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Abstract
Detecting and tracking people using 2D laser rangefinders (LRFs) is challenging due to the features of the human leg

motion, high levels of self-occlusion and the existence of objects which are similar to the human legs. Previous approaches

use datasets that are manually labelled with support of images of the scenes. We propose a system with a calibrated

monocular camera and 2D LRF mounted on a mobile robot in order to generate a dataset of leg patterns through automatic

labelling which is valid to achieve a robust and efficient 2D LRF-based people detector and tracker. First, both images and

2D laser data are recorded during the robot navigation in indoor environments. Second, the people detection boxes and

keypoints obtained by a deep learning-based object detector are used to locate both people and their legs on the images.

The coordinates frame of 2D laser is extrinsically calibrated to the camera coordinates allowing our system to automat-

ically label the leg instances. The automatically labelled dataset is then used to achieve a leg detector by machine learning

techniques. To validate the proposal, the leg detector is used to develop a Kalman filter-based people detection and tracking

algorithm which is experimentally assessed. The experimentation shows that the proposed system overcomes the Angus

Leigh’s detector and tracker which is considered the state of the art on 2D LRF-based people detector and tracker.

Keywords People detection and tracking � 2D laser � Deep learning � Machine learning � Automatic labelling

1 Introduction

People detection and tracking are key skill for mobile

robots in a lot of applications including Human Robot

Interaction (HRI) [1], efficient navigation among people

[2] or aspects related to the safety when humans and

autonomous robots share the same space [3]. In order to

carry out these tasks, several approaches and sensory

modalities have been used. Mainly, computer vision tech-

niques have been applied depending on the kind of camera:

Monocular, Stereo or RGB-Depth. In this area, deep

learning techniques allow robust person detection. Refer-

ence [4] shows an application of YOLO (You Only Look

Once) [5] for people detecting in the aim to identify fallen

persons. In other approaches, depth information is also

taken into account. For example, in Ref. [6] a social robot

uses a Kinect sensor fusing colour and depth information

for people detecting. Associated to the RGB-Depth sensors,

skeleton-based approaches have been proposed [7, 8]

allowing the recognition of person pose and some actions

or behaviours. Stereo vision has also been applied to

address this task. For example, colour and depth informa-

tion supplied by stereoscopic vision has been used to

propose fuzzy algorithms for detecting and tracking people

[9].

Despite the progresses in people detection and tracking

by computer vision techniques, 2D LRFs are still present in

the sensory system of many mobile robots, especially in the

case of social and service robots. The large fields of view,

high accuracy and robustness of 2D LRFs make them an

interesting sensor for people detection. In contrast, vision-

only-based approaches have several drawbacks. Vision-

based devices, i.e. monocular, stereo cameras and RGB-

Depth sensors, usually have a smaller field of view and

light conditions can affect dramatically. In particular, on

depth information, it is not always reliable and false pos-

itives can arise in skeleton-based methods. In addition,
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when persons are close to the robot, cameras have impor-

tant difficulties to detect them.

Other kind of sensors can generate volumetric data, such

as 3D Lidar [10], which provides accurate depth mea-

surements of the surrounding environment. However, this

sensor is costly and the input resolution is lower than a

typical RGB sensor. For all the reasons above shown, 2D

LRFs are still present in the most of mobile robots.

In the specialised literature several approaches based on

2D LRFs can be found. Some works are needed to detect

movement features [11], but this approach falls whether

people do not move. Other approaches divide the range

data obtained from sensor in clusters using certain jump

distance, compute geometric features and use machine

learning techniques to classify the clusters as either person

or background [12–14]. These approaches are more robust

to the lack of people motions. Other types of works focus

the attention on human legs detection computing geometric

features of human legs, tracking legs over time and

defining persons as pairs of legs [15–17]. The latter

approaches usually perform better improving the reliabil-

ity, especially in cases of self-occlusion. More recent

works claim the application of deep learning techniques to

generate object detectors in a more direct way from the

range data. For example, in Ref. [18] a 2D LRF is used to

detect pallets in industrial scenarios through the training of

a Faster R-CNN (Region-Based Convolutional Neural

Networks). A wheelchair and walker detector based on

deep learning is proposed in Ref. [19]. This proposal is

improved and extended to people detection in Ref. [20].

The deep learning-based detector is compared to previous

detectors achieving good results on the precision-recall

curves [20]. However, a whole people detection and

tracking system is not developed and tested in real time.

In this work, deep learning is not applied to carry out the

people detection from 2D LRF in a straight way but to

achieve the automatic labelling of a 2D range dataset

recorded during the mobile robot navigation. The auto-

matic labelling of datasets has been applied to a wide

variety of domains. An approach to automatically generate

labelled network traffic datasets using an unsupervised

anomaly-based Intrusion Detection Systems is proposed in

Ref. [21]. The approach was empirically proven to be an

efficient unsupervised labelling system in that research

area. Other application is the identification of web pages

relevance. An algorithm to automatically generate high-

quality training data-based on the frequency of the docu-

ment including the entity of interest is proposed in

Ref. [22]. Also in Human Activity Recognition, automatic

labelling has been applied. In Ref. [23] is proposed an

automatic labelling framework to directly annotate unla-

belled time series data regarding body-worn sensor-based

human activity recognition in laboratory settings.

The rest of this paper is organized as follows. The

proposal is briefly described in Sect. 2. Section 3 addresses

different deep learning approaches used to object detection

and how this field has evolved achieving important suc-

cesses both on people and keypoints detections. Section 4

describes the hardware and software components of our

system. After that, the method proposed in this work for

people detection and tracking using laser 2D range data and

deep learning-based object detection is explained in

Sects. 5 and 6. The experimental work that has been car-

ried out on the different aspects of our proposal is shown in

Sect. 7. The conclusions and some ideas on future work are

commented in Sect. 8.

2 Description of the proposal

The approach proposed in this work has been developed

thanks to the previous experience of the authors working

on people detection and tracking [24] and 2D range data

automatic labelling [25]. On the contrary to these previous

works, now a monocular camera is used instead Kinect 1.0

sensor so that depth information from images is not needed.

Additionally, the monocular camera does not suffer of the

drawbacks of Kinect sensor, which has an infrared camera

that can be negatively affected by certain environment

lighting conditions. The mobile robot used in our proposal

has a LRF sensor which is situated at a height of 30 cm

above the floor, allowing the robot to scan the people legs.

A Jetson TX2 Developer Kit is located above the LRF and

connected to both the sensory system of the robot and LRF.

Jetson TX2 features a MIPI CSI camera, which has been

intrinsically and extrinsically calibrated to the LRF. Both

images and 2D range data, beside their timestamps,

odometry data and robot velocities, are stored to on-board

SSD drive while the robot navigation is carried out. The

robot navigates, both autonomously and manually con-

trolled, through an indoor office-like environment where

different persons are walking on. This recorded informa-

tion can be offline dealt with our proposal in a desktop

computer or in a laptop. This fact allows us to apply deep

learning algorithms using powerful frameworks as Ten-

sorFlow 2 Object Detection API [26]. Several deep learn-

ing architectures have been studied for our proposal

through a comparative experimentation on people detection

in images. In particular, a CenterNet HourGlass104 Key-

points 512x512 detection model [27] pre-trained on the

COCO 2017 dataset [28] is used to detect people in the

images. Boxes and keypoints are generated by this detec-

tion model and this information is added to the dataset. 2D

range data are clustered by the jump-distance algorithm

and geometrical features of these clusters are computed.

The detected keypoints of human legs allow the vision-

416 Neural Computing and Applications (2023) 35:415–428

123



based leg identification. Through the correspondence

between laser data and images, the 2D range data can be

automatically labelled. Then a study of several machine

learning algorithms is carried out to identify the best

machine learning approach to generate a binary classifier

for people leg detecting. The leg detector is used to design

a Kalman filter-based people detection and tracking algo-

rithm. In order to show the feasibility of our proposal, this

algorithm is compared to Leigh’s detector and tracker

implemented in ROS [17] which is the current state of the

art in people detection and tracking for 2D LRF data.

Experimental results show that our people detection and

tracking system based on the detector obtained from the

automatically labelled dataset overcome the performance

of the Leigh’s detector and tracker.

To summarize, the contributions of this work are as

follows:

1. To the best of our knowledge, this work is the first

application of people detection boxes and keypoints to

automatically label a 2D laser range dataset aimed to

people detection and tracking through 2D LRF.

2. The automatic labelling of the dataset allows the

mobile robot to collect data under real operating

conditions so that more robust and efficient detectors

can be generated by machine learning techniques.

3. The people detection and tracking algorithm proposed

in this work, which uses the detector obtained from the

automatically labelled dataset, overcomes the Leigh’s

detector and tracker available in ROS.

3 Deep learning-based object detection

3.1 Two- and one-stage approaches

People detection in images is usually carried out by object

detection methods. The goal of object detection methods is

to determine whether there are object instances from a

category such as people, animals, bicycles or others, in the

image. These methods return the spatial position of the

detected objects by addressing their bounding boxes or

masks (or both) beside their confidence levels. Object

detection has been improved with the help of deep learning

techniques, in particular Convolutional Neural Networks

(CNN) [29]. These proposals can be roughly classified in

two main types, namely two-stage approaches and one-

stage approaches.

In the case of two-stage approaches, the object detection

task is divided into two stages: extract Regions of Interest

(RoIs) and then classify and regress them with the help of a

training process on ground truth objects. In particular,

Region-Based CNN (R-CNN) [29] uses a selective search

method to locate RoIs in the input images. Such RoIs are

then classified in an independent way through a Deep

Convolutional Neural Network (DCN). The next step in

this evolution is the extraction of the RoIs directly from the

feature maps, namely Fast-RCNN [30]. In order to improve

Fast-RCNN, the concept of Region Proposal Network

(RPN) is proposed in Faster-RCNN [31]. The idea is to

generate RoIs by regressing the anchor boxes through

another network allowing the training end to end. Mask

detection represents the next step. The objective is the

prediction of both objects and their masks. To achieve this,

a mask prediction branch is added on Faster-RCNN gen-

erating a new model which is known as Mask-RCNN [32].

Other proposal to improve the two-stage approaches,

R-FCN [33], focuses the attention on the use of position-

sensitive score maps to replace the fully connected layers.

The problem of over-fitting is addressed by Cascade

R-CNN [34] through the training of a sequence of detectors

while the IoU thresholds are increased.

One-stage approaches remove the RoI extraction pro-

cess and in a straight way classify and regress the candidate

anchor boxes. YOLO is built on darknet neural networks

and uses fewer anchor boxes that other approaches to

perform regression and classification [35]. The family of

YOLO detectors is composed by YOLOv2 [5], YOLOv3

[36] and YOLOv4 [37]. Each model improves the speed-

accuracy trade-off of previous models incorporating more

anchor boxes, new bounding box regression methods or

deeper feature detector networks. On the YOLO detectors

family, a new version YOLOv5 is being developed [38].

Other approaches to improve the seed-accuracy trade-off

are based on Single Shot Detector (SSD) [39]. The idea is

to predict the boundary boxes and the classes directly from

feature maps in one single pass. The anchor boxes are

densely placed over an input image, and then, features from

different convolutional layers are used to regress and

classify the anchor boxes. In order to avoid the disadvan-

tages of the use of anchor boxes and bounding box

regression, keypoint-based object detection approaches

have been proposed, namely CenterNet [27, 40]. These

methods detect keypoints such as corners or bounding box

centre (or both) to represent each object.

3.2 CenterNet

In the case of CenterNet by Zhou et at. [27], a single point

situated at the centre of its bounding box is used to rep-

resent an object. The rest of object properties, such as size,

pose, dimension and other ones, are regressed from image

features. In order to carry out the object detection, a key-

point estimation is applied [41]. More specifically, a

heatmap is generated from the input image by using a fully

convolutional network. In such heatmap there are peaks
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which correspond to object centres. The object bounding

boxes are predicted for each peak from image features. To

train the model, dense supervised learning is used. On the

inference process, it is a single network forward-pass,

without non-maximal suppression for post-processing.

An important aspect on CenterNet for our proposal is the

possibility to estimate multi-person human pose [42]. This

estimation is made by the prediction of additional outputs

at each centre point. In the case of human pose estimation,

the attention is focused on the 2D joint locations which are

considered as offsets from the centre. Such 2D joint loca-

tions are estimated by using a regression-based one-stage

human pose estimator.

CenterNet achieves very good speed-accuracy trade-off

on COCO validation for real-time detectors. Thanks to the

simplicity of the method, it outperforms the results on

speed-accuracy trade-off of FasterRCNN and Yolov3 [27].

When CenterNet is equipped with the keypoint estimation

network Hourglass-104 [43] and multi-scale testing, Cen-

terNet achieves 45.1% COCO AP according to the results

shown in Ref. [27].

CenterNet has been applied to several research areas.

For example, in Ref. [44] a fault diagnosis method on train

catenary is developed through analysing of the character-

istics of the catenary images. The CenterNet-based

approach of Ref. [44] presents higher precision and recall

values compared with other detection networks. In

Ref. [45], an application on biometric recognition is

shown. That cited paper addresses the problems for face

recognition when people wear masks due to the coron-

aviruses pandemic. However, human ear recognition is still

possible under these conditions. CenterNet is applied to

human ear recognition outperforming other detection

methods. In Ref. [46], an automatic detection of vehicle

targets based on CenterNet model is proposed. A com-

parative study with Inception-ResNet-V2 [47] and Effi-

cient-Det [48] is carried out. According to their results,

CenterNet improves significantly the average detection

accuracy. In Ref. [49], an application on video surveillance

is developed. A real-time top view-based person detection

system is proposed by using CenterNet for people detec-

tion. The model is trained and tested on a top view data set

achieving an overall detection accuracy of 95%. A dis-

tracted driving detection scheme based on CenterNet is

proposed in Ref. [50]. The results demonstrated that the

proposed scheme can detect distracted behaviours in real-

time while driving with a mean average precision (mAP) of

97.0%, which outperforms some representative detection

methods, such as CornerNet, YOLO v3 and YOLO v4.

In our work, a CenterNet model is used to detect people

and their keypoints on the images collected in our dataset.

Since several CenterNet models exist, an experimental

study has been carried out in order to choose the best

option for our system. This experimental study is shown in

Sect. 7.1. A CenterNet HourGlass104 Keypoints

512 9 512 detection model [27] pre-trained on the COCO

2017 dataset [28] is chosen according to our experimental

results.

4 System overview

The hardware of our system has three components. First,

the mobile robot which is a PeopleBot mobile robot [51]

equipped with a LRF SICK LMS200 [52]. The LRF has a

180� field of view, and it can be configured to work at

different distances. In the human–robot interaction tasks,

the ranges of distances are not usually very high due to the

persons stay in the robot surroundings. Thus, in this work

the maximum range of distance for the laser measures is 8

metres. Considering this range, the systematic error on the

measures is �15 mm which is low. Therefore, the 2D range

data allow to the robot to achieve measures sufficiently

accurate. The second hardware component is an NVIDIA

Jetson TX2 Developer Kit which is situated on top of the

LRF. This embedded computing board houses both the

graphics processing unit (GPU) and central processing unit

(CPU) on the same chip. It achieves both an high power

efficiency and high processing power. Jetson TX2 incor-

porates an on-board camera that allows different resolu-

tions depending on the frame rate. In this work, the on-

board camera is configured to 640 x 480 resolution at 30

frames per second. Jetson TX2 runs Ubuntu 18.04, and it is

connected to both the LRF sensor and the sensory system

of PeopleBot robot through USB ports. The third hardware

component is a laptop which is situated on top of the robot,

and it is connected via ethernet to the Jetson TX2. The

function of the laptop is only to connect through ssh pro-

tocol to the Jetson TX2 being the interface between the

user and the Jetson TX2. Figure 1 shows the hardware

components of our system.

Regarding the software architecture of our system, it has

been implemented using C?? programming language and

the resources of the libraries of the robot manufacturer on

linux (Ubuntu distribution). The manufacturer supplies this

robot with the Aria and ArNetworking libraries. The for-

mer is used to execute programs within an on-board

computer, while the latter is used to execute client–server

programs. The connection between Jetson TX2 and the

robot is straight and wired through the USB ports of Jetson

TX2. Therefore, Aria library can be used and ArNet-

working is not needed. In this way, Jetson TX2 replaces the

robot on-board computer which is obsolete and has low

computational power. Jetson TX2 is powered by a LiPo

battery similar to the batteries used by drones, while the

robot is powered by its own plumb battery system. Thanks
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to the wired connection to LRF, Jetson TX2 can obtain the

laser measures in a straight way. The images of Jetson TX2

on-board camera are managed through OpenCV library and

both laser measures and corresponding images can be

saved to an SSD drive connected to Jetson TX2. Figure 2

shows the architecture of our system.

The people detection and tracking problem can be sep-

arated into two subproblems: first, detection; second,

tracking. Sections 5 and 6, respectively, explain how such

subproblems are solved in our proposal.

5 Leg detection using 2D LRF and object-
keypoints detectors

5.1 Automatic labelling using bonding box
and keypoints

The idea of generating human leg detectors from 2D range

data is not new. Several approaches can be found in the

specialised literature, as it was addressed in Sect. 1.

Machine learning techniques are usually applied to a 2D

range dataset which contains instances of legs and back-

ground detections. The quality and generalization skills of

the detectors trained from these datasets depend on the

ability of the instances to represent, in a right way, the

sensing of the robot under real-world operating conditions.

More specifically, a people detector trained with a poor

dataset, which containing an important number of wrong

labels or with low level of representativeness, can achieve

good values of precision and recall on certain test sets but

likely, such detector does not work fine in the real world. In

our proposal, a pre-trained CenterNet HourGlass104 Key-

points (CHK) detection model is used to identify people

bounding boxes and keypoints to achieve the automatic

labelling of the 2D range data as it is explained following.

Our framework relies on 2D range data, existing pre-

trained object detectors and a mapping between 2D laser

coordinates frame and corresponding images. Now the

necessary concepts and notations are introduced.

Let rc be the 3D robot coordinates frame. Let IM be an

on-board camera image. The location of camera is known

on the 3D robot coordinates frame rc. An object detector

aims to localize and classify all objects in IM. In this work,

the attention is focused only on the objects of class ‘‘per-

son’’. Let bi 2 R4 for i ¼ 1. . .P be a bounding box that

describes a person location in IM and being P the number

of persons detected in IM. A person class score sðbiÞ pre-
dicts the likelihood of detection bi to be of class ‘‘person’’.

An set of keypoints KPi ¼ fkpijg for j ¼ 1. . .16 is esti-

mated by the detector for every bi. CHK can estimate until

16 keypoints of the human body. In order to identify the

human legs only the keypoints corresponding to legs are

needed. Such keypoints are kpi13 and kpi15 for left leg of bi
and kpi14 and kpi16 for the right leg of bi. Figure 3 shows an

example of bounding box bi and keypoints KPi with their

segments.

Let p ¼ fx; yg be a 2D point sensed by the LRF

expressed in laser coordinates. A laser scan S ¼ fplg for

l ¼ 1. . .L, being L the number of scanned points, can be

clustered by using the well-known algorithm of jump dis-

tance to generate a set of clusters C ¼ fcmg for

m ¼ 1. . .M, being M the number of clusters, where each

cm ¼ fpng j pn 2 S for n ¼ 1. . .N being N the number of

Fig. 1 PeopleBot robot equipped with LRF SICK LMS200 and a

Jetson TX2 Developer Kit

++,

Fig. 2 Architecture of proposed system
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points of cm. The set of clusters C is computed taking into

account a minimum and maximum value of N in order to

cm can be considered a valid cluster. The projection from

the 2D laser coordinates into an image coordinates involves

a transformation from the LRF measurement to the camera

frame and a perspective projection from the camera frame

into image coordinates. Let Trc lc be the transformation

from the LRF sensor coordinates to the reference frame of

the robot. Let Tcc rc be the transformation from the robot

reference frame to the camera coordinates. The transfor-

mation from the LRF to camera coordinates is then defined

by

Tcc lc ¼ Tcc rcTrc lc: ð1Þ

Finally, by using the projection matrix of the on-board

camera defined by the camera intrinsic, Tcc lc is projected

on the colour image achieving a set of pixels PI ¼
fðpxq; pyqÞg for q ¼ 1. . .Q being Q the number of pixels of

the projection. The intrinsic parameters of the on-board

camera have been achieved by using the Robust Automatic

Detection of Calibration Chessboards approach[53].

Results of the projection of a laser scan S to the colour

image IM can be seen in Fig. 4. The blue points are the

laser measures translated to the set of pixels PI.

Let a 2 ½0:1� be a threshold of confidence for the person

class. For every bi 2 IM j sðbiÞ[ a two new keypoints

kpileft and kpiright, corresponding to the left and right human

legs located within bi, are computed from KPi. kp
i
left is the

middle point of kpi13 and kpi15, and kpiright is the middle

point of kpi14 and kpi16. Figure 5 shows examples of kpileft
and kpiright. Following, the process to assign a cluster of C

to some kpileft or kp
i
right of IM is explained for a certain kpileft

since it is similar for the rest.

Given a kpileft in the image, certain cluster cx 2 C can be

assigned to kpileft in the following way. For each cm 2 C the

centroid tm of cm is computed. Each centroid tm is a 2D

point in the laser coordinates therefore it must be mapped

to the image IM. Let t0m and c0m be the mapping of tm and cm
in the image respectively, the distance in pixels from t0m to

kpileft can be computed. Let cx be the cluster such that its

centroid mapping t0x is the nearest to kpileft, the distance dmin

from t0x to kpileft must be under certain threshold b. b is

measured in pixels and it is computed considering the

height of the impact of the laser in the human legs and the

distance of the robot to tm. The closer tm is, the bigger b
must be. On the contrary, the faraway tm is, the lower b
must be. If dmin\b, the rest of points of c0x have to be

checked to assure whether they are also under certain

distance threshold c measured in pixels. This checking

operation is similar to the case of the centroid, but it is

needed to assure that the cluster cx is definitively assigned

to kpileft and therefore it can be labelled as a real human leg.

Once cx is assigned to a particular kpileft, such kpileft cannot

be used again in the assignment process. Figure 5 shows

the results of this assignment process. Yellow points are the

projections in the image of the 2D points of the clusters

assigned to kpileft and kpiright. Magenta points are the

Fig. 3 Bounding box and keypoints supplied by CenterNet Hour-

Glass104 Keypoints detector

Fig. 4 Projection of 2D laser range data to colour image Fig. 5 Assignment of the projections of clusters to detect legs
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projections of corresponding centroids tm. Blue points are

the projections of the rest of clusters.

The assignment process explained above allows the

automatic labelling of clusters for class ‘‘leg’’ from our raw

2D range dataset. Additionally in the cases of both human

legs are assigned, the centroids of such legs are used to set

ground truth positions considering the middle point of

centroids in laser coordinates as the ground truth of a

person. Then, clusters labelled as leg are stored in a clusters

dataset and they are considered like positive instances to

train a binary classifier. The negative instances are clusters

belonging to background or to objects of classes which are

different to person. Negatives instances are properly added

to the clusters dataset to achieve both training and vali-

dation sets with a balanced number of instances. The use of

machine learning to achieve the classifier is explained in

the following.

5.2 Features extraction to achieve a set
of examples

Given the clusters dataset achieved in Sect. 5.1, it is needed

the representation of each cluster by a set of representative

geometrical features. There are different proposals in pre-

vious works that have achieved good results. The Leigh’s

detector implemented in ROS [17] uses 15 features such as

number of points, linearity, circularity, width, length and

boundary length, among others. In our proposal, we use the

features proposed by [54], namely the contour of the

neighbouring points, the width and the depth, which basi-

cally coincide with the three latter features of Leigh’s

detector. Let cm ¼ fpng j pn 2 S for n ¼ 1. . .N be a cluster,

the contour is computed summing the distances among its

points, taking the points by couples, specifically p1 to p2, p2
to p3 and so on until pN�1 to pN . The distance from point p1
to point pN is the width, while the distance from the furthest

point to the line formed by p1pN is the depth. These geo-

metrical features are shown in Fig. 6.

By using this process of feature extraction besides label

of each class, leg or non-leg, the clusters dataset is trans-

formed to a set of positive and negative examples which

can be used by typical machine learning algorithms. The

set of examples counts with 2316 positive instances,

examples labelled as leg, and the same number of negative

instances, examples labelled as non-leg. In total they sum

4632 examples achieving a balanced set of examples. In

order to choose the more interesting machine learning

algorithm for this kind of dataset, an experimental study

has been carried out which is explained in Sect. 7.2. The

classifier achieved by using the algorithm addressed in

Sect. 7.2 is used in our proposal to solve the leg detection

from 2D range data.

6 People tracking

Once leg detection from 2D LRF data has been solved by

our classifier trained from the automatically labelled clus-

ters dataset, the second component of our system is now

explained. People tracking is achieved using both the

Kalman filter [55] and the Global Nearest Neighbour

(GNN) method. Former is used to predict and deal with the

uncertainty of the people motion over consecutive laser

scans and the latter to resolve the data association problem

between such consecutive scans.

To track the people, first some initiation conditions are

needed. The detected legs in a scan must be grouped in

pairs of legs depending on the distance among them. Each

pair of associated legs is a candidate to person which

position is the middle-point of the centroids of the legs.

The candidates to person have to be detected in a minimum

number of consecutive scans to become a detected person.

Then, a tracker is associated with the detected person. Once

a tracker has been assigned to a person, it is not needed the

detection of both legs in every scan. In particular, there are

situations in which only one leg can be detected. Such

situations are generated due to occlusions usually produced

by the person motion. In these cases, the observed position

will be the centroid of the unique detected leg. Kalman

filter is able to deal with these situations properly to gen-

erate the estimated person position in each scan even under

occlusion situations and temporal lack of leg sensing dur-

ing certain time. In the following, the Kalman filter-based

people tracking algorithm of our proposal is described.

Detected people are considered as observations for the

Kalman filter. The observations at time k are denoted as

zk ¼ fz1k ; z2k ; . . .; z
Mk

k g where Mk is the total number of

detected people at time k. The position of all detected

people is individually tracked over time using a Kalman

filter for every person. Let xjk be a track of a person j at time

k, the set of all active tracks is denoted as Xk ¼
fx1k ; x2k ; . . .; x

Nk

k g where Nk is the total numbers of tracks at

time k. The state vector for each track xjk ¼ ½x y _x _y�T con-

tains the position and velocity of the tracked person in 2DFig. 6 Geometrical features used to represent a cluster
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lase coordinates. When a track is initialized, its velocity is

zero, while for existing tracks their velocities are properly

updated. Regarding the process noise w is assumed to be

Gaussian with diagonal covariance Q ¼ qI where I is the

identity matrix.

The observation matrix Hk includes the position of the

person at time k. The observation noise vk is also assumed

to be Gaussian with diagonal covariance Rk ¼ rI. Due the

laser measures are very accurate, r can be setup to a low

value. Since several persons can be tracked over the time, it

is necessary to set a correspondence among the detections

zk and the previous tracks Xk�1 in order to generate the

updated tracks Xk for the current time k. This is addressed

by using a GNN data association method which is solved

via the Munkres assignment algorithm [56].

People tracking is an iterative process which includes

several steps. First, the state estimates Xkjk�1 for time k are

evolved from the tracks Xk�1 at time k � 1 according to the

well-known Kalman filter equations. Then, the Maha-

lanobis distance between the detection zik and the propa-

gated track xjkjk�1 is used to compute the Munkres cost

matrix. The covariance applied to calculate the Maha-

lanobis distance is the innovation covariance Sjk achieved

by the linear Kalman filter equation, Sjk ¼ HkP
j
kjk�1H

T
k þ

Rk where Pj
kjk�1 is the prediction covariance of the propa-

gated track xjkjk�1. Once the assignment is accomplished,

the information on each detected people is used to achieve

the updated track position xjk via the Kalman filter equa-

tions. Two typical situations have to be considered in this

iterative process. On the one hand, tracks without matched

detections can exist. Such tracks have to be propagated

forward without observation updates and their innovation

covariances S increase until certain threshold. If that

threshold is achieved, then the person track is deleted. On

the other hand, detections without matched tracks can arise.

In these cases, such tracks are candidate to become new

people tracked whether the initiation conditions are

accomplished.

Following, Sect. 7 shows the experimental work that has

been carried out on different aspects of our proposal.

7 Experimental results

7.1 Comparative study on CenterNet
architectures

In the TensorFlow 2 Detection Model Zoo, several Cen-

terNet models pre-trained on the COCO 2017 dataset can

be found. These models have different speed, COCO mAP

and outputs. Only four models allow both boxes and

keypoints detections. These models are equipped with

HourGlass104, Resnet50 V1 FPN or Resnet50 V2 archi-

tectures. The sizes of input images can be 1024 x 1024 or

512 x 512. In order to choose the best option for our sys-

tem, a comparative experimental study is carried out. In our

system, both people and keypoints detections are needed so

that only the four models which generate both boxes and

keypoint have been taken into account. Table 1 shows the

four CenterNet models analysed.

The evaluation measures for this experimental study are

computed using only the images containing instances of

person class in the COCO 2017 validation set. This

experimental study performs COCO-style evaluation on the

given images so that predicted objects are matched to

ground truth objects in descending order of confidence with

matches requiring a minimum IoU of 0.5. Thus, the com-

puted measures are mAP, Precision, Recall and F1-score

for IoU=0.5. Computation time for image in milliseconds is

also shown. The experimentation has been run in a laptop

with Ubuntu 20.04 using Tensorflow 2 on GPU Nvidia

GeForce RTX 2070 Super 8 GB memory. Table 2 shows

the people detection results of the models listed in Table 1

on the person class of COCO 2017 validation set (2693

images containing at least one person).The best speed-ac-

curacy trade-off is printed in bold in the Table 2.

The best speed-accuracy trade-off is achieved by model

Code 1, namely CenterNet HourGlass104 512 9 512. As it

was indicated above, the results of Table 2 have been

computed on the person class of the COCO 2017 validation

set. In such validation set, the images containing people are

not focused on a particular application. However, in our

work, the people detection is carried out by the Jetson TX2

on-board camera which is located at approximately 30

centimetres on the floor. In our system, the camera captures

the people images taking the legs and the rest of the people

body whether the person is located to a certain distance of

the robot. In order to take into consideration such partic-

ularities of our images, the performance of CenterNet

HourGlass104 512 9 512 has been tested on our people

images dataset. This dataset contains 1607 images which

have been taken from the point of view of our robot in

office-like indoor environments. The results of people

Table 1 CenterNet models pre-trained on COCO 2017 dataset,

including an identification code and network architecture

Code Model ? architecture ? input image size

1 CenterNet HourGlass104 512 9 512

2 CenterNet HourGlass104 1024 9 1024

3 CenterNet Resnet50 V1 FPN 512 9 512

4 CenterNet Resnet50 V2 512 9 512
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detection using CenterNet HourGlass104 512 9 512 on

our images dataset are: mAP ¼ 0:79, Precision ¼ 0:87,

Recall ¼ 0:97, F1 ¼ 0:92. These results have been com-

puted using IoU ¼ 0:5 and following the COCO-style

evaluation. Precision-recall curve can be computed

depending on confidence threshold to consider a prediction

with at least IoU ¼ 0:5 as true positive. Figure 7 shows the

precision–recall curve of people predictions on our images

dataset.

By examining the precision–recall curve of Fig. 7, the

best precision–recall trade-off is achieved for Precision ¼
0:927 and Recall ¼ 0:93 which correspond to

Confidence ¼ 0:362. Thus, using this level of confidence

as threshold, an high number of true positives (TP) and low

level both of false positives (FP) and false negatives (FN)

are achieved. Concluding, this detection model is adequate

taking into account the particularities of our system and for

this reason we have considered it in our proposal. In order

to identify the corresponding people keypoints, the version

including keypoints detection is used. More specifically,

the pre-trained model chosen in this work is CenterNet

HourGlass104 Keypoints 512 9 512 which can be found at

TensorFlow 2 Detection Model Zoo.

7.2 Comparative study on machine learning
algorithms

Given the balanced set of examples of leg and non-leg

achieved in Sect. 5.1, this set is divided in training and test

sets. Approximately the 80% of examples are considered

for training and 20% for testing. Thus, for each class, there

are 1850 instances for training and 466 for testing. To

identify the most interesting algorithm for our set of

examples, the machine learning platform Weka [57] is

used. The checked algorithms are: a Bayesian naive clas-

sifier, a Multilayer Perceptron (neural networks), a Support

Vector Machine (SVM)-based classifier, a rule-based

algorithm (PART), a decision tree C4.5-based algorithm

(J48) and a random trees forest-based algorithm (Random

Forest). Table 3 shows the average accuracy on 10 runs

taking into account tenfold cross-validation in each run.

The results are ascendingly ordered by accuracy average.

The accuracy is considered as the percentage of correctly

classified instances (both positives and negatives). The best

result is printed in bold in the Table 3.

The algorithm with the best result in this experiment is

Random Forest so that this algorithm is chosen to build our

final classifier. Such classifier is built by a new training

process using the previous training set, and it is assessed

not only in the training set by tenfold cross-validation but

also in the test set. The test set contains examples which

have not been used in the training process so that the

prediction skills of our classifier are properly tested. Fur-

thermore Precision, Recall and F1 score have been com-

puted to check the influence of both false positives and

false negatives in the behaviour of our classifier. Table 4

shows the results of our final classifier on the training and

test sets, respectively.

The results are sufficiently good on both the training and

test sets so that a binary classifier has been achieved able to

detect human legs from 2D LRF data.

Table 2 Results of CenterNet models and architectures indicated in

Table 1

Code mAP Prec. Recall F1 Time ms

1 0.32 0.82 0.81 0.81 384

2 0.33 0.83 0.81 0.82 625

3 0.23 0.80 0.75 0.77 312

4 0.22 0.80 0.68 0.73 312

Fig. 7 Precision–recall curve for CenterNet HourGlass104

512 9 512 on our images dataset

Table 3 Accuracy average and standard deviation of several machine

learning algorithms

Algorithm Accuracy average Std. deviation

Bayes Naive 82.01 1.77

Multilayer perceptron 88.94 1.69

libSVM 90.15 1.49

PART 91.05 1.89

J48 92.58 1.31

Random forest 96.63 0.98
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7.3 Experimental validation on people detection
and tracking

In order to validate our proposal, which we call Keypoints-

based People Detector and Tracker (KPDT), a comparative

study is carried out using as baseline the detector and

tracker by Angus Leigh et al. [17], which we call ROS-

based People Detector and Tracker (RPDT). A dataset

composed by 2D laser range data and images besides other

data as robot position and velocities is built. This dataset is

collected from the robot navigating in office-like indoor

environments. The robot moves, both autonomously and

manually controlled, by different kinds of environments

and travelling on both cluttered labs and hallways. In these

environments, several people are present to test the skill of

the robot to detect them and track their motions on the laser

coordinates. To simulate person-following situations, the

robot is manually controlled, while the person to be fol-

lowed was asked to walk naturally and stop periodically to

interact with other persons or objects in the environment.

The collected dataset is divided in two parts. First part is

used in our proposal to achieve the automatically labelled

dataset and the people detection and tracking method as it

has been shown in Sects. 5 and 6. To compare our method

to RPDT, it is needed to retrain RPDT using the same

dataset of positive and negative examples used to train our

detector. This training is possible since RPDT is publicly

available at [58] including the instructions to retraining the

leg detector. The second part of the collected dataset is

used to purpose of the comparative evaluation described in

this subsection.

The metrics for evaluating both people detection and

tracking methods are the commonly used metrics for multi-

object tracking, i.e. CLEAR MOT metrics [59]. The

tracking performance can be expressed in two numbers: the

‘‘tracking precision’’ which expresses how well the exact

positions of persons are estimated, and the ‘‘tracking

accuracy’’ which shows how many mistakes the tracker

made in terms of misses, false positives and changes of

tracked targets (mismatches). Misses arise when a ground

truth of a person exists but no estimated person is matched

to it. Misses concept is similar to the false negative con-

cept. False positives arise when there are estimated person

positions for which no real person exists. Since each person

track is identified by an unique identifier ID, mismatches

arise when the ID changes over the different frames. This

problem is given when two persons are swapped as they

pass close to each other. Also, a change of ID is possible

when the person is lost because of occlusion and such ID is

reset.

Tracking precision is measured by the Multiple Object

Tracking Precision (MOTP), which is defined by Equa-

tion 2 as

MOTP ¼
P

i;k d
i
kP

k ck
ð2Þ

where dik and ck are the error in the estimated position of

the ith person and the number of matching made between

estimated people positions and ground truth positions,

respectively, at time k. ThereforeMOTP addresses the total

error in estimated positions for matched ground truth

positions over all frames, averaged by the total number of

matches made. It shows the ability of the tracker to esti-

mate precise people positions.

Tracking accuracy is measured by the Multiple Object

Tracking Accuracy (MOTA), which is defined by Equa-

tion 3 as

MOTA ¼ 1�
P

kðmik þ FPk þ swkÞP
k gk

ð3Þ

where mik, FPk, swk and gk are the number of misses, false

positives, mismatches and ground truth values, respec-

tively, at time k.

A qualitative comparison on two kinds of environments

is first shown. Figure 8 shows the results of both methods

while a person is followed by the robot in a hallway. Upper

row shows the results of KPDT, and bottom row shows the

results of RPDT. The images are commented from left to

right in Fig. 8, and they form part of a higher sequence. Our

detector KPDT gives as outputs the clusters classified as

leg (green points) and their centroids (magenta points).

Person position is properly tracked over the frames main-

taining the track of the person represented by a red colour

point with ID 1. The detector RPDT gives only the cen-

troids (magenta points) of detected legs and the track of the

person position labelled as well as ID 1 in a red colour

point. In this environment, the results of both methods are

very similar.

Figure 9 shows the results of both methods while a

person is followed by the robot in a cluttered environment,

in particular, an office. Again, the images are commented

from left to right in Fig. 9 and they form part of a higher

sequence. First frame shows a person detection with ID 4

by KPDT and ID 6 by the RPDT. Second frame shows a

situation where KPDT has detected both legs but RPDT

fails. However, the position of person is maintained due to

the tracking process. Third frame addresses a situation

Table 4 Results of leg detection training and test sets

Set Accuracy Precision Recall F1

Training 0.964 0.964 0.964 0.964

Test 0.905 0.912 0.905 0.904
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where the brush is detected as a leg by both detectors

although the person position is well maintained in both

cases. RPDT achieves one false positive on leg detection

more than KPDT since the leg of the table is confused with

an human leg. The last frame shows the result after the

person moved faster. KPDT was able to maintain the ID for

the person, but RPDT needed a reset and a new ID was

assigned to the tracked person. In this kind of environment,

KPDT shows a performance better than RPDT.

In order to carry out a quantitative comparison, an

extensive experimentation is made. The evaluation mea-

sures MOTA and MOTP are computed from the results of

both methods on different environments including hallways

and cluttered environments. Since MOTA is the result of

the aggregation of three types of errors, it is interesting to

show the raw count of each error type alongside the MOTA

score. Table 5 shows the values achieved taking into

consideration 3158 ground truth values.

In Table 5, TP column shows the true positive on people

tracked and Miss, FP, Mism columns show the number of

misses, false positives and mismatches, respectively.

Finally, MOTA and MOTP (mm) values are shown. Our

proposal has generated a people detector and tracker KPDT

which overcomes the results of people detector and tracker

by Angus Leigh, RPDT. Our detector KPDT achieves a

value of true positive higher while misses, false positives

and mismatches are lower. Regarding the MOTP measure,

Fig. 8 Results in a hallway environment. Upper row shows the KPDT results while bottom row shows the RPDT results

Fig. 9 Results in a cluttered environment. Upper row shows the KPDT results, while bottom row shows the RPDT results

Table 5 Results of evaluation measures on both people detection and

tracking methods

Method TP Miss FP Mism MOTA MOTP (mm)

KPDT 3068 90 6 0 0.97 19

RPDT 3013 145 36 4 0.94 41
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both trackers are precise enough, but the best result is again

achieved by KPDT. The average runtime over the dataset

of each method has been computed using a laptop with an

Intel Core i5 CPU. Only the parts of code related to people

detection and tracking haven been taken into account to

measure both runtimes. KPDT achieves an average runtime

of 3,4 ms, while RPDT achieves 10 ms. Both runtimes

allow to process the laser and image data at 25Hz and

therefore are suitable to be used at real time being KPDT

faster than RPDT.

8 Conclusions

In this work, a new method for people detection and

tracking using 2D laser range data and deep learning-based

object detection has been proposed. On the contrary to

previous approaches which uses 2D laser range data

manually labelled, in our proposal the range data are

automatically labelled with the support of people detection

bounding boxes and keypoints. 2D laser data are clustered

and the clusters which correspond to human legs are

identified through the assignment of the projections of

clusters to legs’ keypoints. The automatically labelled

clusters dataset is transformed on a set of positive and

negative examples by a features extraction process based

on geometrical features. The set of examples is used to

carry out a comparative study on machine learning algo-

rithms to achieve a robust and efficient human leg detector.

This leg detector is used as observation model for a Kal-

man filter-based people detector and tracker. The feasibil-

ity of our proposal has been validated through a

comparative study which uses as baseline the people

detector and tracker by Angus Leigh et al. available in

ROS. Qualitative and quantitative results of such experi-

mental study show that our people detector and tracker

overcomes the baseline method achieving a robust and

efficient people detection and tracking under real-world

operating conditions.

As future works this approach can be used to detect

through 2D laser range data other classes of objects which

are present in the office-like environments. Also, the peo-

ple detector and tracker can be useful to analyse the

walking of elderly people in order to detect possible

problems and supply them help from a service mobile

robot.
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