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Abstract: Tomatoes are among the most consumed vegetables worldwide and represent a source of
health-beneficial substances. Our study represents the first investigating the peel-associated epiphytic
bacteria of red and purple (anthocyanin-rich) tomatoes subjected to organic and conventional farming
systems. Proteobacteria was the dominant phylum (relative abundances 79–91%) in all experimental
conditions. Enterobacteriaceae represented a large fraction (39.3–47.5%) of the communities, with
Buttiauxella and Atlantibacter as the most represented genera. The core microbiota was composed of
59 operational taxonomic units (OTUs), including the majority of the most abundant ones. The occur-
rence of the most abundant OTUs differed among the experimental conditions. OTU 1 (Buttiauxella),
OTU 2 (Enterobacteriales), and OTU 6 (Bacillales) were higher in red and purple tomatoes grown
under organic farming. OTU 5 (Acinetobacter) had the highest abundance in red tomatoes subjected
to organic farming. OTU 3 (Atlantibacter) was among the major OTUs in red tomatoes under both
farming conditions. OTU 7 (Clavibacter) and OTU 8 (Enterobacteriaceae) had abundances ≥1% only
in red tomatoes grown under conventional farming. PCA and clustering analysis highlighted a
high similarity between the bacterial communities of red and purple tomatoes grown under organic
farming. Furthermore, the bacterial communities of purple tomatoes grown under organic farming
showed the lowest diversity and evenness. This work paves the way to understand the role of
nutritional superior tomato genotypes, combined with organic farming, to modulate the presence of
beneficial/harmful bacteria and supply healthier foods within a sustainable agriculture.

Keywords: Solanum lycopersicum L.; tomato; purple tomato; anthocyanin-rich tomato; sun black tomato;
organic farming; conventional farming; bacterial communities; epiphytic bacteria; amplicon sequencing

1. Introduction

The tomato (Solanum lycopersicum L.) represents an economically important vegetable
crop, with a world production of over 186 million tons [1]. It is one of the most consumed
vegetables in the world and a common food in the Mediterranean diet, and it is produced
and consumed both as fresh and processed products (e.g., paste, peeled tomatoes, diced
products, and sauces) [2].
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Tomatoes are a dietary source of health-beneficial substances, such as fibers, vitamins,
minerals, and antioxidants (e.g., phenolic compounds, β-carotene, and in particular ly-
copene) [3,4]. Due to its nutritional importance and to an increasing consumers’ interest in
food production and quality, high attention has been paid both to sustainable agricultural
practices and to breeding strategies aiming at improving the shelf-life, the quality traits,
and the nutraceutical value of tomato (e.g., high content in phytochemicals and bio-active
compounds) [5,6].

In recent decades, there has been a worldwide awareness increase about the need of
sustainable agricultural practices, especially focused to increase yield while also addressing
environmental conservation and human health. Sustainable cropping systems are intended
to preserve soil health and improve its chemical-physical characteristics, reduce synthetic
fertilizer and pesticide inputs, and increase product quality [7].

The techniques used to increase tomato yield, paying attention to environmental
sustainability and human health, include the hairy vetch mulch system, the use of plant-
beneficial microorganisms to improve the fruit quality and reduce fertilization, the devel-
opment of new cultivars with enhanced nutritional qualities and tolerance/resistance to
abiotic and biotic stresses [8–10].

The development of nutritionally superior genotypes, in particular the selection of
cultivars having high contents of antioxidants (such as phenolic compounds), is becoming
a significant research trend. Among them, anthocyanins are secondary metabolites of the
flavonoid family, playing a significant role in plant tolerance to biotic/abiotic stress and in
the prevention and treatment of various important human diseases [11,12].

Several studies based on both conventional breeding and genetic engineering strategies
have allowed obtaining anthocyanin-rich tomato lines [11]. These dark-skinned colored toma-
toes (so-called “purple” or “black” tomatoes) result from mutations in carotenoid/flavonoid
biosynthetic pathways [13]. Compared to the wild type, tomatoes enriched in anthocyanins
have shown higher antioxidant activity and increased resistance to some pathogens, result-
ing in a significant extension of the shelf life [14].

A 20-year breeding activity carried out at the University of Tuscia (Viterbo, Italy)
allowed to select and fix the anthocyanin-rich tomato line called “Sun Black” (SB). It was
obtained by combining the mutations of Anthocyanin fruit (Aft) and atroviolaceum (atv)
alleles, affecting the anthocyanin biosynthesis, in the same line [15]. The SB tomato features
an accumulation of anthocyanins in the peel and other bioactive compounds (e.g., gentistic
acid, rutin, and vitamin C) in the whole fruit [13].

The studies carried out on purple tomatoes have been mainly focused on the charac-
terization of their nutritional/bioactive compounds and health beneficial effects and, to a
lesser extent, on their longer shelf life and resistance to some pathogens [13–16].

Phyllospheric microbiota refers to the microorganisms found on the above-ground
part of the plants (e.g., stems, leaves, flowers, and fruits), which may be epiphytic and
endophytic, and can be both beneficial or harmful to the host plant [17,18]. Actually,
investigating the epiphytic microbial communities of fruits and vegetables is important
to improve food quality and safety, being the consumers directly exposed to these mi-
croorganisms. This is particularly true for widely consumed fresh products. In fact, fresh
fruits and vegetables have been recognized as reservoirs of foodborne pathogens and
spoilage microorganisms [19,20]. On the other hand, the microbiota naturally present on
these foodstuffs harbors also beneficial representatives, which are involved in plant fitness
and produce a number of industrially important compounds (e.g., antibiotics, enzymes,
organic acids, and vitamins) [21–23]. Among them, the bioactive compound producers
(having antagonistic effects on plant pathogens) can be employed as biological control
agents [18,24,25]. Although the plant episphere, besides being a reservoir of possible
harmful microorganisms, has been proven to be an important source of beneficial microor-
ganisms (and their bioactive compounds), epiphytic microbial communities are the least
investigated among the plant microbiota.
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To the best of our knowledge, in general, no study has compared the microbiota of
red and purple tomatoes, particularly in relation to peel-associated epiphytic bacteria.
Furthermore, the bacterial diversity harbored by two genotypes subjected to different
farming practices has never been studied. Since microorganisms are known to be involved
in ecosystem functioning, plant physiology and response to abiotic/biotic stresses, as
well as in phytopathology and infectious disease outbreaks, a focus on the two tomato
phyllospheric microbiota would be of scientific and economic interest.

This work aimed to characterize the peel-associated epiphytic bacteria of SB and
the near-isogenic wild type (WT) tomatoes grown under two farming systems (organic
and conventional), shedding light on possible assemblage differences in their bacterial
communities. This would provide useful information on the importance of combining
nutritional superior tomato genotypes with the right farming management, to provide
healthier foods in a sustainable agriculture framework.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The research was carried out on the two tomato lines (SB and WT) grown in open
field at the Experimental Farm “Nello Lupori” (42◦25′35.71818′′ N; 12◦4′49.34524′′ E) of the
University of Tuscia (Viterbo, Italy) under organic and conventional farming (referred here
as OF and CF, respectively). The two agrotechnical protocols, differing in the precession
crop and soil management, were applied as previously reported [26,27]. The experimental
conditions (genotype × farming condition) considered in this study were: T1, WT/OF; T2,
WT/CF; T3, SB/OF; T4, SB/CF.

The two lines were previously selected by Mazzucato et al. [15] and, except for the
different fruit colors (SB and WT are purple- and red-colored, respectively), they are
characterized by the same phenotypic traits.

For both lines, seeds were germinated in Petri dishes, then plantlets were transplanted
in twin rows (planting distances: 160 cm between twins, 40 cm between rows, and 50 cm
between plants within the row) at the 4–5th true leaf stage. Ten plants per line were
arranged in twin rows using a randomized block design with three replicates. Plants were
grown on tutors with the standard agronomic practices for fresh market tomatoes. Lateral
shoots were weekly removed, and plants were left to open pollination.

The soil in the experimental area was a Typic Xerofluvent (volcanic) with the following
characteristics in the 0–30 cm layer: 668 g kg−1 of dry soil sand, 194 g kg−1 of dry soil silt,
138 g kg−1 of dry soil clay, bulk density 1.40 g cm−3, pH 6.43 (water, 1:2.5), organic matter
17.5 g kg−1 of dry soil, total nitrogen 1.01 g kg−1 of dry soil, and available phosphate
13.92 g kg−1 of dry soil.

2.2. Sample Collection and Processing

For each experimental condition (genotype × farming), a total of 16 healthy and
representative fruits (composite sample) were aseptically sampled (they were collected
wearing gloves and put into sterile plastic bags) from the three crop replicates. To obtain
the composite sample, four fruits were collected from four plants located in different
crop replicates. The fruits were taken from various positions on the plant, avoiding those
showing the skin covered by soil debris [28]. The samples were immediately transported
to the nearby laboratory to be processed.

The harvested fruits were softly pre-washed to remove debris and microorganisms that
may have been incidentally deposited on the fruit surface, as reported by Janisiewicz et al. [29]
with some adjustments: each sample was transferred to a sterile plastic bag with 1000 mL
of sterile deionized water and gently hand massaged for 1 min. The pre-washing water
was discarded and the recovery of the skin-associated microorganisms was performed as
reported by Fernández-Suárez et al. [30] with slight modifications. The washing solution
(1 L of sterile water containing 0.1% Tween 20) was added to the bag that was closed and
placed into another bag. The double-bagged fruits were gently shaken for 45 min. The
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above washings were carried out 25 ◦C. The washing solutions were vacuum-filtered on
sterile 0.22 µm nitrocellulose membranes (Millipore, Burlington, MA, USA), which were
kept frozen until DNA extraction.

2.3. DNA Extraction, 16S rRNA Gene Amplicon Libraries and Sequencing

Total DNA was extracted from filters using the ZR Fungal/Bacterial DNA MiniPrep
kit (Zymo Research Corp., Irvine, CA, USA) following the manufacturer’s instructions.
A two-step PCR was used to prepare the multiplexed amplicon libraries. To profile the
peel-associated bacterial diversity, the V5–V6 hypervariable regions of the 16S rRNA gene
were amplified using the primer set 783F/1046R [31,32]. The strategy and the protocols
used to prepare the libraries have already been described in detail by Gorrasi et al. [33]. The
amplicon libraries were sequenced at Nuova Genetica Italiana by Illumina MiSeq (Illumina,
San Diego, CA, USA) using a 2 × 250 bp paired-end protocol.

The sequence data have been submitted to the Sequence Read Archive (SRA) database
under the accession number PRJNA798869.

2.4. Sequence Processing and Data Analysis

Sequence processing and data analyses were performed as previously reported [34,35].
Raw reads were demultiplexed according to the indices and internal barcodes and

processed using the mothur software version 1.44.3. Forward and reverse reads were
merged into contigs with a quality score of mismatched base = 0. The reads were subjected
to quality trimming to remove sequences with more than eight homopolymers and am-
biguous bases. The suspected chimeras were identified using the VSEARCH algorithm
and then removed [35]. Unique sequences were determined and then mapped against the
original dataset to calculate the abundance data. The high-quality reads were clustered into
operational taxonomic units (OTUs) using a 97% similarity cut-off. Singletons (sequences
appearing only once in the entire dataset) were removed.

Taxonomic profiling was assessed using the RDP classifier [36], applying a 50% confi-
dence cut-off for the assignation [37].

2.5. Statistical Methods

Alpha diversity was described by the Shannon diversity and Pielou evenness in-
dices. The Shannon index ranges from 0 to +∞ and increases as the community richness
and evenness increase [38]. Pielou evenness index ranges from 0 to 1, and decreasing
values indicate a decrease in evenness and a prevalence of few dominant species [39].
Alpha diversity indices were calculated using Species Diversity & Richness IV (SDR-IV)
software (PISCES Conservation Ltd., Lymington, UK), and index comparison among the
experimental conditions was assessed with the Solow test (based on 10,000-iterated ran-
domization test) [40,41]. Indices were calculated on samples rarefied to 5299 randomly
chosen sequences, corresponding to the minimum number of sequences at a sample [33].

Beta diversity was analyzed by principal component analysis (PCA) and clustering
analysis, based on square root transformed data (to avoid rare OTU overweighting). The
PCA analysis was performed using the CANOCO v. 5.1 software package (Microcomputer
Power, Ithaca, NY, USA). The clustering analysis (complete linkage) was performed based
on Bray–Curtis dissimilarity data, applying the similarity profile (SIMPROF) test [42] to
individuate distinct bacterial assemblages among the experimental conditions (statistically
different at p < 0.05; 1000 permutations and 999 simulations). The clustering analysis was
run using the software package PRIMER-E v.6.1.18 (Plymouth, UK).

The shared OTUs among the experimental conditions were visualized by a 4-way
Venn diagram, generated using the InteractiVenn tool (http://www.interactivenn.net/
index2.html, accessed on 1 October 2022) [43].

http://www.interactivenn.net/index2.html
http://www.interactivenn.net/index2.html
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3. Results
3.1. Composition of the Epiphytic Peel-Associated Bacteria

Amplicon sequencing generated a total of 69,948 high-quality bacterial sequences,
resulting in 10,287 OTUs defined by the clustering process.

Applying a 50% cut-off [37], OTUs were assigned to 10 phyla, 21 classes, 46 orders,
84 families, and 161 genera. Unassigned OTUs ranged in-between 0.6–5.1%,
0.8–6.4%, 4.3–14.7%, 14.8–38.7%, and 44.0–58.8% at phylum, class, order, family, and genus
level, respectively.

Overall, the major taxa (having relative abundance (Ra) ≥ 1% in at least one sam-
ple) in the peel-associated community were Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes (Figure 1). Among them, Proteobacteria was the dominant phylum (79–91%)
in all experimental conditions, with the highest abundance in T4 (SB/CF). Firmicutes (Ras
2.1–9.7%) was found with the highest abundance in T3 (SB/OF). Both Actinobacteria and Bac-
teroidetes showed the highest abundances (11.2% and 6% for Actinobacteria and Bacteroidetes,
respectively) in T2 (WT/CF), but they represented minor taxa in some experimental con-
ditions. Actinobacteria showed Ras < 1% in SB tomatoes grown under organic farming
(T3), whereas Bacteroidetes showed Ras < 1% in SB tomatoes grown both under organic and
conventional farming (T3 and T4).
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Figure 1. Bacterial composition at the phylum level. Distribution of the major phyla (Ra ≥ 1% in
at least one sample); phyla with Ra < 1% were gathered in “Others”. T1: WT/OF, T2: WT/CF,
T3: SB/OF, T4: SB/CF.

Overall, the studied peel-associated bacterial flora mostly belonged to the family
Enterobacteriaceae (39.3–47.5%), being Buttiauxella and Atlantibacter the most represented
genera (with 11,005 and 7156 sequences over the whole dataset, respectively).

However, Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae, Microbacteriaceae, Erwini-
aceae, Yersiniaceae, Rhodobacteraceae, Alcaligenaceae, Cytophagaceae, Weeksellaceae, Streptococ-
caceae, and Oceanospirillaceae were recognized as major (Ra ≥ 1% in at least one sample)
families (Figure 2).
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Among the 161 genera found across all samples, Buttiauxella, Atlantibacter, Acine-
tobacter, Siccibacter, Clavibacter, Pseudomonas, Phytobacter, Pantoea, Chania, Cedecea,
Azomonas, and Lactococcus were recorded as major taxa (Figure 3).
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T3: SB/OF, T4: SB/CF.
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Buttiauxella was most abundant in T1, T3, and T4 (Ras in-between 13.2–27%), with the
highest abundances on SB tomato peel; it was least abundant (2.4%) in T2 (WT/CF).

Atlantibacter was mainly found in WT tomatoes, having the highest abundance in
those grown under CF (23.3%); in SB grown under CF, it was recorded with the lowest
abundance (0.7%), representing a rare taxon.

Acinetobacter (Ras 1.8–7.1%) showed the lowest abundances in T1 and T4 (WT/OF and
SB/CF, respectively).

Siccibacter, Clavibacter, Pseudomonas, and Phytobacter, overall recorded with abundances
lower than 2.5% and representing sometimes rare taxa, showed a peak in one experimental
condition: Siccibacter in T3 (9.7%), Clavibacter in T2 (10.7%), Pseudomonas and Phytobacter in
T4 (9.3% and 6.4%, respectively).

Pantoea showed higher abundances in tomatoes grown under OF (2.5% and 4.2%, in
T1 and T3, respectively).

Chania, Cedecea, Azomonas, and Lactococcus were recognized as major genera only in
one experimental condition: Chania in T4 (3.9%), Cedecea in T2 (2.3%), Azomonas in T4 (1.3%),
and Lactococcus in T3 (1.1%).

Among the 10,287 defined OTUs, the most abundant ones (having a number of
mapping sequences > 1000 on the whole dataset) were OTU 1 (Buttiauxella), OTU 2 (order
Enterobacteriales), OTU 3 (Atlantibacter), OTU 5 (Acinetobacter), OTU 6 (order Bacillales), OTU
7 (Clavibacter), and OTU 8 (family Enterobacteriaceae). Overall, OTU 1, OTU 2, and OTU
3 were the most represented (Figure 4).
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Figure 4. Bacterial composition at the OTU level. Distribution of the major OTUs (Ra ≥ 1% in at least
one sample); OTUs with Ra < 1% were gathered in “Others”. T1: WT/OF, T2: WT/CF, T3: SB/OF, T4:
SB/CF.

OTU 1 was the sole showing Ra ≥ 1% in all experimental conditions, and it was
recorded with the highest abundances (7.9% and 19.6% in T1 and T3, respectively) in both
tomato genotypes grown under OF.

OTU 2 showed Ra < 1% in both tomato genotypes grown under CF, and it showed a
peak (14.4%) in T3 (SB/OF).
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Different from OTU 1 and OTU 2, showing different abundances according to the
farming condition, OTU 3 had higher abundances in WT than SB tomatoes. It was detected
with Ra < 1% in SB tomatoes, and it showed a peak (12.9%) in T2 (WT/CF).

Also OTU 6 revealed different abundances according to the farming condition, al-
though with less marked differences than those observed for OTU 1 and OTU 2. It was
detected with higher Ras in tomatoes grown under OF (1.1% and 5.6% in T1 and T3,
respectively), whereas it was a rare OTU in those grown under CF.

OTU 5 did not reveal abundance differences according to the tomato genotype or the
farming condition; it was a rare OTU in T1 and T4 and had Ra ≥ 1% in T2 (2.2%) and
T3 (4.7%).

Finally, OTU 7 and OTU 8 had Ra ≥ 1% only in WT tomatoes grown under CF (OTU
7:5.5%; OTU 8:4.1%).

3.2. Unique and Shared Bacterial OTUs

The comparison of the peel-associated bacterial communities revealed a very low
number of ubiquitous OTUs (common to all experimental conditions) and a high number
of specific members (OTUs exclusively found in one experimental condition).

The four experimental conditions shared 59 out of 10,287 OTUs, representing the core
microbiota (Figure 5). Except for OTU 7, which was shared only by three experimental
conditions (T1, T2, and T3), the core microbiota included all the other most abundant OTUs.
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The core microbiota represented 22.6%, 24.5%, 46.9%, and 5.1% of the peel-associated
bacterial communities in T1, T2, T3, and T4, respectively. It is worth noting that it accounted
for a similar proportion in WT tomatoes grown under OF and CF, whereas it represented a
very different moiety in communities found in SB, depending on the farming condition.
Only one OTU belonged to Firmicutes (order Bacillales), whereas all the remaining OTUs
belonged to Proteobacteria (Figure 6). Furthermore, only representatives of the following
eight genera were found in the core microbiota: Buttiauxella, Atlantibacter, Acinetobacter,
Siccibacter, Pseudomonas, Phytobacter, Pantoea, and Cedecea.
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Differently from the core microbiota, including a low number of OTUs, a high number
of exclusive OTUs were found in each experimental condition. The number of exclusive
OTUs was 636, 3503, 2394, and 1244 for T1, T2, T3, and T4, respectively (Figure 5 Diagramma
Venn OTU).

Among the 2082 OTUs found in T1, 31% were exclusive to this experimental condi-
tion. These exclusive OTUs (having Ras in-between 0.04–0.26%) accounted for 30.6% of
the peel epiphytic bacterial community in WT tomatoes grown under OF. These OTUs
belonged to the phyla Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Cyanobacteria,
Verrucomicrobia, and Rhodothermaeota (Table S1). Among these OTUs, 126 were classified at
genus level; they belonged to 42 genera, with Atlantibacter and Metakosakonia as the most
represented genera (including 26 and 13 OTUs, respectively) (Table S1).

In T2, 66% of the recorded OTUs were exclusive. These OTUs (with Ras in-between
0.008–0.31%) collectively accounted for 45.7% of the bacteria found on WT tomatoes grown
under CF. Moreover, they were representatives of the phyla Proteobacteria, Bacteroidetes,
Actinobacteria, Firmicutes, Cyanobacteria, Tenericutes, Verrucomicrobia, Campilobacterota, and
Deinococcus-Thermus (Table S2). The OTUs classified at the genus level were representatives
of 112 genera; in particular, Atlantibacter and Clavibacter (411 and 291 OTUs, respectively)
were the most retrieved taxa (Table S2).

Fifty-seven percent of the OTUs found in T3 were exclusive. These OTUs, showing
Ras in the range 0.006–0.14%, accounted for 27.1% of the bacterial communities of SB
tomatoes grown under OF. At the phylum level, these OTUs belonged to Proteobacteria,
Firmicutes, Actinobacteria, Rhodothermaeota, Bacteroidetes, and Cyanobacteria (Table S3). In
addition, the OTUs exclusively found in T3 were representatives of 22 genera; among them,
Siccibacter, Buttiauxella, and Pantoea (344, 199, and 102 OTUs, respectively) were the most
found (Table S3).

In T4, 74% of the recovered OTUs were exclusive. These OTUs (with Ras in-between
0.03–1.66%; among them, only three OTUs had Ra ≥ 1%) accounted for 71.6% of the peel
epiphytic bacteria of SB tomatoes grown under CF. At the phylum level, these OTUs were
ascribed to Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Cyanobacteria, Tenericutes,
and Verrucomicrobia (Table S4). In addition, the OTUs classified at the genus level were
ascribed to 63 genera; Pseudomonas, Buttiauxella, Phytobacter, Chania, and Atlantibacter (80,
71, 65, 55, and 51 OTUs, respectively) were the most abundant (Table S4).

3.3. Alpha- and Beta-Diversity Analyses

Alpha diversity analysis was assessed by the Shannon diversity and Pielou even-
ness indices. The Shannon index was 6.734, 6.821, 5.515, and 6.673 for T1, T2, T3, and
T4, respectively. It significantly differed between SB tomatoes grown under OF and CF,
whereas no differences were observed between WT tomatoes in relation to the farming
condition (based on Solow test). Considering the farming conditions, Shannon index values
significantly differed between WT and SB grown under OF, but not between WT and SB
grown under CF (Solow test). The Pielou index was 0.881, 0.795, 0.661, and 0.899 for T1, T2,
T3, and T4, respectively. According to the Solow test, significant differences in community
evenness were revealed among all experimental conditions except for T1 (WT/OF) and T4
(SB/CF). Overall, alpha diversity indicated that the T3 (SB/OF) peel-associated bacterial
communities showed the lowest diversity and evenness (lowest Shannon and Pielou index
values), and therefore they were characterized by the presence of some dominant OTUs.

PCA and clustering analyses were performed to evaluate the effect of the tested
conditions (genotype × farming condition) on the epiphytic bacterial communities found
on the tomato peel.

Four plot visualizations were provided for the same PCA analysis to better show the
OTU occurrence variation according to the four experimental conditions (Figure 7).
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Figure 7. Principal component analysis (PCA) based on the bacterial OTU found across the investi-
gated experimental conditions. Four plot visualizations of the same PCA analysis are provided to
better show the OTU occurrence in the four experimental conditions; OTU abundance variation in T1
(a), T2 (b), T3 (c), and T4 (d). Circle size is proportional to the OTU relative abundance in the samples;
OTU absence in an experimental condition is indicated by “+”. T1: WT/OF, T2: WT/CF, T3: SB/OF,
T4: SB/CF.
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Overall, the PCA (explaining 75.87% of the total variance) showed that T1 and T3
grouped together, indicating that the bacterial communities of both tomato genotypes
grown under OF were similar. Conversely, T2 and T4 were separated from each other and
from the other conditions.

As an overview, it is possible to observe a cloud of OTUs at the axis intersection,
indicating a cluster of OTUs showing no notable differences (in distribution and abundance)
among the various experimental conditions. By contrast, some OTUs, well separated from
the cluster, appear to be much more oriented toward a certain condition. In particular,
OTU 1, OTU 2, OTU 5, and OTU 6 were close to T1 and T3 (Figure 7a,c). As reported
above, OTU 1, OTU 2, and OTU 6 showed different abundances according to the farming
condition, having higher abundances in both tomato genotypes grown under OF; OTU 5
was detected with the highest abundance in T3. OTU 3, OTU 7, and OTU 8 were closer to
T2, showing their highest abundances in WT tomatoes grown under CF (Figure 7b). OTU
13, OTU 14, OTU 19, OTU 20, OTU 24, OTU 25, and OTU 26 were ordered along the T4
vector (Figure 7d); these OTUs were detected with Ras in-between 1–3% only in SB grown
under CF, whereas they were rare OTUs in all other conditions.

The clustering analysis (Figure 8) confirmed that the bacterial communities found in
T1 and T3 did not show significant differences (p < 0.05, SIMPROF test). In addition, the
hierarchical clustering dendrogram showed that T4 communities were the most dissimilar.
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lines indicate samples that are significantly different (p < 0.05), whereas dashed red lines indicate
groups of samples that are not significantly different (p > 0.05), according to SIMPROF test.

4. Discussion

The selection of tomato cultivars with a high content of antioxidants is one of the
research trends in the production of nutritionally superior genotypes. In this context, no
investigation has been carried out to compare the microbiota of red and purple tomatoes,
and to get a more extended overview of the possible bacterial assemblage differences of the
two genotypes subjected to different farming practices.

The current study sought to provide the first information on this topic, comparing the
peel-associated epiphytic bacteria of the WT (red) and SB (purple) tomatoes grown under
organic and conventional farming systems.

The taxonomic profiling showed that Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes were the major taxa across all experimental conditions, with Proteobacteria as
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the dominant phylum. These taxa are ubiquitous in the soil and are widely found on the
surface of fruits and vegetables, including tomatoes [44–46].

Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae, Microbacteriaceae, Erwiniaceae,
Yersiniaceae, Rhodobacteraceae, Alcaligenaceae, Cytophagaceae, Weeksellaceae, Streptococcaceae,
and Oceanospirillaceae were detected as major families. Most of these families or some of
their genera are commonly associated with edible plants and are recorded in both epiphytic
and endophytic bacterial communities [44,47,48].

It is worth noting that in this work most of the peel-associated bacteria found across
all the experimental conditions belonged to the family Enterobacteriaceae. These results are
consistent with those reported in the literature. Enterobacteriaceae is among the most repre-
sented families in both epiphytic and endophytic plant microbiota [44,49]. Many members
are natural inhabitants of several food plants, and a high abundance of this taxon on the sur-
face of various fruits and vegetables (including tomatoes) has been reported [28,44,46,50].
In particular, a high Enterobacteriaceae prevalence is a feature of the bacterial communities
of fruits and vegetables grown close to the soil (e.g., strawberries, lettuce, peppers, and
tomatoes) [28,44].

Among the 161 annotated genera, Buttiauxella and Atlantibacter were the most abundant
(with 11,005 and 7156 sequences over the whole dataset, respectively), and they showed
an opposite pattern of prevalence according to the tomato genotype. Buttiauxella had the
highest abundances in SB tomatoes, in particular in those grown under CF (Ra = 27%);
Atlantibacter was mainly found in WT tomatoes and showed the highest abundance (23.3%)
in those grown under CF.

Buttiauxella species have been isolated especially from the intestines of snails and slugs,
but have been also retrieved in water and soil [51,52]. Various Buttiauxella members have
been found in the plant rhizosphere, where they can play important roles as phosphate
solubilizers and plant growth promoters [53–55]. Some members have been found in plant
phyllosphere [56], including that of tomato [57,58].

Atlantibacter has been proposed as a novel genus to include the two species A. her-
mannii and A. subterranea (formerly Escherichia hermannii and Salmonella subterranea) [59].
A. hermannii members have clinical significance, being mostly found in human wounds,
sputum, and stool samples [60], whereas A. subterranea strains were isolated from a river
and heavy metal contaminated sediments [61,62]. Scarce information is available on Atlan-
tibacter members found in association with plants and their possible roles. However, some
of them were revealed among plant microbiotas (e.g., in tobacco leaves, maize aerial root
mucilage, and wheat bran) [63–65], and a representative of this genus (A. hermannii DDE1)
featuring potential plant growth-promoting ability was found in pumpkin roots [66].

The other major genera that we detected on the tomato peels were Acinetobacter,
Siccibacter, Clavibacter, Pseudomonas, Phytobacter, Pantoea, Chania, Cedecea, Azomonas, and
Lactococcus. These taxa have members that are common plant and/or soil residents [67–75],
mostly featuring beneficial activities toward the plants [74–77]. However, some of these
genera include also detrimental bacteria [78,79].

Acinetobacter, Pseudomonas, and Pantoea are commonly found in high abundance in
the rhizosphere and phyllosphere (including carposphere) of various plants, including
tomato [28,46,55,58,65,80]. Various strains of these taxa have shown beneficial interactions
with various plants (including tomato), owing to their abilities as plant growth promot-
ers, bio-fertilizers, and biocontrol agents [22,74,77,81]. As for Pseudomonas and Pantoea,
although encompassing a great number of beneficial members (even those having antago-
nistic activity toward tomato phytopathogens [81–84]), they include also plant pathogens.
Notable examples are Pseudomonas syringae and Pantoea ananatis, which cause diseases
in various economically important crops, including the bacterial speck and graywall of
tomato [78,85].

The current study evidenced that Pantoea and Pseudomonas showed a different distri-
bution according to the farming condition, with an opposite pattern of prevalence: Pantoea
had the highest abundances (2.5–4.2%) in tomatoes grown under OF, whereas Pseudomonas
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was a minor taxon (Ras in-between 0.02–0.7%) in OF tomatoes and a major genus in CF
tomatoes, showing a peak of abundance (9.3%) in SB/CF. However, it is not possible to
discriminate possible beneficial/detrimental representatives among the OTUs ascribed to
these genera, since the length of the sequenced fragment does not allow to gain deeper
insight. Differently, Acinetobacter occurrence on tomato peel seemed not to be related to the
tomato genotype or farming system, being present in all the experimental conditions as a
major taxon and showing the highest abundances in T2 (WT/CF) and T3 (SB/OF).

Another taxon deserving discussion is Clavibacter. It is generally recognized as a genus
of phytopathogens of agricultural significance, including those involved in the bacterial
canker of tomato [86]. Nevertheless, the occurrence of tomato non-pathogenic Clavibacter
strains has been reported [71].

Our results showed that Clavibacter had a different distribution according to the tomato
genotype, being a rare taxon (Ra = 0.1%) in SB and a major genus in WT tomatoes, with an
abundance peak (10.7%) in those grown under CF. However, since the tomatoes collected
in this study did not show bacterial canker lesions, it is possible to assume that the detected
peel-associated Clavibacter OTUs were non-pathogenic representatives.

In the current investigation, 10,287 OTUs were recognized across the whole dataset.
Our results evidenced that a high number of exclusive OTUs were found in each ex-
perimental condition, but they showed a very low abundance. Differently, the tomato
peel-associated core microbiota consisted of a much lower OTU number (59 OTUs, repre-
senting ~0.6% of the total number of OTUs). It is worth noting that the core microbiota
accounted for a similar proportion in WT tomatoes grown under OF and CF (22.6% and
24.5%, respectively), whereas it represented a very different moiety in SB communities,
depending on the farming system. Among the communities related to the various ex-
perimental conditions, the core microbiota represented the highest proportion in those
retrieved on SB grown under OF (46.9%) and the lowest fraction (accounting for 5.1% of
the community only) in those of SB grown under CF.

Overall, the core microbiota OTUs were representative of eight genera only: Buttiauxella,
Atlantibacter, Acinetobacter, Siccibacter, Pseudomonas, Phytobacter, Pantoea, and Cedecea. As
discussed above, these taxa include various beneficial members.

Looking deeper at the shared OTUs, it is possible to note that among them there were
almost all the most abundant OTUs (the exception was OTU 7, being absent in T4), suggest-
ing a possible key role in the structuring and preservation of tomato peel communities.

However, the most abundant OTUs occurrence was different among the investigated con-
ditions. The PCA analysis evidenced that OTU 1 (Buttiauxella), OTU 2 (order Enterobacteriales),
OTU 5 (Acinetobacter), and OTU 6 (order Bacillales) were related to T1 and T3 (WT/OF and
SB/OF, respectively) (Figure 7a,c). Actually, OTU 1, OTU 2, and OTU 6 showed different
abundances according to the farming condition, having higher abundances in tomatoes
(both genotypes) grown under OF (Figure 4). Instead, OTU 5 was detected with the highest
abundance in WT/OF condition (T3) (Figure 4). OTU 3 (Atlantibacter), OTU 7 (Clavibacter),
and OTU 8 (family Enterobacteriaceae) were related to T2 (Figure 7b), showing their highest
abundances in WT tomatoes grown under CF (Figure 4). In particular, OTU 3 was a rare
OTU in SB tomatoes and among the major OTUs in WT tomatoes, showing an abundance
peak (12.9%) in WT/CF condition. OTU 7 and OTU 8 represented rare OTUs in almost all
experimental conditions, except in WT tomatoes grown under CF.

Alpha diversity analysis indicated that the farming system affected the peel-associated
bacterial community diversity of SB tomatoes, being significantly lower in SB grown under
OF than those grown under CF. Conversely, no significant differences in the community
diversity were observed in WT tomatoes according to the farming condition. Consid-
ering the same farming condition, significant differences in bacterial diversity between
the two different genotypes were observed only for the organic crop management. The
bacterial communities of WT/OF tomatoes showed higher diversity than those of SB/OF.
Both genotype and farming conditions seemed to affect bacterial evenness. Significant dif-
ferences were revealed in the community evenness of both WT and SB tomatoes according
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to the farming condition. The bacterial communities of WT grown under OF showed a
higher evenness than those grown under CF. On the contrary, the bacterial communities of
SB grown under OF showed a lower evenness than those grown under CF. Considering
the same farming condition, significant differences in bacterial evenness between the two
different genotypes were observed for both crop managements. In OF, the bacterial com-
munities of SB tomatoes showed a lower evenness than those of WT. By contrast, in CF, the
bacterial communities of SB tomatoes were characterized by a higher evenness than those
of WT.

Overall, the PCA analysis showed that T1 and T3 grouped together, indicating that
the bacterial communities of both tomato genotypes grown under OF were similar. On the
contrary, T2 and T4 were well separated, indicating that the bacterial communities found
on WT and SB tomatoes grown under CF differed from each other and from those of the
other experimental conditions. This was confirmed by the clustering analysis (Figure 8),
revealing that the bacterial communities of T1 and T3 did not show significant differences
(p < 0.05, SIMPROF test).

5. Conclusions

To the best of our knowledge, this work was the first investigation regarding the peel-
associated epiphytic bacteria of red and purple (anthocyanin-rich) tomatoes subjected to dif-
ferent farming systems. This study provided the first insights into similarities/differences
among the bacterial assemblages revealed in both genotypes grown under organic and
conventional farming. Further investigations would be useful to give a more extended view
of the tomatoes-bacteria associations, to provide a comparative analysis of the bacterial
assemblages in other compartments of the tomato plant (in particular in pulp, surveying
also the possible presence of bacteria with implications for human health). In addition, it
would be interesting to investigate if new bacterial strains with potential beneficial effects
for the plant (to be also employed in sustainable agriculture) are present and/or enriched in
the purple tomatoes. Moreover, future developments of the study could involve additional
factors, such as different soils and/or locations for the farming to address possible effects
of biogeography on the microbiota.
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