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a b s t r a c t

We discuss the construction of C2 cubic spline quasi-interpolation schemes defined on a
refined partition. These schemes are reduced in terms of degrees of freedom compared to
those existing in the literature. Namely, we provide a rule for reducing them by imposing
super-smoothing conditions while preserving full smoothness and cubic precision. In
addition, we provide subdivision rules by means of blossoming. The derived rules are
designed to express the B-spline coefficients associated with a finer partition from those
associated with the former one.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Spline functions are a mature and well-researched field in numerical analysis. The use of low degree polynomials is
eneficial for curve fitting as they reduce the computational load and numerical instabilities that are typical of high degree
olynomial interpolants. Cubic splines with continuity C2 are very appealing because they couple the low degree with
ull smoothness which allows to efficiently address various problems.

Given a partition Xn := {xi : a = x0 < x1 < · · · < xn = b} of a bounded interval I := [a, b], C2 (I)-continuous cubic
splines can be constructed by decomposing each interval Ii := [xi, xi+1], 0 ≤ i ≤ n − 1, into three micro-intervals after
inserting two new knots [1,2]. More recently, the same idea has been used in [3,4] to address the problem of Hermite
interpolation with this kind of cubic splines. In both papers, the constructed spline is expressed in each sub-interval Ii,
in terms of its function and derivative values up to order two at the knots xi and xi+1. The spline is written as a linear
combination of a set of basis functions. In [3], the considered basis is a classical Hermite basis, which means that the basis
functions are not all non-negative, while the authors in [4] have provided a strategy to construct normalized B-spline-like
bases, i.e., the basis functions form a partition of unity, are compactly supported and are all non-negative. These properties
ensure both numerical stability and local control of the constructed spline. This approach is somewhat complicated, and
may be seen as a special case of the approach used in this work.

The idea of inserting a split knot was first proposed in [5] which is considered as the univariate case of the Powell–Sabin
(PS-)split [6,7]. It is widely used to approximate n-variate functions. In the case n = 2, this refinement into six micro-
triangles was introduced in [8] to construct C1-quadratic interpolating splines, leading to intensive research, in which
the construction of B-spline-like function bases introduced in [9] should be highlighted. The cubic case was considered
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in [10–14]. Quartic splines were also discussed in [15,16]. Spaces of quintic and sextic bivariate splines were analyzed
in [17,18]. In [19,20], normalized bases for PS-splines of degree 3r − 1 and super-splines of arbitrary degree are given,
espectively (see also [21,22]). In the case n = 3, the construction of C1-quadratic interpolants is given in [23]. Each
etrahedron in the tessellation is subdivided into 24 subtetrahedra in a specific way. This problem for a PS-refinement of
tessellation of s-simplices in Rs obtained by decomposing each of them into smaller simplices is addressed in [24].
Regarding the univariate case, quasi-interpolation operators expressed in Bernstein form are more suitable. In fact,

he Bernstein basis of degree d relative to an interval I is the best basis in Pd restricted to I , according to the concept of
ptimal normalized totally positive basis [25,26]. Moreover inserting additional knots is often used to incorporate shape
arameters in order to construct approximating splines that preserve convexity or monotonicity to given data [5]. Shape-
reserving properties for the cubic spline space proposed in this work can be achieved by imposing conditions on the
ocation of the new inserted knots to achieve simpler results than those available when using spaces without split points.
nserting new knots is used also in the bivariate case to preserve convexity [27].

We consider a space of C1 continuous cubic splines on a refined partition with C2 super-smoothness conditions at
he set of split points recently introduced in [7], where a general framework for quasi-interpolation based on the cubic
-splines has been developed in [7]. The provided quasi-interpolating splines are C1 continuous on I , and C2 at the set of
plit points. The aim of this work is to provide a rule that will enforce the C2 smoothness conditions at the set of knots,
nd later, on the whole domain. Motivated by [28], we develop a subdivision rule by means of blossom which provides
he coefficients of the B-spline-like representation on the finer partition (twice-split) written as convex combinations of
he B-spline-like coefficients on the former partition (simple-split). The convexity property is useful because it allows to
et a stable computation and makes the subdivision geometrically intuitive. By means of the derived subdivision rule, we
an provide a C2 quasi-interpolating spline defined on the twice-refined partition like those splines in [3,4] but with a
ower set of functional data.

In this work, we reduce the computational cost by considering a simple refinement of Xn obtained by introducing a
ingle split point in each element of Xn. Then, a reduced space of C2 cubic splines is defined from function values and
irst derivative values at the knots and from function values at the inserted split points. In summary, full smoothness is
reserved and the number of degrees of freedom is reduced, so that the computational cost diminishes.
The paper is organized as follows. In Section 2, we provide some preliminaries on Bernstein–Bézier form and polar

orms. Section 3 is devoted to introduce the space of C1 cubic splines, to provide a representation of B-splines and to
erive a rule that ensures the global C2 smoothness on the whole domain. The theoretical results are confirmed by some
umerical tests. In Section 4, subdivision rules are derived for the provided B-spline representation. Also some numerical
ests are proposed to illustrate the convergence of the derived rules.

. Preliminaries

In general, Srd (Xn) will denote the space of C r polynomial splines of degree d on Xn, i.e.

Srd (Xn) :=
{
s ∈ C r (I) : s|Ii ∈ Pd, i = 0, . . . , n − 1

}
,

here Pd stands for the space of polynomials of degree less than or equal to d.
The restriction of each element s of Srd (Xn) to an interval Ii is a polynomial. Then, it can be represented in the Bernstein

asis relative to Ii by using the barycentric coordinates (1−t, t) with respect to Ii, i.e. x = (1 − t) xi +txi+1 holds. Using the
otations |α| := α1 + α2 for the length of a multi-index α := (α1, α2) with non-negative integer entries and α! := α1!α2!,
he Bernstein polynomials Bd

α,i of degree d relative to Ii is given by

Bd
α,i (x) =

d!
α!
(1 − t)α1 tα2 , |α| = d. (1)

Each polynomial Bd
α,i is non-negative whenever 0 ≤ t ≤ 1, i.e. when x ∈ Ii.

Each polynomial p ∈ Pd can be expressed on Ii as a convex combination of polynomials Bd
α,i, so that there exist

coefficients bα,i, |α| = d, such that

p =

∑
|α|=d

bα,i B
d
α,i.

It is the Bernstein–Bézier (BB-) representation of p and its coefficients are said to be the Bézier (B-) ordinates or Bernstein–
Bézier (BB-) coefficients of p relative to Ii. They are linked to the domain points Λα,i :=

α1
d xi +

α2
d xi+1. By linking each

B-ordinate bα,i with the domain point Λα,i, the BB-representation can be displayed schematically as shown in Fig. 1 for
the case of cubic polynomials. The piecewise linear interpolant of the control points cα,i :=

(
Λα,i, bα,i

)
is said to be the

control net. It is tangent to the polynomial curve at the two knots xi and xi+1.
The B-ordinates bα,i can be explicitly determined from the polar form or blossom B [p] [29], i.e. the unique symmetric

multi-affine polynomial B[p] : Rd
→ R fulfilling the diagonal property B [p] (x [d]) = p(x), where x [d] means that the

point x is repeated d times as an argument of the polar form, omitting the term [d] when d = 1. More specifically, it
holds

b = B [p] x [α ], x [α ] .
α,i ( i 1 i+1 2 )

2
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Fig. 1. Schematic representation of the domain points and B-ordinates of a cubic polynomial.

nother very useful practical utility of polar forms is the computation of the B-ordinates of the restriction of a polynomial
to a sub-interval of I from the ones of p relative to I . For a sub-interval Ĩ = [c1, c2] of I , with c1 and c2 having barycentric

coordinates σ i
=

(
σ i
1, σ

i
2

)
, i = 1, 2, with respect to I , then the B-ordinates b̃α of p on Ĩ can be determined in the following

form:

b̃α,i = B [p]
(
σ 1

[α1], σ
2
[α2]

)
. (2)

Also the De Casteljau’s algorithm is used to calculate the blossom in a stable way. Only convex combinations are
produced:

B[p]
(
τ 1, . . . , τ d

)
= b[d]

(0,0),

where

b[0]
α = bα,i, for |α| = d,

b[r]
α = τ r1b

[r−1]
α+e1 + τ r2b

[r−1]
α+e2 , for |α| = d − r, and r = 1, . . . , d,

with e1 := (1, 0) and e2 := (0, 1). For details, see [7].

3. Reduced C2 cubic splines space

In what follows, we start from a space of C1 cubic splines and then a rule to achieve C2 regularity on an arbitrary
partition is given.

3.1. C1 Cubic splines

Let X̃n be the refinement of Xn obtained by inserting in every Ii a split point ξi. We focus on the subspace S1,23

(̃
Xn

)
of

S13
(̃
Xn

)
resulting when C2 smoothness at the inserted knots [7] is required, i.e.

S1,23

(̃
Xn

)
:=

{
s ∈ S13

(̃
Xn

)
: s ∈ C2 (ξ)

}
,

where ξ := {ξi}
n−1
i=1 is the set of the inserted split points. Hereafter, the elements of Xn will be called knots, while we will

refer to the inserted points ξi as inner split points.
A spline s ∈ S1,23

(̃
Xn

)
can be uniquely characterized by specifying two particular values for each knot of Xn, and one

value for each interval induced by Xn.

Theorem 1. Given values f 0i , and f 1i , 0 ≤ i ≤ n, and gi, 0 ≤ i ≤ n − 1, there exists a unique spline s ∈ S1,23

(̃
Xn

)
such that

s(xi) = f 0i , s′(xi) = f 1i (3)

for every knot xi of Xn and

s (ξi) = gi (4)

for every interval Ii.

Proof. It suffices to show how the B-ordinates of the solution s ∈ S1,23

(̃
Xn

)
of this non standard interpolation problem

are obtained for each macro-interval Ii.
On each of the two micro-intervals Ji,1 := [xi, ξi] and Ji,2 := [ξi, xi+1] the spline s is a polynomial of degree 3, which

can be represented from its B-ordinates. They are shown in Fig. 2. Any reference to Ii is omitted.
The B-ordinates d0, d1, d2 and d3 indicated by (•) are provided by the conditions in (3) on the values of the spline and

its first derivative at knots xi and xi+1.
The interpolation condition at ξi given in (4) allows to compute the B-ordinate d4 indicated by (▲). The remaining

B-ordinates d5 and d6 indicated by (◦), are computed from C2 smoothness at ξi. More precisely, let p be a quadratic poly-
nomial defined on the segment [

2xi+ξi
3 ,

ξi+2xi+1
3 ]. The B-ordinates of p are b(2,0) = d1, b(1,1) =

1
2τi,1τi,2

(
d4 − τ 2i,1d1 − τ 2i,2d2

)
and b(0,2) = d2, where, τi,1 and τi,2 = 1− τi,1 are the barycentric coordinates of ξi with respect to Ii. After subdivision and
y using (2), it follows that

d5 = B [p]
(
(1, 0), (τi,1, τi,2)

)
and d6 = B [p]

(
(τi,1, τi,2), (0, 1)

)
.

t holds d = τ d + τ b and d = τ b + τ d , which concludes the proof. □
5 i,1 1 i,2 (1,1) 6 i,1 (1,1) i,2 2

3
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Fig. 2. A schematic representation of the B-ordinates involved in Theorem 1.

Having proved the unisolvency of the interpolation problem, we consider how to represent its unique solution. To do
o, we construct B-spline-like functions (B-splines for short) Dkn

i,(ℓ,m), ℓ,m ∈ N, ℓ+m = 1, and Dsp
k in order to express any

spline s ∈ S1,23

(̃
Xn

)
in the form

s =

n∑
i=0

∑
ℓ+m=1

ckni,(ℓ,m) D
kn
i,(ℓ,m) +

n−1∑
k=0

cspk Dsp
k . (5)

The superscripts ‘‘kn’’ (knot) and ‘‘sp’’ (split) are used to distinguish between B-splines with respect to a knot and a
split point, respectively. A B-spline with respect to a split point can also be designated as a B-spline with respect to the
interval in which the split point is located.

We now show how to construct suitable B-splines Dkn
i,(ℓ,m) and Dsp

k for the knot xi and the interval Ik, respectively. The
construction used herein is entirely based on the choice of a single interval Wi := [Wi,1,Wi,2] for every knot xi in Xn
(see [7]). For each interior knot xi, define

Wi,1 :=
2
3
xi−1 +

1
3
xi and Wi,2 :=

2
3
xi+1 +

1
3
xi. (6)

One possibility to choose Wi is to consider the segment of minimal length that ensures the non-negativity of B-splines
Dkn

i,(ℓ,m) [7]. In general, the choice depends on the problem being addressed, for more details see [30]. Equipped with Wi,
e introduce four parameters corresponding to the knot xi. Let

(
αi,(1,0), αi,(0,1)

)
be the barycentric coordinates of xi w.r.t.

i. This is the unique pair satisfying

αi,(1,0)Wi,1 + αi,(0,1)Wi,2 = xi, αi,(1,0) + αi,(0,1) = 1.

urthermore, let
(
βi,(1,0), βi,(0,1)

)
be the directional barycentric coordinates of the vector −→x w.r.t. Wi. This is the unique

pair such that

βi,(1,0)Wi,1 + βi,(0,1)Wi,2 = 1, βi,(1,0) + βi,(0,1) = 0.

We define the B-spline basis for S1,23

(̃
Xn

)
in terms of conditions (3) and (4) provided in Theorem 1. The definition of

he B-splines Dkn
i,(ℓ,m), ℓ+ m = 1, corresponding to the knot xi is based on αi,(ℓ,m) and βi,(ℓ,m): at xi we set

Dkn
i,(ℓ,m) (xi) = αi,(ℓ,m),

(
Dkn

i,(ℓ,m)

)′
(xi) = βi,(ℓ,m),

and

Dkn
i,(ℓ,m)

(
xj
)

= 0,
(
Dkn

i,(ℓ,m)

)′ (
xj
)

= 0

at any knot xj of Xn different from xi. Moreover, if τi,1 and τi,2 are convex weights such that ξi = τi,1xi + τi,2xi+1, then we
set the values in condition (4) to zero except

B
[
Dkn

i,(ℓ,m)

]
(ξi[3]) = τ 2i,1

(
αi,(ℓ,m) + βi,(ℓ,m)

ξi − xi
3

)
and

B
[
Dkn

i,(ℓ,m)

]
(ξi−1[3]) = τ 2i−1,2

(
αi,(ℓ,m) + βi,(ℓ,m)

ξi−1 − xi
3

)
.

Similarly, we define the B-spline Dsp
k corresponding to Ik by the setting all values in (3) and (4) to zero, except the following

ne:

B
[
Dsp

k

]
(ξk[3]) = 2τk,1τk,2.

Fig. 3 shows the typical plots of B-splines Dkn
i,(1,0) and Dkn

i,(0,1) associated with the interior knot xi, as well as the B-spline
Dsp

k relative to the split point ξk.
Once constructed the B-splines as solutions of the corresponding interpolation problems, one needs to give the explicit

expressions of coefficients ckni,(ℓ,m) and cspk in the BB-representation (5) of s ∈ S1,23

(̃
Xn

)
. This is achieved by means of polar

forms of restrictions of s to specific intervals of Xn. To be precise, for any interval Ji of Xn with an end-point at xi, it holds

ckn = B
[
s

]
x [2], x [ℓ], x [m] . (7)
i,(ℓ,m) |Ji ( i i−1 i+1 )

4
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Fig. 3. B-splines with respect to the knot xi (left), and the split point ξk (right).

ote that the above blossom value can be evaluated in terms of s and its first derivative at the knot xi, namely

B
[
s| J i

]
(xi [2] , xi−1) = s (xi) +

2
3
s′ (xi) (xi−1 − xi)

and

B
[
s| J i

]
(xi [2] , xi+1) = s (xi) +

2
3
s′ (xi) (xi+1 − xi) .

This confirms that the value of ckni,(ℓ,m) is independent of the choice of Ji. Regarding the coefficient cspk corresponding to Ik,
it is satisfied that

cspk = B
[
s| Jk

]
(xk, xk+1, ξk) . (8)

To understand the super-smoothness condition C2 at the knots in Xn for C1 cubic splines that we will explore later,
e now review the Bernstein–Bézier representation of s restricted to an interval induced by X̃n. Let Ji,1 = [xi, ξi] be the

eft sub-interval of Ii. The blossom value providing the B-ordinate of s| J i,1 corresponding to the knot xi is given by

B
[
s| J i,1

]
(xi [3]) =

∑
ℓ+m=1

αi,(ℓ,m) ckni,(ℓ,m).

The B-ordinate corresponds to the domain point 2
3xi +

1
3ξi and is equal to

B
[
s| J i,1

]
(xi [2] , ξi) =

∑
ℓ+m=1

(
αi,(ℓ,m) + βi,(ℓ,m)

ξi − xi
3

)
ckni,(ℓ,m). (9)

Note that the weights in the sum (9) are the barycentric coordinates of the 2
3xi +

1
3ξi w.r.t. Wi.

Furthermore, the B-ordinate corresponding to the split point ξi is

B
[
s| J i,1

]
(ξi[3]) = τ 2i,1B

[
s| J i,1

]
(xi, ξi [2])+ τ 2i,2B

[
s| J i,2

]
(xi+1, ξi [2])+ 2τi,1τi,2 c

sp
k ,

where Ji,2 = [ξi, xi+1].
The B-ordinate corresponding to the domain point 1

3xi +
2
3ξi is a convex combination of certain B-ordinates associated

with the domain points 2
3xi +

1
3ξi and ξi. Indeed, it is given by

B
[
s| J i,1

]
(xi, ξi [2]) = τi,1B

[
s| J i,1

]
(xi [2] , ξi)+ τi,2c

sp
i .

n summary,

emark 1. Boundary B-spline-like bases for S1,23

(̃
Xn

)
are constructed according to the same procedure outlined for

interior points. The B-spline-like w.r.t. vertex a = x0 (resp. b = xn) is constructed with a particular choice of the interval
W0 (resp. Wn). Namely,

W0,1 := x0 and Wn,2 := xn.

Remark 2. Here, we show the relationship between the B-splines considered in this paper and the classical Hermite
basis. Let ϕi and ψi be the unique functions in S1,23

(̃
Xn

)
satisfying the interpolation conditions

ϕi(xj) = δij, ϕ′

i (xj) = 0, j = 0, . . . , n,
ψi(xj) = 0, ψ ′

i (xj) = δij, j = 0, . . . , n,

where δ stands for Kronecker’s delta.
5
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Fig. 4. The classical Hermite basis functions ϕi and ψi of the space S1,23

(̃
Xn

)
.

The B-splines Dkn
i,(ℓ,m), ℓ+m = 1, are convex combinations of the classical Hermite basis functions (see Fig. 4). Namely,

Dkn
i,(ℓ,m) = αi,(ℓ,m)ϕi + βi,(ℓ,m)ψi.

It can be proved that the B-splines considered here are convex combination of the B-splines lying in the space of cubic
plines having double knots at knots xi and simple knots at inner points ξi. For more details, see [31, ch. 9].

.2. Rule to achieve C2 smoothness at the set of knots

Consider a linear operator Q of the form

Qf :=

n∑
i=0

∑
ℓ+m=1

ψkn
i,(ℓ,m) (f ) D

kn
i,(ℓ,m) +

n−1∑
k=0

ψ
sp
k (f ) D

sp
k , (10)

which associates with a given function f a spline in S1,23

(̃
Xn

)
. It is based on the choice of linear functionals ψkn

i,(ℓ,m) and
ψ

sp
k corresponding to knots and intervals, respectively. Motivated by (7) and (8), we consider the linear functionals ψkn

i,(ℓ,m)
and ψ sp

k given by

ψkn
i,(ℓ,m) (f ) = B

[
Ikn
i,(ℓ,m)f

]
(xi [2] , xi−1 [ℓ] , xi+1 [m]) ,

ψ
sp
k (f ) = B

[
Isp
k f

]
(xk, xk+1, ξk) ,

(11)

for some linear operators Ikn
i,(ℓ,m) and Isp

k that map a function f to cubic polynomials Ikn
i,(ℓ,m)f and Isp

k f . To guarantee the
locality property of the quasi-interpolant, we assume that the data-sites of the scattered data used to construct ψkn

i,(ℓ,m)
(resp. ψ sp

k ) belong to the support of Dkn
i,(ℓ,m) (resp. D

sp
k ) and allow us to construct a local linear polynomial operator Ikn

i,(ℓ,m)
(resp. Isp

k ) reproducing the space of cubic polynomials [2,7,17,18,32], i.e., Ikn
i,(ℓ,m)f = f and Isp

k f = f for all f ∈ P3. One can
choose the operators Ikn

i,(ℓ,m) and Isp
k as Lagrange or Hermite interpolation operators.

In what follows, we provide an approach that enables us to get C2 smoothness at the knots in Xn. We start by observing
from (7), (10) and (11) that

B
[
Ikn
i,(ℓ,m)f| J i,1

]
(xi [2] , xi−1 [ℓ] , xi+1 [m]) = B

[
Qf| J i,1

]
(xi [2] , xi−1 [ℓ] , xi+1 [m]) ,

B
[
Isp
k f| Jk,1

]
(xk, xk+1, ξk) = B

[
Qf| Jk,1

]
(xk, xk+1, ξk) .

As the following result shows, C2 smoothness can be achieved by specifying a cubic polynomial that connect the local
operators acting in the closest neighborhood of the knot.

Theorem 2. Let Qf be defined by (10), and let xi be a knot of Xn. Assume that there exists a polynomial p ∈ P3 such that the
following requirements are met:

1. The operator Ikn
i,(ℓ,m), ℓ+ m = 1, corresponding to xi satisfies

Ikn
i,(ℓ,m)f (xi) = p(xi),

(
Ikn
i,(ℓ,m)f

)′
(xi) = p′(xi). (12)

2. The operators Isp
i−1 and Isp

i corresponding to the intervals Ii−1 and Ii with an end-point at xi−1 and xi, respectively, satisfy
the conditions

Isp
i−1f (ξi−1) = p (ξi−1) , (13)

Ispf ξ = p ξ . (14)
i ( i) ( i)

6
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Then, Qf is C2-continuous at xi.

Proof. We need to prove that (Qf )′′ (xi) = p′′ (xi). Recall that,

D2
ξi−xi Qf| J i,1 (xi) = 6B

[
Qf| J i,1

]
(xi, (ξi − xi)[2])

= 6
(
−2B

[
Qf| J i,1

]
(xi[2], ξi)+ B

[
Qf| J i,1

]
(xi, ξi[2])+ B

[
Qf| J i,1

]
(xi[3])

)
.

nd,

D2
xi−ξi−1

Qf| J i−1,2 (xi) = 6B
[
Qf| J i−1,2

]
(xi, (xi − ξi−1)[2])

= 6
(
−2B

[
Qf| J i−1,2

]
(xi[2], ξi−1)+ B

[
Qf| J i−1,2

]
(xi, ξi−1[2])+ B

[
Qf| J i−1,2

]
(xi[3])

)
.

ore precisely, we need to prove that

D2
ξi−xi Qf| J i,1 (xi) = 6 (−2B [p] (xi[2], ξi)+ B [p] (xi, ξi[2])+ B [p] (xi[3])) ,

nd,

D2
xi−ξi−1

Qf| J i−1,2 (xi) = 6 (−2B [p] (xi[2], ξi−1)+ B [p] (xi, ξi−1[2])+ B [p] (xi[3])) ,

where the blossom values of p are all independent of Ji,1 and Ji−1,2, respectively. To this end, we consider the blossom
values

B
[
Qf| J i,1

]
(xi[2], ξi) , B

[
Qf| J i,1

]
(xi, ξi[2]) , B

[
Qf| J i−1,2

]
(xi[2], ξi−1) and B

[
Qf| J i−1,2

]
(xi, ξi−1[2])

hat will help us to express the second order derivatives of Qf| J i,1 and Qf| J i−1,2 at the knot xi.
The blossom value B

[
Qf| J i,1

]
(xi[2], ξi) is the B-ordinate of Qf| J i,1 on Ji,1 corresponding to the domain point 2

3xi +
1
3ξi

(9), i.e.

B
[
Qf| J i,1

]
(xi[2], ξi) =

∑
ℓ+m=1

(
αi,(ℓ,m) + βi,(ℓ,m)

ξi − xi
3

)
B

[
Ikn
i,(ℓ,m)f

]
(xi[2], xi−1[ℓ], xi+1[m]) .

The weights αi,(ℓ,m) + βi,(ℓ,m)
ξi−xi
3 are the barycentric coordinates of the point 2

3xi +
1
3ξi w.r.t. Wi, which implies that they

are also the barycentric coordinates of the point ξi w.r.t. the interval [xi−1, xi+1]. Hence, throughout multi-affinity of the
blossom and by (12), one can obtain

B
[
Qf| J i,1

]
(xi[2], ξi) = B

[
Ikn
i,(ℓ,m)f

]
(xi[2], ξi) = B [p] (xi[2], ξi) .

Considering the B-ordinate of Qf| J i,1 corresponding to the domain point 1
3xi +

2
3ξi, it holds

B
[
Qf| J i,1

]
(ξi[3]) = τ 2i,1B

[
Qf| J i,1

]
(xi[2], ξi)+ 2τi,1τi,2B

[
Qf| J i,1

]
(xi, xi+1, ξi)+ τ 2i,2B

[
Qf| J i,1

]
(xi+1[2], ξi)

and

B
[
Qf| J i,1

]
(xi, xi+1, ξi) =

−τi,1

τi,2
B

[
Qf| J i,1

]
(xi[2], ξi)+

1
τi,2

B
[
Qf| J i,1

]
(xi, ξi[2]) ,

o that

B
[
Qf| J i,1

]
(xi, ξi[2]) =

τi,1

2
B

[
Qf| J i,1

]
(xi[2], ξi)+

1
2τi,1

B
[
Qf| J i,1

]
(ξi[3])−

τ 2i,2

2τi,1
B

[
Qf| J i,1

]
(xi+1[2], ξi) .

From (13), we get

B
[
Qf| J i,1

]
(xi, ξi[2]) =

τi,1

2
B [p] (xi[2], ξi)+

1
2τi,1

p (ξi)−
τ 2i,2

2τi,1
B [p] (xi+1[2], ξi)

= B [p] (xi, ξi[2]) ,

This proves that limx→xi,x>xi (Qf )
′′ (x) = p′′ (xi). It only remains to prove that limx→xi,x<xi (Qf )

′′ (x) = p′′ (xi). By the
same approach used for the right case, the blossom value B

[
Qf| J i−1,2

]
(xi[2], ξi) is the B-ordinate of Qf| J i−1,2 on Ji−1,2

corresponding to the domain point 2
3xi +

1
3ξi−1(9), i.e.

B
[
Qf| J i−1,2

]
(xi[2], ξi−1) =

∑
ℓ+m=1

(
αi,(ℓ,m) + βi,(ℓ,m)

xi − ξi−1

3

)
B

[
Ikn
i,(ℓ,m)f

]
(xi[2], xi−1[ℓ], xi+1[m]) .

In this case, the weights αi,(ℓ,m) +βi,(ℓ,m)
xi−ξi−1

3 relative to the barycentric coordinates of point 2
3xi +

1
3ξi−1 w.r.t. Wi, which

implies that they are also the barycentric coordinates of point ξi−1 w.r.t. the interval [xi−1, xi+1]. By using (12), one gets

B
[
Qf

]
x [2], ξ = B

[
Ikn f

]
x [2], ξ = B [p] x [2], ξ .
| J i−1,2 ( i i−1) i,(ℓ,m) ( i i−1) ( i i−1)

7
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Fig. 5. Plots of tests functions: f1 (left), f2 (center) and f3 (right).

Considering the condition (14) corresponding to the interval Ii−1, i.e., Isp
i−1f (ξi−1) = p (ξi−1), the blossom

B
[
Qf| J i−1,2

]
(xi, ξi−1[2]) can be expressed as follows:

B
[
Qf| J i−1,2

]
(xi, ξi−1[2]) =

τi−1,1

2
B [p] (xi−1[2], ξi−1)+

1
2τi−1,1

p (ξi−1)−
τ 2i−1,2

2τi−1,1
B [p] (xi[2], ξi−1)

= B [p] (xi, ξi−1[2]) .

This confirms that (Qf )′′ (xi) = p′′(xi). □

Next, we provide a rule to choose the operators Ikn
i,(ℓ,m) and Isp

k in such a way that the conditions in Theorem 2 are
fulfilled.

For each 0 ≤ i ≤ n, let Ikn
i f be the cubic polynomial such that

Ikn
i f (xi) = f (xi), Ikn

i f ′(xi) = f ′(xi), Ikn
i f (ξi−1) = f (ξi−1) and Ikn

i f (ξi) = f (ξi),

and Qf be defined by (10).

• For every knot xi, take Ikn
i,(ℓ,m)f = Ikn

i f , ℓ+ m = 1.
• Take Isp

k f = Ikn
k f , where Ikn

k f is associated with xk, which is the first end-point of Ik.

These choices ensure that Qf ∈ S23
(̃
Xn

)
. Approaches to get bivariate C2 cubic splines on a 6-split have been discussed

in [33].

3.3. Numerical results

This section provides some numerical results to illustrate the performance of the above quasi-interpolation operators.
To this end, we will use the test functions

f1(x) =
3
4
e−2(9x−2)2

−
1
5
e−(9x−7)2−(9x−4)2

+
1
2
e−(9x−7)2−

1
4 (9x−3)2

+
3
4
e

1
10 (−9x−1)− 1

49 (9x+1)2 ,

f2(x) =
1
2
x cos4

(
4
(
x2 + x − 1

))
,

f3(x) = x4e−3x2
+

1
x6 + 1

,

whose plots appear in Fig. 5. The two first functions are the 1D versions of Franke [34] and Nielson [35] functions.
Let us consider the interval I = [0, 1]. The tests are carried out for a sequence of uniform mesh Xn associated with the

knots xi = ih, i = 0, . . ., n, where h =
1
n . The inserted split points are chosen as the middle points of the macro-intervals,

i.e., ξi =
(
i + 1

2

)
h, i = 0, . . ., n − 1.

For each i = 0, . . ., n, we have

Ikn
i f (x) = f (ξi−1)B

3
(3,0),[ξi−1,ξi]

+
1
3

(
2 (ξi−1 − ξi) f ′ (xi)− 2f (ξi−1)+ f (ξi)+ 4f (xi)

)
B3

(2,1),[ξi−1,ξi]

+
1
3

(
2 (ξi − ξi−1) f ′ (xi)+ f (ξi−1)− 2f (ξi)+ 4f (xi)

)
B3

(1,2),[ξi−1,ξi]
+ f (ξi)B3

(0,3),[ξi−1,ξi]
.

It interpolates the value and the first derivative value of f at xi and the function values of f at ξi−1 and ξi.
From this choice, the linear functionals ψkn

i,(ℓ,m) and ψ
sp
k will be given by the following expressions:

ψkn
i,(1,0) (f ) = f

(
i
n

)
−

2
3n

f ′

(
i
n

)
,

ψkn
i,(0,1) (f ) = f

(
i
)

+
2

f ′

(
i
)
,

n 3n n
8
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Table 1
Estimated errors for functions f1 , f2 and f3 , and NCOs with different values of n.
n En (f1) NCO En (f2) NCO En (f3) NCO

16 3.2851 × 10−3 – 8.3227 × 10−3 – 6.5942 × 10−6 –
32 3.8209 × 10−4 3.10 5.1442 × 10−4 4.01 4.1899 × 10−7 3.97
64 2.1478 × 10−5 4.15 2.9507 × 10−5 4.12 2.5085 × 10−8 4.06
128 9.9300 × 10−7 4.43 1.8595 × 10−6 3.98 1.4689 × 10−9 4.09
256 7.5323 × 10−8 3.72 1.1592 × 10−7 4.00 9.9866 × 10−11 3.87

Table 2
Quasi-interpolation errors and NCOs for the test function g1 with different values of n.
n En (g1) NCO Method in [36] NCO

16 2.1352 × 10−8 – 3.25116 × 10−7 –
32 1.3627 × 10−9 3.96 2.13504 × 10−8 3.92862
64 8.6021 × 10−11 3.98 1.36452 × 10−9 3.96779
128 5.4025 × 10−12 3.99 8.61907 × 10−11 3.98472

Table 3
Quasi-interpolation errors and NCOs for the test function g2 with different values of n.
n En (g2) NCO Method in [37] NCO

64 2.1282 × 10−7 – 4.11124 × 10−6 –
128 1.3140 × 10−8 4.01 2.59629 × 10−7 3.98505
256 7.3024 × 10−10 4.16 1.62327 × 10−8 3.99948
512 5.2902 × 10−11 3.78 1.01501 × 10−9 3.99934

ψ
sp
i (f ) =

1
2n

f ′

(
i
n

)
+

1
3

(
f
(
2i − 1
2n

)
+ f

(
i
n

)
+ f

(
2i + 1
2n

))
.

The quasi-interpolation error is estimated as

En (f ) = max
0≤ℓ≤200

|Qf (zℓ)− f (zℓ)| , (15)

here zℓ, ℓ = 0, . . ., 200, are equally spaced points in I . The estimated numerical convergence order (NCO) is given by
he rate

NCO :=

log
(

En1
En2

)
log

(
n2
n1

) .
In Table 1, the estimated quasi-interpolation errors and NCOs for functions f1, f2 and f3 are shown.
In what follows, a comparison between the numerical results obtained by the proposed C2 cubic spline quasi-

nterpolating scheme and the results presented in [36,37] is done. In them, the following test functions are considered:

g1(x) = sin x, and g2(x) = −
1
2

(
exp

(
x3

2

)
− 1

)
cos(3πx).

n Tables 2 and 3, we list the resulting errors and NCOs for the approximation of functions g1 and g2, respectively, by
sing the cubic spline quasi-interpolant proposed here and those in [36,37]. The proposed scheme improves the results
n those papers by two orders of magnitude.

. Spline spaces on twice-refined partitions

In the previous section a C2 cubic quasi-interpolant on a refinement X̃n of the initial partition Xn by adding an additional
knot at each macro-interval has been defined. That quasi-interpolant is written in terms of B-spline-like functions Dkn

i,(ℓ,m),
0 ≤ i ≤ n, ℓ+ m = 1, and Dsp

k , 0 ≤ k ≤ n − 1.
Let X̃n,2 be the refinement of the refined partition X̃n,1 := X̃n produced in decomposing each sub-interval in X̃n,1 into

two micro-intervals by inserting points ξi,1 and ξi,2 into Ĩi,1 := [xi, ξi] and Ĩi,2 := [ξi, xi+1], respectively. The sub-space
S23

(̃
Xn,1

)
of S1,23

(̃
Xn,1

)
is refinable under the refinement X̃n,2, i.e., a spline s ∈ S23

(̃
Xn,1

)
is also an element of the finer

space S23
(̃
Xn,2

)
. The computation of such a spline by refinement of the original refined partition, while retaining the cubic

precision, is considered in this section. Indeed, we aim to express a spline s expressed as in (5) using the same kind of
representation but with respect to S23

(̃
Xn,2

)
. The coefficients related with the finer partition X̃n,2 are written in terms of

coefficients ckn and csp associated with the partition X̃ . The subdivision rules presented in this section are valid for
i,(ℓ,m) k n,1

9
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Fig. 6. A schematic representation for the initial (top), first (center) and second refinement (bottom) levels.

any spline s ∈ S1,23

(̃
Xn,1

)
, which implies that, the proposed subdivision rules produce splines of the same regularity as

he initial ones.
The elements of the initial partition Xn are noted using the term ‘‘x’’, while the elements of X̃n,1 are noted by ‘‘x’’ and

‘‘ξ ’’, referring to the initial and new inserted knots, respectively. Consequently, for each level, two different notations are
used, namely ‘‘x’’ for the old knots and ‘‘ξ ’’ for the new inserted ones. For this reason, we will keep the same strategy for
Xn,2, i.e. the induced element of X̃n,1 will be named using the term ‘‘x’’ and ‘‘ξ ’’ for the new inserted knots. The induced
elements of X̃n,1 are xi, i = 0, . . . , n and ξi, i = 0, . . . , n−1, these elements are the initial elements of X̃n,2, so the following
notation will be adopted: xoldi := xi and xnewi = ξi. A schematic representation of the two levels of refinement is depicted
in Fig. 6.

The spline space S23
(̃
Xn,1

)
is considered since we are interested in refining C2 cubic functions, namely the quasi-

interpolants constructed in the previous section. The space S23
(̃
Xn,2

)
is also involved. A spline s ∈ S23

(̃
Xn,1

)
is also an

element of the finer space S23
(̃
Xn,2

)
, and we look for expressing the coefficients in (5) associated with second level partition

Xn,2 in terms of those corresponding to the first level refinement X̃n,1.
Le us suppose that the spline s ∈ S23

(̃
Xn,2

)
is expressed as

s =

n∑
i=0

∑
ℓ+m=1

ckn, oldi,(ℓ,m) Dkn, old
i,(ℓ,m) +

n∑
i=0

∑
ℓ+m=1

ckn, newi,(ℓ,m) Dkn, new
i,(ℓ,m) +

n−1∑
k=0

(
csp,1k Dsp,1

k + csp,2k Dsp,2
k

)
, (16)

where ckn, oldi,(ℓ,m) , c
kn, new
i,(ℓ,m) , csp,1k and csp,2k are the coefficients associated with points xoldi , xnewi , ξk,1 and ξk,2, respectively.

We will start by providing the expressions of the spline coefficients associated with a uniform partition, where the
inserted split points in each level are the mid-points. Later on, we will prove subdivision rules for the case of non-uniform
partitions.

4.1. Subdivision rules for uniform partitions

Consider the uniform case, with xi = a + ih, i = 0, . . . , n, h being the step-size. In this case, the inserted split points
in the first level are ξi =

1
2 (xi + xi+1), and those corresponding to the second level refinement are ξi,1 =

3
4xi +

1
4xi+1 and

ξi,2 =
1
4xi +

3
4xi+1.

The following results show the relationship between old and new coefficients for knots.

roposition 3. The coefficients ckn,oldi,(ℓ,m), ℓ+ m = 1, corresponding to the knot xoldi are expressed as

ckn, oldi,(1,0) =
3
4
ckni,(1,0) +

1
4
ckni,(0,1), ckn, oldi,(0,1) =

1
4
ckni,(1,0) +

3
4
ckni,(0,1).

Proof. Let L be a sub-interval of X̃n,2 with an end-point at xi. Note that xnewi = ξi =
3
4xi +

1
4xi+2. Then, using the

ulti-affinity of blossoms and (7), we have

ckn, oldi,(1,0) = B
[
s|L

] (
xoldi [2] , xnewi−1

)
= B

[
s|L

] (
xi [2] ,

3
4
xi−1 +

1
4
xi+1

)
=

3
B

[
s|L

]
(xi [2] , xi−1)+

1
B

[
s|L

]
(xi [2] , xi+1) ,
4 4

10
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and,

ckn, oldi,(0,1) = B
[
s|L

] (
xoldi [2] , xnewi+1

)
= B

[
s|L

] (
xi [2] ,

1
4
xi−1 +

3
4
xi+1

)
=

1
4
B

[
s|L

]
(xi [2] , xi−1)+

3
4
B

[
s|L

]
(xi [2] , xi+1) ,

|L stands for the restriction of s to L. The proof is complete. □

roposition 4. The coefficients ckn,newi,(ℓ,m) , ℓ+ m = 1, corresponding to the knot xnewi are expressed as

ckn, newi,(1,0) =
1
8
ckni,(1,0) +

3
8
ckni,(0,1) +

1
2
cspi , ckn, newi,(0,1) =

3
8
ckni+1,(1,0) +

1
8
ckni+1,(0,1) +

1
2
cspi .

Proof. Let L be a sub-interval of X̃n,2 with an end-point at xnewi . Again, we use the multi-affinity of blossoms and (7) –(8)
to get

ckn, newi,(1,0) = B
[
s|L

] (
xnewi [2] , xoldi

)
=

1
2
B

[
s|L

] (
xnewi , xoldi [2]

)
+

1
2
B

[
s|L

] (
xnewi , xoldi , xoldi+1

)
=

1
2

(
1
4
B

[
s|L

]
(xi [2] , xi−1)+

3
4
B

[
s|L

]
(xi [2] , xi+1)

)
+

1
2
B

[
s|L

]
(ξi, xi, xi+1) .

The same technique is used to get the expression of ckn, newi,(0,1) . □

Similar results are given next for split points.

Proposition 5. The coefficients csp,1i and csp,2i associated with the split points ξi,1 and ξi,2, respectively, are given by

csp,1i =
3
16

ckni,(1,0) +
9
16

ckni,(0,1) +
1
4
cspi , csp,2i =

9
16

ckni+1,(1,0) +
3
16

ckni+1,(0,1) +
1
4
cspi .

roof. Let L be a sub-interval of X̃n,2 with an end-point at ξi,1. Using (8), we can write

csp,1i = B
[
s|L

] (
ξi,1, xoldi , xnewi

)
.

y definition, ξi,1 =
1
2x

old
i +

1
2x

new
i and

xnewi =
1
2
xoldi +

1
2
xoldi+1 =

1
4
xoldi−1 +

3
4
xoldi+1.

Then, by multi-affinity of blossoms, we have

csp,1i =
1
2
B

[
s|L

] (
xoldi [2], xnewi

)
+

1
2
B

[
s|L

] (
xoldi , xnewi [2]

)
.

aking into account that

B
[
s|L

] (
xoldi [2], xnewi

)
=

1
4
B

[
s|L

] (
xoldi [2], xoldi−1

)
+

3
4
B

[
s|L

] (
xoldi [2], xoldi+1

)
=

1
4
ckni,(1,0) +

3
4
ckni,(0,1)

nd

B
[
s|L

] (
xoldi , xnewi [2]

)
=

1
2
B

[
s|L

] (
xoldi [2], xnewi

)
+

1
2
B

[
s|L

] (
xoldi , xoldi+1, x

new
i

)
=

1
8
ckni,(1,0) +

3
8
ckni,(0,1) +

1
4
cspi ,

he claim follows for csp,1i . The same approach is used to prove the expression for csp,2i . □

4.2. Subdivision rules for non-uniform partition

Now, we consider the case of non-uniform partitions. Let

Bn
i [a, b, c] =

(
n
)
(b − c)i(c − a)n−i

n
i (b − a)
11
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t

be the ith Bernstein basis function of degree n w.r.t. [a, b] (note that the Bernstein basis functions in (1) are expressed in
erms of barycentric coordinates w.r.t. [a, b]). Let Lo, Ln and Lsp be sub-intervals of X̃n,2 with end-points at xoldi , xnewi and
ξi,1, respectively. Then, the following results are obtained.

1. Subdivision rules for the coefficients associated with the set of old knots: for ℓ+ m = 1,

ckn, oldi,(ℓ,m) = B[s|Lo ]
(
xoldi [r + 1] , xnewi−1 [ℓ] , xnewi [m]

)
,

=

l∑
j=0

m∑
k=0

Bℓj
[
xoldi−1, x

old
i+1, x

new
i−1

]
Bm
k

[
xoldi−1, x

old
i+1, x

new
i

]
× B

[
s|Lo

] (
xoldi [r + 1] , xoldi−1 [j + k] , xoldi+1 [r − j − k]

)
,

=

l∑
j=0

m∑
k=0

Bℓj
[
xoldi−1, x

old
i+1, x

new
i−1

]
Bm
k

[
xoldi−1, x

old
i+1, x

new
i

]
ckni,(j+k,r−j−k).

2. Subdivision rules for the coefficients associated with the set of new knots:

• For ℓ = 1 and m = 0,

ckn, newi,(1,0) = B
[
s|Ln

] (
xnewi [2] , xoldi

)
,

= B1
0

[
xoldi , xoldi+1, x

new
i

]
B

[
s|Ln

] (
xnewi , xoldi [2]

)
+ B1

1

[
xoldi , xoldi+1, x

new
i

]
B

[
s|Ln

] (
xnewi , xoldi , xoldi+1

)
,

= B1
0

[
xoldi , xoldi+1, x

new
i

] 1∑
j=0

B1
j

[
xoldi−1, x

old
i+1, x

new
i

]
ckni,(j,1−j)

+ B1
1

[
xoldi , xoldi+1, x

new
i

]
cspi .

• For ℓ = 0 and m = 1,

ckn, newi,(0,1) = B
[
s|Ln

] (
xnewi [2] , xoldi+1

)
,

= B1
0

[
xoldi , xoldi+1, x

new
i

]
cspi

+ B1
1

[
xoldi , xoldi+1, x

new
i

] 1∑
j=0

B1
j

[
xoldi , xoldi+2, x

new
i

]
ckni+1,(j,1−j).

3. Subdivision rules for the coefficients associated with the set of split points (we consider only the subdivision rule
associated with ξi,1, the case of ξi,2 being similar): it holds

csp,1i = B
[
s|Lsp

] (
ξi,1, xoldi , xnewi

)
,

=

1∑
j=0

B1
j

[
xoldi , xnewi , ξi,1

]
B

[
s|Lsp

] (
xoldi [1 + j] , xnewi [2 − j]

)
,

= B1
0

[
xoldi , xnewi , ξi,1

]
Ξ1 + B1

1

[
xoldi , xnewi , ξi,1

]
Ξ2,

where

Ξ1 := B1
0

[
xoldi , xoldi+1, x

new
i

]
cspi + B1

1

[
xoldi , xoldi+1, x

new
i

] 1∑
q=0

B1
q

[
xoldi−1, x

old
i+1, x

new
i

]
ckni,(q,1−q)

and

Ξ2 :=

1∑
q=0

B1
q

[
xoldi−1, x

old
i+1, x

new
i

]
ckni,(q,1−q).

4.3. Numerical examples

The results obtained in the previous subsections provide a set of subdivision rules that can be applied for representing
a spline in S1,23

(̃
Xn,1

)
in terms of the B-splines of the finer space S1,23

(̃
Xn,2

)
. Those rules involve non-negative weights, and

the B-spline coefficients associated with the finer space S1,23

(̃
Xn,2

)
are computed as convex combinations of the B-spline

coefficients associated with the space S1,2
(̃
X

)
, which gives an efficient visualization tool.
3 n,1

12
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Fig. 7. From left to right, plots of h1 and h2 .

For i = 0, . . . , n, and k = 0, . . . , n − 1, define the control points

ckni,(1,0) :=
(
Wi,1, ckni,(1,0)

)
, ckni,(0,1) :=

(
Wi,2, ckni,(0,1)

)
, cspk :=

(
1
3
ξk +

1
3
(xk + xk+1) , c

sp
k

)
, (17)

here ckni,(1,0), c
kn
i,(0,1) and cspk are the B-spline coefficients in the representation (5), Wi,j, j = 1, 2, are defined in (6) and

k :=
1
3ξk +

1
3 (xk + xk+1). It holds

x =

n∑
i=0

(
Wi,1Dkn

i,(1,0) (x) + Wi,2Dkn
i,(0,1) (x)

)
+

n−1∑
k=0

Zk D
sp
k (x) .

A full proof is given in [7]. The restriction of a spline given by (5) to each macro-interval reduces to a sum involving only
five B-splines and their corresponding control points given in (17). Therefore, the graph of such a restriction lies in the
convex hull determined by those five control points. From the fact that the B-spline basis is a convex partition of unity,
the whole graph of the spline lies in the union of the resulting convex hulls. This is a property well appreciated in CAGD.

In what follows, we will show the performance of the subdivision rules obtained by applying them to the interpolation
splines provided by Theorem 1 in the space S1,23

(̃
Xn,1

)
for two test functions. They are

h1 (x) =
exp

(
−x2

) (
log

(
x5 + 6

)
+ sin(3πx)

)
cos(2πx) + 2

and h2 (x) = x sin
π

2
x.

For h1, we take I = [0, 2] and n = 10, while I = [−4, 4] and n = 16 for h2. Therefore control polygons with few
ontrol points are obtained. Their plots are shown in Fig. 7. In both cases, we will work with uniform partitions of the
bove intervals. In each interval induced by the partition, the inserted point is the mid-point of the interval.
The rules to be applied become

ckni,(1,0) = s (xi) +
2
3
h s′ (xi) ,

ckni,(0,1) = s(xi) −
2
3
h s′(xi),

cspk = 2 s (ξk)−
1
16

(
3cknk,(1,0) + 5cknk,(0,1) + 5cknk+1,(1,0) + 3cknk+1,(0,1)

)
,

h being the step-length of the partition.
By applying some steps of the proposed subdivision rules, the resulting control polygons should converge to the

function curve. In Fig. 8, the results provided by the subdivision rules applied to the initial control polygon for function h1

are shown. They are associated with partitions X̃10,1, X̃10,2, X̃10,3, and X̃10,4. Fig. 8 shows how control polygons are produced
closer and closer to the graph of h1.

Fig. 9 shows the results of applying the subdivision rules to the control polygon of the curve of h2. The initial control
olygon is associated with X̃16,1. Once again, after three levels of subdivision, the new control polygons are closer and
loser to the graph of h2. A few subdivision steps produce good results.

. Conclusion

In this work, a rule has been proposed to construct C2 cubic quasi-interpolants defined on a partition with a refinement
hat divides each interval into two sub-intervals instead of three. They have the same regularity that one constructed
n [2–4] and the associated quasi-interpolation operators have the same order of convergence. The computational cost
as been significantly reduced.
13
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p
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t
h
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D

Fig. 8. From top to bottom and from left to right, plots of control polygons of h1 given by levels X̃10,1 , X̃10,2 , X̃10,3 and X̃10,4 in red color and the
lot of h1 in blue color. The black points represent the control points Wi,j , while the blue ones stand for Zk .

Fig. 9. From top to bottom and from left to right, plots of control polygons of h2 given by levels X̃16,1 , X̃16,2 , X̃16,3 and X̃16,4 in red color and the
urve of h2 in blue color. The black points represent the control points Wi,j , while the blue ones stand for Zk .

If the refined partition under consideration is further subdivided by adding a split point to each sub-interval, a C2 cubic
pline defined on the original partition and written in the corresponding basis of B-spline-like functions is expressed in
erms of the basis functions associated with the new finer partition. The coefficients involved in both representations
ave been related by subdivision rules in both the uniform and non-uniform cases. These rules can be applied not only
o splines with C2 continuity but also to C1 cubic splines C2 continuous at the split points.

Several numerical tests have been included to show the good performance of both the procedure for constructing class
wo quasi-interpolants and the subdivision rules.
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