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Abstract: Fruits and vegetables are a source of a wide range of nutrients, including bioactive com-
pounds. These compounds have great biological activity and have been linked to the prevention of
chronic non-communicable diseases. Currently, the food industry is developing new products to
introduce these compounds, whereby smoothies are becoming more popular among consumers. The
aim of this study was to evaluate the nutritional quality and the polyphenol and vitamin C content
of smoothies available on the Spanish market. An evaluation of the nutritional information and
ingredients was carried out. The phenolic compounds were determined by HPLC-ESI-TOF-MS; the
vitamin C content was quantified using HPLC-UV/VIS; and the antioxidant activity was analyzed by
DPPH and FRAP. Among all of the ingredients of the smoothies, coconut and banana have shown a
negative impact on the polyphenol content of the smoothies. In contrast, ingredients such as orange,
mango, and passion fruit had a positive correlation with the vitamin C content. Moreover, apple and
red fruits showed the highest positive correlations with most of the phenolic acids, flavonoids, total
phenolic compounds, and antioxidant activities. In addition, a clustering analysis was performed,
and four groups were clearly defined according to the bioactive composition determined here. This
research is a precious step for the formulation of new smoothies and to increase their polyphenol
quality.

Keywords: fruit smoothies; phenolic compound; antioxidant capacity; ascorbic acid; dehydroascorbic
acid; phenolic acids

1. Introduction

The Mediterranean diet encompasses the set of dietary patterns that occur in the
different countries found in the Mediterranean Sea basin [1]. It is characterized by a high
consumption of whole grain cereals, fruits, vegetables, nuts, legumes, olive oil, fish and
a moderate consumption of meat and derivatives. Numerous epidemiological studies
have observed that good adherence to this diet is related to a lower risk of cardiovascular
disease, diabetes, and cancer, among others diseases [2–4]. However, this diet is being
increasingly abandoned, and together with other unhealthy lifestyle factors, such as a
decrease in physical activity and a more sedentary lifestyle, smoking or the consumption of
ultra-processed food and very calorically dense foods, foods rich in sugars, refined flours,
red meats, and a very limited consumption of fruits and vegetables [5], this is having
repercussions on the health of the population and producing an increase in cases of chronic
non-communicable diseases (NCD) [6–10]. NCDs can be defined as those pathologies
of multifactorial origin and whose evolution is slow and lasts over time [11]. Among
the pathologies considered we find cardiovascular disease, diabetes, chronic respiratory
diseases, and some types of cancer.
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Fruits and vegetables are low-calorie foods but with appreciable quantities of car-
bohydrates, fiber, minerals, water-soluble vitamins (vitamin B complex and vitamin C).
and bioactive compounds such as flavonoids, carotenoids, tannins, etc [12]. Numerous
studies have shown that a diet rich in fruits and vegetables decreases the risk of NCDs and
increases life expectancy [13]. This effect is associated with the antioxidant capacity mainly
attributable to bioactive compounds, including phenolic compounds and vitamin C [14,15].

Bioactive compounds derived from the secondary metabolism of plants, whose pur-
pose is to act as a defense mechanism against pathogens or predators, function in plant
reproduction, provide color, etc [16]. There are more than 5000 described compounds and
they are present in vegetables, fruits, whole grain cereals, and other plant-based foods,
although many remain unidentified [17]. They can be nitrogenous compounds, sulfur
compounds, alkaloids, terpenoids, phenolic compounds, vitamins, and carotenoids, among
others [17,18]. Fruit phenolic compounds have been related to the reduction of cardio-
vascular disease, diabetes mellitus, and mortality. In addition, they have been linked to
better endothelial function and higher bone density [19]. The principal function of vitamin
to highlight of is its role as a cofactor of numerous enzymatic processes. These enzymes
catalyze a wide variety of hydroxylation reactions and are involved in the synthesis of
collagen (essential to prevent scurvy) and carnitine, in the catabolism of thyroxine, and
in the demethylation of proteins, DNA, and RNA [20,21]. Moreover, Vitamin C in its
form of ascorbic or dehydroascorbic acid has been reported to reduce cellular oxidative
stress with all the positive effects that it can have in the human health [21–23]. The main
sources of vitamin C are fruits and vegetables, preferably fresh. This is due to the fact that
vitamin C is characterized as being water-soluble and very thermolabile, so the processing
of these foods implies great losses. Among the foods that have higher amounts of vitamin
C, mangos, kiwis, cauliflowers, red peppers, Brussels sprouts, or grapefruit stand out,
among others [24].

The consumption of fruits and vegetables is the main basis of a healthy and varied
diet. The World Health Organization (WHO) recommends that the daily consumption
of this type of food should be greater than 400 g/day or at least five pieces of fruit and
vegetables per day [25]. Nowadays, the daily intake in the general population is much
lower than recommended. Additionally, in some studies it has been observed that during
the COVID-19 pandemic, the consumption of canned foods, whose shelf life is longer,
increased while the consumption of fresh fruits and vegetables decreased [26]. This is
linked to the fact of that the accessibility of these fresh products is more limited, since they
are more expensive and highly perishable foods that need adequate storage. That is why
the food industry, together with a greater demand for healthy and good quality products, is
developing new methods of consuming fruits and vegetables, alternative to the traditional
ones, as a way to increase and/or maintain the recommended consumption of these foods.

In this context, some products that are becoming more and more popular are smoothies.
These drinks were first introduced in the United States in the 1960s and later, in the 2000s,
they became popular again [27]. Smoothies are defined as non-alcoholic beverages prepared
from fruits and/or vegetables, fresh or frozen, which are crushed until they achieve a
homogeneous appearance [28,29]. In fact, the name “smoothie” comes from the English
“smooth” due to its appearance, since this type of drink is not filtered, unlike juices, so
that it preserves the pulp and fiber, giving it a denser, more even appearance [28]. In
addition, sometimes other types of ingredients are added to these drinks apart from fruit
and vegetables, such as cereals, ice, or dairy products (milk, yogurt, etc.).

In the process of making juices and smoothies, the cellular structures of the fruits and
vegetables break, leading to the release of enzymes that, together with the microorganisms
that are present, make the product more susceptible to degradation, compromising its useful
life [30,31]. To increase the shelf life, the smoothie industry has used very intense heat
treatments in order to ensure the inactivation of enzymes and the reduction of the microbial
load of foods. In addition, other compounds such as vitamins and phenolic compounds
are also released from the cell matrix. These molecules are of great nutritional interest due
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to their health benefits, however, some can degrade, thus reducing their nutritional and
organoleptic quality [28]. Therefore, the main challenge for the industry in the production
of smoothies is the implementation of adequate conservation and sanitization methods, so
that the shelf life of the product increases, without affecting the organoleptic and nutritional
characteristics [32].

Thus, the main objective of this work was to evaluate the nutritional quality of the
smoothies currently available on the Spanish market in terms of phenolic compounds,
vitamin C content, and antioxidant activity, as a precious step to formulate new products
and increase their polyphenol quality.

2. Results and Discussion
2.1. Nutritional Evaluation of the Smoothies

The smoothies evaluated were characterized by being drinks composed mainly of
juice and purées of different fruits and vegetables. In some cases, other compounds such as
chlorophylls, concentrates, or spirulina extract were also added to these smoothies. The
ingredient composition of the smoothies is represented in Figure 1 expressed as percentage
according to the information given in their labelling.
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Figure 1. Ingredients of the evaluated smoothies expressed as percentage.

Most of the products analyzed contained apple-based ingredients in their composition,
either in the form of juice and/or purée. More specifically, of the 23 smoothies analyzed,
20 included apples among their ingredients, and in 19 of them, it was among the major
two ingredients. Other ingredients also widely used in the preparation of smoothies were
bananas, oranges, and strawberries. The marketed volume of this product is generally
250 mL and on certain occasions it can reach 330 mL. Table 1 collected in a nutshell the
nutritional composition of the studied smoothies in terms of energy and macronutrients as
reported in their labelling for 100 mL of product, the measured pH, and ◦Brix.



Molecules 2022, 27, 8229 4 of 20

Table 1. Summary of the nutritional labelling and physical–chemical analysis of the studied smoothies
per 100 mL of product.

Energy
(kcal)

Energy
(kJ) Fats (g) Saturated

Fats (g)
Carbohydrates

(g)
Sugars

(g)
Fibre *

(g)
Protein

(g) pH ◦Brix

Average 56.3 237.5 0.5 0.4 11.8 10.9 0.7 0.6 3.61 12.53
Median 53.0 225.0 0.1 0.0 12.0 11.0 0.8 0.6 3.57 12.60

Min. 38.0 160.0 0.0 0.0 7.9 6.8 0.3 0.0 3.31 8.00
Max. 82.0 343.0 3.2 2.9 14.6 13.4 1.8 0.9 4.06 15.00

CV (%) 19.7 19.2 185.6 236.4 11.5 13.8 85.5 31.8 5.81 13.49

* Data of fiber content were not available for all of the samples.

In relation to the nutritional value of smoothies, globally, we can see that they are
drinks whose energy intake ranges between 38 kcal and 82 kcal per 100 mL of product
(Table 1). The smoothie that had the lowest caloric intake was number 16 and the highest
caloric intake corresponds to number 7. A significant (p < 0.05) positive correlation was
found between energy content and banana content, an ingredient that was present in an
amount ≥ 20% in all smoothies that had ≥ 71 kJ (4, 7 and 20). Likewise, a significant
(p < 0.05) negative correlation was found with the apple content, despite the fact that this is
a major ingredient in many of the smoothies, thus corroborating that it is a low-calorie fruit
that does not impact the energy supply in the smoothies.

With regards to macronutrients, it should be noted that smoothies are drinks that stand
out mainly for their carbohydrate content. The contribution of total carbohydrates varies
according to the product, but the sampled smoothies ranged between 7.9 and 14.6 g per 100
mL (Table 1). The major carbohydrate forms in the smoothies were sugars reaching in some
cases 100% of the present carbohydrates. Moreover, the rest of the carbohydrates that are not
free sugars in some smoothies could be mainly complex carbohydrates (oligosaccharides
and polysaccharides). It should also be noted that none of the smoothies analyzed had
added sugar, so all the sugars that appeared on the nutritional labels were naturally present.
Non-caloric sweeteners were also not added to any of the products. This may be due to
the fact that smoothies, in general, are products made up mostly of fruits—foods that are
characterized by their sugar content and sweet taste. The ingredients that showed the
greatest significant positive correlation (p < 0.1) in the intake of carbohydrates were oranges
(r = 0.4401), mangos (r = 0.4588), and bananas (r = 0.3907), as well as in the content of total
sugars. In fact, the smoothie with the highest carbohydrate content was number 12 and
it contained 25% orange as the main ingredient, as well as 18% mango and 20% banana.
Meanwhile, the smoothie with the lowest content was number 16, which was characterized
by not including any of these three ingredients in its composition.

Moreover, the studied smoothies were not characterized by a high fiber content. The
oscillation range of the fiber content was found between 0.3 and 1.8 g/100 mL of product.
The ingredients that contributed significantly (p < 0.1) to fiber intake were apples (r = 0.4525)
and raspberries (r = 0.3853). In fact, all the smoothies that reported fiber > 1 g/100 mL
had those ingredients. It is important to point out that not all of the smoothies had the
fiber information present, since it is not mandatory for it to be reflected in the nutritional
labelling according to regulation (EU) N◦ 1169/2011 of the European Parliament and of the
Council of 25 October 2011 on the provision of food information to consumers.

On the other hand, the amount of protein and fat was generally insignificant, since
the raw materials used in the preparation of smoothies are not characterized as foods
rich in protein or lipids. Even so, it is noteworthy that 4 of the 23 products analyzed
contained a greater amount of fat, reaching 3.2 g per 100 mL of product. This can be
associated with the fact that these smoothies, among their ingredients, contained coconut
in different variants, such as coconut milk, a coconut drink, or coconut-based preparation
which contains coconut pulp and water. It could be explained by the fact that coconuts are
a fruit rich in fats, mainly medium and long chain saturated fats, which increase the lipid
content and, consequently, also the energy value of the products to which it is added [33].
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This was also confirmed statistically as coconuts were shown to have a significantly strong
correlation (p < 0.05) with total fat (r = 0.7167) and saturated fat (r = 0.7430) content.

In addition to the nutritional labeling, the pH and ◦Brix were measured experimentally.
As expected, the smoothies analyzed presented an acidic pH. The product with the lowest
pH was number 17 at 3.31 and the smoothie with the highest pH was number 20 with
a pH of 4.06. The results found were in concordance with other studies that previously
reported a pH range between 3 and 4 [31,34–38]. This acidic pH is very useful when it
comes to ensuring microbiological stability, which together with pasteurization treatments
or high-pressure processing prevents the proliferation of pathogenic microorganisms and
increases the shelf life of the product [37]. Ingredients such as apples, oranges, lemons,
passion fruit, mangos, kiwifruit, mint and red fruits showed a negative correlation with the
pH which means that they are good ingredients to add to the smoothies to help to avoid
the microorganisms’ spoilage by reducing the pH.

In relation to the number of soluble solids, it can be seen that the range of variation
went from 9 ◦Brix, which corresponds to smoothie number 17, to 15 ◦Brix which corre-
sponds to the smoothies that mostly contained pineapple, coconut and banana (6 and 20).
The obtained results are in agreement with previous studies [27,31,37–39]. It is interesting
to mention that the smoothies with a higher pH and soluble solids content also had a
greater amount of coconut or coconut-based preparations in their composition, with the
amount being up to 14%. This has also been seen statistically with a significant (p < 0.05)
positive correlation (r = 0.7953) between the total soluble solids and the coconut content.

2.2. Identification of Polar Compounds by HPLC-ESI-TOF-MS

A total of 40 polar compounds have been tentatively identified in the smoothies.
Between them, four are organic acids, three are hydroxybenzoic acids, five hydroxycinnamic
are acids, twenty-one are flavonoids, and seven of them are other metabolites. Table 2 shows
an overview of all of the proposed compounds with their retention time (min), molecular
formula, experimental and calculated m/z, and m/z in source fragments. Furthermore, all of
the metabolites showed a score higher than 90% and an error (ppm) lower than 5. These
parameters were given by the software MassLynx 4.1. To identify the compounds, the
generated molecular formulas and some in-source fragments were checked, studied, and
compared with different databases such as PubChem, Mass bank, Phenol-Explorer, and
the literature. Some representative total ion chromatographs of the analyzed smoothies are
shown in Figure S1 from Supplementary Materials.

Four organic acids were identified corresponding to n◦ 1, 2, 5 and 40, and they were
named as malic acid, citric acid, isopropylmalic acid, and pinellic acid. Malic acid and
its derivatives are the main acids present in many fruits, including apricots, blackberries,
blueberries, cherries, grapes, peaches, pears, plums, and quince; similarly citric acid is
extensively present in citric fruits such as oranges and lemons, among others. Both acids are
two types of compounds that are also natural, safe additives, which are widely used in food,
medicine, daily chemical product, and health product industries [40]. 3-isopropylmalic
acid was identified in concordance with Ricciutelli et al. [41] who described it with the
m/z 175 and the main m/z fragment 113 that corresponds to the loss of CO2 and H2O
[M-CO2-H2O]−. Otherwise, pinellic acid is a metabolite of linoleic acid, one of the major
fatty acids found in lipids. It has a role as an adjuvant and an anti-inflammatory agent and
it is being increasingly found in fruits and vegetables [42].

A total of eight phenolic acids were found in the analyzed smoothies. At 0.753 min, gal-
lic acid previously reported in grapefruit, bananas, and pomegranates, among others, was
found [43]. With the molecular formula C7H6O4, two isomers of protocatechuic acid were
found corresponding to n◦ 4 and 7, previously reported in the highest amount in apples [44]
and dates [45]. Three isomers of chlorogenic acid were detected with the m/z 353 (n◦ 9, 10
and 12) reported previously in berries, apples, bananas, citrus fruits, and pears, among
others [46]. Moreover, at 4.952 and 5.155 min, two isomers of coumaroylquinic acid were
tentatively identified. Both have been extensively reported in fruits and vegetables [43].
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Table 2. Identified compounds in the analyzed smoothies by HPLC-ESI-TOF-MS.

N◦ Time
(min)

m/z
Experimental

m/z
Calculated

Error
(ppm)

Score
(%)

Molecular
Formula

m/z in Source
Fragments Compound

1 0.431 133.0131 133.0137 −4.5 100.0 C4H6O5 115.0013 Malic acid
2 0.476 191.0191 191.0192 −0.5 100.0 C6H8O7 111.0054 Citric acid
3 0.753 169.0138 169.0137 0.6 95.8 C7H6O5 125.0222 Gallic acid
4 1.247 153.0189 153.0188 0.7 100.0 C7H6O4 108.0185 Protocatehuic acid isomer a
5 1.688 175.0599 175.0606 −4.0 98.8 C7H12O5 113.0626 3-Isopropylmalic acid
6 3.32 289.0698 289.0712 −4.8 96.4 C15H14O6 179.0345 Catechin
7 3.500 153.0181 153.0188 −4.6 100.0 C7H6O4 - Protocatehuic acid isomer b

8 4.009 705.1675 705.1667 1.1 95.8 C32H34O18

351.0702;
191.0544;
133.0271

Kaempferol
3-[2′ ′ ′,3′ ′ ′,5′ ′ ′-triacetyl-

alpha-L-arabinofuranosyl-
(1->6)-glucoside isomer

a
9 4.009 353.0864 353.0873 −2.5 100.0 C16H18O9 191.0544 Chlorogenic acid isomer a

10 4.301 353.0869 353.0873 −1.1 100.0 C16H18O9 191.0543 Chlorogenic acid isomer b

11 4.368 705.1680 705.1667 1.8 92.1 C32H34O18 -

Kaempferol
3-[2′ ′ ′,3′ ′ ′,5′ ′ ′-triacetyl-

alpha-L-arabinofuranosyl-
(1->6)-glucoside isomer

b
12 4.541 353.0859 353.0873 −4.0 97.5 C16H18O9 191.0538 Chlorogenic acid isomer c
13 4.69 289.0705 289.0712 −2.4 100.0 C15H14O6 245.0794 Epicatechin

14 4.952 337.0909 337.0923 −4.1 100.0 C16H18O8 173.0441 Coumaroylquinic acid
isomer a

15 5.155 337.0914 337.0923 −2.7 100.0 C16H18O8 173.0439 Coumaroylquinic acid
isomer a

16 5.678 579.1725 579.1714 1.9 93.1 C27H32O14 245.092 Narirutin
17 6.465 337.0546 337.0560 −4.2 99.9 C15H14O9 173.0082 Quercetin dihydrate
18 8.449 371.1332 371.1342 −2.7 99.6 C17H24O9 209.0801 Syringin isomer a

19 8.553 579.1719 579.1714 0.9 99.6 C27H32O14
271.0604;
167.0341 Naringin

20 8.606 463.0861 463.0877 −3.5 99.7 C21H20O12

300.0253;
271.0228;
167.0347

Isoquercetin

21 8.636 567.1716 567.1714 0.4 100.0 C26H32O14

463.0866;
300.0244;
273.0748;
167.0342

Phloretin 2′-xyloglucoside

22 8.816 463.0872 463.0877 −1.1 100.0 C21H20O12

300.0256;
271.0240;
255.0276

Hyperoside

23 8.965 371.1340 371.1342 −0.5 100.0 C17H24O9 209.0811 Syringin isomer b
24 9.137 435.1301 435.1291 2.3 99.3 C21H24O10 273.0757 Phloridzin
25 9.137 609.1838 609.1819 3.1 96.9 C28H34O15 301.0711 Hesperidin

26 9.340 433.0771 433.0771 0.0 100.0 C20H18O11

300.0262;
271.0242;
241.0136

Quercetin
3-O-beta-D-xylopyranoside

27 9.827 447.0917 447.0927 −2.2 90.1 C21H20O11

285.0382;
255.0272;
227.0331

Kaempferol-3-glucoside

28 10.032 447.0932 447.0927 1.1 100.0 C21H20O11
300.0255;
271.0233 Quercetin 3-rhamnoside

29 10.111 461.0716 461.0720 −0.9 100.0 C21H18O12 285.0392 Kaempferol-3-glucuronide

30 10.942 489.1023 489.1033 −2.0 99.8 C23H22O12

285.0374;
255.0263;
227.0333

Kaempferol
3-(6-acetylgalactoside)

isomer a
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Table 2. Cont.

N◦ Time
(min)

m/z
Experimental

m/z
Calculated

Error
(ppm)

Score
(%)

Molecular
Formula

m/z in Source
Fragments Compound

31 11.113 593.1883 593.1870 2.2 98.5 C28H34O14 285.076 Didymin
32 11.226 693.2756 693.2758 −0.3 99.1 C34H46O15 - Nomilin glucoside

33 11.511 489.1056 489.1033 4.7 92.8 C23H22O12

285.0414;
255.0290;
227.0320

Kaempferol
3-(6-acetylgalactoside)

isomer b

34 11.877 711.2866 711.2864 0.3 100.0 C34H48O16 607.276 Nomilinic acid
17-beta-D-glucopyranoside

35 12.139 271.0602 271.0606 −1.5 100.0 C15H12O5 151.001 Naringenin
36 12.640 345.0599 345.0610 −3.2 99.9 C17H14O8 287.0171 Limocitrin
37 12.648 301.0699 301.0712 −4.3 100.0 C16H14O6 164.0084 Hesperetin
38 13.240 385.1494 385.1499 −1.3 100.0 C18H26O9 223.096 Methylsyringin

39 13.712 529.2075 529.2074 0.2 100.0 C28H34O10 469.186 7-Acetoxy-6-
hydroxylimonin

40 14.206 329.2328 329.2328 0.0 100.0 C18H34O5 211.1343 Pinellic acid

The major group of identified compounds are flavonoids. The flavan-3-ols cate-
chin and epicatechin were identified with the m/z 289 at 3.32 and 4.69 min, respectively.
Quercetin derivatives have been found corresponding to compound numbers 17, 20, 22,
26, and 28 named as quercetin dihydrate, isoquercetin, hyperoside, quercetin 3-O-beta-D-
xylopyranoside and quercetin 3-rhamnoside, respectively. Those compounds have been
found in fruit matrices several times [43,47]. Moreover, phloretin 2′-xyloglucoside and
phloridzin, two compounds characteristic of apples were identified at 8.363 and 9.137
min [48]. Additionally, the compounds named as narirutin, naringin, hesperidin, didymin,
narigenin, and hesperetin (n◦ 16, 19, 25, 31, 35 and 37, respectively) were identified, which
were extensively reported to be found in citrus fruits [49]. Corresponding with n◦ 8 and
11, two isomers of a kaempferol derivative were identified and named as kaempferol
3-[2′ ′ ′,3′ ′ ′,5′ ′ ′-triacetyl-alpha-L-arabinofuranosyl-(1→6)-glucoside isomers a and b. With
the molecular formulas C21H20O11 and C21H18O11, the compounds kaempferol-3-glucoside
and kaempferol-3-glucuronide were found, respectively. Other kaempferol derivatives were
found with the m/z 489 and the m/z fragments 285, 255, and 227 at 10.942 and 11.511 min
which were named as kaempferol 3-(6-acetylgalactoside) isomers a and b, respectively. All
of those kaempferol derivatives have been previously described and found in fruits [50–52].

In addition, other metabolites were identified in the smoothies. Two isomers of
syringin, a phenylpropanoid glycoside, were detected with the m/z 371 (n◦ 18 and 23), and a
derivative named as methylsiringin at 13.24 min, previously found in caraway, fennels, and
lemons [43]. In relation to the terpenoids, four limonoids have been identified in accordance
with Gualdani et al. [53] and Shi et al. [54], who characterized limonoids from several citrus
species and matrixes. Those compounds are named nomilin glucoside, nomilinic acid
17-beta-D-glucopyranoside, limocitrin, and 7-acetoxy-6-hydroxylimonin corresponding to
n◦ 32, 34, 35, and 39, respectively.

2.3. Quatification of Phenolic Compounds by HPLC-ESI-TOF-MS

The phenolic acids and flavonoids identified in the smoothies were quantified, and
the results are summarized in Table 3. As can be seen, the sum of phenolic acids ranged
between 18.0–5561.5 µg/mL and the total flavonoids ranged between 67.8–4200.2 µg/mL
with variation coefficients of 68.7 and 59.2%, respectively. The variation between the
samples is very big depending on the smoothie.
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Table 3. Quantified phenolic compounds in the analyzed smoothies by HPLC-ESI-TOF-MS in µg/mL expressed as average ± standard deviation.

Phenolic
Compound S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23

Gallic acid 367.25
± 0.53 <LOQ 201.97

± 0.36
5.56
± 0.16

42.50
± 0.08

32.47
± 0.06

570.66
± 0.74

62.27
± 0.22

226.90
± 0.39

964.22
± 1.15

157.69
± 0.32

405.54
± 0.57

34.27
± 0.07

41.18
± 0.08

679.61
± 0.85 <LOQ 31.44

± 0.06
207.83
± 0.37

40.15
± 0.20

17.98
± 0.04

543.29
± 0.71

19.69
± 0.05 <LOQ

Chlorogenic acid
isomer a

532.92
± 1.21

791.93
± 1.48

1163.81
± 1.86

673.74
± 1.35 <LOQ <LOQ 170.39

± 0.84
230.75
± 0.90

181.16
± 0.85

500.54
± 1.18

94.49
± 0.76

160.96
± 0.51

697.92
± 1.38

168.30
± 0.53

1117.11
± 1.81

859.87
± 1.54

1226.82
± 1.92

732.40
± 1.41

713.90
± 1.40 <LOQ 116.85

± 0.79
185.17
± 0.58

1144.12
± 1.84

Chlorogenic acid
isomer b

1232.31
± 1.93

926.29
± 1.61

784.19
± 1.47

1015.41
± 1.70 <LOQ <LOQ 741.19

± 1.42
581.39
± 1.26

448.95
± 1.12

999.52
± 1.69

615.80
± 1.30

354.76
± 1.03

1194.18
± 1.89

318.21
± 0.99

1090.78
± 1.78

1052.55
± 1.74

1353.11
± 2.05

1189.69
± 1.88

946.19
± 1.63 <LOQ 409.35

± 1.08
112.41
± 0.78

1363.95
± 2.06

Chlorogenic acid
isomer c

45.73
± 0.71

111.33
± 0.36

523.06
± 1.20

139.81
± 0.45 <LOQ <LOQ 81.93

± 0.27
97.39
± 0.32

105.24
± 0.34

167.15
± 0.53

106.08
± 0.35

79.30
± 0.27

155.04
± 0.49

39.27
± 0.14

577.79
± 1.26

95.03
± 0.76

316.56
± 0.99

166.47
± 0.53

185.91
± 0.59 <LOQ 80.20

± 0.27
57.34
± 0.20

139.74
± 0.81

Coumaroylquinic
acid isomer a

133.26
± 0.43

145.68
± 0.47

186.47
± 0.59

122.63
± 0.40 <LOQ <LOQ 80.11

± 0.27
37.49
± 0.14

21.63
± 0.09

65.14
± 0.22

34.90
± 0.13

115.07
± 0.37

136.37
± 0.44

129.03
± 0.42

1006.93
± 1.69

187.89
± 0.59

501.91
± 1.18

139.30
± 0.45

98.80
± 0.32 <LOQ 59.14

± 0.20
36.70
± 0.14

204.54
± 0.64

Coumaroylquinic
acid isomer a

147.81
± 0.47

157.45
± 0.50

182.93
± 0.58

131.98
± 0.42 <LOQ <LOQ 93.75

± 0.31
35.58
± 0.13

27.66
± 0.11

59.72
± 0.21

36.15
± 0.14

141.90
± 0.45

200.41
± 0.63

137.21
± 0.44

1023.10
± 1.71

189.33
± 0.60

728.71
± 1.41

154.30
± 0.49

105.86
± 0.35 <LOQ 81.45

± 0.27
46.78
± 0.17

199.41
± 0.63

Protocatehuic acid
isomer a

16.50
± 0.04

12.11
± 0.03

8.04
± 0.16

392.01
± 0.56

40.53
± 0.08 <LOQ 16.13

± 0.04
13.99
± 0.04

0.08
± 0.02

53.97
± 0.10

95.67
± 0.25

28.36
± 0.06

75.46
± 0.23

4.62
± 0.02

66.21
± 0.12

33.88
± 0.07

32.68
± 0.07

25.71
± 0.05

13.95
± 0.04 <LOQ 26.49

± 0.06
83.11
± 0.14

12.14
± 0.03

Protocatehuic acid
isomer b <LOQ <LOQ 71.94

± 0.12
688.17
± 0.86

55.03
± 0.10 <LOQ <LOQ 128.77

± 0.29 <LOQ <LOQ 35.90
± 0.07 <LOQ 49.74

± 0.21 <LOQ <LOQ <LOQ 4.29
± 0.02 <LOQ <LOQ <LOQ <LOQ 95.95

± 0.25 <LOQ

Catechin 138.09
± 0.24

98.49
± 0.13

165.39
± 0.32

155.18
± 0.29

440.95
± 1.10 <LOQ 94.42

± 0.12
490.36
± 1.24

82.07
± 0.09

128.59
± 0.22

236.22
± 0.52

68.69
± 0.05

100.04
± 0.14

60.64
± 0.03

172.85
± 0.34 <LOQ 227.13

± 0.50
177.63
± 0.36

146.01
± 0.27 <LOQ 88.55

± 0.10
338.05
± 0.81

150.17
± 0.28

Epicatechin 412.15
± 1.02

458.72
± 1.15

338.92
± 0.81

485.87
± 1.23

81.51
± 0.08 <LOQ 280.50

± 0.65
408.96
± 1.01

258.08
± 0.58

370.42
± 0.90

199.85
± 0.42

91.06
± 0.11

105.29
± 0.15

80.31
± 0.08

417.27
± 1.03

54.91
± 0.01

222.64
± 0.48

403.77
± 1.00

498.76
± 1.26 <LOQ 211.96

± 0.45
267.64
± 0.61

591.24
± 1.53

Phloridzin 340.25
± 1.02

685.88
± 1.72

596.35
± 1.54

365.08
± 1.07

33.94
± 0.07 <LOQ 20.00

± 0.38
8.71
± 0.35

50.23
± 0.44

211.09
± 0.76

100.02
± 0.54

142.84
± 0.62

287.98
± 0.92

80.44
± 0.50

777.90
± 1.91

687.57
± 1.72

601.08
± 1.55

304.90
± 0.95

602.91
± 1.55 <LOQ 54.16

± 0.45
67.70
± 0.27

504.35
± 1.35

Phloretin
2′-xyloglucoside

36.34
± 0.41

124.84
± 0.59

55.60
± 0.45

80.80
± 0.31 <LOQ <LOQ 48.35

± 0.21
14.03
± 0.12

32.17
± 0.07

57.51
± 0.16

7.16
± 0.10

72.05
± 0.28

66.72
± 0.27

37.06
± 0.18

395.60
± 1.14

116.66
± 0.57

239.00
± 0.82

78.62
± 0.30

82.84
± 0.31 <LOQ 30.77

± 0.16
11.02
± 0.11

102.55
± 0.54

Narirutin 60.51
± 0.25

32.44
± 0.07

4.00
± 0.09

7.12
± 0.10 <LOQ <LOQ 23.88

± 0.04
18.94
± 0.13

17.19
± 0.01

0.72
± 0.08

19.48
± 0.02

16.25
± 0.01

22.43
± 0.03

16.34
± 0.01

37.25
± 0.18

20.69
± 0.02

31.65
± 0.06

32.92
± 0.07

32.12
± 0.07 <LOQ 19.01

± 0.02 <LOQ 19.21
± 0.13

Naringin 63.75
± 0.26

15.35
± 0.01 <LOQ 18.90

± 0.13
56.77
± 0.45

19.39
± 0.02

84.15
± 0.51 <LOQ <LOQ 47.25

± 0.43
37.41
± 0.18

147.01
± 0.63

28.06
± 0.39

41.11
± 0.42 <LOQ <LOQ <LOQ 124.72

± 0.59 <LOQ <LOQ 28.74
± 0.39

15.45
± 0.12 <LOQ

Hesperidin 206.93
± 0.75

30.43
± 0.06 <LOQ 53.01

± 0.23
314.24
± 0.97

28.60
± 0.16

508.80
± 1.36 <LOQ <LOQ 332.79

± 1.01
178.31
± 0.70

554.81
± 1.46

305.55
± 0.95

216.93
± 0.77 <LOQ 27.08

± 0.05 <LOQ 325.76
± 0.99 <LOQ 31.24

± 0.06
445.35
± 1.24

77.77
± 0.49

27.66
± 0.05

Naringenin <LOQ 19.28
± 0.02 <LOQ 17.83

± 0.01
16.77
± 0.01 <LOQ <LOQ 17.88

± 0.01 <LOQ <LOQ 21.46
± 0.03 <LOQ 22.65

± 0.03
22.41
± 0.38 <LOQ <LOQ <LOQ 16.70

± 0.01 <LOQ <LOQ 17.15
± 0.01

18.73
± 0.02 <LOQ

Hesperetin <LOQ 6.84
± 0.10 <LOQ <LOQ 16.78

± 0.01 <LOQ 16.58
± 0.01 <LOQ <LOQ <LOQ 15.57

± 0.01 <LOQ 16.66
± 0.01

492.79
± 1.33 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 22.33

± 0.03
16.34
± 0.01 <LOQ

Didymin 57.14
± 0.24

16.15
± 0.01 <LOQ 1.41

± 0.08
77.46
± 0.30

18.08
± 0.02

9.57
± 0.36 <LOQ <LOQ 28.22

± 0.39
38.72
± 0.19

26.27
± 0.39

79.45
± 0.30

80.07
± 0.30 <LOQ <LOQ <LOQ 36.92

± 0.41 <LOQ <LOQ 2.50
± 0.34

23.30
± 0.14 <LOQ

Quercetin
3-rhamnoside

44.12
± 0.43

234.36
± 0.81

254.54
± 0.85

122.60
± 0.58 <LOQ <LOQ 28.29

± 0.16
11.14
± 0.36

55.57
± 0.23

25.54
± 0.39

51.11
± 0.22

26.86
± 0.15

163.30
± 0.67

67.58
± 0.27

32.10
± 0.40

84.19
± 0.51

64.06
± 0.26

74.14
± 0.29

69.41
± 0.48 <LOQ 26.95

± 0.15
6.24
± 0.09

59.61
± 0.46

Quercetin dihydrate
isomer a

18.52
± 0.02

132.41
± 0.60 <LOQ 19.32

± 0.02
18.99
± 0.02

13.29
± 0.36

20.32
± 0.02 <LOQ 15.36

± 0.12
21.32
± 0.03

15.97
± 0.01

18.47
± 0.02

19.38
± 0.02

83.39
± 0.50 <LOQ <LOQ <LOQ 20.12

± 0.02
20.87
± 0.03

36.51
± 0.18

20.21
± 0.02 <LOQ 47.17

± 0.21
Quercetin 3-O-beta-
D-xylopyranoside

56.29
± 0.24

128.42
± 0.60

171.28
± 0.68

27.76
± 0.39 <LOQ <LOQ 28.82

± 0.05
47.82
± 0.21

29.40
± 0.06

72.35
± 0.21

20.07
± 0.13

1.02
± 0.08

44.44
± 0.43

38.18
± 0.18

13.94
± 0.36

32.19
± 0.17

81.85
± 0.31

30.54
± 0.16

86.18
± 0.32 <LOQ 4.79

± 0.09
33.83
± 0.07

55.70
± 0.23

Isoquercetin 30.88
± 0.16

43.91
± 0.42

392.84
± 1.13

230.14
± 0.80 <LOQ <LOQ 20.98

± 0.03
24.86
± 0.04

31.90
± 0.06

23.73
± 0.14

15.68
± 0.12

25.09
± 0.04

120.26
± 0.58

32.66
± 0.07

33.30
± 0.17

20.04
± 0.13

50.82
± 0.22

32.54
± 0.07

39.32
± 0.19 <LOQ 22.94

± 0.03
33.71
± 0.07

29.85
± 0.16

Hyperoside 9.83
± 0.10

43.32
± 0.20

45.17
± 0.43

18.91
± 0.37

19.52
± 0.13 <LOQ 22.11

± 0.03
29.26
± 0.16

22.93
± 0.03

10.81
± 0.11

52.70
± 0.23

26.81
± 0.05

115.12
± 0.57

29.55
± 0.06

26.45
± 0.15

6.29
± 0.09

38.57
± 0.19

29.79
± 0.06

11.91
± 0.11 <LOQ 25.01

± 0.04
64.15
± 0.26

41.04
± 0.19

Kaempferol-3-
glucoside <LOQ 18.38

± 0.02
18.52
± 0.13

25.60
± 0.04

18.44
± 0.02 <LOQ <LOQ 72.85

± 0.48 <LOQ 15.46
± 0.01

32.47
± 0.17 <LOQ 58.98

± 0.24
19.29
± 0.02

17.60
± 0.01 <LOQ 31.91

± 0.17 <LOQ 16.91
± 0.01 <LOQ <LOQ 58.21

± 0.45
13.67
± 0.11

Kaempferol-3-
glucuronide <LOQ <LOQ <LOQ <LOQ 39.13

± 0.41 <LOQ <LOQ 89.21
± 0.52 <LOQ <LOQ 14.27

± 0.12 <LOQ <LOQ <LOQ <LOQ <LOQ 38.55
± 0.19 <LOQ <LOQ <LOQ <LOQ 76.44

± 0.29 <LOQ

Kaempferol 3-(6-
acetylgalactoside)

isomer a
<LOQ <LOQ <LOQ <LOQ 54.85

± 0.23 <LOQ <LOQ 85.64
± 0.51 <LOQ <LOQ 25.44

± 0.04 <LOQ 17.47
± 0.01 <LOQ <LOQ <LOQ 32.62

± 0.07 <LOQ <LOQ <LOQ <LOQ 43.47
± 0.20

17.21
± 0.01

Kaempferol 3-(6-
acetylgalactoside)

isomer b
<LOQ <LOQ 15.62

± 0.01 <LOQ 28.65
± 0.05 <LOQ <LOQ 9.85

± 0.10 <LOQ <LOQ 19.49
± 0.02 <LOQ 16.13

± 0.01
18.00
± 0.02 <LOQ <LOQ 18.28

± 0.02 <LOQ <LOQ <LOQ <LOQ 24.13
± 0.04 <LOQ
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Table 3. Cont.

Phenolic
Compound S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23

Kaempferol
3-[2′ ′ ′ ,3′ ′ ′ ,5′ ′ ′-

triacetyl-alpha-L-
arabinofuranosyl-(1-

>6)-glucoside
isomer a

105.09
± 0.55

177.64
± 0.69

853.59
± 2.06

173.70
± 0.69 <LOQ <LOQ 44.77

± 0.20
25.33
± 0.15

12.54
± 0.11

69.02
± 0.48

31.35
± 0.16

25.93
± 0.04

172.97
± 0.69

1.81
± 0.08

885.25
± 2.12

162.14
± 0.66

608.30
± 1.56

124.20
± 0.59

68.78
± 0.47 <LOQ 11.83

± 0.11
23.04
± 0.03

312.60
± 0.97

Kaempferol
3-[2′ ′ ′ ,3′ ′ ′ ,5′ ′ ′-

triacetyl-alpha-L-
arabinofuranosyl-(1-
>6)-glucoside isomer

b

466.33
± 1.28

363.52
± 1.07

1278.43
± 2.92

372.00
± 1.09 <LOQ <LOQ 48.46

± 0.43
4.13
± 0.34

68.34
± 0.27

298.90
± 0.94

47.80
± 0.43

30.47
± 0.16

525.69
± 1.40

24.02
± 0.14

1390.73
± 3.15

467.01
± 1.28

1161.21
± 2.68

360.48
± 1.06

220.77
± 0.78 <LOQ 61.33

± 0.25
3.55
± 0.09

699.38
± 1.75

Sum of phenolic
acids

2475.79
± 5.32

2144.80
± 4.45

3122.40
± 6.34

3169.31
± 5.91

138.05
± 0.26

32.47
± 0.06

1754.16
± 3.90

1187.63
± 3.30

1011.62
± 2.93

2810.25
± 5.07

1176.67
± 3.31

1285.88
± 3.26

2543.38
± 5.33

837.81
± 2.63

5561.52
± 9.22

2418.55
± 5.31

4195.52
± 7.70

2615.70
± 5.19

2104.76
± 4.52

17.98
± 0.04

1316.76
± 3.38

637.14
± 2.31

3063.90
± 6.01

Sum of flavonoids 2046.21
± 6.96

2630.38
± 8.26

4190.25
± 11.41

2175.23
± 7.43

1217.99
± 3.86

79.36
± 0.56

1300.01
± 4.56

1358.97
± 5.74

675.77
± 2.07

1713.71
± 6.24

1180.55
± 4.35

1273.63
± 4.09

2288.59
± 7.80

1442.58
± 5.35

4200.24
± 10.97

1819.87
± 5.22

3447.67
± 9.07

2173.75
± 6.92

1896.80
± 5.85

67.75
± 0.24

1093.58
± 3.90

1202.77
± 4.17

2671.39
± 7.98

Sum of phenolic
compounds

4521.99
± 12.29

4775.17
± 12.71

7312.65
± 17.75

5344.54
± 13.34

1356.04
± 4.12

111.82
± 0.62

3054.18
± 8.45

2546.60
± 9.03

1687.39
± 5.00

4523.96
± 11.31

2357.22
± 7.66

2559.51
± 7.36

4831.97
± 13.13

2280.39
± 7.97

9761.76
± 20.19

4238.42
± 10.53

7643.19
± 16.76

4789.45
± 12.11

4001.56
± 10.37

85.73
± 0.29

2410.34
± 7.28

1839.90
± 6.48

5735.29
± 13.99

LOD: limit of detection; LOQ: limit of quantification.
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The major phenolic acid in most of the smoothies was the total chlorogenic acid, a
fact attributable to the presence of apple in all of the smoothies showing a significant
(p < 0.05) positive correlation of 0.8185. In smoothies 5, 6, and 20, the only phenolic acid
quantifiable was gallic acid. The strongest significant positive correlation with gallic acid
was found with passion fruit (r = 0.6387), mango, (r = 0.6993) and peach (r = 0.4571) and
smoothie 10 was the only one that contained those three ingredients accounting for 22%
of the content of the smoothie which had the highest amount of this hydroxybenzoic acid.
The smoothie that had the highest content of total protocatechuic acid was number 4 which
had grape and blueberry in 30% of the smoothie, ingredients that showed a significant
(p < 0.05) positive correlation with this compound. For the total coumaroylquinic acid,
smoothies 15 and 17 had the highest content and this was attributable to the apple and
raspberry content that had a significant (p < 0.1) positive correlation with the compound.
Regarding the flavonoids phloridzin and phloretin 2′-xyloglucoside showed a significative
(p < 0.05) strong positive correlation (r = 0.7729 and 0.6467, respectively) with the content
of apple in the smoothies. Moreover, some quercetin derivatives such as isoquercetin,
quercetin 3-rhamnoside, and quercetin 3-O-beta-D-xylopyranoside showed a significative
(p < 0.05) positive correlation with blueberry and pomegranate. Other compounds such
as naringin, narirutin, hesperidin, didymin, hesperetin, and quercetin dihydrate showed
a significative (p < 0.05) positive correlation with citrus fruits such as oranges, passion
fruit and mangos, among others. In contrast, naringenin, catechin, and hyperoside had a
significative (p < 0.05) positive correlation with red fruits such as blackberries, strawberries,
grapes, currants and raspberries.

The smoothie that had the highest total phenolic compounds content was number 15
followed by 17, 3, and 23. Although they had different compositions, all of them had apple
as the main ingredient in ≥ 53% of the smoothie. The fact that apple had a huge effect in
the phenolic composition of the smoothies was also confirmed statistically, as shown by the
significative (p < 0.05) positive strong correlation with the total phenolic acids (r = 0.8337),
total flavonoids (r = 0.7964), and in the total phenolic content (r = 0.8398). Other ingredients
that had a significative (p < 0.05) positive influence on the flavonoid composition were
blueberry (r = 0.5403) and pomegranate (r = 0.4803). In contrast, the smoothies that had
the lowest polyphenol content were 20 < 6 < 5 < 9 < 22 which had in their ingredients:
coconut, banana, pineapple, or a mix of them in a proportion of at least 27%. These three
ingredients showed a significative (p < 0.1), moderately strong negative correlation with
the flavonoid and phenolic acid content in the smoothies. As expected, those ingredients
that are the main contributors to the fat and saturated fat content of the smoothies had
a significative negative impact on the total phenol content, so it could be affirmed that
the fats in the smoothies have a significative (p < 0.05) negative effect regarding the total
polyphenol content (r = −0.4858).

Additionally, a significant (p < 0.05) negative correlation between the pH and the
phenolic acids (r = −0.6127), flavonoids (r = −0.7268), and total phenolic compounds
(r = −0.6816) was found. This explains that having an acidic pH of the smoothies is
essential to avoid the degradation of the phenolic compounds in addition to reducing the
microorganism spoilage.

Compared to other the authors, the relationship between a higher content of total
polyphenols in those smoothies with a base or a greater amount of red fruits in their
composition has been seen in other studies [38,55–57].

2.4. Vitamin C Content of Smoothies by HPLC-UV/VIS

Vitamin C, as we mentioned earlier, is a water-soluble vitamin that can be found in
two forms in fruits and vegetables: AA (reduced form) and DHA (oxidized form). The
oxidation of AA to DHA is a reversible reaction, so it is important to determine the amount
of each one, since both forms are active in our body [58]. The AA and DHAA content were
determined in the smoothies by HPLC-UV/VIS and the results obtained are presented in
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Table 4. Additionally, Figure 2 shows the typical chromatogram of the determination of
vitamin C (peak at 5.5 min) by HPLC-UV/VIS in the smoothies.

Table 4. Vitamin C content of the smoothies analyzed by HPLC-UV/VIS expressed as average ±
standard deviation.

Smoothie
Ascorbic Acid Dehidroascorbic Acid Total Vitamin C

µg AA/mL Smoothie µg AA/mL Smoothie µg AA/mL Smoothie

1 797.00 ± 2.93 <LOD 797.00 ± 2.93
2 619.77 ± 2.52 80.21 ± 0.20 699.98 ± 2.72
3 383.53 ± 1.97 164.98 ± 0.80 548.51 ± 2.77
4 293.28 ± 1.76 254.43 ± 1.44 547.71 ± 3.20
5 562.09 ± 2.38 <LOD 562.09 ± 2.38
6 556.29 ± 2.37 <LOD 556.29 ± 2.37
7 556.59 ± 2.37 96.03 ± 0.04 652.61 ± 2.41
8 328.37 ± 1.84 195.52 ± 1.08 523.89 ± 2.93
9 2397.80 ± 6.63 262.22 ± 4.09 2660.02 ± 10.73

10 923.67 ± 3.22 48.75 ± 1.14 972.42 ± 4.36
11 390.51 ± 1.99 133.37 ± 0.64 523.89 ± 2.63
12 651.14 ± 2.59 29.30 ± 0.51 680.45 ± 3.10
13 500.68 ± 2.24 77.00 ± 0.10 577.68 ± 2.34
14 947.16 ± 3.28 11.34 ± 1.37 958.50 ± 4.65
15 560.45 ± 2.38 102.06 ± 0.05 662.52 ± 2.44
16 <LOD 491.78 ± 3.26 491.78 ± 3.26
17 542.91 ± 2.34 84.01 ± 0.02 626.92 ± 2.36
18 1196.64 ± 3.85 <LOD 1196.64 ± 3.85
19 432.14 ± 2.08 59.63 ± 0.21 491.78 ± 2.29
20 518.97 ± 2.29 40.24 ± 0.11 559.21 ± 2.39
21 419.06 ± 2.05 144.70 ± 0.62 563.76 ± 2.67
22 489.38 ± 2.22 51.36 ± 0.02 540.75 ± 2.23
23 639.85 ± 2.56 27.22 ± 0.49 667.07 ± 3.05

AA: ascorbic acid.
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As can be seen, the total vitamin C results ranged between 491.78 and 2660.02 µg AA/ mL
smoothie. These results were similar to those obtained by Müller et al. (2010), whose
vitamin C values in commercial smoothies ranged 42–95 mg AA/100 mL smoothie [55].
Moreover, Hurtado et al., (2015) [59] reported values of ≈ 40 mg AA/100 mL of total
vitamin C in smoothies composed of apples, oranges, strawberries and bananas.

The smoothie that had the highest content of vitamin C was 9. It was the only one
that presented carrots in its ingredients, and a significative (p < 0.05) strong correlation
with the content of AA (r = 0.8439) and total vitamin C (r = 0.9222) was found. After it,
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smoothies 18 and 10 also presented the highest values of vitamin C. The three smoothies
had the presence of mango in their composition in common. In fact, a moderately strong
positive correlation (p < 0.05) was found between mango content and AA (r = 0.5658) and
total vitamin C (r = 0.5447) content. In general, tropical fruits showed a positive correlation
with ascorbic acid. Regarding the proportion of the AA and DHAA, it can be observed that
AA was the majoritarian with a relation higher than 2:1 (AA: DHAA), except in some cases.
There were some smoothies where all of the vitamin C content was in the form of AA,
such as smoothie 1, 5, 6, and 18. Smoothie 4 had a very similar amount of AA and DHAA
(relation 1.15) that could be due to the balance in its composition between apples and red
fruits. In contrast, in smoothie 16, it was observed that the entire amount of total vitamin C
was in the form of DHAA. This can be explained by the presence of a high amount of apple
in combination with other minor ingredients such as cucumber, celery, kale and ginger,
and no other fruits. Apple was the ingredient that showed a higher significant correlation
(p < 0.1) with the total dehydroascorbic acid content.

2.5. Antioxidant Activity of Smoothies by DPPH and FRAP Assays

The antioxidant activity of the smoothies has been determined by two methods: DPPH
and FRAP, and the results are shown in Table 5. Both methods showed a significant
(p < 0.05) positive strong correlation among them (r = 0.8908).

Table 5. Antioxidant activities of the smoothies expressed as average ± standard deviation.

Smoothie
DPPH FRAP

µg TE/mL Smoothie µg TE/mL Smoothie

1 865.25 ± 2.19 4322.37 ± 17.83
2 562.50 ± 9.19 3041.58 ± 11.83
3 1926.50 ± 4.38 6779.47 ± 13.47
4 1633.75 ± 11.53 5448.16 ± 71.94
5 1085.50 ± 5.37 3942.63 ± 26.13
6 495.00 ± 5.66 2648.95 ± 12.65
7 676.50 ± 30.26 3557.37 ± 0.67
8 1591.50 ± 0.99 7271.05 ± 20.77
9 1314.00 ± 20.08 8167.37 ± 78.60
10 1105.00 ± 5.23 4828.68 ± 35.84
11 1685.50 ± 17.82 6551.84 ± 37.25
12 580.00 ± 8.77 3033.68 ± 10.64
13 1847.25 ± 5.73 5945.79 ± 61.93
14 762.75 ± 0.64 2873.68 ± 9.30
15 1058.50 ± 8.06 4718.68 ± 11.05
16 220.50 ± 5.23 1126.84 ± 7.29
17 1477.50 ± 13.72 5527.89 ± 75.85
18 1012.75 ± 6.72 4656.84 ± 11.61
19 663.75 ± 6.01 2736.05 ± 5.99
20 638.75 ± 10.96 3247.37 ± 1.27
21 597.25 ± 6.29 3286.32 ± 22.70
22 1637.00 ± 16.12 5915.26 ± 6.48
23 603.40 ± 11.48 3261.84 ± 30.85

TE: Trolox equivalents.

With the DPPH method, the antioxidant capacity of the smoothies ranged from 220.5
to 1926.50 µg TE/ ml smoothie. Regarding the FRAP method, the capacity ranged between
1126.84 and 8167.37 µg TE/ ml smoothie. Overall the FRAP numerical results are higher
than those obtained for the DPPH as observed by other authors [31,60]. This is mainly
explained by the fact that the FRAP technique has more specific affinity for vitamin C than
DPPH. It has also been appreciated statistically as the total vitamin C content exhibited a
higher significant (p < 0.1) positive correlation with FRAP (r = 0.8004) than with DDPH
(r = 0.3205). Similarly, Gonzalez-Tejedor et al. (2017) [61] observed that the method that
obtained a better correlation with the concentration of antioxidant compounds such as
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ascorbic acid in smoothies was FRAP, followed by ABTS, and finally DPPH. Moreover, in
our case, the content of total phenolic compounds showed a strong significant correlation
(p < 0.05) with the values of 0.9359 and 0.8935 with the antioxidant activity measured
with DPPH and FRAP, respectively. Going further, specific compounds such as catechin,
hyperoside, and isoquercitrin showed significative (p < 0.05) positive correlations with
the antioxidant activity, with it being stronger for DPPH (r = 0.5497, 0.6052, and 0.5624,
respectively) than for FRAP (r = 0.5097, 0.4379, and 0.3777, respectively).

The smoothie that contained the least antioxidant activity was 16 by both methods.
This smoothie is the one that is most different from the others because after having apple
as the major ingredient, it contains cucumber, celery, kale and spinach, ingredients which
showed a significant (p > 0.05) negative correlation with the antioxidant activity. On the
opposite side, the ingredients that showed a clear significant and positive correlation with
the antioxidant activity for both methods were blueberries, blackberries, pomegranates,
currants, strawberries, raspberries and apples. This make sense as the smoothies that
had the higher antioxidant activity were 3, 13, 11, 4, and 22 which contained red fruits
in their ingredients. This trend was also observed in the analyses performed by Müller
et al. (2010) [55] and Nowicka et al. (2017) [39] whereby smoothies with a greater amount
of red fruits obtained a higher antioxidant capacity, while those composed of mango,
banana, apple, and pear, among others, presented a lower capacity. This incremented
antioxidant activity in these smoothies can be explained by the presence of tannins and
anthocyanins present in those red fruits. Moreover, smoothie number 9 exhibited the
highest antioxidant activity by the FRAP assay. This smoothie did not have red fruits in
its ingredients but rather its ingredients were: apple purée, pineapple juice, mango purée,
carrot juice, and coconut milk. The fact that this smoothie stands out from the rest in terms
of antioxidant capacity may be due to the fact that it had the highest content of vitamin
C. In both cases, tannins and vitamin C, as has been observed in previous studies, mainly
influence the antioxidant capacity of smoothies [62]. Moreover, other factors can have an
influence such as synergistic or antagonistic interactions between the phenolic compounds,
increasing or decreasing the antioxidant capacity [38]. Other factors that can influence the
antioxidant capacity of the product are processing or pasteurization treatments [63–65].
According to Škegro et al., (2021) [66] high-pressure processing exhibits greater stability
of bioactive compounds than pasteurization during the shelf life of smoothies. Among all
of the smoothies, only numbers 15, 16, and 17 were shown in the labelling to have been
submitted to high-pressure processing, and smoothies 1–3, 12–14, and 18 were shown to
have been pasteurized, but no correlations were found between this information and the
antioxidant results.

2.6. Clustering Analysis

A hierarchical clustering heatmap was performed to provide an intuitive visualization
of all of the obtained data for the smoothies. The data used were previously normalized, the
distance measure was the Pearson statistical measure, and the clustering method was the
average. Therefore, the clustering result for the features and samples is shown in Figure 3.
Each colored cell on the map corresponds to a concentration value normalized from 1
(intense red) to −1 (intense blue), with samples in columns and the features (phenolic
compounds, vitamin C, and antioxidant activities) in rows. Moreover, each sample has an
associated color from 1 to 23.
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As can be seen from the figure, the samples can be classified into four groups according
to the analysis performed here. The groups have been classified as group 1, the group
formed by smoothies 6, 9, 14, and 20; group 2, formed by smoothies 5, 8, 11, 13, and 22;
group 3, formed by smoothies 1, 7, 10, 12, and 18; and group 4, formed by the rest of the
smoothies. Briefly, group 1 seems to be composed of the smoothies that had pineapple,
coconut and banana in their ingredients, with those types of fruit being those that had the
lower polyphenol content and the higher saturated fat content. Group 2 was formed by
most of the smoothies that presented red fruits in their ingredients which had the higher
antioxidant activity. In group 3, there are the smoothies whose major ingredients were
tropical yellow fruits such as mangos, passion fruit and oranges, among others. Finally,
group 4 was composed of all of the smoothies that had apple in bigger concentrations, with
its characteristic phenolic compounds as such phloridzin in higher concentrations.

3. Materials and Methods
3.1. Chemicals and Samples

HPLC (high-performance liquid chromatography)-grade water and other reagents
and solvents were purchased from Merck KGaA (Darmstadt, Germany).

Twenty-three smoothies were purchased in the main supermarkets in the urban area of
Granada. All of the smoothies were obtained with similar dates of preferential consumption.
The samples were kept at 4 ◦C, manually mixed to homogenize the content, and directly
analyzed. Table 6 lists the product names of the 23 smoothies evaluated, including the
numerical code assigned to each of them.
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Table 6. List of the smoothies analyzed with their code name and their ingredients.

Code Ingredients of the Smoothie

1 Apple, orange, goji, passion fruit, mango, banana
2 Pineapple, lime, apple, mint, chlorophyll
3 Apple, blueberry, banana, pomegranate, grape, currant
4 Banana, grape, apple, cranberry, orange, pomegranate, acai, chokeberry, lemon
5 Strawberry, banana, grape, orange
6 Pineapple, banana, coconut, mango, lemon
7 Apple, banana, mango, orange, passion fruit
8 Strawberry, apple, banana
9 Apple, pineapple, mango, carrot, coconut
10 Apple, mango, banana, orange, passion fruit, peach, lemon
11 Apple, banana, grape, strawberry, blackberry, raspberry, orange, currant
12 Orange, apple, banana, mango, passion fruit
13 Apple, banana, orange, raspberry, blueberry, blackberry, blackcurrant, redcurrant
14 Pineapple, apple, orange, banana, lime, spirulina, mint
15 Apple, mango, banana, passion fruit
16 Apple, cucumber, celery, kale, spinach, lemon, ginger
17 Apple, strawberry, raspberry, blueberry, banana
18 Apple, mango, banana, orange, passion fruit, peach, lime
19 Apple, pineapple, mango, coconut, banana
20 Pineapple, banana, coconut, mango, lemon
21 Apple, mango, coconut, banana, orange, passion fruit
22 Strawberry, apple, banana, coconut, blackberry, blackcurrant, orange
23 Apple, pineapple, pear, kiwi, lime, spirulina

3.2. Determination pH and Soluble Solids

For the evaluation of pH, an automatic pH meter (Benchtop pH/ORP/ION Meters
LAQUA pH1100, Horiba Scientific, Japan) was used and soluble solids were determined
using a handheld refractometer (HR-130 hand refractometer 0–32% Brix ATC, Optika
Microscopes, BG, Italy) and represented as degrees Brix (◦Brix).

3.3. Determination of Polar Compounds by HPLC-ESI-TOF-MS

For the extraction of phenolic compounds, 8 mL of the homogenized smoothie was
taken and lyophilized using a Zirbus lyophilizer (Bad Grund, Germany) for 120 h at−50 ◦C
with a pressure of 0.4 mbar and reconstituted in 1 mL of methanol: water 1:1 (v/v). The
extracts were filtered with regenerated cellulose filters 0.2 µm (Millipore, Bedford, MA,
USA) and kept at −18 ◦C until the analyses.

The phenolic profile characterization and quantification of the smoothies was per-
formed according to a previously described method [67]. The analyses were carried out
in duplicate on an ACQUITY Ultra Performance LC system (Waters Corporation, Milford,
MA, USA) coupled to an electro-spray ionization (ESI) source operating in the negative
mode and a time-of-flight (TOF) mass detector (Waters Corporation, Milford, MA, USA).
The compounds of interest were separated on an ACQUITY UPLC BEH Shield RP18 col-
umn (1.7 µm, 2.1 mm × 100 mm; Waters Corporation, Milford, MA, USA) at 40 ◦C using
a gradient previously stated by Verni et al. [67] using water containing 1% acetic acid as
mobile phase A and acetonitrile as mobile phase B. The gradient was: from 0 to 2.3 min,
1% B; 4.4 min, 7% B; 8.1 min, 14% B; 12.2 min, 24% B; 16 min, 40% B; 18.3 min, 100% B,
21 min, 100% B; 22.4 min, 1% B; 25 min, 1% B. The flow rate was established to 0.6 mL/min.
The volume injection was 2 µL. Finally, external calibration curves were prepared for
the quantification of phenolic compounds: vanillic acid, chlorogenic acid, ferulic acid,
rutin, quercetin, catechin, phloretin, and phloridzin (Table S1 from Supplementary Materi-
als). The analyses were performed in triplicate and the results are expressed as µg/ mL
smoothie. The calibration curves were prepared from the limit of quantification (LOQ) to
250 µg/L. All calibration curves revealed a good linearity among different concentrations,
and the determination coefficients of the linear regression were higher than 0.9 in all cases.
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The method used for the analysis showed a limit of detection (LOD) within the range of
2.94–7.57 µg/mL and the LOQ was within the range of 9.79–25.256 µg/mL. To assess the
repeatability of the method, sample S6 has been injected five times in a day and for three
consecutive days. The intraday repeatability (expressed as % RSDs) on the retention times
ranged from 0.37 to 2.85%, whereas the interday repeatability was from 1.29 to 2.38%. The
intraday repeatability (expressed as % RSDs) on the total peak area was 0.67%, whereas the
interday repeatability was 1.99%.

3.4. Determination of Vitamin C Content by HPLC-UV/VIS

The ascorbic acid (AA) extraction was carried out according to the procedure reported
by Mesías-García et al., (2010) [68]. Briefly, 0.5 mL of homogenized smoothie was mixed
with 2.5 mL of 10% (w/v) metaphosphoric acid solution and then diluted with deminer-
alized water to a final volume of 25 mL in a glass volumetric flask. The mixture was
homogenized and centrifuged at 9000 rpm for 15 min (room temperature) (Centrifuge
Universal 32, Hettich, Tuttlingen, Germany). The supernatant was filtered through 0.20 µm
Millex filters (Millipore, Bedford, MA, USA), and the samples were then ready to be injected
into the HPLC system.

In order to determine the total vitamin C content, the reduction of the dehydroascorbic
acid (DHAA) to AA had to be performed. Then, 1 mL of the filtered sample from the AA
analysis was added of 0.2 mL of a reductant agent, dithiothreitol (DTT) (1 mg/mL diluted
in 45% K2HPO4). The mixtures were kept in darkness for 30 min at room temperature, and
then the reduction was stopped by the addition of 0.2 mL of H3PO4 2M and the samples
were injected into the HPLC system.

The DHAA content was calculated by the difference between the vitamin C content
(after DHAA reduction) and the initial AA content (prior to reduction). Both determinations
(AA and vitamin C) were performed in triplicate and the results were expressed as µg
AA/mL smoothie.

The HPLC system used in this study was equipped with a Varian Prostar model 325
ultraviolet detector. Samples were introduced into the column through an automatic injector
equipped with a sample loop (20 µL). Separations were performed on a Gemini 5 µm C18
(150 × 4.6 mm) Phenomenex column for all of the compounds. The measurement was
performed under isocratic conditions, using demineralized water acidified with sulfuric
acid to pH 2.2 as the mobile phase at a flow rate of 0.6 mL/min, with a wavelength of
245 nm [68].

The standard curve of AA was elaborated (2.5, 5, 10, 25, 35, 50, 75, 85 and 100 µg/mL)
and the equation obtained was y = 67.26x − 153.26 (R2 = 0.9979).

3.5. Antioxidant Assays: DPPH and FRAP

The antioxidant capacity of the smoothies was evaluated by two different methods.
The DPPH assay was carried out by a method proposed by several authors [69,70]. In
brief, 2.9 mL of DPPH was added to 100 µL of each sample and diluted 10 times, and after
rapid stirring, the bleaching power of the extract was observed in a time interval from 0
to 30 min at 517 nm. FRAP scavenging activity was performed as described by Pulido
et al., (2000) [71]. It is based on the reduction of Fe3+ to Fe2+ by the antioxidant substances.
A total of 30 µL of each sample diluted 10 times was added to 90 µL of distilled water
and 900 µL of the FRAP reagent. It was kept for 30 min at 37 ◦C and measured in the
spectrophotometer at 595 nm. Standard curves of Trolox equivalents (TE) (1, 5, 10, 20, 50,
80, 100, 150, 200 µg/mL) were elaborated for each assay and the equations obtained were
y = 0.002x + 0.0384 (R2 = 0.9965) and y = 0.0019x + 0.1338 (R2 = 0.9967) for the DPPH and
FRAP assays, respectively. The analyses were performed in triplicate and the results are
expressed as µg TE/ mL smoothie.
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3.6. Data Processing

The data for the identification of polar compounds and the identification of phenolic
compounds HPLC-ESI-TOF-MS were elaborated using MassLynx 4.1 software (Waters
Corporation, Milford, MA, USA). Pearson’s correlation analysis between the smoothies’
ingredients, nutritional features, and antioxidant and phenol content (Figure S2 from Sup-
plementary Materials) and the hierarchical clustering analysis (Figure 3) were performed
using MetaboAnalyst 5.0.

4. Conclusions

In this work, the nutritional value, content of phenolic compounds, vitamin C content,
and the antioxidant activity of different smoothies was studied. Analysis by HPLC-ESI-TOF-
MS permitted the identification of 40 phenolic compounds. Among all of the ingredients of
the smoothies, coconut and banana were those that showed the highest negative correlation
with the total phenolic compounds and contributed the most to the energy, fat, saturated
fat, and energy content of the smoothies. Ingredients such as oranges, mangos, and
passion fruit had a positive correlation with gallic acid, some flavonoids, AA, and total
vitamin C content despite being the ingredients that had the higher sugar and carbohydrate
content. Apples and red fruits contributed the most to the fiber content with high positive
correlations with most of the phenolic acids, flavonoids, and total phenolic compounds.
Moreover, the smoothies that had the highest antioxidant activities were those that had
apples, red fruits, or citrus fruits in their ingredients. All of the analyses performed suggest
the relationship between the type of fruit and the content of phenolic compounds, vitamin
C, and the antioxidant activity as shown in the clustering. Therefore, these data will be
useful for selecting raw materials and/or for evaluating the impact of technology on the
smoothies’ quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238229/s1, Figure S1: Total ion chromatogram of
analysed smoothies S3, S8, S9, S14, S15 and S18 by HPLC-ESI-MS-TOF. Figure S2: Pearson’s correlation
heatmap between smoothie’s ingredients, nutritional features, and antioxidant and phenol content.
Table S1: Standard analytes used for elaborating the calibration curves with the equations, R2, LOD,
and LOQ of each compound.
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