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Symbiotic bacteria on animal hosts can prevent pathogenic bacterial infections 

by several mechanisms. Among them, symbiotic bacteria can indirectly 

enhance host’s immune responses or, directly, produce antimicrobial 

substances against pathogens. Due to differences in life-style, different 

host species are under different risks of microbial infections. Consequently, 

if symbiotic bacteria are somewhat selected by genetically determined host 

characteristics, we  would expect the antimicrobial properties of bacterial 

symbionts to vary among host species and to be distributed according to risk of 

infection. Here we have tested this hypothesis by measuring the antimicrobial 

ability of the bacterial strains isolated from the uropygial-gland skin of 19 bird 

species differing in nesting habits, and, therefore, in risk of microbial infection. 

In accordance with our predictions, intensity and range of antimicrobial effects 

against the indicator strains assayed varied among bird species, with hole-and 

open-nesters showing the highest and the lowest values, respectively. Since it 

is broadly accepted that hole-nesters have higher risks of microbial infection 

than open nesters, our results suggest that the risk of infection is a strong 

driver of natural selection to enhance immunocompetence of animals through 

selecting for antibiotic-producing symbionts. Future research should focus on 

characterizing symbiotic bacterial communities and detecting coevolutionary 

processes with particular antibiotic-producing bacteria within-host species.
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Introduction

Current view of symbiotic microbiomes acknowledges the beneficial effect of 
microorganisms on their hosts, in opposition to the classical view of microorganisms as 
pathogens. Thus, symbiotic bacteria are essential for understanding the evolution and 
functioning of their animal hosts (McFall-Ngai, 2002; Archie and Tung, 2015; Sherwin 
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et al., 2019). Some bacteria, for instance, allow animals to achieve 
better digestion and use of nutrients (Backhed et al., 2004), enhance 
the immune system (Umesaki et  al., 1995), promote chemical 
communication (Ezenwa and Williams, 2014; Carthey et al., 2018; 
Maraci et al., 2018), or even trigger direct defenses against parasite 
and/or predator enemies (McFall-Ngai et al., 2013; Suzuki, 2017; 
Mazorra-Alonso et  al., 2021). Indeed, animals using bacterial 
symbionts or their metabolites for self-protection against infections 
is widely spread within the animal kingdom (Currie et al., 1999; 
Brucker et al., 2008; Soler et al., 2008; Brownlie and Johnson, 2009; 
Soler et al., 2010). Birds, for instance, tend to use antimicrobial-
producing bacteria growing in nest lining materials (i.e., feathers; 
Peralta-Sánchez et al., 2010, 2018; Ruiz-Castellano et al., 2016, 2019) 
or in their uropygial gland (Soler et al., 2008), to prevent pathogenic 
infection of embryos (Martín-Vivaldi et al., 2014), nestlings (Soler 
et al., 2017) or breeding adults (Ruiz-Rodríguez et al., 2009).

Birds use their uropygial gland secretion to preen their feathers, 
which also confers protection against pathogenic infections during 
reproduction (Soler et al., 2012). The secretion is mainly composed 
of monoester and diester waxes of aliphatic alcohols and fatty acids 
with antimicrobial activity (Jacob and Ziswiler, 1982). This could 
partially explain the detected negative associations between size of 
the uropygial gland of different bird species and their eggshell 
bacterial loads and hatching success (Soler et al., 2012). Interestingly, 
in recent years, evidence showing that the uropygial gland of birds 
hosts symbiotic bacteria is accumulating in the literature. Following 
the pioneering works in woodhoopoes (Phoeniculus purpureus) 
(Law-Brown and Meyers, 2003) and European hoopoes (Upupa 
epops) (Soler et al., 2008), symbiotic bacteria have been detected in 
the uropygial secretion of turkeys (Meleagris gallopavo) (Braun 
et  al., 2016), great spotted woodpeckers (Dendrocopos major) 
(Braun et al., 2018), American barn owls (Tyto furcata) (Braun 
et al., 2018), Egyptian geese (Alopochen aegyptiacus) (Braun et al., 
2018), dark-eyed juncos (Junco hyemalis) (Whittaker and Theis, 
2016), great tits (Parus major) (Bodawatta et al., 2020) and house 
sparrows (Passer domesticus) (Videvall et al., 2021). Moreover, in 
hoopoes some of the bacteria isolated from the gland secretion 
produce bacteriocins active against a wide range of bacterial strains, 
including potential pathogens such as Listeria monocytogenes, 
Staphylococcus aureus and the feather degrading Bacillus 
licheniformis (Martín-Platero et  al., 2006; Martín-Vivaldi et  al., 
2010; Ruiz-Rodríguez et  al., 2013). Thus, it is possible that the 
previously described antimicrobial properties of the uropygial 
secretions of birds (Shawkey et al., 2003; Reneerkens et al., 2008) 
were, at least partially, mediated by their antibiotic-producing 
bacterial symbionts.

In birds, antibiotic-producing bacteria, have also been found 
in avian body feathers, the bill, brood patch and eggshells (Cook 
et  al., 2005; Shawkey et  al., 2005; Martín-Vivaldi et  al., 2014; 
Peralta-Sánchez et al., 2014; Soler et al., 2014; Martínez-García 
et al., 2015; Soler et al., 2016; Javůrková et al., 2019). All these 
locations are spread with uropygial secretion during preening and, 
thus, it is possible that some of these antibiotic-producing bacteria 
come from those inhabiting the uropygial gland of birds 

(Martínez-García et  al., 2015; Soler et  al., 2016). Another 
non-exclusive possibility is that some of these bacteria do not 
come directly from the bacterial communities in the secretion, but 
rather the secretion acts as a nutritional substrate facilitating or 
driving the colonization and growth of antibiotic-producing 
bacteria on the avian integumentary structures. In other words, it 
is possible that, thanks to the uropygial secretion, birds cultivate 
antibiotic-producing bacteria not only in their gland, but also on 
their feathers, beak and skin. Those symbiotic bacteria would help 
animals to prevent infections and, thus, would complement or add 
to the defensive responses of the immune system (Soler et al., 
2010). If this is the case, since antibiotic-producing bacteria 
development would depend on the bird’s physiology (e.g., by 
producing a large amount of uropygial secretion of special 
chemical characteristics), birds might be  able to select the 
antimicrobial characteristics of their bacterial symbionts. In this 
scenario, as it occurs with the immune system, antimicrobial 
capacity of those bacteria should adjust to the expected level of 
risk of infection. Here, we explore some predictions to test this 
hypothesis in a comparative interspecific framework.

The general predictions of the hypothetical selection of 
antimicrobial capacities of bacterial symbionts according to risk 
of infection for hosts are: (i) antimicrobial capacity of isolated 
symbiotic bacteria should differ among species; and (ii) species-
specific values of the antimicrobial potential should correlate with 
the strength of selection pressure, i.e., with the risk of infection 
experienced by each studied species. Life-style and life history 
strategies may condition risk of infection of animal populations. 
For instance, breeding in cavities entails high risks of 
ectoparasitism and pathogenic infections (Møller, 1997; Peralta-
Sánchez et al., 2018). Secondary-cavity nesters are in some way 
obligated to re-use holes due to the scarcity of natural ones. This 
life-style facilitates parasite transmission and multiple infections 
by more virulent parasites (Wiebe et al., 2007; Møller et al., 2009), 
and, on the other hand, selects for more efficient immune systems 
(Møller and Erritzøe, 1996). Thus, if antimicrobial capacity of 
symbiotic bacteria is selected according to risk of infection of their 
hosts, we  expect that those isolates from hole-nester species 
should be more efficient antagonizing the proliferation of other 
microorganims than isolates from non-hole nester species.

Immune responses also vary with age, either because of ageing 
of different components of the immune system (Cichon et al., 2003; 
Müller et al., 2013), or because juveniles have not yet fully developed 
(Palacios et al., 2009; Stambaugh et al., 2011). However, the effect of 
age depends on the immune parameters considered (Vermeulen 
et al., 2017). Nestlings typically show lower innate immune response 
(Ricklefs, 1992; Killpack and Karasov, 2012), but higher cell 
mediated immunity (Tella et al., 2002) than adults. As suggested 
above, birds could cultivate antibiotic-producing bacteria on their 
feathers, beak, and skin. The uropygial gland is not fully developed 
before fledging (Jacob and Ziswiler, 1982) and characteristics and 
quantity of secretion typically vary among nestlings of different ages 
and between nestlings and adults (Jacob and Ziswiler, 1982; Soler 
et  al., 2022). Thus, due to age differences in immunity and in 
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uropygial secretion properties, it can be predicted that the bacterial 
community associated with the uropygial secretion, and, thus, its 
antimicrobial capacity, varies with age too.

In this study, we characterized the antimicrobial capacity of 
bacterial isolates from the uropygial gland skin of nestlings and/
or adults of 19 bird species against several referential bacterial 
strains. We then explore the intra-and interspecific variations in 
intensity and range of antimicrobial capacity, and tested the 
hypothesis that antimicrobial capabilities of microbial symbionts 
is adjusted to the risk of infections of their avian hosts with the 
expectations that they should vary according to species identity, 
age and nesting habits.

Materials and methods

Study area and species

Fieldwork was carried out during the breeding seasons of 
2018 and 2019, in southern Spain; in the Hoya de Guadix 
(37°15′N; 3°01′W), a semiarid high-altitude plateau, and in the 
Charca de Suárez, a wetland near the coast in Motril (36° 43′ 
18.707”N, 3° 32′ 30.836”W). Most nestlings and adults of hole-
nester species were sampled during breeding in cork-made nest 
boxes (internal dimensions: 180 mm x 210 mm and 350 mm high, 
240 mm from the bottom to the hole entrance) located in the 
Guadix study area, where we  also sampled nestlings of open-
nester species few days before leaving the nests. We used mist nets 
to capture adults or fledglings few days after abandoning the nest, 
mainly in the Charca de Suárez, but also in Guadix.

Fieldwork

Since March 15th, we visited nest boxes every 7–8 days, and 
intensively looked for nests of non-hole nesters in the 
surroundings until egg detection, which allowed us to calculate 
the hatching date and, thus, planning the sampling date of adults 
and nestlings. Hole-nester adults were captured within the nest 
boxes during brooding, and nestlings were sampled during the last 
quarter of the nestling period. Briefly, we sampled the bacterial 
community of the uropygial gland skin by rubbing the surface 
area of the uropygial gland, including the opening, with a sterile 
cotton swab slightly wetted in sterile Phosphate Buffer Saline 
(PBS, 0.2 M). The surface of the sampled uropygial gland skin was 
estimated by multiplying the length and the width of the gland. 
The swab was kept in a sterile microfuge vial containing 1 ml of 
sterile PBS and stored at 4°C until further processing. We also 
measured tarsus length with a digital caliper (accuracy 0.01 mm), 
wing length with a ruler (accuracy 1 mm), body mass with a 
digital scale (accuracy 0.01 g), and gland dimensions (length, 
width and height) with a digital caliper (accuracy 0.01 mm) 
following Martín-Vivaldi et  al. (2009). Finally, we  ringed all 
individuals with numbered metal rings (Ministerio de Agricultura, 
Spain) to avoid resampling.

Laboratory procedure

Isolation of bacteria from the uropygial gland 
skin

We processed the uropygial skin samples in the laboratory the 
same day of collection. After vortexing the microfuge tubes 
containing the swabs, we plated decimal dilutions up to 10−4 on 
Tryptic Soy Agar (TSA, Scharlau, Barcelona, Spain). Petri dishes 
were incubated aerobically for 24 h at 37°C. Bacterial counts were 
estimated by standardization of the number of colonies per cm2 of 
sampled uropygial gland skin.

Antimicrobial activity of colonies isolated from 
uropygial gland skin

We isolated five morphologically different colonies from 
each plate. To assure that a pure culture was achieved, each of 
these colonies were serially cultivated by the streak-plate method 
onto TSA plates for three times, incubating them for 24 h at 
37°C. We  then assayed their production of antimicrobial 
substances by the double-layer technique (Gratia and Fredericq, 
1946) against 9 indicator bacterial strains. To this end, each 
isolate was replicated by spotting onto 9 TSA petri dishes (30 
isolates per plate), and incubated for 24 h at 37°C before 
performing the antagonistic tests used to estimate antimicrobial 
capacity of sampled individuals. After producer bacteria were 
grown, plates were covered with 7 ml of soft agar (BHI added 
0.8% agar, Scharlau Chemie S.A., Barcelona) previously heated 
until liquefied and tempered to 50°C. Once liquid, the soft agar 
was inoculated with 100 μl of an overnight culture of the 
indicator strain (see below) at 37°C. Finally, covered plates were 
incubated for 24 h at 37°C. The antimicrobial activity of each 
isolated colony was measured as the width of the inhibition halo 
around the spot of the colony, measured with a ruler to the 
nearest 0.5 mm. No control strains were used to standardize the 
halo width, then raw data was employed for statistical analyses 
[for more details see Ruiz-Rodríguez et  al. (2012) and Ruiz-
Castellano et al. (2019)].

The antimicrobial assays were performed against nine 
typified strains covering a wide range of bacterial taxa which 
include potential pathogenic bacteria for birds (Pinowski et al., 
1994; Hubalek, 2004; Benskin et al., 2009). These strains come 
from the Spanish Type Culture Collection (CECT) and from our 
laboratory. We  used Bacillus licheniformis D13, Enterococcus 
faecalis S47, Escherichia coli CECT774, Listeria inocua CECT340, 
Micrococcus luteus 241, Mycobacterium sp., Pseudomonas putida, 
Salmonella choleraesuis CECT443, and Staphylococcus 
aureus CECT240.

Statistical analysis

We sampled 326 individuals from 19 species, including 
non-hole (N = 29 adults, 12 nests, 16 nestlings, Table 1) and 
hole nesters (N = 84 adults, 105 nests, 200 nestlings, Table 1). 
For eight of those species we collected information from both 
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adults and nestlings close to fledging, for six species we only 
sampled nestlings, and for five species we only sampled adults. 
For each bacterial isolate, antimicrobial capacity was estimated 
as the average of the width of antagonistic halos (hereafter 
intensity of antimicrobial activity) when tested against each of 
the nine indicator bacteria. Moreover, we also estimated the 
diversity (Shannon index) of antimicrobial activity, which 
informs on the range of antimicrobial activity of each bacterial 
isolate. Then, for each individual, we  averaged the 
antimicrobial activity and antimicrobial range values of the 
five isolates from its uropygial gland skin. Bacterial density of 
the uropygial gland skin, as well as intensity and range of the 
antimicrobial activity of bacteria isolated from individuals 
(i.e., nestlings) of the same nest, were consistent (R2 > 70%) 
and, then, we  used nest mean values, which would 
appropriately account for the non-independence data of 
siblings. Bacterial density were log10 transformed to approach 
a normal distribution, while intensity and range of 
antimicrobial activity did not differ significantly from the 
Gaussian distribution.

To explore the effects of age (nestling versus adult) and 
species identity on the intensity and the range of the 
antimicrobial activity of bacteria isolated from their uropygial 
gland (hereafter antimicrobial variables), and on bacterial 
density, we first used General Linear Models (GLMs). These 
models included age and species identity as fixed factors, while 
the interaction between these two factors was explored in 
separate models. Because antimicrobial variables consistently 

differed for adults and nestlings, (even after controlling the 
effect of species identity (see Results)), the effect of nesting 
habits and species identity (nested within nesting habits to 
control for the non-balance species-data) were explored in 
separate GLM models for adults and nestlings. This approach 
allows increasing the number of considered species from 8 
species with information for adult and nestlings, to 14 and 13 
species, respectively.

Furthermore, we  also explored the effects of nesting 
behavior and species identity on the antimicrobial profile of 
bacteria isolated from the uropygial gland skin of birds. To do 
this, we  first calculated average individual/nest values of 
intensity of antimicrobial activity against each of the indicator 
bacterium used, and later estimated distance matrices among 
sampled individuals/nests based on the Bray–Curtis similarity 
measure. Then, we explored the effects of fixed factors (age, 
nesting habits and species identity) on the distance matrix by 
means of PERMANOVAs as implemented in Primer7 v.7.0.17 
(PRIMER-e). Similarly to the approach described for GLMs, 
we first checked the effect of age on the antimicrobial profile of 
the eight species with information for both nestlings and 
adults. Since we  found a strong effect of age even after 
controlling for the effect of species identity (see Results), 
subsequent models directed to explore the effects of nesting 
habits were computed independently for adults and nestlings. 
These PERMANOVAs included nest type and species identity 
nested within nest type as independent fixed factors. Principal 
Coordinates Analyses (PCoA) were used to visualize the 
relative position of species centroids (± 90% CI of ellipses) in 
the multidimensional space.

Finally, as nesting habits have a strong phylogenetic 
component, we  tried to control the analyses for phylogeny by 
means of Bayesian phylogenetic mixed models (MCMCglmm). 
First, we downloaded 100 trees for our set of species from http://
birdtree.org/ [source of trees was Ericson all species; (Jetz et al., 
2012)] and estimated the predicted effects for each of the trees 
using the MCMCglmm package (Hadfield, 2010) in R (R-Core-
Team, 2020) environment that also included the packages “ape” 
(Paradis et al., 2004), “MASS” (Paradis et al., 2004) and “mvtnorm” 
(Venables and Ripley, 2002). To run the model we  used the 
uninformative prior [list(G = list(G1 = list(V = 1,nu = 0.002)),R = list 
(V = 1,nu = 0.002)], and adjusted the number of iterations, to 
100,000, the burn-in period to 10,000 and the thinning interval to 
10. That model was run for each of the 100 trees and calculated 
average values and the minimum and maximum values of lower 
and upper 95% credibility intervals of estimates. We also used 
Geweke’s convergence diagnostic for Markov chains (Geweke, 
1992), which is based on a standard z-score of means of the first 
(10%) and the last part (50%) of a Markov chain. These z-scores 
never exceeded the critical value of 1.96. The random effect of 
phylogeny is reported as heritability (h2) (Hadfield, 2010), which 
is a measure of phylogenetic signal analogous to Pagel’s lambda 
that ranges from zero (non-phylogenetic signal) to one (high 
phylogenetic signal).

TABLE 1 Sample sizes of adults, nests and nestlings sampled for each 
species of hole nester and non-hole nester species.

Sample size

Species Nests Nestlings Adults

Hole 

nesters

Athene noctua 8 14 6

Columba oenas 6 12

Coracias garrulus 8 15 3

Corvus monedula 6 12

Otus scops 8 16 9

Parus major 7 12 3

Passer domesticus 8 16 11

Petronia petronia 5

Picus viridis 4 8

Pyrrhocorax pyrrhocorax 6 11

Sturnus unicolor 9 17 9

Upupa epops 35 67 38

Non-hole 

nesters

Acrocephalus scripaceus 7

Cettia cetti 4

Chloris chloris 3

Columba palumbus 3 5

Corvus corone 3 5

Muscicapa striata 4

Serinus serinus 6 6 11
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Results

Age effects

Bacterial isolates from the uropygial gland skin of adults 
demonstrated higher intensity and range of antimicrobial activity 
than those from nestlings, although the effect depended on species 
identity (Table 2; Figure 1). Moreover, density of bacteria on the 
uropygial gland skin was higher in nestlings than in adults, 
although it again depended on species identity (Table 2; Figure 1).

Nesting habits effects on adults and 
nestlings

Although total bacterial density of the uropygial gland skin of 
adults did not differ significantly among species, intensity and 
range of antimicrobial activity of bacterial isolates did (Table 3). 
As expected, adults of species with bacterial symbionts of higher 
intensity and range of antimicrobial activity [the hoopoe (Upupa 
epops), the great tit (Parus major), the little owl and the Eurasian 
scops owl (Otus scops)] were hole-nesters, while those with 
bacterial symbionts with lower values [reed warblers 
(Achrocephalus scirpaceus) and green finches (Chloris chloris)] 
were non-hole nesters (Figure 1). Thus, on average, antimicrobial 
capacity of symbiotic bacteria isolated from adults of hole-nester 
species were more intense and diverse than those isolated from 
non-hole nesters (Figure 2; Table 3). Similarly, when considering 
compositional variance of the antimicrobial profile, they 
significantly differed among species, and between hole-nester and 
non-hole-nester (Table 3; Figure 3). Interestingly, bacterial density 
on the skin of adults depended on nesting habits, but not on 
species identity within hole and non-hole nester groups (Table 3). 
The bacterial density on uropygial gland skin of hole-nester 
species was higher than that on non-hole nesters (Figure  2), 
suggesting that hole-nester species experience higher risk of 
bacterial infection. Phylogenetic corrected analyses confirmed all 
those results, but differences in intensity of antimicrobial activity 
of bacteria isolated from hole- and non-hole-nester species was 
only close to statistical significance (Table 4). Interestingly, the 

three models showed significant phylogenetic components 
suggesting that antimicrobial capacity of bacteria from close-
related species is similar to each other.

Similar to the results for adults, we  found significant 
interspecific differences in bacterial density, and in the intensity, 
range and profile of antimicrobial capacity of bacteria isolated 
from the skin of the uropygial gland of nestlings (Table  3; 
Figures 2, 3). In this case, the species with bacterial symbionts of 
higher intensity and range of antimicrobial activity [the carrion 
crow (Corvus corone)] was a non-hole nester, although it was 
followed by two hole-nester species; the red-billed chough 
(Pyrrhocorax pyrrhocorax) and the hoopoe. Moreover, two out of 
three species with bacterial symbionts with lower values of 
intensity of antimicrobial activity and of range of antimicrobial 
capacity were non-hole nesters (Figure  1). Thus, although 
differences among hole and non-hole nesting species followed 
similar pattern in nestlings and adults, the intensity of 
antimicrobial activity of bacterial symbionts isolated from the 
gland skin of nestlings of hole- and non-hole-nester species did 
not differ significantly (Table 3; Figure 2). In any case, similarly to 
what we found in adults, estimated antimicrobial range (Figure 2) 
and antimicrobial profiles (Figure 3) of nestlings of hole- and 
non-hole nester species differed significantly (Table 3). Moreover, 
antimicrobial range, and bacterial density, were of higher values 
in hole-nester species (Table 3; Figure 2). Phylogenetic corrected 
analyses only confirmed detected differences in bacterial density, 
while all three models showed significant phylogenetic 
components (Table 4).

Discussion

In the present study we  examined the antimicrobial 
capacities of the bacterial community harbored on the skin of 
the uropygial gland of nestlings and adults of hole- and 
non-hole-nester bird species. Our results reveal that, although 
the effects of age and nesting habits depended on the species 
identity, antimicrobial capacity of bacteria isolated from adults 
were more intense and diverse than those of bacteria isolated 
from nestlings. The uropygial skin of nestlings, however, 

TABLE 2 Results from General Linear Models (GLM) and PERMANOVAs with antimicrobial activity (average values of the width of antagonistic halos 
when tested against each of the nine indicator bacteria), antimicrobial range (Shannon index of the antimicrobial activity), bacterial density and the 
antimicrobial profile as dependent variables.

General Linear Models (GLM) PERMANOVA

Antimicrobial activity Antimicrobial range Bacterial density Antimicrobial profile

F df P F df p F df p Pseudo-F df p

Species 4.14 8,173 <0.001 9.17 8,173 <0.001 6.89 8,164 <0.001 3.7 8,165 <0.001

Age 35.19 1,173 <0.001 12.87 1,173 <0.001 52.97 8,164 <0.001 9.56 1,165 <0.001

Species*Age 1.86 8,165 0.07 3.7 8,165 <0.001 2.89 8,156 0.005 1.61 8,165 0.003

Species identity and age (nestlings vs. adults) were used as the independent factors. The interaction between species identity and age was explored in separate models that also included 
main effects. Values in bold are statistically significant.
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carried bacteria at a higher density than that of adults. 
Moreover, intensity and range of antimicrobial capacities of 
bacterial isolates were higher in hole-nester species, which 
also harbored bacteria at a higher density. These effects of 
nesting habits were mainly detected for adult birds. Finally, 
variables describing either antimicrobial capacities or bacterial 
density of different bird species have a moderate but 
significant phylogenetic component. Because adult birds 
might have a more stable bacterial community than nestlings, 
and hole-nesters are under higher risk of bacterial infection 
than non-hole nesters are, those results might suggest that 
natural selection favors the establishment and growth of 
competent antibiotic-producing bacteria on the skin of birds. 
Below, we  discuss that possibility and the potential role of 

uropygial secretion selecting antibiotic-producing bacteria 
that would contribute to the bird’s antimicrobial defenses.

We detected consistent among-species differences in 
characteristics of the bacterial communities, which occurred even 
after controlling for the effect of age or nesting habits. These 
differences could be  explained by different species exploiting 
different resources or habitats where the pool of bacteria able to 
colonize the skin of birds might also differ (Thompson et  al., 
2017). Bacterial communities of holes and open habitats that birds 
use for breeding differ (Godard et al., 2007; Peralta-Sánchez et al., 
2012) and, thus, skin bacterial communities of hole and non-hole 
nesters should accordingly differ. Although our results fit that 
prediction in terms of bacterial density, it is important to highlight 
that bacteria from hole-nester species consistently demonstrated 

A B

C

FIGURE 1

Antimicrobial capacity: (A) antimicrobial activity (average values of the width of antagonistic halos (mm) when tested against each of the nine 
indicator bacteria) and (B) antimicrobial range (Shannon index of the antimicrobial activity), of the bacterial communities associated to the 
uropygial gland skin of different bird species. (C) Bacterial density on the gland surface of the same species. Results for adults and nestlings are 
shown in different colours. Values are means ±95% CI. CI are not symmetric because negative values are not possible.
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higher intensity and range of antimicrobial activity, which could 
also be explained because of a higher competition among bacterial 
strains in environments with higher bacterial densities, such as the 
gland skin of hole-nester species, thus favoring the establishment 
of antibiotic-producing bacteria.

Another non-exclusive explanation is that different species 
might differ in mechanisms preventing bacterial colonization of 
skin and some other integuments of birds (Soler et al., 2011; 
Peralta-Sánchez et al., 2018; Javůrková et al., 2019; Azcárate-
García et al., 2020) that would result in species-specific skin 
bacterial communities with particular antimicrobial properties. 
Appropriate holes for bird breeding are scarce in nature 
(Newton, 1994) and, thus, they are likely reused from season to 
season (Aitken et al., 2002; Wiebe et al., 2007). Interestingly, 
nest reuse increases the risk of horizontal transmission of 
ectoparasites and pathogens (Møller and Erritzøe, 1996; Tomás 
et al., 2007) and density of bacteria in nestlings’ skin (González-
Braojos et al., 2012). In accordance, we found higher bacterial 
density in the uropygial gland skin of hole-nester than in that 
of non-hole-nester species. Importantly, bacterial density of 
avian nests predicts the probability of hatching failure (Peralta-
Sánchez et al., 2018), and, thus, selection pressures favoring the 
evolution of antibacterial defenses [i.e., innate humoral 
immunity (Soler et al., 2011)] should be stronger for hole-nester 
species. Accordingly, the size of the bursa of Fabricius and the 
spleen of these species is larger than that of non-hole-nester 
species (Møller and Erritzøe, 1996). Here, fitting with this 
pattern, we found that the antimicrobial capacity of bacteria 
isolated from hole-nester species were higher than that of 
non-hole nesters isolates. However, to conclude in favor of the 

hypothesis that our findings are the consequence of natural 
selection, a mechanism resulting from bird phenotypes must 
first be demonstrated as the cause of the detected differences in 
antimicrobial properties of bacteria isolated from hole-nester 
and non-hole-nester species.

TABLE 3 Results of nested General Linear Models (GLM) and 
PERMANOVAs exploring the effects of nest type (hole vs. non-hole) 
and species identity (nested withing nest type) on the antimicrobial 
activity (average values of the width of antagonistic halos when tested 
against each of the nine indicator bacteria), antimicrobial range 
(Shannon index of the antimicrobial activity), bacterial density and the 
antimicrobial profile in separated models for each of the dependent 
variable, and for adults and nestlings.

Adults Nestlings

F* df p F* df p

Antimicrobial activity

Nest type 8.02 1,97 0.006 0.26 1,104 0.609

Species (Nest type) 2.45 11,97 0.010 4.34 12,104 <0.001

Antimicrobial range

Nest type 36.74 1,97 <0.001 6.69 1,104 0.011

Species (Nest type) 4.32 11,97 <0.001 6.47 12,104 <0.001

Total bacterial density

Nest type 23.14 1,93 <0.001 33.98 1,104 <0.001

Species (Nest type) 1.51 11,93 0.142 5.21 12,104 <0.001

Antimicrobial profile

Nest type 8.54 1,97 <0.001 5.74 1,104 <0.001

Species (Nest type) 2.18 11,97 <0.001 1.7 12,104 <0.001

*F statistic is Pseudo-F in PERMANOVA analysis for antimicrobial profile. Values in 
bold are statistically significant.

A

B

C

FIGURE 2

Effect of nesting habits of birds (hole vs non-hole) on the 
antimicrobial capacity and bacterial density of the community 
living on their uropygial gland skin. Graphs show the estimated 
antimicrobial capacity: (A) intensity of antimicrobial activity 
(average values of the width of antagonistic halos (mm) when 
tested against each of the nine indicator bacteria) and 
(B) antimicrobial range (Shannon index of the antimicrobial 
activity), as well as (C) density of bacteria isolated from the birds’ 
gland skin after controlling for species identity nested within nest 
type. Results for adults and nestlings are shown in different 
colours. Values are least square means ±95% CI.
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FIGURE 3

Principal Coordinates Analisis (PCoA) ordination plot using bray-curtis distances of the antimicrobial profile of bacterial communities isolated from 
the uropygial gland skin. Points are centroids per species and ellipses indicate 90% CI.

TABLE 4 Results of MCMCglmm models with nest type as a fixed factor, the bird phylogeny as a random factor and the antimicrobial activity 
(average values of the width of antagonistic halos when tested against each of the nine indicator bacteria), antimicrobial range (Shannon index of 
the antimicrobial activity), and bacterial density as dependent variables.

Lower 
95% CI

Upper 
95% CI

ESS 
Lower 
95% CI

ESS 
Upper 
95% CI

Autocorr 
Lower 
95% CI

Autocorr 
Upper 
95% CI

(z-score) 
Lower 
95% CI

(z-score) 
Upper 
95% CI

pMCMC 
(−95%CI)

pMCMC 
(+95%CI)

Adults Antimicrobial activity

Nest type −0.374 0.018 8960.682 9120.342 −0.002 0.002 −0.337 0.049 0.072 0.074

heritability 0.012 0.354

Antimicrobial range

Nest type −1.358 −0.288 9012.492 9124.574 −0.004 0 −0.308 0.054 0.006 0.006

heritability 0.07 0.53

Bacterial density

Nest type −0.164 −0.002 8966.204 9061.441 −0.001 0.003 −0.254 0.2 0.045 0.047

heritability 0.012 0.28

Nestlings Antimicrobial activity

Nest type −0.128 0.155 8839.062 9037.088 0 0.005 −0.109 0.25 0.876 0.886

heritability 0.034 0.514

Antimicrobial range

Nest type −0.805 0.205 8948.682 9050.966 −0.002 0.002 −0.119 0.275 0.222 0.227

heritability 0.178 0.68

Bacterial density

Nest type −0.314 −0.065 8932.945 9032.842 −0.001 0.003 −0.319 0.097 0.006 0.006

heritability 0.17 0.705

The average of the 100 trees was calculated for each factor, as well as the 95% CI calculated as the lower and upper values for 95% Credibility Intervals of each estimate. Values in bold are 
statistically significant.

A third non-exclusive possibility explaining interspecific 
differences in antimicrobial properties of bacteria isolated from 
the skin of the uropygial gland of birds is that characteristics of the 
uropygial secretion, which differ among species (Jacob and 
Ziswiler, 1982), are associated with interspecific variation of 
bacterial communities (Soler et al., 2012). Uropygial secretion 
might thus be  the avian trait where natural selection works 
favoring antimicrobial potential of the microbial symbionts. Birds 
preen their feathers, bills and skin with uropygial secretion and, 

thus, the detected interspecific effects might be due to interspecific 
differences in antimicrobial properties of secretion (Moreno-
Rueda, 2017). Moreover, the preen secretion of different species 
also varies in chemical composition (Jacob and Ziswiler, 1982) 
that might differentially enhance the growth of particular bacteria 
explaining detected interspecific variation in bacterial 
communities. Interestingly, chemical composition of the uropygial 
secretion of birds typically changes with phenology. The uropygial 
secretion of hoopoe females, for instance, changes during 
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reproduction as does its antimicrobial capabilities (Soler et al., 
2008), which is mediated by the microbial symbionts (Ruiz-
Rodríguez et al., 2009). Thus, although we know that microbial 
symbionts affect the chemical composition of secretion (Martín-
Vivaldi et al., 2010), it is plausible that the remarkable changes in 
chemical composition of uropygial secretions command 
colonization and growth of their antibiotic-producing bacteria. 
Similarly, it is also possible that, because birds use the uropygial 
secretion for preening, interspecific variation in chemical 
composition of the secretion was the cause of the detected 
interspecific variation in antimicrobial capability of microbial 
symbionts. It has also been suggested that uropygial secretion 
modulated the microbiota of body feathers (Jacob et al., 2018), 
which might suggest that the uropygial secretion is also 
responsible for the detected antimicrobial characteristics of the 
bacteria that we isolated from the skin of the uropygial gland of 
different species.

Apart from its antimicrobial properties, the uropygial 
secretion of birds might function in scenarios of chemical 
communication including that related to inadvertent social 
information (Danchin et al., 2004; Caro et al., 2015; Mazorra-
Alonso et  al., 2021). Accordingly, variations in chemical 
composition have been described in association with individual 
characteristics including age, sex, and phenology (Reneerkens 
et  al., 2002; Leclaire et  al., 2011a,b; Amo et  al., 2012a;  
Díez-Fernández et  al., 2021). Here, we  have detected that the 
antimicrobial capacity of bacterial isolates differed depending on 
age, which might also be interpreted as a consequence of the age 
related variation of the chemical composition of the uropygial 
secretion between adults and nestlings. Age differences, however, 
would be hardly explained as a consequence of selection pressures 
due to risk of infections, mainly because bacteria grew at a larger 
density in nestlings than in adults, but also because antimicrobial 
activity of bacteria isolated from nestlings skin of hole-nester 
species did not differ from that of non-holer species. However, in 
accordance with the hypothetical role of natural selection driving 
antimicrobial capacity of nestling symbionts, the antimicrobial 
profile of nestlings of holer- and of non-holer species differed 
significantly, with antimicrobial range of nestlings of the former 
species being larger than that of the latter group of species. 
Similarly to the age effects detected in antimicrobial capacity of 
bacterial symbionts, the immune responses of nestling birds are 
also typically weaker than that of adults (see Introduction), which 
is mainly explained as an ontogenetic effect of developing immune 
system (Apanius, 1998). Thus, it is possible that the detected age 
effect was also due to the ontogenetic effects of developing 
uropygial secretion responsible of known differences in 
characteristics of the uropygial secretion of birds (Amo et  al., 
2012a,b; Soler et  al., 2022); a possibility worth exploring in 
the future.

Summarizing, we detected parallelism in the antimicrobial 
capacities of microbial symbionts and the strength of selection 
due to parasitic infections associated with nesting habits. 
Because detected differences could be  hardly explained by 

random effects, we suggest that natural selection should favor 
mechanisms (i.e., characteristics of uropygial secretion) allowing 
cultivation of antibiotic-producing bacteria on the uropygial 
glands skin, feathers and other birds’ teguments. These results 
therefore suggest a new line of animal immunity mediated by 
natural selection acting on traits determining antimicrobial 
capacity of their bacterial symbionts. Future research should 
focus on characterizing symbiotic bacterial communities and 
detecting coevolutionary processes with particular antibiotic-
producing bacteria within-host species.
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