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Abstract: Emerging infectious diseases are one of the most important global health challenges because
of their impact on human and animal health. The vector-borne West Nile virus (WNV) is transmitted
between birds by mosquitos, but it can also infect humans and horses causing disease. The local
circulation of WNV in Spain has been known for decades, and since 2010, there have been regular
outbreaks in horses, although only six cases were reported in humans until 2019. In 2020, Spain
experienced a major outbreak with 77 human cases, which was followed by 6 additional cases in
2021, most of them in the Andalusian region (southern Spain). This study aimed to characterize the
genomes of the WNV circulating in wild-trapped mosquitoes during 2020 and 2021 in Andalusia. We
sequenced the WNV consensus genome from two mosquito pools and carried out the phylogenetic
analyses. We also compared the obtained genomes with those sequenced from human samples
obtained during the outbreak and the genomes obtained previously in Spain from birds (2007 and
2017), mosquitoes (2008) and horses (2010) to better understand the eco-epidemiology of WNV in
Spain. As expected, the WNV genomes recovered from mosquito pools in 2020 were closely related
to those recovered from humans of the same outbreak. In addition, the strain of WNV circulating
in 2021 was highly related to the WNV strain that caused the 2020 outbreak, suggesting that WNV
is overwintering in the area. Consequently, future outbreaks of the same strain may occur in in
the future.

Keywords: Culex; complete genome; flavivirus; vector-borne diseases; zoonosis

1. Introduction

The flavivirus West Nile virus (WNV), is one of the most relevant emerging vector-
borne pathogens and the most important causative agent of viral encephalitis worldwide [1].
It thus has a considerable impact both on public and animal health [2]. WNV is maintained
in nature in an enzootic cycle involving ornithophilic mosquitoes, which are transmis-
sion vectors, and several species of birds that act as reservoirs [3]. Sometimes, infected
mosquitoes bite other vertebrates, including mammals, producing a WNV spill-over that in
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some species like humans and horses might lead to neuroinvasive disease. WNV has been
described in all continents except Antarctica and its presence in Europe has been known
since 1962 [4]. Initially, its presence was considered the result of periodic introductions by
migratory birds from Africa (reviewed in [5]). However, in the early 2000s, the incidence
across Europe started to increase and it became clear that the virus may be endemic in
several European countries, raising public health concerns [6].

WNV is a positive-sense, single-stranded RNA virus, and as such, it has an extraor-
dinary geographic and temporal variability. So far, several WNV genetic lineages have
been proposed based on phylogenetic analysis, and different strain genome sequences can
differ from each other by more than 20–25% [7]. As a result, many WNV variants have
evolved independently in different parts of the world and can adapt to local transmission
cycles while they circulate and spread in different regions [3]. Among the different lineages
in Europe, lineages 1 and 2 have been associated with outbreaks in humans. Lineage 1 is
distributed throughout the world and consists of two clades: 1a (found in Africa, Europe,
Middle East, Asia, and America), and 1b (Australian Kunjin virus) [8]. Lineage 2 was tradi-
tionally found in sub-Saharan Africa, but most recently, it has been spreading from Eastern
towards southern Europe (including Spain in 2017 and 2020) [9].

Records of the presence of WNV in Spain derived, among others, from seroprevalence
studies [10,11] and virus detection in birds [12] and mosquitoes [13,14]. In 2007, the virus
was isolated for the first time from two Real eagles in Toledo, central Spain [15]. In horses,
antibodies were first detected in 2005 in Doñana National Park in Andalusia [16], with
the first outbreak in horses being reported in 2010. Since then, every year there have been
outbreaks in horses in the country. Cases in humans occurred in the south-west region of
the country: the first case was detected in Badajoz in 2004 [17], two cases were detected
in Cadiz in 2010 [18], and three in Seville in 2016 [19]. In the summer of 2020, Spain
experienced the biggest WNV human outbreak in this area with 77 infected and eight
deaths [19]. This has been the largest outbreak of a mosquito borne disease in Spain since
the eradication of malaria in 1964. Again, in 2021, there were six human cases in this area,
including one fatal case (ECDC 2022. Epidemiological update: WNV transmission season
in Europe, 2021 [20]).

Overall, three different lineages have been reported in Spain. In 2006, the putative
lineage 6 was detected in mosquitoes from Andalusia [13] and, since 2008, lineage 1 has
been repeatedly identified in mosquitoes, horses and birds, mainly in the south-west of
Spain. More recently, lineage 2 was reported in 2017 and 2020 in Catalonia (north-east
Spain; [9]). Genetic analyses of sequences of lineage 1 suggest that several independent
introductions have occurred during the XXI century [21]. The increased number of human
cases recorded in 2020 and 2021 led to speculation on the possible introduction of a more
pathogenic strain. Our aim here was to report the full genomes and characterize the
WNV lineage 1 circulating in mosquitoes in 2020 and 2021 in southern Spain, after the
two main outbreaks in humans reported in these consecutive years. We also compared
the genome sequences found in mosquitoes with the genomes sequenced from human
samples obtained during the outbreak and the complete sequences available from previous
years from mosquitoes, horses, and birds to better understand the WNV eco-epidemiology
in Spain.

2. Materials and Methods
2.1. Mosquito Surveillance and Identification

Mosquitoes were captured in different localities of the provinces of Huelva and Seville
(Andalucia, Spain) during 2020 and 2021. In each locality, we placed three BG traps that
operated for 24 h and were baited with approximately 1 kg of dry ice each to generate a
continuous flow of CO2 at the entrance of the trap. Mosquitoes were transported in dry
ice to the lab and stored at −80 ◦C before further processing. Mosquitoes were identified
following identification keys [22,23] and pooled in groups of up to 50 individuals by species,
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sex, sampling site, date, and locality. In total we tested 419 pools of Cx. perexiguus females
in 2020 (see [24] for further details), and 1024 in 2021.

2.2. Molecular Diagnosis of WNV

Before RNA extraction, pools were homogenized in sterile MEM buffer (minimum
essential buffer) supplemented with 10% bovine fetal serum, 0.5% of penicillin, and strep-
tomycin and 10% L-Glutamine (Sigma-Aldrich, St. Louis, MO, USA). Viral RNA was
extracted from mosquito pools or cell culture supernatants by using a QIAamp Viral RNA
Mini Kit (QIAGEN, Valencia, CA, USA). The presence of WNV was tested using a one-step
real-time reverse-transcription qRT-PCR targeting a conserved sequence of the 3′-UTR
region of the WNV genome and using an internal control to avoid false negatives [25].
qRT-PCRs were carried out on the LightCycler 480 (ROCHE, Basel, Switzerland) and 7500
Fast (Applied Biosystem, Waltham, MA, USA).

2.3. Viral Sequencing and Genome Assembly

The qRT-PCR identified 33 Cx. perexiguus positive pools (7.88%) in 2020, and 106
(10.35%) positive pools in 2021. For both years, we selected two positive pools of Cx.
perexiguus (one per year) with a Ct lower than 25 in the qRT-PCR. We cultured these pools
in Vero cells to carry out WNV isolation. These samples were also selected because they
were collected at the sampling site “Cañada de los pájaros” (Seville, Andalusia, Spain),
which belongs to the municipality of Puebla del Rio where most of the human cases
occurred (Figure 1). Complete genome sequences were obtained for the WNV isolates after
one passage in Vero cells. The library was prepared using a metagenomics approach. Briefly,
viral RNA was extracted using the Quick-RNA Viral kit (Zymo, Irvine, CA, USA). RNA
was quantified and verified using a Bioanalyzer 2100 with RNA 6000 Nano Kit (Agilent
Technologies, Santa Clara, CA, USA). Sample library preparation was conducted using the
NEBNext® Ultra II RNA Library Prep Kit for Illumina® with NEBNext® Multiplex Oligos
for Illumina®, Index Primers Set 3 (New England BioLabs Inc., Ipswich, MA, USA) and
sequenced on an Illumina MiSeq v2 (300 Cycles).
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Figure 1. Map showing the three provinces of Andalusia where human and equine cases occurred
during 2020 and 2021 (Huelva, Seville and Cadiz). In the main map, the stars represent the two
sites in Seville that concentrated most of the cases during 2020 and 2021 season. The red circle is the
location where the mosquito pools used for whole genome sequencing were captured. The dark gray
areas are the cities and villages.

Sequencing samples were analyzed for viral consensus genome reconstruction using
viralrecon pipeline v2.4.1 (https://github.com/nf-core/viralrecon) (accessed on 24 January
2022) [26] written in Nextflow (https://www.nextflow.io/) (accessed on 24 January 2022)
in collaboration between the nf-core (https://nf-co.re/) (accessed on 24 January 2022)
community and the Bioinformatics Unit of the Institute of Health Carlos III (BU-ISCIII)

https://github.com/nf-core/viralrecon
https://www.nextflow.io/
https://nf-co.re/
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(https://github.com/BU-ISCIII) (accessed on 24 January 2022). In this pipeline, fastq files
containing raw reads were first analyzed for quality using FastQC v0.11.9 [27]. Raw reads
were trimmed using fastp v.0.23.2 [28], where a sliding window quality filtering approach
was performed, scanning the reads with a 4-base wide sliding window, cutting 3′ and 5′

end bases when the average quality per base drops below a Qphred33 of 30. Reads shorter
than 50 nucleotides and reads with more than 10% of read quality under Qphred 30 were
removed. Additionally, poly-X sequences were removed from read ends. Trimmed reads
were mapped against the reference WNV genome (JF719067.1) with bowtie2 v.2.4.4 [29],
Picard v.2.26.10 (https://github.com/broadinstitute/picard) (accessed on 24 January 2022)
and SAMtools v.1.14 [30] were used to generate viral genome mapping stats. To obtain
statistics about the host genome content, we used Kraken2 v.2.1.2 [31] to run kmer-based
mapping of the trimmed reads against the African green monkey (Chlorocebus sabaeus;
TaxID 60711, GCF_015252025.1) and mosquito genome references Culex quinquefasciatus
(TaxID 7176, GCF_015732765.1) and Culex pipiens (TaxID 7175, GCF_016801865.1).

Variant calling was carried out using ivar variants v.1.3.1 [32], which calls for low and
high frequency variants from which variants with an allele frequency higher than 75 were
kept to be included in the consensus genome sequences. Both variants included or not in
consensus genome sequence were annotated using SnpEff v.5.0.e [33] and SnpSift v.4.3 [34].
Finally, BEDtools v2.30.0 [35] was used to obtain the viral genome consensus with filtered
variants and mask genomic regions with coverage values lower than 10×. Final summary
reports were created using MultiQC v.1.9 [36].

2.4. Phylogenetic Analysis

For the phylogenetic analyses, we selected the polyprotein region of the two sequenced
genomes and compared them with 55 complete genomes from WNV lineage 1 available at
Genebank. Multiple alignments were carried out with Clustal W, and the phylogenetic tree
was generated using a maximum likelihood approach and a general time reversible model
(GT+G+I) and 1000 bootstraps in MEGA11: Molecular Evolutionary Genetics Analysis
version 11 [37]. We also estimated the genome distance and compared the aminoacid
changes between the sequences obtained here with the four human sequences from 2020
and previous complete sequences from this region of previous years.

3. Results

Here, we used a metagenomic approach to obtain the genome of WNV detected
from two pools of mosquitoes (hereafter 20c124 and 21C560) captured in 2020 and 2021,
respectively. For both samples, we obtained more than 2 million reads per sample, of which
22% and 13% belonged to WNV. The WNV genomes of the two samples were covered 100%
with a depth of coverage > 10×. The median depth of coverage of the genome was 5985
and 3411, respectively. Both viral consensus genome sequences have more than a hundred
variants with respect to the reference genome (139 and 144), being 12 of them in both cases
missense variants. Further details can be found in Table 1.

https://github.com/BU-ISCIII
https://github.com/broadinstitute/picard
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Table 1. Raw sequencing data, where the host are Vero Cells, and the reference sequence is JF7190.67.

Sample 20c124 21c560

Total reads 2,225,818 2,126,416
Reads host R1 865,285 920,637

Reads host 1,730,570 1,841,274
%reads host 77.75 86.59
Reads virus 475,496 275,042

%reads virus 21.36 12.93
Unmapped reads 19,752 10,100
%unmaped reads 0.89 0.47

medianDPcoverage virus 5985 3411
Coverage > 10×(%) 100 100

Variants in consensus ×10 139 144
Missense Variants 12 12

%Ns10× 0.00 0.00

Maximum likelihood phylogenetic analyses on the polyprotein gene confirmed that
both sequences obtained here belonged to the WNV lineage 1, clade 1a, cluster 2, Mediter-
ranean subtype [21,38] (Figure 2). Both genomes clustered together with the four Spanish
genomes of WNV isolated from human samples in 2020 (Figure 2). The genome sequenced
from the sample collected in 2020 (20c124, GenBank Accession number OP643863) is more
closely related with the human samples (mean distance estimation of 0.0006 or 0.06% diver-
gence) than the sample collected in 2021 (21C560, GenBank Accession number OP643864;
mean distance estimation of 0.0022 or 0.22% divergence). The mean distance between
20c124 and 21C560 was 0.0019 (0.19% divergence). The closest genomes to this group
are from WNV samples obtained in 2008 and 2009 in Italy, while the sample collected
in Spain in 2010 from a horse, in 2008 from a pool of mosquitoes and 2007 from a bird
diverge at a previous branching point. The sequences obtained from a bird in 2017 does
not group with the new sequences either, confirming that both belong to different clus-
ters. The amino acid analysis shows that the Spanish mosquito isolates 20c124 and 21c560
and the four human sequences shared 5 unique amino acids changes in the polyprotein
when we compared them with the most related sequence obtained from Italy (JF719067.1)
and the rest of Spanish sequences obtained in previous years (Supplementary Materials).
Remarkably, each sequence obtained in this work showed only one unique amino acid
substitution, A50V (20c124) in the envelope and A177V (21c560) in the NS3. We were not
able to conduct further analyses because available human sequences are incomplete in
some parts of the genome.
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4. Discussion

The metagenomic approach used in this study allowed us to directly generate genomic
sequences of WNV, which is crucial for phylogenetic analysis if this is used for detailed
outbreak investigation. Because we are working with pools of mosquitoes, the genomes
were generated by creating consensus genomes.

The results of this study strongly support that WNV circulating on 2021 was highly
related with the WNV strain that caused the outbreak during the year 2020. This supports
the possibility that WNV is overwintering in the area and, consequently, future outbreaks
of the same strain are likely to occur. Historically, it was claimed that the source of WNV
introduction in Europe were African countries through the migration of infected birds [39].
However, the analyses of viral genomes has allowed better study of the evolution of WNV
circulating strains, revealing that most outbreaks that have occurred in Europe are the
result of a limited number of introductions and that dispersal within the continent is more
important than previously assumed [5,40]. In fact, several studies have found examples
of overwintering WNV lineage 2 [9,41]. Regarding the origin of the WNV strain found in
Spain in 2020 and 2021, two different scenarios were proposed by Casimiro-Soriguer et al.,
(2021) [42]: (i) an endemic strain in the Mediterranean area that produces outbreaks in Spain
and Italy, and (ii) an endemic Italian reservoir from which the virus has been introduced
several times in Spain. Although further studies are needed with more viral genome
sequences from mosquitos sampled at different time points, our results support the first
scenario, with an Italian-related strain showing endemic circulation in southern Spain. This
also shows that the recent increase of WNV human cases in 2020 and 2021 in the studied
area was not explained by different virus introductions.

Our results also showed that both genomes clustered together with the four Spanish
genomes of WNV isolated from human samples in 2020. Although the collection site of the
mosquito pools was carried out in a natural area, this sample site is only 8 to 12 km a from
the epicenter of the human outbreak (the municipalities of Coria and Puebla de Rio). Three
of the human genomes sequenced come from this area, confirming the intimate connection
between the circulation of WNV in Cx. perexiguus in natural areas and the outbreaks in
urban areas.

In conclusion, access to complete genomes of the WNV strains circulating in endemic
areas is important to better understand WNV spread in Europe and its eco-epidemiology.
Mosquito surveillance can play a key role in enabling WNV genome sequencing and allow,
in short periods of time, the characterization of the genomes of the lineages circulating.
This will increase our capacity to understand virus amplification and dispersal across the
continent. This type of study is particularly relevant right now in Europe in general, and
particularly in Spain, due to the cocirculation of different strains and the recent expansion of
WNV lineage 2 [21]. In addition, a recent study showed that different strains are potentially
being introduced [9], complicating the scenario and highlighting the importance of genomic
monitoring as a part of the surveillance plan.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15020266/s1, Table S1: Comparison of the amino acid substitutions
between the isolates detected in this work and the strains detected in Spain in previous years and the
related Italian sequence JF719067.1 (used as reference) which belong to the WNV lineage 1 cluster 2.
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