fast and the relative positions are uniformly

bounded.

Proof. Since D(Θ0) < ā, there exist ρ, α > 0 such that

D(Θ0) ≤ γ(1− u) · aρα · ρ
α

. (3.12)

From this, we get aρα > 0 and Hρ is rooted by the definition of aρα. Now, we claim

the following relation:

D(Θ(α̃t)) ≤ (1− aρα)tD(Θ0),

where α̃ = α
γ(1−u) . Obviously, it holds for t = 0. Assume that it holds for all

0 ≤ t ≤ T for some T ≥ 0. Since D(Θ) is non-increasing by Lemma 3.4, one can

derive that for any t ∈ [0, T ],

D(Θ(τ)) ≤ (1− aρα)tD(Θ0) for all τ ∈ [α̃t, α̃(t+ 1)].

For any (j, i) ∈ Eρ and α̃T ≤ t ≤ α̃(T + 1),

‖χi(t)− χj(t)| − |χ0
i − χ0

j‖ ≤
∫ t

0

|θi(s)− θj(s)|ds ≤
T∑
τ=0

∫ α̃(τ+1)

α̃τ

D(Θ(s))ds

≤ α̃D(Θ0)

T∑
τ=0

(1− aρα)τ ≤ α̃D(Θ0)

aρα
≤ ρ,

where we used (3.12) in the last inequality.
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By Lemma 3.5, we can induce

Aρ ≤ A(t) for all α̃T ≤ t ≤ α̃(T + 1).

Before we move on further, we use change of the variables for the compact form of

system (3.10). Denote

θ̃i(t) = θi(t)− γuθνt, ∀ i ∈ [N ].

Note that the definition of θ̃i is different from the one defined in Sec. 3.2 (all-to-all

coupling). Since it will be used only here, we expect there will be no confusion. In

addition, note that system (3.10)3 can be rewritten as

˙̃Θ(t) = γ(1− u)(A(t)− (q + 1)I)Θ̃(t), ∀ t ≥ 0,

where Θ̃ = (θ̃1, . . . , θ̃N )T and I is an N × N identity matrix. Then, by a similar

argument in the proof of Theorem 1.1 in Ref. 18 and with the fact D(Θ̃) = D(Θ),

we get

D(Θ(α̃(T + 1))) ≤ (1− aρα)D(Θ(α̃T )) ≤ (1− aρα)T+1D(Θ0).

By the mathematical induction, this leads to

D(Θ(t)) ≤ (1− aρα)b
t
α̃ cD(Θ0), t ≥ 0.

Since D(Θ) goes to zero exponentially fast, we obtain the desired results.

4. Emergent Dynamics of the Second-Order Flocking Model

In this section, we study emergent dynamics of the second-order active model:

dui
dt

= β

N∑
j=1

ψij(uj − ui),

dxi
dt

= (cos(θ̃i + θν), sin(θ̃i + θν)),

dθ̃i
dt

= σi,

dσi
dt

= γa

−uiθ̃i + (1− ui)
N∑
j=1

φij(x)∑N
k=1 φik(x)

(θ̃j − θ̃i)

− γbσi,

(4.1)

where we used the relation in (2.4) and θ̃i = θi − θν . In what follows, we study the

emergent dynamics of (4.1) with the constant activity variables, i.e. ui ≡ u for all
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i, and the constant weight function φ ≡ 1. Then, the system becomes as follows:

dxi
dt

=
(
cos(θ̃i + θν), sin(θ̃i + θν)

)
,

dθ̃i
dt

= σi,

dσi
dt

= γa

−uθ̃i +
(1− u)

N

N∑
j=1

(
θ̃j − θ̃i

)− γbσi.
(4.2)

4.1. Zero activity (u = 0)

In this case, system (4.2) becomes
dθ̃i
dt

= σi,

dσi
dt

=
γa
N

N∑
j=1

(θ̃j − θ̃i)− γbσi,
(4.3)

where we omit the first equation in (4.2) since it does not give any effect to the

dynamical system.

For the flocking estimate of (4.3), we introduce macro and micro components

corresponding to the averaged values and their fluctuations around average values:

θ̃c :=
1

N

∑
i

θ̃i, σc :=
1

N

∑
i

σi.

Note that

θ̃c = θc − θν , where θc :=
1

N

∑
i

θi.

So, we have

θ̂i := θi − θc = θ̃i − θ̃c, σ̂i := σi − σc.

Then, one has

d

dt
θ̃c = σc,

d

dt
σc = −γbσc, t > 0 (4.4)

and 
dθ̂i
dt

= σ̂i, t > 0,

dσ̂i
dt

= −γaθ̂i − γbσ̂i.
(4.5)
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Lemma 4.1. Let {(θ̃i, σi)} be a solution to (4.3). Then, macro and micro variables

satisfy the following assertions:

(1) The macro variables (σc, θ̃c) satisfy

σc(t) = e−γbtσ0
c , θ̃c(t) = θ̃0

c +
σ0
c

γb
(1− e−γbt), t ≥ 0.

(2) The micro variables (σ̂i, θ̂i) satisfy

σ̂i(t) = O(1)e−|λ1,+|t, θ̂i(t) = O(1)e−|λ1,+|t,

where

λ1,− :=
−γb −

√
γ2
b − 4γa

2
, λ1,+ :=

−γb +
√
γ2
b − 4γa

2
.

Proof. (1) It follows from (4.4)2 that

σc(t) = e−γbtσ0
c , t ≥ 0. (4.6)

Now, we use (4.4)1 and (4.6) to get

θ̃c(t)− θ̃0
c =

∫ t

0

e−γbsσ0
cds =

σ0
c

γb
(1− e−γbt).

(2) From (4.5), we see that θ̂i satisfies

d2θ̂i
dt2

+ γb
dθ̂i
dt

+ γaθ̂i = 0.

We set

λ1,− :=
−γb −

√
γ2
b − 4γa

2
, λ1,+ :=

−γb +
√
γ2
b − 4γa

2
. (4.7)

Depending on the relative sizes between γa and γb, we have the following three

cases:

• Case A.1 (γ2
b > 4γa). In this case, λ1,− and λ1,+ are both negative real numbers

and for some constants c1 and c2, one has

θ̂i(t) = c1e
λ1,−t + c2e

λ1,+t, (4.8)

which gives

|θ̂i(t)| ≤ O(1)e−|λ1,+|t → 0 as t→∞.

• Case A.2 (γ2
b = 4γa). In this case, we have

θ̂i(t) = (c1 + c2t)e
− γb2 t. (4.9)

On the other hand, for all 0 < ε� γb, we have

|θ̂i(t)| ≤ O(1)(1 + t)e−
γb
2 t ≤ O(1)e−

(γb−ε)
2 t = O(1)e−|λ1,−| as t→∞.
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• Case A.3 (γ2
b < 4γa). In this case, we have

θ̂i(t) = e−
γb
2 t

[
c1 cos

(√
4γa − γ2

b

2
t

)
+ c2 sin

(√
4γa − γ2

b

2
t

)]
. (4.10)

This results in

|θ̂i(t)| ≤ O(1)e−
γb
2 t as t→∞.

Since

e−
(γb−ε)

2 t� e−|λ1,+|t

one has the desired exponential decay of |ˆ̃θi(t)|. The exponential decay of σ̂i(t)

follows from (4.5) together with the explicit formulas (4.8)–(4.10).

Thanks to Lemma 4.1, one has the following emergent estimates.

Theorem 4.1. Let {(θ̃i, σi)} be a solution to (4.3). Then, there exist positive con-

stants C1 and Λ1 such that∣∣∣∣θi(t)− θ̃0
c −

σ0
c

γb

∣∣∣∣+ |σi(t)| ≤ C1e
−Λ1t, t ≥ 0.

4.2. Nonzero constant activity u ∈ (0, 1)

dσi
dt

= γa

−uθ̃i +
(1− u)

N

N∑
j=1

(
θ̃j − θ̃i

)− γbσi.
As before, we consider the dynamics of macro and micro components. First, note

that macro and micro components satisfy
dθ̃c
dt

= σc, t > 0,

dσc
dt

= −γauθ̃c − γbσc,

and (θ̂i, σ̂) still satisfy the relation (4.5). We set

λ2,− :=
−γb −

√
γ2
b − 4γau

2
and λ2,+ :=

−γb +
√
γ2
b − 4γau

2
.

Lemma 4.2. Let {(xi, θi, σi)} be a solution to (4.2). Then, the following assertions

hold :

(1) The macro variables satisfy

|θ̃c(t)| ≤ O(1)e−|λ2,+|t, |σc(t)| ≤ O(1)e−|λ2,+|t, t ≥ 0.
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(2) The micro variables (σ̂i,
ˆ̃
θi) satisfy

σ̂i(t) = O(1)e−|λ1,+|t, θ̂i(t) = O(1)e−|λ1,+|t,

where λ1,+ is defined in (4.7).

Proof. (1) Note that

d2θ̃c
dt2

+ γb
dθ̃c
dt

+ γauθ̃c = 0.

Let us now observe that, depending on the relative sizes between γa and γb, we

have the following three cases:

• Case B.1 (γ2
b > 4γau). In this case, we have

θ̃c(t) = c1e
λ2,−t + c2e

λ2,+t.

Since

λ2,− < λ2,+ < 0

one has

|θ̃c(t)| ≤ O(1)e−|λ2,+|t → 0 as t→∞.

• Case B.2 (γ2
b = 4γau). In this case, one has

θ̃c(t) = (c1 + c2t)e
− γb2 t.

On the other hand, for all 0 < ε� γb, we have

|θ̃c(t)| ≤ O(1)(1 + t)e−
γb
2 t ≤ O(1)e−

(γb−ε)
2 t as t→∞.

• Case B.3 (γ2
b < 4γau). In this case, we have

θ̃c(t) = e−
γb
2 t

[
c1 cos

(√
4γau− γ2

b

2
t

)
+ c2 sin

(√
4γau− γ2

b

2
t

)]
,

which results in

|θ̃c(t)| ≤ O(1)e−
γb
2 t as t→∞.

Since

e−
(γb−ε)

2 t � e−|λ2,+|t

one has the desired exponential decay of |θ̃c(t)|.
Therefore, we have

|θ̃c(t)| ≤ O(1)e−|λ2,+|t as t→∞.

Finally, by (4.8)1, one has

|σc(t)| ≤ O(1)e−|λ2,+|t, t ≥ 0.

(2) The estimates for micro variables are exactly the same as in Lemma 4.1.
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Thanks to Lemma 4.2, one has the following emergent estimates.

Theorem 4.2. Let {(θ̃i, σi)} be a solution to (4.3). Then, there exist positive con-

stants C2 and Λ2 such that

|θ̃i(t)|+ |σi(t)| ≤ C2e
−Λ2t, t ≥ 0.

Remark 4.1. Note that the results in Theorem 4.2 tell us

(θi(t), σi(t))→ (θν , 0) exponentially fast.

In contrast, for u = 0 in Theorem 4.1, one has

(θi(t), σi(t))→
(
θν + θ̃0

c +
σ0
c

γb
, 0

)
exponentially fast as t→∞.

5. Simulations of Flocking Dynamics

This section presents a few sample simulations concerning first- and second-order

models with constant activity variables defined in Eqs. (3.3), one with constant

weight function φ ≡ 1 and one with time-dependent weight function φ = φ(t),

and (4.2), respectively. The aim lies in showing quantitative dynamical behaviors

which can enrich the description of the qualitative results delivered in the preceding

sections.

The initial conditions of the a-particles, at t = 0, are supposed to be randomly

placed in a region with dimension [0, 1]× [0, 1], while the velocity direction in [0, 2π)

is also supposed randomly distributed, see Fig. 2. The following parameters are

adopted for all simulations:

N = 200, t ∈ [0, 20], θν =
π

3
. (5.1)

The selection of the case studies does not claim completeness, but simply shows,

also with tutorial aims, how computing can contribute to enlarge, by quantitative

Fig. 2. (Color online) Initial, t = 0, positions and velocity directions.
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results, the descriptive ability of models. The interested reader can organize different

types of simulations referring specifically not to toy models but to real-world case

studies.

5.1. Case study 1: Dynamics of first-order models with constant

activity

This section studies the dynamics of first-order models. In more detail, we consider

the first-order model (3.3) with a constant weight function φ ≡ 1 and the analytic

result delivered by Theorem 3.1 in the case of constant activity variable and fixed

weight function. Initial conditions are visualized in Fig. 2. The dynamical response

is studied for the alignment speed γ = 0.3 and different values u = 0.1, u = 0.4,

u = 0.7 of the activity. In practice, γ can be inserted into the time scale.

Simulations in Fig. 3 show an asymptotic global flocking of the dynamics of the

diameter functionals:

Dθ(t) = max
1≤i≤N

(|θi(t)− θν |) (5.2)

Fig. 3. (Color online) Dynamics, versus time, of the diameters Dθ = max1≤i≤N (|θi(t) − θν |)
(up) and Dx = max1≤i≤N (‖xi(t)− x0

i − vνt‖) (down).
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and

Dx(t) = max
1≤i≤N

(‖xi(t)− x0
i − vνt‖), (5.3)

where these two functionals were introduced in Theorem 3.1 as indicators of the

“distances” in the alignment and position, respectively.

The up-side of Fig. 3 shows that the alignment decays with an exponential-like

profile by a coefficient which increases with u, while the down-side figure shows, for

the distance in the positions, an asymptotic trend towards a constant value which

increases with decreasing values of the activity.

This dynamic is visualized by the flow patterns shown in Fig. 4 corresponding

to two times shots t = 2 and t = 5.

5.2. Case study 2: Dynamics of first-order models with

time-dependent activity variable

The second case study refers to first-order models specified in Eqs. (3.3) with a

time-dependent weight function φ = φ(t) and to the qualitative analysis delivered

by Theorem 3.1. We consider the parameters (5.1), but initial conditions constituted

by two groups, i.e. a first group of 150 particles with an initial activity set to

u = 0.2, and a second group of 50 particles with a higher level of emotional state

u = 0.8. The interest to study this type of heterogeneity refers also in showing the

dynamics of the activity variable and the consequent role on the overall dynamics.

The representation is analogous to that of Fig. 2, then it is not repeated.

(a) t = 2

(b) t = 5

Fig. 4. (Color online) Flow patterns for different values of u at time t = 2 and t = 5.
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The activity variable is not constant, as it is conditioned by space-depending

communication weight functions φij = φij(x) and ψij = ψij(x) which model the

decay with space of the attractions of the activity and alignment, respectively. In

more details, we consider two communication weight functions:

φij =
1

(1 + ‖xi − xj‖2)δ/2
with δ = 0 or δ = 2, (5.4)

while, in addition to parameters (5.1), simulations are developed for

ψij = 1 + exp(−‖xi − xj‖),
β

N
= 1.

This case study shows the role of the activity variable and of the weight function

φij on the collective dynamics and, as in the case of the first test, we consider

the time dynamics of flocking diameters (5.2) and (5.3), as well as patterns of the

collective motion for t = 2 and t = 5. Simulations are shown in Figs. 5 and 6. These

simulations show a dynamics somehow analogous to that of case study 1, but the

technical difference is that now also the role of the space decay in the interactions

is considered.

Fig. 5. (Color online) Time evolution of diameters max1≤i≤N (|θi(t) − θν |) (up) and
max1≤i≤N (‖xi(t)− x0

i − vνt‖) (down).
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(a) t = 2

(b) t = 5

Fig. 6. (Color online) Pattern dynamics for t = 2 and t = 5 with time-varying activity variable.

5.3. Case study 3: Dynamics of second-order models

This case study, considers the second-order model (4.2). The test is developed in

the case of a constant activity for an initial constant speed: σi(0) = 0.5, for i ∈ [N ].

The main objective of the test consists in developing simulations related to the

analytic result proved in Theorem 4.2. Simulations are developed for u = 0.1 and

u = 0.7 using parameters (5.1) and the time-varying communication function given

by (5.4), with δ = 2, and for (γa, γb) = (0.3, 1).

Fig. 7. (Color online) Temporal evolution of max1≤i≤N (|θi(t) − θν | + |σi(t)|) for second-order
model with time-varying communication weight function.
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(a) t = 2

(b) t = 5

Fig. 8. (Color online) Pattern dynamics for t = 2 and t = 5.

Figure 7 reports the evolution of diameters corresponding to second-order mod-

els: max1≤i≤N (|θi(t)− θν |+ |σi(t)|), while the pattern formation is shown in Fig. 8

for t = 2 and t = 5.

5.4. Critical analysis towards simulation perspectives

The various simulations presented in this section indicate how a quantitative study

of the dynamics of behavioral swarms can be developed. Specifically, the time

dynamics of two well-defined metrics, corresponding to angular and spatial dis-

tances, have been considered. The study has confirmed the exponential-type trend

towards an asymptotic configuration according to the prediction of the qualitative

analysis. Additional simulations have shown the patterns by which the swarm moves

to the asymptotic configuration.

The overall dynamic quantitatively depends on the parameters of the model,

but the qualitative behavior appears to be preserved. Of course, a systematic study

of the sensitivity of parameters might be developed, but this objective goes beyond

the specific objectives of our paper.

6. A Forward look at Modeling Perspectives

The analytic and computational studies proposed in our paper rely on the use of

mathematical structures suitable to account for the behavioral dynamics of the

living entities composing the swarm. Models are derived by inserting a detailed
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description of interactions. It can be shown that these structures can be used in the

modeling the dynamics of well-defined living systems consisting in a finite number of

living entities. First, we briefly show a possible application the theory of behavioral

swarms, and then we focus on a further development of the mathematical struc-

ture. As a specific case study, we consider the modeling of human crowds.11 We can

outline how the modeling approach can be developed, at the microscopic scale, con-

sistently with the mathematical frameworks. The approach does not require further

developments of the structure, but simply a more specific description of interactions

which depends on the strategy that each pedestrian develops by interaction with

the other pedestrians as well as with the geometrical and physical features of the

venue where the crowd moves.

Let us consider a “swarm” of a finite number of i-pedestrians, with i ∈ [N ]. An

intuitive model of such strategy is proposed in Ref. 11 as follows:

(1) Each i-pedestrian can develop a walking strategy by decisional hierarchy where

interactions first modify the activity and then the motion which depends also

on the activity. The strategy, accounts of all pedestrians in her/his individual

sensitivity domain Ωi.

(2) All a-particles are subject to different stimuli, i.e. they tend to the direction

from the location xi of the i-pedestrian to a meeting point or exit; attraction

by the main stream computed in Ωi; attraction towards less congested areas

corresponding to the local distribution of density in Ωi. The choice of the veloc-

ity direction corresponds to a weighted selection of these stimuli, depending

on the quality of the venue, on the emotional state and on the local density

distribution.

(3) The i-pedestrian, once moved to the new velocity direction, perceives the local

density in the new visibility domain which differs from the density previously

perceived in this domain. If the new density is lower (higher) than the previous

one, the i-pedestrian will increase (decrease) the speed.

A challenging perspective lies in further developments of the framework pro-

posed in Ref. 13. It is not an easy task, as causality principles cannot, for evolu-

tionary living systems, rely on a physical background.31 The mathematical theory

proposed in Ref. 8 suggests an alternative to the search of a physical theory to

support the derivation of causality principles. The authors mention a science of

living systems, where the derivation of models is developed within a framework

suitable to capture the complexity features of living systems. This strategy leads to

a mathematical framework for the derivation of specific model. The complexity fea-

tures proposed in Ref. 8 are: Ability to express a strategy, Heterogeneity, Learning

ability, Nonlinearity of interactions, Darwinian mutations and selection, see also

Ref. 6.

Therefore, it is worth going beyond the present state of the art to understand

how the mathematical structures proposed in Ref. 13 can be further developed in

order to take into account the aforementioned rationale, by including interactions
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that are not number conservative. For instance by modeling proliferative and/or

destructive events. This development might end up with new mathematical tools,

somehow alternative to the kinetic theory for a-particles.
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