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Abstract: The aim of this study is to extract impervious surfaces and show their spatial distribution,
using different machine learning algorithms. For this purpose, geoprocessing and remote sensing
techniques were used and three classification methods for digital images were compared, namely
Support Vector Machines (SVM), Maximum Likelihood (ML) and Random Trees (RT) classifiers. The
study area is one of the most prestigious and the largest housing estates in Warsaw (Poland), the Fort
Bema housing complex, which is also an exemplary model for hydrological solutions. The study
was prepared on the Geographic Information System platform (GIS) using aerial optical images,
orthorectified and thus provided with a suitable coordinate system. The use of these data is therefore
supported by the accuracy of the resulting infrared channel product with a pixel size of 0.25 m,
making the results much more accurate compared to satellite imagery. The results of the SVM,
ML and RT classifiers were compared using the confusion matrix, accuracy (Root Mean Square
Error /RMSE/) and kappa index. This showed that the three algorithms were able to successfully
discriminate between targets. Overall, the three classifiers had errors, but specifically for impervious
surfaces, the highest accuracy was achieved with the SVM classifier (the highest percentage of overall
accuracy), followed by ML and RT with 91.51%, 91.35% and 84.52% of the results, respectively. A
comparison of the visual results and the confusion matrix shows that although visually the RT method
appears to be the most detailed classification into pervious and impervious surfaces, the results were
not always correct, e.g., water/shadow was detected as an impervious surface. The NDVI index
was also mapped for the same spatial study area and its application in the evaluation of pervious
surfaces was explained. The results obtained with the GIS platform, presented in this paper, provide
a better understanding of how these advanced classifiers work, which in turn can provide insightful
guidance for their selection and combination in real-world applications. The paper also provides
an overview of the main works/studies dealing with impervious surface mapping, with different
methods for their assessment (including the use of conventional remote sensing, NDVI, multisensory
and cross-source data, ‘social sensing’ and classification methods such as SVM, ML and RT), as well
as an overview of the research results.

Keywords: support vector machines (SVM); maximum likelihood (ML); random trees (RT);
impervious surfaces; land use and land cover (LULC); normalised difference vegetation index
(NDVI); multispectral imagery; machine learning; construction industry

1. Introduction

Mapping and monitoring of impervious surfaces is required for a number of purposes,
e.g., urban planning [1], monitoring subtle urban changes (so-called subtle urban dynam-
ics) [2–4], as an essential component of effective stormwater management [5], to assess the
hydrologic condition of an area/catchment [5], to evaluate water quality [5–7], but also
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to facilitate rational stormwater management policies for specific lands/properties [8], to
improve environmental management and finally to promote sustainable urban develop-
ment, including construction of appropriate facilities/infrastructure [1]. Other important
applications of impervious surface mapping/classification include developing appropriate
standards for managing pollution from stormwater runoff [9], implementing flood control
measures [5,8] and supporting emergency management activities [5]. Sobieraj et al. [5]
emphasize the need to map impervious surfaces in the context of so-called sustainable
drainage technologies and small-scale architecture (sustainable urban drainage systems
/SUDS/, water-sensitive urban design /WSUD/, low impact developments /LID/). Ac-
cording to Bauer et al. [10], a measure of imperviousness can also be used as a proxy for
assessing environmental quality. More specifically, impervious surface is an indicator of
the ecological health of the areas in question [9]. It indicates the degree of urbanization
and has a direct impact on water balance [9] and temperature cycles [5] as well as water
quality [5–8,11,12]. In this context, it is worth noting that the need for detailed estimates
of impervious surfaces has increased [1,5,7,8]. Yang et al. [13] state that accurate and up-
to-date geospatial data on urban impervious surfaces serve a multi-level study of urban
ecosystems. In most cases, an increase in impervious surfaces leads to insufficient ground-
water recharge and an increase in storm runoff [1,14]. This, in turn, leads to an increase in
the frequency of flooding and localized flooding [5] and also affects water quality in the
watersheds in which they are located. In addition, there are also studies that show that
wherever the ratio of impervious to pervious surfaces increases, this leads to increased
pollution (contamination) from nonpoint sources [15]. This is due to increased transport of
toxic pollutants, pathogens and various types of sediments.

Various approaches to characterizing and quantifying impervious surfaces can be
found in the literature, with much attention paid to remote sensing and, in particular,
some chronological context for the development of this method [1]. One such approach to
estimating impervious surfaces is the integration of remote sensing and various machine
learning-based classification methods [1]. In addition, although examples of studies ded-
icated to the use of AI in impervious surface classification can be found in the literature,
e.g., using Support Vector Machines (SVM) [16], Maximum Likelihood (ML) [6,17], or
Random Trees/Forest (RT/F) [18,19], there is a lack of comparison of different machine
learning methods (for impervious surface classification) in terms of their accuracy on
high-resolution orthophoto maps. However, in general, there are examples of studies
in the literature showing that SVM is superior to other classification methods in terms
of performance, in particular it performs better than ML [20–23]. However, it is worth
noting that in some cases the results of the ML method were only slightly worse (the study
concerned land cover) [21], while in another study SVM gave better results for SAR images
(while ML proved to be the better classifier for TM images) [20].

The aim of the article is to compare the performance of different machine learning algo-
rithms in mapping impervious surfaces, using high-resolution orthophotos and evaluating
the confusion matrix and other performance indicators. In this context, the article can be
considered as original research (reporting a new work) that provides empirical sources and
presents original evidence. In addition, the article also summarizes the existing literature
on the topic under study and attempts to explain the current state of understanding on
this topic. The essence of the review of several studies, on the other hand, is to highlight
the importance of mapping and knowledge of impervious surfaces to solve various prob-
lems that are directly or indirectly applicable in civil engineering (e.g., for evaluating the
stormwater bill of the site and determining the intensity of stormwater runoff). While
there is an abundance of literature on impervious surface mapping, unlike other work, this
study is original in that, in addition to practical experiments, knowledge of impervious
surface classification was placed in the context of its usefulness for construction-related
applications.

The use of remote sensing data and various machine learning algorithms to classify
impervious surfaces shows how such surfaces can be mapped (that there are many different
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effective segmentation methods and GIS software to facilitate this) and how accurate and
effective these methods are. In terms of contributions to the literature, the paper first
provides a thorough overview of what is known about impervious surfaces, with particular
attention to the context of remote sensing (due to its low cost) and various machine learning
algorithms. Subsequently, the application of selected methods is demonstrated using a
specific case study at the property level as an example. More specifically, the geographical
area used and presented in the case study is one of the most prestigious housing estates
in Warsaw (with an area of 1 square kilometre), which is ideal for this type of study, as
the use of very high-resolution orthophotos (1 px = 0.25 m) allows precise segmentation
at the parcel level (thus, the study area is neither too large nor too small to be suitable
for the applied methods). At the same time, it is an area with a certain anthropological
diversity (characterized by a high spectral heterogeneity) and therefore represents a certain
challenge for mapping [2,4], so that the effectiveness and efficiency of the above methods
can be tested in detail.

Indeed, Zhang et al. [24] emphasize the need for further research in this context, i.e.,
research that compares different classification methods. Our study addresses this issue and,
in a sense, fills a research gap. It is also worth noting that a similar study (but less detailed)
was conducted by Martines et al. [25], who also compared three image classification
algorithms, namely SVM, ML and RT. However, in the case of this study, the AI classifiers
were not used to estimate impervious surfaces, but to verify the discriminability of forest
areas, forestry and other uses, for which these authors used geoprocessing and remote
sensing techniques, as well as Sentinel satellite data, which have a relatively low resolution
(although still higher than Landsat).

In the case of our study, however, orthophoto map data (rather than satellite data)
were used because it would not have been possible to obtain such an accurate image from
publicly available data and a pixel resolution of 10 m for Sentinel and 25 m for Landsat
would not have provided satisfactory classification results at the scale of the settlement.
More specifically, the data used in this study are aerial optical images (non-satellite and
radar images) that have been orthorectified and therefore have a suitable coordinate system.
The use of these data is therefore supported by the accuracy of the resulting product and
the presence of the near-infrared channel.

The structure of this article is as follows. First, we introduce the materials and methods
and outline the current state of academic knowledge on remote sensing, impervious
surfaces and AI classification methods. Then, we present the methodology used and
explain the differences between the three AI classification methods. Finally, we describe
the obtained results, discuss them and draw conclusions from the conducted research.

2. Materials and Methods

As mentioned in the introduction, the objective of this paper is to investigate the clas-
sification of impervious surfaces using remote sensing data and various machine learning
classifiers. There are several classification methods used in this type of engineering prob-
lems, namely Support Vector Machines (SVM), Maximum Likelihood (ML) and Random
Forest/Trees (RT). More specifically, the study is based on the geographic information sys-
tems (GIS) that allow the integration and joint analysis of geospatial data (remote sensing
imagery (orthophoto maps)) with AI classifiers. In other words, GIS is a system that creates,
manages, analyses and links/integrates location data with a map (in the case of this article,
these are data for the Fort Bema property in Warsaw-Bemowo with an area of about 1 km2)
and provides useful descriptive information. As part of the GIS data types, orthophoto
maps used for the purposes of this article are a powerful visual aid and serve as a source of
derived information such as planimetry and classification schemes to provide knowledge
details related to land use/land cover.

For example, Sobieraj et al. [5,8] point out that decisions about land use plans and
development conditions should be coupled with a review of the hydrologic systems for
the sites in question and a possible commitment to low-impact developments and SuDS
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facilities in places where the appropriate hydrologic systems are at risk. Modern tech-
nologies offer the ability to very easily verify the degree of urbanization of a given site
relative to green space. One such technology is machine learning-based classifiers that
can be used to calculate the ratio of urbanized to green space for specific sites. More
specifically, methods such as SVM, ML or RT classification allow the extraction of features
from multispectral images, and these classification results can then be used for further
analysis. It is worth mentioning that the above-mentioned machine learning methods (of
which there are many more) are increasingly used to solve many engineering problems [8].
SVM, ML and RT are suitable for identifying impervious surfaces such as roads, roofs and
sidewalks. Many local governments use impervious surfaces to calculate stormwater runoff
for a property [5,8]. There is a technique consisting of an object-oriented feature extraction
method and GIS-based platforms (e.g., the ArcGIS Pro Classification Wizard) to accomplish
such a task. Using multispectral imagery (very high resolution orthophotos) containing
a near-infrared band, it is possible to perform detailed feature extraction of impervious
surfaces. In particular, it is possible to change the combination of image bands to highlight
important features such as vegetation and roads. In Figure 1, it can be seen that with the
combination of colour and infrared bands, it is very easy to identify vegetation areas in the
environment.
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Figure 1. Classification of impervious surfaces using the SVM machine learning method (source: own
elaboration based on orthophoto maps available on Geoportal—https://www.geoportal.gov.pl/,
accessed on 2 November 2022).

The combination of colour and infrared seems well suited for what is to be identified,
as man-made features are clearly distinct from vegetation. The study provides a detailed
GIS-based analysis with the use of three different AI impervious surface classification
methods, which can be used, for example, to evaluate the stormwater bill of the property.
Orthophoto maps are used for land cover classification. The next three subsections refer
to: (Section 2.1) the spatial area studied, (Section 2.2) the remote sensing data used in
the study and (Section 2.3) a justification of why the study of impervious surfaces (using
remote sensing and various classification methods) is so relevant and an interesting and
important topic from a scientific perspective. A comprehensive overview of the many
important studies of impervious surfaces and land cover combined with the various
relevant classification methods can also be found in Table A1 in Appendix A, later in this
article.

2.1. Spatial Area under Study and Data—Case Study of the Fort Bema Housing Complex

The area under study is located on the edge of the Vistula Basin (between 52◦14′–52◦16′ N
and 20◦55′–20◦57′ E) and its spurs into the Bemowo Forest and further into the Kampinos
Primeval Forest. Figure 2 shows Poland against the background of Europe, then Warsaw (in
relation to Poland) and finally the geographic area under study within Warsaw itself. Fort
Bema, also known as Fort Parysów (after the name of the village), was built in 1886–1890 as

https://www.geoportal.gov.pl/
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part of the Inner Ring of Warsaw Fortifications—a complex of forts and other fortifications
built around Warsaw by the authorities of the Russian Empire in the period from 1879 to
1913. Earlier it was an ammunition depot and later the site was used by various army units.
Among others, the equestrian section of the military sports club “Legia” had its headquarters
here. In 2002, the area was revitalized, the banks of the ditch were cleaned and new bridges
were built over the ditch. In the summer season there is a water bike rental service. Fort
Bema residential estate complex is one of the largest housing estates in Warsaw–Bemowo
district [5,8]. It was built in 1999–2011, with a part of 1,480,000 (i.e., 148 hectares) earmarked
for urban development and land use, and built with residential buildings (about 200,000 sqm
of usable and residential space + services) [5,8,26]. New housing estates are being built in the
area, but the fortress still has many meadows and trees, which are a good source of food for
dragonflies (see Figure 3).
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(Source: wazki.pl).

2.2. Remote Sensing Data Used in the Study

Publicly available satellite imagery has at best a pixel resolution of 10 m (Sentinel)
or 25 m (Landsat). It should be noted that the quality in such a case is rather poor and
insufficient when it comes to surveying the area of a housing estate in the order of 1 square
kilometre (for use with the expected accuracy of classification). In the case of the study of
the residential area of Fort Bema, we needed high-resolution data, as such images provide
much better results. Therefore, the survey conducted for this article used orthophotos
with an infrared channel and a pixel size of 0.25 m, which provide much more accurate
results. The data are from 2017 (or more precisely, 27 May 2017). The data were used
for classification by the different methods presented in this article, i.e., SVM, ML and RT.
ArcGIS software was used for the classification. The orthophoto map is provided free
of charge on Geoportal (https://www.geoportal.gov.pl/, accessed on 3 November 2022).
Unfortunately, 2017 was the last year it was acquired with an infrared channel, and no more
recent data are available. For the NDVI, we used data from SENTINEL—10 m resolution,
the satellite imagery is from 9 May 2022, and the data were downloaded from Earth Explorer
(https://earthexplorer.usgs.gov, accessed on 2 November 2022). In addition, we would not
obtain sufficiently accurate imagery from Landsat or even Sentinel and expect satisfactory
classification results at the settlement/ neighbourhood level of one square kilometre. The
orthophotos used for the purposes of this article, on the other hand, are optical aerial
photographs (and thus non-satellite and non-radar) that have been orthorectified, i.e., they
have been given an appropriate coordinate system. The use of these data is therefore
supported by the accuracy of the resulting product and the presence of the near-infrared
channel.

Figure 4 shows the visual composition with the housing estate and the NIR band. The
blue colour indicates the boundaries of the FORT-BEMA housing estate, which is located in
the western-northern part of Warsaw.

wazki.pl
https://www.geoportal.gov.pl/
https://earthexplorer.usgs.gov
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2.3. Impervious Surfaces

Impervious surfaces are man-made associated structures such as roads, sidewalks,
parking lots, roofs and other outdoor facilities of an anthropogenic nature [1,7,27]. They are
an important determinant of the degree of urbanization and have a direct impact on water
and temperature cycles and water quality—and thus on the ecological health of the areas
they affect [5–8,11,12]. In this context, Weng [1] and Yu et al. [7] point out the increasing
need for detailed maps showing impervious surfaces. Since the size of impervious surfaces
is variable, it would be good if such maps were as reliable as possible while being up-to-
date and reflecting the latest state of affairs. Therefore, cost-effective methods are even
more important in this context. Weng [1] has reviewed various surveying methods with
particular emphasis on remote sensing, which has been practiced for more than half a
century [28].

Deng et al. [9] emphasize that the knowledge of impervious surface is used as an
important indicator and also as an input parameter for the simulation of water management,
hydrological cycle and pollution assessment of the studied area. In this context, it can be
used to evaluate the environmental changes in the studied areas [9,29]. Wu and Murray [29]
emphasize that the analysis of impervious surface changes is particularly important for
a better understanding of the urban environment and human activities. Yang et al. [13]
state that accurate and up-to-date geospatial data on urban impervious surfaces are used
for multilevel studies of urban ecosystems and, in particular, to study land use planning
issues, resource management, urban hydrology and local climate. Weng [1] highlights
various approaches to characterizing and quantifying impervious surfaces and devotes
much space to remote sensing, in particular providing some chronological context for the
development of this method. The author emphasizes that although remote sensing data
have been used since the 1970s, it is only since the beginning of the first decade of the
current century that they have really been used extensively. Furthermore, Weng [1] points
out the different approaches and techniques used to process remote sensing data in terms
of space, spectrum, texture and the actual context of these data.

The use of high-resolution remote sensing data plays an important role in monitoring
subtle urban changes (referred to as subtle urban dynamics) [2–4]. In addition to the
remote sensing data themselves, appropriate methods are still needed to extract impervious
surfaces with sufficient efficiency, especially when dealing with the problem of spectral
heterogeneity—which is particularly important when extracting impervious surfaces in a
diverse environment, especially with high-resolution data [2–4,30]. Lu et al. [30] point out
that mapping and monitoring the dynamic changes in impervious surfaces in a complex

https://www.geoportal.gov.pl/


Buildings 2022, 12, 2115 8 of 29

urban–rural interface is particularly challenging due to the spectral confusion of impervious
surfaces with other non-vegetated land covers (the so-called mixed pixel problem), and the
use of very high spatial resolution satellite imagery is required to address this problem. It is
worth mentioning that the multidimensional heterogeneity of the data leads, among other
things, to spatial misregistration manifested by the parallax effect, i.e., the incompatibility of
different images of the same object observed from different directions (considering different
viewpoints)—which is particularly relevant for high object structures [4]. Huang et al. [4]
emphasize that there are few studies that use high-resolution data to detect changes on
large geographic scales. According to Bauer et al. [10], Landsat TM data are well suited
to quantify the degree of surface imperviousness (over large areas and over a long period
of time, at moderate cost); the measure of imperviousness can also be used as a proxy for
assessing environmental quality.

As Arnold and Gibbons [31], Weng [1] and Yu et al. [7] have noted, impervious
surfaces are anthropogenic objects that promote infiltration into the soil and are good indi-
cators of the degree of urbanization and environmental quality [2,29]. Wu and Murray [29]
and Liu et al. [2] emphasize that impervious surfaces are an important indicator to ob-
serve and analyse changes in urban land cover and draw some conclusions about human–
environment interactions. Schueler [12] notes that the specificity of impervious surfaces
due to their large impact on watershed hydrology, means that their analysis at different
scales brings together specialists from different disciplines, from various activists, planners,
officials, architects, engineers to scientists and social scientists. Weng [1] emphasizes that
hydrology is influenced by both the size and spatial pattern (including geometry and loca-
tion) of impervious surfaces. Size, of course, refers to the ratio of impervious to pervious
surfaces. An increase in the latter ratio in turn determines the intensity of water runoff,
more specifically its volume and duration [5,32].

Moreover, it is widely recognized in land use planning that the negative impacts of
impervious surfaces associated with transportation infrastructure are more harmful com-
pared to those of rooftops [1,32]. In most cases, an increase in impervious surfaces leads
to insufficient groundwater recharge and an increase in runoff during storm events [1,14].
This, in turn, leads to an increase in the frequency of flooding and localized inundation [5,8]
and also affects water quality in the watercourses of the watershed in which they are
located. In addition, there are also studies that show that wherever the ratio of impervious
to pervious surfaces increases, pollution (contamination) from nonpoint sources also in-
creases [15]. This is due to increased transport of toxic pollutants, pathogens and various
types of sediments. In turn, the disturbance associated with the hydrological cycle in an
area (manifested, among other things, in water pollution, but also in runoff rates and an
increase in runoff volume) in turn leads to a disturbance of the natural ecosystem as a
whole (i.e., the biota) and, in particular, can lead to an impairment of aquatic habits, such
as a disturbance of riparian areas and habitats [1,14]. This is perfectly illustrated by a study
conducted by Gillies et al. [14], who used remote sensing data to examine the effects of
urbanization on aquatic fauna in the Line Creek watershed in Atlanta. In the study, the
authors presented impervious surfaces as an ecological indicator to explain the impact
of water resources on mussel populations in three watersheds. The study shows that the
extent of impervious surfaces increases habitat degradation for mussels. In other words, the
loss of species (in the order of 50–70%) could be attributed primarily to the areas where the
expansion of impervious surfaces was observed. Hence the great importance of this issue.

The size of impervious surfaces affects not only water management but also climate
by causing, among other things, changes in warm air movement. Williams et al. [33] and
Sobieraj et al. [5,8] point out that rapid urbanization due to the increase in impervious
surfaces and climate change makes urban communities more vulnerable to natural hazards
and weakens urban resilience [5,33]. Sabine et al. [34] and Sobieraj et al. [5] highlight
that increased urbanisation and the associated increase in impervious surfaces pose an
increased risk to climate change, including by altering carbon cycling and other biogeo-
chemical processes, and by disrupting heat fluxes within urban canopies and boundary
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layers [13]. Sobieraj et al. [5,8] note that the so-called precipitation peaks are also becoming
more frequent, which in the case of large cities turn them into heat islands (partly due to
soil properties and the degree of urbanization). This is due to the pressure of the heated air
masses on the city, and this additional energy is released at the periphery of the cities [5].
An insufficient ratio of impervious to pervious surfaces leads to a decrease in vegetation
production (decrease in vegetation cover, changes in cover within the watershed and thus
in vegetation production). Depending on the type of land use (the particular land use
category), the percentage of land covered by impervious surfaces may vary [1]. Weng [1]
points out that mapping impervious surfaces is therefore particularly important, especially
in the context of their central role in monitoring human–environment interactions and envi-
ronmental change [2]. Similarly, Sobieraj et al. [8] emphasized the need to map impervious
surfaces in the context of a range of sustainable drainage technologies and small-scale
architecture (SUDS, WUDS, LIDs).

There are a number of reasons that justify the need to map and estimate impervious
surfaces, such as urban planning issues, hydrological condition assessment, water quality
assessment, but also to facilitate the handling of stormwater taxation issues, and finally this
would allow better environmental management, facilitate the concern of sustainable urban
development, including the construction of adequate facilities and urban infrastructure [1].
Impervious surfaces can be estimated based on ground measurements (field measurements
with GPS) and remote sensing data [1]. The former are accurate and reliable, but also
very time consuming and expensive [1]. Other methods include digitizing paper maps,
using aerial imagery, scanning and feature extraction using appropriate algorithms [1].
Satellite imagery and aerial photography have been used for environmental studies since
the 1970s [27]. Slonecker et al. [27] mention imperviousness modelling as one of the
applications of these images, in addition to interpretive or spectral applications, etc. The
mapping and measurement of the impervious surface is well described in the work of
Brabec et al. [11]. In their work, these authors refer to the use of various methods, including
the use of aerial photography and the measurement of impervious surface either based on a
planimeter or by overlaying a special grid and counting the intersections on this grid; other
methods include image classification and estimation of the percentage of urbanization in
a given area. Weng [1] points out that the use of remote sensing to estimate impervious
surfaces was rare in practice until the end of the last century because there were no suitable
remote sensing sensors for analysing and estimating such surfaces, computational power
was inadequate at the time (standards were not satisfactory in this regard), and finally,
suitable techniques for digital processing of such images (with resolution less than 5 m)
had not yet been developed. The increasing interest in the application of remote sensing
to the measurement of impervious surfaces (with the beginning of the 21st century) was
also accompanied by a corresponding increase in the number of scientific studies on this
topic. Against the background of all studies dealing with remote sensing, the estimation of
impervious surfaces (using remote sensing) had one of the highest citation rates, indicating
that this particular area of knowledge is rapidly growing and gaining popularity [1]. In the
context of growing awareness of environmental threats (e.g., climate change and problems
in hydrological systems), research on estimation of impervious surfaces (using remote
sensing and various methods) is increasingly being conducted by various government
agencies and non-governmental organizations with the intention of mapping and collecting
information about these surfaces for various civil and environmental objectives.

3. Methodology

Two types of classification (using machine learning algorithms: SVM, ML and RT
classifiers and high resolution orthophoto maps /0.25 m per pixel/) are performed in the
study. First, the land use/land cover classification is presented (for 7 classes—C1—water;
C2—forest; C3—paved/asphalt roads; C4—artificial surface; C5—roofs and sidewalks;
C6—grassland; C7—bare ground). The same study is then repeated for 2 classes (i.e., C1—
pervious; C2—impervious). The point is that comparing the confusion matrices, precision,
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RMSE index and kappa index for each method—for 7 and 2 classes, respectively—can also
provide relevant inferences from such a comparison, given some specificity of each method.
A suitable platform GIS (ArtGis Pro 2.9 software) was used to perform the classification.
Sections 3.1–3.3 briefly present the assumptions on which each of the classification methods
used is based. The main steps of the study are presented below in the form of a flowchart
(see Figure 5):
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3.1. SVM Classifier

Support Vector Machines (SVMs) are a type of supervised learning algorithm that can
be used for both classification and regression tasks. The main advantage of an SVM is that
it can achieve very high accuracy on a large number of data sets, even on relatively small
training sets. SVMs are also versatile, as they can be used with various types of kernel
functions to learn nonlinear decision boundaries.

Classification algorithms such as SVM (classifier) use an appropriate decision function
to determine the magnitude of a point in a hyperplane. The assumption of a suitable
decision function is necessary because it is used to indicate how close the points in the
plane are to each other (i.e., to denote the magnitude of the hyperplane), and within the
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bounds of such a decision function, the classifier then classifies the model. Thus, for a
given training set S =

{
(X1, y1), . . . , (X`, y`)

}
∈ Rn × {−1; 1}, a suitable decision function

must first be found for which a convex optimization problem must be solved to display the
results of such training. Fauvel et al. [35] have formulated this problem as follows:

Maxag(a) =
ε

∑
i=1

αi− 1/2
ε

∑
i,j=1

αiαjyiyjk(xi, xj), (1)

with 0 ≤ αi ≤ C, where α denotes the Lagrange coefficient, the kernel function is rep-
resented as k, and the training error is represented as the constant C. After solving
Equation (1) (the solution is αi), the correct classification of a sample x is performed by
checking the sides of the hyperplane to which this sample belongs, which can be repre-
sented as follows [35]:

y = sgn

(
1
2

ε

∑
i=1

αiyik(xi, x) + b

)
(2)

Class separation in an SVM classification system (based on statistical learning theory)
involves the use of a decision surface (called the optimal hyperplane) that maximizes the
margin between classes. The support vectors (critical elements of the training set) are the
data points closest to this hyperplane. When the classes are not linearly separable, the SVM
classification uses different types of kernels, e.g., polynomial, sigmoidal or radial. In most
cases, this classification method is used to separate two classes (as a binary classifier), but it
also provides the possibility of separating multiple classes. To perform such classification,
the SVM classifier is treated as a binary classifier separating every possible pair of classes
(such binary classifiers are combined). In image classification (where accurate results are
important), the higher accuracy of the SVM classifier is achieved by relying on a smaller
number of training pixels. The radial and sigmoidal kernels show high sensitivity to the
a priori parameters, which is considered a weakness of this method, since its efficiency
largely depends on this point [36]. Another important point is that the SVM method is not
used in applications that require excessively fast classification to avoid too many support
vectors [37].

The SVMs determine the bounds of the decision function whose results yield the
optimal class separation [38]. Pattern recognition itself involves assigning the results of the
decision function to one of two linearly or nonlinearly separable classes. In the case of linear
separation, the SVM classifier identifies a linear decision boundary and maximizes the
margin between the classes, defined as the sum of the distances to the hyperplane from the
nearest points of the two classes [38]. Appropriate quadratic programming optimization
techniques (QP) are used here to solve such a maximization problem. The data points
(so-called support vectors—hence the name of this method) closest to the hyperplane are
used to measure the margin (their number is always small) [38].

For nonlinearly separable classes, on the other hand, the SVM classifier finds the
appropriate hyperplane by making a tradeoff between maximizing the margin and mini-
mizing the magnitude reflected in the number of classification errors. This tradeoff can be
optimized by appropriately (positively) varying the constant C described above (which,
as mentioned earlier, expresses the penalty of training errors) [39]. The SVM classifier
also supports nonlinear decision surfaces by assuming a high-dimensional feature space
onto which the input data are projected. A linear classification problem is formulated
in this feature space, which is mapped to this space in a nonlinear manner [40]. Since
such a high-dimensional feature space would require high computational costs, suitable
kernel functions are used to reduce them accordingly [38]. The SVM method also supports
multi-class classification methods. In this case, the matching methods “one-against-one”
and “one-against-all” are used [38].
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3.2. Maximum Likelihood Classifier

Maximum likelihood (ML) is a statistical method commonly used for estimation and
prediction in machine learning. ML estimates the probability of each possible outcome
and then selects the one with the highest probability as the predicted label. ML is popular
because it is simple and easy to implement; however, overfitting can occur if the training
data are not representative of the true underlying distribution. In other words, ML is a su-
pervised classification method based on Bayes’ theorem and assumes that the membership
of a given data case (e.g., a pixel) to a class i can be expressed using the following equation:

P(i|ω) =
P(i|ω)/P(i)

P(ω)
(3)

where the features of a given data case (e.g., a pixel) can be described as a vector ω, P(i|ω)
is the a posteriori probability distribution (expressing that a data value with feature vector
ω belongs to class i), P(ω|i) is the likelihood function, P(i) reflects the information before
the classification experiment, i.e., the a priori probability that a given class i is determined
before classification. Assuming that the number of classes is equal to m, the probability
P(ω) that ω is observable (often referred to in the literature as the so-called normalization
constant) can be expressed as follows:

P(ω) =
m

∑
i=1

P(i|ω)/P(i) (4)

where, sigma, i.e.,
m
∑

i=1
P(i|ω) sums to 1. It is therefore necessary to introduce the normal-

ization constant P(ω), i.e., to multiply a non-negative function by it and thus make it
a probability density function (such that the area under the graph of this function is 1,

i.e., the normalization constant ensures that
m
∑

i=1
P(i|ω) sums to 1). In order to determine

which class a particular case should be placed in, it is necessary to determine which a
posteriori probability is higher. In other words: When a pixel x is classified, it is recognized
as belonging to class i if the following condition is satisfied [41]: x ∈ i, if P(i|ω) > P(j|ω) ,
for all j 6= I. When accurate training data are available during classification, this method
performs very well and is the most commonly used (it is considered the best classification
method for such conditions) [42].

3.3. Random Forest Classifier

Random Trees (RT) is an effective machine learning method that relies on a large
number of decision trees. A voting system gives each tree the same weight in its result,
avoiding overfitting. This method can be applied to classification problems where there are
a large number of variables to consider and classes are difficult to distinguish. Since RT
is only a classification algorithm based on decision trees, its ability to make predictions is
limited depending on the quality of the training data. However, the probabilistic nature of
RT allows it to be compared to other classifiers, and it generally performs as well or better
than the current state of the art randomization-based models.

The advantages of this method are extended by using many different decision trees
and by implementing pruning, which reduces the number of nodes per tree to avoid over-
fitting. RT classifier is a non-parametric approach that assumes no relationship between the
attributes and the output variable. This can be useful when there are strong dependencies
between attributes and only a limited amount of training data are available. RT classifiers
can be more robust to outliers, but at the same time they can lead to overconfidence in the
models. They do not require the sample size to be fixed a priori, but train on an undefined
subset and use the votes to make predictions.

More specifically, the classification method RT is based on a combination of tree classi-
fiers, using a randomly selected vector at the level of a single tree classifier, independent
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of the input vector. To classify the input vector, all N trees cast a unit vote for the most
popular class [43]. In this study, the RT classifier is exactly the same as the more popular
Random Forest classifier in the literature, i.e., a classifier based on the algorithm developed
by Leo Breiman [43]. This classifier is designed to use a random feature or combination of
features at each node to grow the tree. Assuming that N is the size of the original training
dataset, for each selected feature or combination of features, a special procedure (within
RT classification) is applied to generate the corresponding training dataset based on the
so-called bagging, where N examples with replacement are randomly drawn [44].

Classification of arbitrary examples (pixels in the case of this study) is carried out by
voting for the most popular class with respect to all predictors of the tree in the forest [43].
By choosing the appropriate attribute selection measure and pruning method, the decision
tree can be designed accordingly. An important concept related to RT classification is
induction, a method for learning decision trees (building classification knowledge) based
on a training set [45]. As with decision tree induction, appropriate attribute measures must
be selected. There are several approaches for this, but the most common is to assign a
quality measure to the attributes. One of the most commonly used approaches for attribute
selection is the information ratio criterion proposed by Ross Quinlan [46], where bias
against multi-valued attributes is reduced by considering the number and size of branches.
Another approach for attribute selection is the Gini index [47]. More specifically, the Gini
index is a measure of attribute selection and it measures the impurity of an attribute relative
to classes [47]. Assuming that T is a training set, the probability that a randomly selected
instance (e.g., a pixel) belongs to class Ci is expressed as follows: f (Ci, T)/|T|, while the
above-mentioned Gini index can be represented as follows:

∑ ∑
j 6=i

( f (Ci, T)/|T|)( f
(
Cj, T

)
/|T|) (5)

Random trees/forest classifiers have many advantages over other decision tree meth-
ods (such as the method presented by Quinlan [46]). One of them is that mature trees are
not pruned, but grow to their maximum height each time with new training data and for
specific feature combinations. As Maheshl and Mather [48] point out, the performance of
tree-based classifiers is primarily determined by the choice of an appropriate method for
pruning the trees rather than by a feature selection measure. Moreover, this method has the
advantage that increasing the number of trees (even without pruning) leads to convergence
of the generalization error [43]; due to the law of large numbers, overfitting is also not
a problem [49]. To generate a random forest classifier (consisting of N trees), one must
first determine a priori the number of features used at each node (which are relevant for
generating the tree) and second, the number of N trees themselves. For the best partitioning,
only selected relevant features are sought at each node. The actual classification of, e.g.,
remote sensing images (which is also a given dataset) consists of going through each data
case (i.e., one pixel) of such a dataset for each of the N trees and then selecting the class for
the specific data case that received the most votes (out of N votes).

4. Results

Figures 6 and 7 and Tables 1–8 show the respective results. Figure 6 compares the
land use and land cover (LULC) classification for the Fort-Bema housing estate (an area of
approximately one square kilometre), which was conducted using three different methods,
SVM, ML and RT. From the comparison shown in Figure 6, it is evident that the LULC
classification performed with the SVM method reflects much more of the fine details that
are not visible with either the ML or RT methods.
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Figure 7. The classification of impervious surfaces using SVM, ML and RT methods. (Source: own
elaboration based on orthophoto maps available on Geoportal—https://www.geoportal.gov.pl/,
accessed on 2 November 2022).

Table 1. Confussion Matrix (SVM method).

Object
ID

Class
Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 Total U_Accuracy Kappa

1 C_1 6 0 3 0 1 0 0 10 0.6 0
2 C_2 0 35 0 0 0 1 0 36 0.97222 0
3 C_3 0 0 6 0 4 0 0 10 0.6 0
4 C_4 0 0 2 8 0 0 0 10 0.8 0
5 C_5 0 0 2 0 29 0 1 32 0.90625 0
6 C_6 0 0 0 0 0 10 0 10 1 0
7 C_7 0 1 0 0 0 0 10 11 0.90909 0
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Table 1. Cont.

Object
ID

Class
Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 Total U_Accuracy Kappa

8 Total 6 36 13 8 34 11 11 119 0 0
9 P_Accuracy 1 0.97222 0.46153 1 0.85294 0.90909 0.90909 0 0.87394 0

10 Kappa 0 0 0 0 0 0 0 0 0 0.84169

Note: C_1—water; C_2—forest; C_3—asphalt roads; C_4—artificial surface; C_5—roofs and sidewalks; C_6—
grassland; C_7—bare ground.

Table 2. Confusion Matrix (ML method).

Object
ID

Class
Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 Total U_Accuracy Kappa

1 C_1 8 0 0 0 0 0 0 8 1 0
2 C_2 0 41 0 0 1 0 0 42 0.97619 0
3 C_3 0 0 8 0 1 0 0 9 0.88888 0
4 C_4 0 1 1 8 0 0 0 10 0.8 0
5 C_5 0 0 6 0 23 1 0 30 0.76666 0
6 C_6 0 2 0 0 1 8 0 11 0.72727 0
7 C_7 0 0 1 0 0 1 7 9 0.77777 0
8 Total 8 44 16 8 26 10 7 119 0 0
9 P_Accuracy 1 0.93181 0.5 1 0.88461 0.8 1 0 0.86554 0

10 Kappa 0 0 0 0 0 0 0 0 0 0.82803

Note: C_1—water; C_2—forest; C_3—asphalt roads; C_4—artificial surface; C_5—roofs and sidewalks; C_6—
grassland; C_7—bare ground.

Table 3. Confusion Matrix (RT method).

Object
ID

Class
Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 Total U_Accuracy Kappa

1 C_1 8 0 0 0 1 0 0 9 0.88888 0
2 C_2 0 35 0 0 0 2 0 37 0.94594 0
3 C_3 0 0 6 0 3 0 0 9 0.66666 0
4 C_4 0 1 0 7 0 1 0 9 0.77777 0
5 C_5 0 4 8 1 21 0 0 34 0.61764 0
6 C_6 0 0 0 0 1 9 1 11 0.81818 0
7 C_7 0 0 1 0 0 0 9 10 0.9 0
8 Total 8 40 15 8 26 12 10 119 0 0
9 P_Accuracy 1 0.875 0.4 0.875 0.80769 0.75 0.9 0 0.79831 0

10 Kappa 0 0 0 0 0 0 0 0 0 0.74694

Note: C_1—water; C_2—forest; C_3—asphalt roads; C_4—artificial surface; C_5—roofs and sidewalks; C_6—
grassland; C_7—bare ground.

Table 4. RMSE for the classification of 7 class (LULC).

SVM ML RT

RMSE 3.31662479 3.505098328 4.503967

Table 5. Confusion Matrix (SVM method).

Class Value C_1 C_2 Total U_Accuracy Kappa

C_1 63 4 67 0.940298507 0
C_2 1 51 52 0.980769231 0
Total 64 55 119 0 0
P_Accuracy 0.984375 0.927272727 0 0.957983193 0
Kappa 0 0 0 0 0.915157565

Note: C_1—pervious; C_2—impervious.
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Table 6. Confusion Matrix (ML method).

Class Value C_1 C_2 Total U_Accuracy Kappa

C_1 67 3 70 0.957142857 0
C_2 2 47 49 0.959183673 0
Total 69 50 119 0 0
P_Accuracy 0.971014493 0.94 0 0.957983193 0
Kappa 0 0 0 0 0.91353001

Note: C_1—pervious; C_2—impervious.

Table 7. Confusion Matrix (RT method).

Class Value C_1 C_2 Total U_Accuracy Kappa

C_1 64 3 67 0.955223881 0
C_2 6 46 52 0.884615385 0
Total 70 49 119 0 0
P_Accuracy 0.914285714 0.93877551 0 0.924369748 0
Kappa 0 0 0 0 0.845298281

Note: C_1—pervious; C_2—impervious.

Table 8. RMSE for 2 class classification (impervious-pervious).

SVM ML RT

RMSE 2.915475947 2.549509757 4.743416

Tables 1–3 show the confusion matrices for all three methods (SVM, ML and RT) for
LULC classification of 7 classes (C1—water; C2—forest; C3—asphalt roads; C4—artificial
surfaces; C5—roofs and sidewalks; C6—grassland; C7—bare soil). The RT method has
the lowest accuracy (0.75), while approximately similar values (0.83–0.84) were obtained
for SVM and ML. When comparing SVM and ML, the SVM method proved to be slightly
better (kappa = 0.8416). The RT method, on the other hand, shows the greatest detail in
subdividing permeable and impermeable surfaces, but as it turns out (as confirmed by the
confusion matrices) is not always correct, because in many cases water/shade features are
misclassified as impermeable surfaces (hence kappa = 0.7469). Table 1 shows the confusion
matrix for the classification performed with the SVM method.

The confusion matrix for the classification performed with the method ML is shown
below in Table 2.

The confusion matrix for LULC classification (7 classes) using the RT method is shown
in Table 3.

Table 4, in turn, shows the respective RMSE values, which are a measure of accuracy. It
can be considered as a useful measure to understand the performance of classification [7,29].
This study shows that SVM classification (3.31) has the lowest error, followed by ML (3.50)
and RT (4.50), further confirming the higher classification accuracy of the SVM classifier.

Below is a classification of impervious surfaces (i.e., a binary classification) (see Figure 7).
It is worth noting that with this type of classification using a binary classifier, the classification
accuracy is much higher than with the LULC classification presented above.

When classified into 2 classes (impervious-pervious), the results showed that SVM
again achieved the highest percentage of overall accuracy. However, the classification
results of ML were only slightly worse (the difference was almost nonexistent, i.e., 91.51%
vs. 91.35%), and again RT had the worst accuracy (see Tables 5–7).

In addition, the RMSE was lowest for the ML classification (see Table 8). Considering
both the kappa index and the RMSE, we can conclude that when classifying orthophoto
map data with a very high resolution (0.25 m per pixel), both the SVM and ML classifiers
give very similar results.
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In addition, the SVM classification method was also used to accurately quantify the
character of the area in the Fort Bema housing estate complex: (1) pervious—630,117.2948 m2

= 0.64 km2—67.42%; (2) impervious—304,538.23 m2 = 0.30 km2—32.58%.
High-resolution orthophotos covering the near-infrared range are also a good method

to estimate sealed areas in an urban area (such as the residential complex that is the spatial
study area of this paper). Vegetation production in near-infrared images has a relatively
high reflectance, which in turn can be very well represented by the Normalized Difference
Vegetation Index (NDVI) [50]. This index represents the ratio between visible light and
near-infrared light. Briefly, the NDVI index can be expressed as follows:

NDVI =
NIR− R
NIR + R

(6)

where R represents the red band and NIR represents the near infrared band.
When the NDVI index has a high value, it is clear that vegetation production is present.

More specifically, vegetation is characterized by a high index, while sealed surfaces, such
as built-up areas such as roads and sidewalks, are characterized by low values of this index
(see Figure 8).
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Figure 8. Classification with the SVM and visualization of vegetation production (representative of
the permeable surface) with NDVI methods [source: own elaboration based on data from SENTINEL—
10 m resolution, satellite images are from 9 May 2022, and data were downloaded from Earth Explorer
(https://earthexplorer.usgs.gov, accessed on 2 November 2022)].

5. Discussion

SVM, ML and RT are different classification methods used in machine learning. While
ML is a parametric method—built as a probabilistic model whose parameters are deter-
mined based on Bayes theory (which amounts to knowing/estimating the parameters of
the model before classification), SVM and RT are non-parametric methods. The former
is an optimization-based non-parametric method and the latter is an ensemble method
that belongs to the special category of bagging methods. There are a number of stud-
ies that confirm the effectiveness of the ML method in solving classification and signal
identification problems from very different fields of knowledge: in quadrature-linked
classification, which combines the two simplest digital modulations: Amplitude (ASK) and
Phase (PSK) [51], in speech recognition [52], in bioengineering and in particular in gene
selection [53] or finally in remote sensing [54]. Similarly, the application of the SVM method
is ubiquitous in almost all fields that involve the classification and prediction of data to

https://earthexplorer.usgs.gov
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solve very different problems from different walks of life. For example, to solve problems
in engineering [55–60] and construction [61,62]. Similarly, there are many application
examples for RT classification [63–66].

When comparing the three methods, the performance of each method is different [20–23].
In particular, with respect to the application in remote sensing, there are many studies
in the literature showing that SVM is superior to other classification methods in terms of
performance, especially it performs better than ML [20–23]. However, it is worth noting that in
some cases the ML method performed only slightly worse (e.g., in the land cover classification
study) [21], and in another study, SVM provided better results only for SAR images, while
ML proved to be the better classifier for TM images [20]. Indeed, Zhang et al. [24] emphasize
the need for further research in this context, i.e., research that compares different machine
learning classification methods [24].

ML classifiers are quite complex models because they involve a large number of
data points in their calculations (this should sound familiar to anyone who has ever
studied regression analysis). However, ML also has some drawbacks. For example, ML
classifiers can be slow compared to SVM and may even produce misleading results in
certain situations. On the other hand, RT can be extremely fast. Sometimes the speed can
even be too fast, since the model itself does not try to consider more than one branching
scenario whenever possible. SVM is a more complex classifier (but at the same time gives
better results) and does not require any preprocessing of the input data. SVM and ML
algorithms can be trained much faster than RT and can handle a large number of features
(SVMs even use the absence of a given feature as a positive feature). Among the algorithms
of the same classifiers, SVM has the best generalization capabilities. The disadvantage of
SVMs is their complexity and lack of interpretability.

Moreover, it is worth mentioning that the SVM classifier not only works well on
standard images, but also performs well on segmented raster data. It performs pixel-based
classification based on a predefined sample of training attributes. Multiband images with
arbitrary bit depth are well suited for classification using the SVM method. The advan-
tages of the SVM classifier compared to the ML method are: (a) requiring fewer samples,
which, unlike ML, do not have to be normally distributed; (b) being more robust to noise,
correlated bands and unbalanced number or size of training sites in each class. Unlike
the SVM classifier, the ML classifier assumes that the statistics for each class in each band
are normally distributed and computes the probability that a given pixel belongs to a
given class. Nevertheless, the results of this study show that the SVM and ML methods
give very similar results for the binary classification of high-resolution orophotomaps
(0.25 m per pixel), with Cohen’s kappa coefficients of over 0.9 indicating very high classi-
fication precision (near perfect level of agreement). The kappa coefficient tests interrater
reliability, which indicates the extent to which the data collected in the study accurately
reflect the variables measured [67].

When we compare the results presented in Tables 5–7 with the interpretation of Co-
ehan’s kappa value (see Table 9) in terms of the percentage reliability of the data (measured
by Cohen’s kappa), we find that the percentage reliability of the data is in the range of
82–100% when classified by the SVM and ML methods. The test performed by the method
RT is slightly worse, but even in this case the level of agreement can be considered strong,
as the percentage reliability of the data is in the range of 64–81%.

Table 9. Percentage of reliability of data measured with Cohen’s Kappa.

Value of Kappa Level of Agreement % of Data That Are Reliable

0–0.20 None 0–4%
0.21–0.39 Minimal 4–15%
0.40–0.59 Weak 15–35%
0.60–0.79 Moderate 35–63%
0.80–0.90 Strong 64–81%

Above 0.90 Almost Perfect 82–100%



Buildings 2022, 12, 2115 19 of 29

This study is a testament to the growing importance of remote sensing. It analyses
different methods and compares them with each other. It also identifies the current state
of research and prevailing trends (in the form of Table A1 in Appendix A). The study
addresses the current standards for remote sensing data used to estimate impervious
surfaces. In this context, it is worth considering how the characteristics of the remote
sensing data (i.e., spatial, spectral and temporal resolution) affect the results. In this
study, we evaluate different methods for estimating impervious surfaces and compare
classification accuracy as a function of method (for high-resolution orthophoto map data). It
is also worth noting that there are increasingly powerful and readily available (also for cost
reasons) GIS platforms that use digital image processing algorithms and integrate various
machine learning methods for classification. These platforms make the field of remote
sensing very popular and allow easy estimation and mapping of impervious surfaces,
especially very fast visualization of these surfaces and estimation of their size.

It should also be emphasized that the delineation of sealed surfaces (i.e., impervious
surfaces) and the temporal and spatial analysis of these surfaces are important and relevant
from a policy, environmental and land use management perspective [9].

Choosing one of these methods is usually not easy, as each has its own advantages
and disadvantages. In summary, all three algorithms are efficient and provide either near-
perfect (for SVM and ML classification) or strong (for RT classification) results. Much
also depends on what data are tested (i.e., what types of images), but also on how the
training set is chosen, which can also affect the results accordingly. It is good to have some
knowledge in this area, and highlighting some of the important elements of the comparison
between the three methods is also one of the goals of this article.

The advantage of the SVM method can be seen in another context. Pai et al. [68] state
that the SVM is based on the assumption of minimizing structural risk and an upper bound
on generalization error, rather than minimizing training error. In this respect, the SVM
method provides better results than, for example, most conventional neural network models
based on the principle of empirical risk minimization. Therefore, empirical results for SVMs
provide better classification and problem-solving results, which has been confirmed in
various studies on different knowledge domains. Ustuner et al. [60] state that the selection
of appropriate classification algorithms (e.g., SVMs) and the accuracy of remote sensing
data lead to classification results that are crucial from the perspective of the spatial data
community, as they provide a basis for other models and various applications.

Finally, Zhang et al. [24] suggest that classification improvement can still be achieved
by combining both classification methods, i.e., ML (based on Bayesian theory) with SVM.
Elements of Bayesian decision theory can be used in the SVM method to optimize parame-
ters [69], improve performance in optimizing certain features [70], reduce optimality error
(in visualizing SVM outputs) [71], reduce posterior probability of class membership [72], or
finally speed up the training process itself (to estimate certain hyperparameters), among
others [73]. A broader and more comprehensive investigation of the possibility of integrat-
ing both classification methods (i.e., SVM and ML) to further improve performance can
therefore be identified as a future research direction.

It should be noted that the methods presented in this study may be useful, for example,
for urban environment assessment, calculation of percent sealed area (%ISA), or land
use/land cover (LULC) classification. Mapping of impervious surfaces and knowledge of
NDVI can also be used for quantitative analysis LST in urban heat island studies using
infrared remote sensing in urban environments [6]. Knowledge of impervious surfaces can
be useful in determining runoff intensity and pollution levels in a given area [5]. It is worth
mentioning that researchers are interested in calculating the percentage of sealed area for a
given catchment. In the case of Warsaw, the subject of such a study is the Służewiecki [5,8]
stream catchment in the southern part of Warsaw. One of the methods of estimating
impervious surfaces of large-scale projects can be high-resolution remote sensing aerial
photographs covering the near-infrared range and mapping the NDVI [74]. This is because
vegetation in near-infrared imagery has a relatively high reflectance, which in turn can
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be very well represented by the NDVI index. This index represents the ratio of visible
light to near-infrared light. So, if it has a high value, it is clear that we are dealing with the
production of vegetation. More specifically, vegetation is characterized by a high NDVI
index, while impervious surfaces, such as built-up areas such as roads and sidewalks, are
characterized by low values of this index. The NDVI scale ranges from −1.0 to +1.0, and a
value just above 0 is considered a threshold for this index, separating vegetation production
from any non-vegetation (this is well illustrated in Figure 7).

The quality of the NIR images is also important for proper classification. In other
words, an image showing the area may give different results depending on the quality. Thus,
the more accurate the images are, the better. Classifying the areas according to the different
NDVI indices allows the study area to be represented in terms of vegetation and non-
vegetation. In order to determine the impervious areas, it is necessary to take into account
that there is a strong correlation between the areas covered with vegetation production
and the pervious areas. Thus, when determining the areas covered with vegetation, one
is actually indicating permeable areas and vice versa when it comes to NDVI from the
lower end of the range of values of this indicator (they are indicative of impermeable areas).
It should also be pointed out that this method is not without drawbacks. First of all, the
method based on NIR band images underestimates the actual results in some very specific
cases. Examples of such situations are shading of some areas by tall objects. Such shaded
areas, e.g., by trees, are treated as opaque because they hinder the propagation of light.
Another example is soils and surfaces where no vegetation grows. In this case, too, the
surface may be incorrectly classified as opaque when in fact it is permeable. Therefore, the
classification of vegetation surfaces should be performed in a supervised manner and any
doubt about the classification must be corrected manually. However, these drawbacks do
not diminish the great value of the method for knowledge building.

Finally, in the literature review in Table A1 in Appendix A, we show that the first
methods for classifying urban coverage (based on remote sensing) were developed in the
early 1990s. At that time, a linear segmentation model was used that included texture,
contextual information and reflectance properties [75]. For the time, this model provided
satisfactory results. However, it was not until the early 2000s, with advances in sensors and
computing power, that studies of impervious surfaces were conducted on a larger scale. At
that time, traditional estimation methods were used, including a linear spectral mixture
model to model heterogeneous urban land cover [29], a regression model relating the
percentage of impervious surface to the green area of the urban fringe [10] and a regression
tree model [13]. With the growing interest in urban land use classification, more complex
methods have been developed over time, often combining different approaches, such as
the decision tree method using a linear spectral mixture analysis model (simultaneously
combining impervious surface classifications with population density knowledge) [76]. In-
creasingly available high-resolution imagery facilitates the mapping of impervious surfaces.
One such study used a hierarchical image segmentation method combining a multichannel
watershed transformation and watershed contour dynamics [77]. Another study sought
tools to extract spatial features from remote sensing imagery using morphological attribute
profiles (MAPs) [78]. High-resolution imagery has also made it possible to analyse normal-
ized multitemporal portions of impervious surfaces [30]. Later, impervious surfaces also
began to be estimated using multisensory and cross-source data [9]. The second decade of
the 2000s brought entirely new challenges. New opportunities emerged with the increasing
availability of various location data acquisition technologies for geospatial research and
the massive analysis of location data and discovery of patterns in location data [79]. In
addition, machine learning algorithms were used, for example, in the classification of
point-of-interest data (POI) [80]. At a later stage, different data sources also began to be
integrated, which led to the creation of a modified normalized difference index of im-
pervious surface (MNDISI) in one such study [2]. Over time, social knowledge became
an important element in the integration of various data sources. Several of these studies
combined remote sensing features with social knowledge (VGI, OSM data, POI, social
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sensorimotor data, etc.) [7,81–85]. It is also worth noting that there is considerable interest
in studying the so-called subtle dynamics of urban change, based on a multi-level approach
(pixel, grid and city block) [4], a multi-object approach to monitor surface changes over
several years [3]. In terms of outlook and suggestions from the review, it is natural to
expect further progress in integrating different types of methods, including of course social
knowledge, as advances in technology facilitate this type of research. Nonetheless, there is
also a need for studies such as this one, which combines different methods and compares
the results, embedding knowledge about impervious surface segmentation and urban
land use classification in the context of their usefulness. In this study, we show, among
other things, what the integration of different methods (remote sensing, machine learning
algorithms, NDVI) can be useful from the point of view of civil engineering theorists and
practitioners, especially in the construction sector in its broadest sense, highlighting, for
example, issues of urban planning and hydrology).

6. Conclusions

This article contains an analysis and evaluation of the classification of an urban
settlement in one of the districts of Warsaw (Fort-Bema settlement complex with an area
of about one square kilometre). The study was conducted using remote sensing data
(more precisely, orthophotos with a resolution of 0.25 m) and three different classification
methods, namely SVM, ML and RT. More precisely, the study consists of three parts. First,
multi-class LULC classification was performed (for each method), followed by impervious
surface classification (binary classification)—also for all three classification methods. Third,
the NDVI index was mapped for the same study area (Fort-Bema Estate), which can be
treated as a proxy for permeable surfaces since it has a high positive correlation with it
(vegetation is characterized by a high index, while sealed surfaces such as built-up areas
e.g., roads and sidewalks, are characterized by low values in this index). The results
obtained with the GIS platform presented in this paper allow a better understanding of how
these advanced classifiers work, which in turn can provide insightful guidance for their
selection and combination in real-world applications. The rapid development of various
remote sensing data acquisition technologies (including very high resolution orthophotos—
0.25 m pixels) and the increasing availability of GIS platforms create significant challenges
and opportunities for geoscience research [79]. Some of the opportunities and challenges
have been highlighted in this article (e.g., the potential for various applications of sealed
surface mapping in urban planning).

All in all, all three classifiers had errors, but especially for impervious surfaces, the
highest accuracy was obtained with the SVM classifier. The results showed that SVM
achieved the highest percentage of overall accuracy, followed by ML and RT with 91.51%,
91.35% and 84.52%, respectively.

However, it is worth noting that in binary classification, the difference between SVM
and ML methods was negligible. In contrast, the order of results for LULC classification
was similar (SVM followed by ML and RT), but the values for Coehn’s kappa index were
slightly lower, 84.16%, 82.80% and 74.69%, respectively. A GIS-based comparison of the
visual results and the confusion matrix shows that although the RT method showed the
most detailed classification into pervious and impervious, it was not always correct, e.g.,
water/shadow was detected as an impervious surface.
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Appendix A

The following is an overview of the main work/studies dealing with impervious
surface mapping, with different methods for their assessment (including the use of con-
ventional remote sensing, NDVI, multisensory and cross-source data, ‘social sensing’ and
classification methods such as SVM, ML and RT). Table A1 briefly characterizes these
studies and presents their contribution to the understanding of the technical problems
analysed.

Table A1. Scientific approach—various methods to study impervious surfaces (including remote
sensing and machine learning classification methods).

Year Authors/Short Description Contribution

1990 Møller-Jensen [75]

Møller-Jensen [75] used an expert approach and developed a method for
classifying Landsat-TM satellite imagery for urban coverage, more specifically
a linear segmentation model that takes into account texture and context
information as well as reflectance features. The classification was performed
for central Bangkok, and given the spatial resolution of the data, the results
had acceptable accuracy.

2003 Sawaya et al. [86]

Sawaya et al. [86] used high resolution satellite imagery (for Minnesota) to
map and classify impervious surfaces, lake water clarity and aquatic
vegetation. The results showed high accuracy of results, with the highest
accuracy for impervious surfaces. The authors indicated that this type of data
has the potential to extend satellite-based remote sensing and is well suited for
producing reliable soil/land assessments at the local scale.

2003 Yang et al. [13].

Yang et al. [13] used Landsat-7 ETM+ data and high resolution imagery to map
impervious surfaces. In particular, they used multisensor and multisource
datasets to quantify impervious urban surfaces as a continuous variable. An
appropriate regression tree model was used to calculate the amount
(percentage) of impervious surfaces. In this way, the percentage of impervious
surfaces was determined at the sub-pixel level at 30 m resolution. The
mapping of impervious surfaces was tested for large areas in the United States,
more specifically in South Dakota and the state of Virginia. The proposed
method was later used to map impervious surfaces for the entire U.S. in the
creation of a national land cover database.

2003 Wu and Murray [29]

Wu and Murray [29] used Landsat ETM+ data and a linear spectral mixture
model to model heterogeneous urban land cover for the Columbus
metropolitan area in the United States. In this way, they estimated the
distribution of impervious surface along with vegetation and land cover. They
used the albedo parameter (a photometric parameter that determines the
reflectivity of a surface) to estimate the fraction of impervious surface. More
specifically, the analysis of impervious surfaces was performed for layers with
low and high values of this parameter. In the study by Wu and Murray [29],
the root mean square error (RMSE) was 10.6%, which is in the same order of
magnitude as the error obtained for Digital Orthophoto Quarterquadrangle
images, while demonstrating the effectiveness of this type of method in
impervious surface estimation studies.

2004 Bauer et al. [10]

Bauer et al. [10] used Landsat TM data and a regression model to determine
the percentage of impervious surface for a metropolitan area (Twin Cities) for
three different time points (referring to the 1990s). The method has high
efficiency and, in particular, the results showed that by linking the impervious
surfaces to the green area of the urban edges, 80–90 percent of the variation in
imperviousness was reflected in the green area. The conclusion of the study is
that classification of Landsat TM data allows effective mapping and
monitoring, as well as quantification of the extent of impervious surfaces. In
addition, determining the percentage of impervious surfaces can be a proxy
indicator of environmental quality.
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Table A1. Cont.

Year Authors/Short Description Contribution

2006 Lu and Weng [76]

Lu and Weng [76] used a decision tree classification method and a linear
spectral mixture analysis model to estimate impervious urban surface in
Indianapolis, Indiana (USA), for five land use classes (corresponding to a low
to very high development intensity classification). To conduct the study, the
authors used Landsat Enhanced Thematic Mapper data and integrated the
fractal imagery with a linear analysis of spectral mixing and land surface
temperature. The method proposed by the authors to integrate the fractal
image data and the surface temperature gave quite good results in extracting
the impervious surface (the mean square error was 9.22%, the system error
was 5.68% and Kappa = 83.78%). The high value of Kappa index indicates high
overall classification accuracy for the five urban land use classes.

2010 Li et al. [77]

Li et al. [77] used a hierarchical method to segment multispectral images with
very high resolution. They obtained the segmentation result by applying a
multichannel morphological method to the spectral image, and the resulting
extracted image gradient was then subjected to watershed transformation. The
multilevel hierarchical segmentation results with different levels of detail were
then compared by the authors with existing methods for mapping impervious
surfaces, i.e., the single-level segmentation method, as well as the pixel-based
classification method. The results of this comparison show that the multi-level
hierarchical method provides significantly more accurate segmentation results,
especially when visual and quantitative aspects are taken into account.

2010 Dalla Mura et al. [78]

Dalla Mura et al. [78] used morphological attribute profiles (MAPs) as a tool to
extract spatial features from remote sensing imagery. MAPs can be used to
characterize imagery resulting from the sequential application of
morphological attribute profiles at multiple levels and allow for the modeling
of structural information and various parametric features. The authors note
that by characterizing the image with different attributes, it is possible to
model spatial information more accurately than with conventional
morphological philtres. The authors used two very high resolution
panchromatic images (Quickbird) of Trento, Italy, and applied MAPs to
perform a classification characterized by a good description of the scene in
terms of thematic and geometric accuracy by considering different attribute
profiles.

2011 Lu et al. [30]

Lu et al. [30] used integrated satellite imagery from Landsat and QuickBird
and selected the district of Lucas do Rio Verde in the Brazilian state of Mato
Grosso and performed an analysis of the normalized multitemporal fractions
of impervious surfaces. An original element and some added value of the
study is the introduction of a two-step calibration. First, a previously created
regression model for the QuickBird derived imagery was used to calibrate the
values of the impermeable fractions for the Landsat imagery. The next step
was to normalise the results, more precisely the differences of the calibrated
images of the impervious surface obtained for different dates (different time
points). The conclusion of the study is that the one-pixel (per pixel) method
tends to significantly overestimate the size of impervious surfaces in some
areas (by up to 60 percent), especially in urban fringe areas (i.e., urban-rural
interface). Another conclusion is that normalization of multitemporal images
of impervious surface fractions is necessary to reduce the effects of varying
environmental conditions. Traditional classification methods based on
per-pixel analysis cannot effectively solve the mixed pixel problem.
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Table A1. Cont.

Year Authors/Short Description Contribution

2012 Deng et al. [9]

Deng et al. [9] used remote sensing in combination with a linear spectral
mixing method to map changes in the impervious surface (in the Pearl River
Delta, China). More specifically, they performed a multitemporal analysis of
the fraction of impervious surface for Landsat data (Landsat images from
different years, i.e., 1998, 2003 and 2008). Using a linear spectral model, they
were able to extract information about the impervious surface from the
Landsat imagery. The authors of this study were able to indicate exactly (the
study was quantitative in nature) by how much the amount of impervious
surface changed in percentage terms over the different time periods, i.e.,
1998–2003 and 2003–2008. Interestingly, the changes in impervious surface (in
conjunction with social conditions) allowed for a better examination of the
direction of expansion to better understand urban change in the area studied
(in the Pearl River Delta). The authors note that temporal and spatial analyses
of impervious surface changes allow for better understanding and planning of
spatial change and, in particular, land use management and spatial planning
policy design.

2012 Lu and Liu [79]

Lu and Liu [79] discussed the opportunities and challenges posed by the rapid
development and increasing availability of various location data collection
technologies for geospatial research. In particular, they highlighted three
important issues, namely, large-scale location data collection and pattern
recognition of location data. Lu and Liu [79] not only provide an overview of
the current state of the art, but also point out potential opportunities for
geospatial research.

2012 Rodrigues et al. [80]

Rodrigues et al. [80] used machine learning to classify point of interest (POI)
data containing locations (in China) and information available on the Internet
about these locations, i.e., Google Place1, Facebook Place2 or Gaode Place3.
The use of POI data is a relatively new direction in urban research
(urbanization monitoring) and refers to more specific information, including
addresses, names, coordinates, etc. The authors compared, among others, flat
and hierarchical approaches (different algorithms) in the context of urban
planning.

2013 Liu et al. [2]

Liu et al. [2] used 3 different data sources (i.e., nighttime luminance, ground
temperature and multispectral reflectance) and proposed a modified
normalized difference index of impervious surface (MNDISI). In this way, they
succeeded in suppressing unwanted land cover while improving the mapping
of impervious surfaces. It is worth noting that the Normalized Impervious
Surface Difference Index (NDISI) alone works very well to extract impervious
surfaces from multispectral imagery. However, there were concerns about its
low effectiveness in extracting impervious surfaces—i.e., it may not work well
in a diverse environment (i.e., an environment with spectral heterogeneity)
where impervious materials are interspersed with other land cover. Therefore,
the multi-source composition index proposed by Liu et al. [2] has helped to
solve this problem. Combining different data sources and creating a modified
NDISI (MNDISI) proved to be an effective approach for mapping and
estimating impervious surfaces in an environment with different land covers.

2013 Arsanjani et al. [85]

Arsanjani et al. [85] used high-resolution imagery with a spatial resolution of 5
m (RapidEye) and volunteer geographic information (VGI) contributed to the
OpenStreetMap (OSM) project as alternative data sources to extract land use
patterns in Koblenz (Germany). The method used by the authors is maximum
likelihood classification. The results show that the accuracy of this method is
very good—a kappa index of 89% was achieved. Based on the study by
Arsanjani et al. [85], it can be concluded that the remote sensing approach can
be integrated with VGI to facilitate the process of observing and monitoring
the Earth.
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Table A1. Cont.

Year Authors/Short Description Contribution

2015 Liu et al. [82]

Liu et al. [82] point out that Big Data—including from smart cards, GPS data
from cabs or data from social media and those from internet maps—make it
possible to add to and better explore/understand knowledge about
socio-economic environments. The authors use the term ‘social sensing’ in the
context of analyzing such geospatial/remote sensing Big Data. Liu et al. [82]
emphasize that these data—as they reflect some relevant socio-economic
characteristics—are a good complement to remote sensing methods and
traditional remote sensing data. The authors have conceptually combined
social sensing with remote sensing and point to applications of this type of
social sensing analysis. This type of analysis is still in its infancy and goes
beyond traditional remote sensing analysis, but could have broad applications
in the future for evaluating spatial interactions and the semantics of places.

2015 Jiang et al. [84]

Jiang et al. [84] performed classification and validation of online data from POI
to estimate land use at the census block level. Jiang et al. [84] collected,
standardized, classified and validated POI type volunteered geographic
information (VGI) to estimate disaggregated land use at very high spatial
resolution (census block level) using a porttion of the Boston metropolitan area
in the United States as an example. The approach proposed by Jiang et al. [84]
allows estimation of land use in blocks with high resolution, while VGI is a
low-cost method and provides good value for money (ensuring relatively high
quality at a certain accuracy threshold). Jiang et al. [84] also point out the
usefulness of classifying POI data for different types of urban analysis.

2016 Johnson i Iizuka [83]

Johnson and Iizuka [83] explored the potential of remote sensing data with
social knowledge. The authors used data such as OpenStreetMap (OSM) and
NDVI Landsat time series used for LULC classification, OSM land use and
‘natural’ training data. More specifically, they used Landsat satellite imagery
time series and training data from OpenStreetMap datasets and performed
(supervised) land use/land cover/LULC classification/mapping. The best
results were obtained using the Random Forest algorithm (classification
accuracy 84%).

2016 Hu et al. [81]

Hu et al. [81] used satellite imagery and open social data to extract/identify
urban land use features in large areas (in Beijing). The authors performed a
classification of parcels according to different land use classes. For this
purpose, the authors used Open Street Map (OSM) data and various features
derived from Points of Interest (POI) data and data from Landsat 8 Operational
Land Imager (OLI) imagery; thresholding methods and probability measures
were used in the classification. The method used produced different results for
the different land classes (between 69.89% and 81.04%).

2017 Huang et al. [4]

Huang et al. [4] used satellite imagery with multiple views (from the Ziyuan 3
satellite /ZY-3/) to study subtle urban dynamics. The pixel block method
proposed by the authors to analyze changes allowed to solve the problem of
spectral heterogeneity—which is particularly important when extracting
impervious surfaces in different environments (in high resolution data). The
results made it possible to identify different patterns of urban development in
China. Knowledge of subtle changes resulting from urban infrastructure
construction provides important information for urban planners—to better
observe spatial details and understand the local environment and human
activities. Specifically, the authors used ZY-3 satellite data and
photogrammetric derivatives to generate multispatial orthographic images.
They presented a framework for accurately analyzing urban change using a
multilevel approach (pixel, grid and city block), which they tested for two
Chinese cities, Wuhan and Beijing.
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2017 Huang et al. [4]

The authors’ proposed multilevel method for monitoring subtle urban change
was found to be relatively accurate (kappa coefficients ~0.8 at the pixel level;
93–95% correctness at the grid level). The authors’ analysis allowed them to
draw important conclusions about the nature of spatial changes. Among other
things, they pointed to a high degree of fragmentation and spatial
heterogeneity of buildings, as well as insufficient spacing between building
patches. One of the conclusions is that high-resolution sensors are needed to
accurately detect subtle urban changes (which ZY-3 provides with a resolution
of 2.5 m compared to Landsat/30 m/, for example). According to the authors,
it is not possible to monitor subtle urban changes with Landsat data.

2018 Zhang and Huang [3]

Zhang and Huang [3] monitored the change in impervious surface using a
multi-objective approach to monitor the surface change and showed the
changes occurred over several years. Zhang and Huang [3] used
high-resolution time-series data to address the problem of mixed pixels and, in
particular, the problem of spectral confusion between impervious surfaces and
other non-vegetated land covers. The research experiment conducted allowed
(enabled) the extraction of impervious surfaces from high resolution images.
The researchers’ experiment was conducted for the city of Shenzhen in China,
using satellite imagery (1.2–2.4 m): QuickBird, WorldView-2 and WorldView-3,
from various data over 14 years. The high value of the kappa coefficient for the
obtained results (kappa > 0.90) indicates high efficiency in extracting certain
features (high efficiency of image classification).

2018 Yu et al. [7]

Yu et al. [7] used an approach based on the integration of remote sensing and
social data in their study to estimate impervious surface. They extracted
physical features using morphological attribute profiles in remote sensing
images based on a spectral mixture analysis model, while they extracted social
features based on normalized kernel densities of point-of-interest datasets and
vector paths. The authors then estimated impervious surfaces based on the
extracted and integrated physical and social features, using a multivariate
linear regression model. The study of estimating impervious surfaces based on
the method described above was conducted for the urban area of Guangzhou
(in China)—at pixel and parcel levels. The results at pixel and parcel levels
were similar (RMSE of about 11%), which proves the effectiveness of
combining remote sensing imagery and social data to map impervious surface.
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