
Information Fusion 90 (2023) 283–297

A
1

F

T
S
J
a

b

o

A

K
C
O
S
H
M
S
K

1

s
d
a
6
t
c
t
n
n

t
c
d
t
o
a
d
c
f

h
R

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ull length article

he Krypteia ensemble: Designing classifier ensembles using an ancient
partan military tradition
. Fumanal-Idocin a,∗, O. Cordón b, H. Bustince a

Public University of Navarra and Institute of Smart Cities, Campus Arrosadia s/n, 31006 Pamplona, Spain
Deptartment of Computer Science and Artificial Intelligence and Andalusian Research Institute DaSCI, ‘‘Data Science and Computational Intelligence", University
f Granada, 18071 Granada, Spain

R T I C L E I N F O

eywords:
lassifier ensemble
ptimal classifier selection
ocial network
uman social behaviour
ulti-agent systems

parta
rypteia

A B S T R A C T

In this work we propose a new algorithm to train and optimize an ensemble of classifiers. We call this algorithm
the Krypteia ensemble, based on an ancient Spartan tradition designed to convert their most promising
individuals into future leaders of their society. We show how to adapt this ancient custom to optimize classifiers
by generating different variations of the same task, each one offering different hardships according to distinct
stochastic variables. This is thus applied to induce diversity in the set of individual weak learners. Then, we
use a set of agents designed to select those subjects who excel in their assignments, and whose interaction
minimizes excessive redundancies in the resulting population. We also study how different Krypteia ensembles
can be stacked together, so that more complex classifiers can be built using the same procedure. Besides, we
consider a wide range of different aggregation functions in the decision making phase to find the optimal
performance for the different Krypteia ensemble variations tested. Finally, we study how different Krypteia
ensembles perform for a wide range of classification datasets and we compare them with other state-of-the-art
design techniques of classifier ensembles, obtaining favourable results to our proposal.
. Introduction

Data analysis is one of the most popular disciplines in computer
cience in the present day [1,2]. There are many problems related to
ata processing that have been heavily studied due to their academic
nd economic interest, like data visualization [3], pattern discovery [4–
], and image processing [7] among others. One of the most common
asks in data analysis is to discriminate a series of inputs into a desired
ategory, which is commonly called a classification task [8]. Some of
he most popular classification algorithms are those based on neural
etworks [9], the family of Bayes classifiers [10,11], the K-Nearest
eighbours [12], and the Support vector machines [13].

Due to the limitations of these models, a very popular approach
o improve classification performance is to form an ‘‘ensemble’’ of
lassifiers [14–16], which consists of a set of classifiers trained under
ifferent configurations that make a decision together [17]. Usually,
his consensus is formed by taking the average or the majority vote
f these classifiers [18]. There are many classifier ensemble design
pproaches in the literature. E.g. the random forest trains a set of
ifferent decision trees under distinct subsampling conditions and then
omputes the final decision as the majority vote [19]; Bagging classi-
iers are formed by training many different subsamples with repeated

∗ Corresponding author.
E-mail addresses: javier.fumanal@unavarra.es (J. Fumanal-Idocin), ocordon@decsai.ugr.es (O. Cordón), bustince@unavarra.es (H. Bustince).

samples from the original dataset [20]; and AdaBoost iteratively trains
different classifiers, each one especially focused on the errors made by
the previous classifiers [21]. Of course, since the development of these
ensemble construction techniques there has been many research aimed
at improving them [22–25]. Some of the most common techniques to
improve the performance of an ensemble include using only a subset
of the trained classifiers, which is called overproduce-and-choose [26],
and using different kinds of classifiers, which is called an heterogeneous
ensemble [27].

One of the most researched topics in classification ensembles is the
decision making phase, where the majority vote or the arithmetic mean
are substituted by another aggregation function [28]. Some of the most
popular ones are the Choquet Integral [29], the Sugeno Integral [30],
the Ordered Weighted Aggregation operators [31], and the Overlap
functions [32]. It is also possible to use other aggregation functions
obtained by means of the so-called penalty functions [33].

There are also some interesting research lines in classifier ensemble
design focusing on the influence of diversity in the ensemble accu-
racy [34], and on the trade-off between accuracy and complexity
(i.e. selecting the optimal number of classifiers) [35].

Bearing in mind the issues above, the objectives of this work are:
vailable online 30 September 2022
566-2535/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.inffus.2022.09.021
eceived 8 February 2022; Received in revised form 23 September 2022; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

25 September 2022

http://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
mailto:javier.fumanal@unavarra.es
mailto:ocordon@decsai.ugr.es
mailto:bustince@unavarra.es
https://doi.org/10.1016/j.inffus.2022.09.021
https://doi.org/10.1016/j.inffus.2022.09.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2022.09.021&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.

o
I
b
f
a
h
e
s
t
r
t
i
a
a

a
t
a
d
m
f

d
j
j
l
o
c

s
c
r
e
i
w
t
F
w

2

w
s
g
c

2

w
o
e
c
d

i
o
b
b

• To create a new algorithm to train an heterogeneous ensemble
using stochastic conditions to adapt the original task to different
difficulty settings.

• To study different hierarchical decision making schemes and
different aggregation functions to obtain the final solution.

In order to do so, we propose a new approach to train an ensemble
f classifiers based on an ancient Spartan ritual called the Krypteia [36].
n this ritual the young noble Spartans would be promoted to adulthood
y proving themselves worthy through surviving alone in a hostile land
or an unknown period of time. This situation made the participants
ct in situations of high uncertainty and lack or resources, which spurs
eterodox thinking and smart use of resources. Due to the natural
ver-changing conditions of real life, not two Krypteia rituals were the
ame, which also favoured diversity in the way subjects survived the
rial, warranting individual fitness and compatible traits for the higher
anks of the Spartan society. This kind of training custom seems to
ackle in real-life population some of the problems that are present
n modern day classifier ensembles, such as ensemble diversity and
ccuracy [37], and the trade-off between them [38,39], or robustness
gainst adversarial examples [40].

Following the same idea as in the original Krypteia, our proposed
lgorithm trains a heterogeneous ensemble using stochastic conditions
o adapt the original task to different difficulty settings. Then, we use
novel technique to perform overproduce-and-choose to minimize re-
undancies in the system. We also study different hierarchical decision
aking schemes and different aggregation functions to perform the

inal solution.
Following this strategy, we expect the resulting population to learn

ifferent and intelligent solutions, according to each individual sub-
ect’s situation, and to find good collective solutions when all the sub-
ects’ outputs are combined. The goodness of our proposal is shown in a
arge series of experiments in real-world datasets, comparing the results
btained using different Krypteia ensembles to other state-of-the-art
lassifier ensemble design methods.

The rest of this paper goes as follows: first, in Section 2 we discuss
ome relevant works in ensemble design. In Section 3 we recall some
oncepts of aggregation functions. In Section 4 we explain the ancient
itual of the Krypteia and our proposal to emulate it in a computational
nvironment. Next, in Section 5 we detail the specifics of each step
n the design process. Then, in Section 6 we describe the experiments
e performed using Krypteia ensembles, and in Section 7 we compare

he obtained results to those generated using other types of ensembles.
inally, in Section 9 we give our final remarks and future lines for this
ork.

. Related work

Due to their massive popularity and numerous applications, many
orks have been devoted to enhance performance in classifier ensemble

ystems. Some of the main lines of research in this topic are model
eneration for the classifier, model selection for the classifier, and
ombining the output from the classifiers.

.1. Individual classifier generation and diversity induction

Ensemble generation is based on learning individual classifiers,
eak learners, whose outputs can be combined then into one final
utput for the global system [41]. The ideal set of classifiers for an
nsemble are both accurate and complementary, so that the errors
ommitted by the individual models are corrected in the collective
ecisions taken.

The most popular ways to generate classifiers are bagging [20],
n which each model is trained using a random subsample from the
riginal data; boosting [42], where classifiers are iteratively trained
ased on the previous errors obtained by the ensemble; and clustering-
284

ased approaches [43], where data are clustered according to the
different patterns found in the original data and a dedicated classifier
is used to classify the samples for each cluster. From this classical
approaches, bagging is usually preferred to boosting, as bagging can be
computed in a parallelized setting, while boosting requires an iterative
process. Clustering based approaches can be very effective when the
decision boundaries in the dataset are not constant. However, they are
limited by the structures found by the clustering algorithm used. For
example, if we used the popular K-Means algorithm, we can only detect
convex structures, so complex regions will still be problematic.

Depending on the kind of classifiers used, we denote a homogeneous
ensemble, if all the classifiers are of the same type, and a heterogeneous
ensemble, if they are different. Many approaches have been studied in
both paradigms. In [44] the authors proposed a homogeneous ensemble
of neural networks for word classification and a heterogeneous one was
used in [45] for a similar problem, using deep learning and classical
algorithms as well. Also, in [46] the authors studied heterogeneous
ensembles applied to online data streams. Heterogeneous ensembles
offer more diversity than their homogeneous counterpart. Nevertheless,
the proportions in which the different classifiers should form the en-
semble design involves another problem [47]. In [48] the performance
of heterogeneous ensembles is compared to homogeneous ones to deal
with imbalanced classification problems, finding favourable results to
the former ones.

2.2. Classifier selection

As the usefulness of each of the trained classifiers can vary signif-
icantly [49], one popular approach in ensemble design is to choose
only a subset of classifiers, or to purge a percentage of the classifiers
generated [50], which is commonly called overproduce-and-choose
(OCS) [26].

Recent works regarding classifier selection and pruning include the
proposal in [51] where the authors prune a pool of ensembles based on
the indecision region of each classifier. Meanwhile, the proposal in [52]
uses the K-means algorithm to cluster the candidates and find the ones
that minimize redundancies. Another successful approach to purge clas-
sifiers is using meta-features [53]. Meta-features are features extracted
from the original data that are used to train meta-classifiers that dis-
criminate between good and bad candidates. Selecting classifiers can be
useful when there is a lot of redundancy in their outputs. However, this
redundancy can sometimes be useful to minimize the impact of outlier
predictions and underperforming classifiers. Meta-feature methods can
also tackle this problem by determining which classifiers are good for
each sample. However, they also impose additional design problems,
like determining which meta-features are good for this task and the
boundary conditions to determine if a classifier is competent or not.

Finally, it is also possible to use optimization algorithms to choose
the most effective subset of classifiers [54,55] or features [56]. Op-
timization approaches can lead to good results both in the case of
classifier and feature selection. However, they require a proper mod-
elling and a suitable algorithm for this task. Besides, as the validation
set used to optimize each configuration is usually only a fraction of the
training set, there is also the risk of overfitting.

2.3. Classifier combination

The classifier fusion is commonly performed using functions such as
the maximum, the arithmetic mean, and the majority vote [24,57,58].
These functions work best when there is independence between the
errors among the classifiers. However, that condition is usually not
guaranteed [38].

A common solution to this problem is to ponder each classifier
according to its importance [59]. Other relevant approaches include
the use of fuzzy aggregations to model uncertainty and coalitions
of the inputs to fuse. Some popular operators in this phase include

the Choquet and Sugeno integrals [60–62]. These operators can learn

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.

i
a

3

f

T

3

the interaction among the features and take them into account when
aggregating the data. They are also simpler to use compared to other
pruning or feature selection mechanisms. However, they also require
to learn a suitable fuzzy measure to capture these coalitions, which is
not straightforward [63]. Another successful strategy consist of using
fuzzy linguistic rule-based classification system as the fusion process,
so that it can be interpretable for the user [64].

It is also possible to fuse the classifiers in different phases, using a
hierarchical fusion phase [18,27], which can also include different ag-
gregation operators [60]. This procedure can achieve higher accuracy
results than fusing all the classifiers in one phase. However, it requires a
sensitive hierarchy system among the classifiers and a suitable aggrega-
tion operator in each phase. Choosing the best aggregation operator for
one vector can be solved using a penalty or a moderate deviation [65],
but the interaction among aggregations in a hierarchical fashion has
not been studied.

3. Preliminaries

In this section we shall recall some of the concepts related to the
most common aggregation functions, the formulation of the Choquet
and Sugeno integrals, and some of their generalizations, the Overlap
functions and the Ordered Weighted Aggregation operators.

3.1. Properties of aggregation functions

Aggregation functions are used to fuse information from 𝑛 sources
nto one single output. A function 𝐴: [0, 1]𝑛 → [0, 1] is said to be a 𝑛-ary
ggregation function if the following conditions hold:

• 𝐴 is increasing in each argument: ∀𝑖 ∈ {1,… , 𝑛}, if 𝑥𝑖 < 𝑥𝑗 ,
𝐴(𝑥1,… ., 𝑥𝑖,… 𝑥𝑛) ≤ 𝐴(𝑥1,… , 𝑥𝑗 ,… 𝑥𝑛). For example, consider the
vectors 𝐱 = {0.3, 0.9, 0.1, 0.8} and 𝐳 = {0.3, 0.9, 0.6, 0.8}. If 𝐴 is an
aggregation function, it must hold that 𝐴(𝐱) ≤ 𝐴(𝐳), because all
elements of in 𝐱 are equal than those in 𝐳, except for the case of
𝑥3 and 𝑧3, where 0.1 < 0.6.

• 𝐴(0,… , 0) = 0
• 𝐴(1,… , 1) = 1

Some examples of classical 𝑛-ary aggregation functions are:

• Arithmetic mean: 𝐴(𝐱) = 1
𝑛
∑𝑛

𝑖=1 𝑥𝑖.
• Max: 𝐴(𝐱) = 𝑚𝑎𝑥(𝑥1,… , 𝑥𝑛).
• Min: 𝐴(𝐱) = 𝑚𝑖𝑛(𝑥1,… , 𝑥𝑛).

.2. T-norm

A T-norm is an aggregation function [0, 1]2 → [0, 1] that satisfies the
ollowing properties for 𝑥, 𝑦, 𝑧 ∈ [0, 1] [66]:

• 𝑇 (𝑥, 𝑦) = 𝑇 (𝑦, 𝑥)
• 𝑇 (𝑥, 𝑇 (𝑦, 𝑧)) = 𝑇 (𝑇 (𝑥, 𝑦), 𝑧)
• 𝑇 (𝑥, 1) = 𝑥

Some examples of T-norms are the product, the minimum and the
Łukasiewicz T-norm:

𝐿𝑙𝑢𝑘(𝑥, 𝑦) = max(0, 𝑥 + 𝑦 − 1) (1)

3.2.1. Overlap functions
An n-dimensional overlap is an aggregation function 𝐺 ∶ [0, 1]𝑛 →

[0, 1] such that [32]:

• 𝐺 is commutative.
• ∏

𝑖=1 𝑥𝑖 = 0 if and only if 𝐺(𝐱) = 0.
• ∏

𝑖=1 𝑥𝑖 = 1 if and only if 𝐺(𝐱) = 1
• 𝐺 is increasing.
285

• 𝐺 is continuous.
Some examples of overlap functions are:

• Minimum: 𝐺(𝐱) = min(𝐱)
• Harmonic Mean (HM): 𝐺(𝐱) = 𝑛

∑𝑛
𝑖=1

1
𝑥𝑖

• Sinus Overlap (SO): 𝐺(𝐱) = sin(𝜋2𝛱
𝑛
𝑖=1𝑥𝑖)

• Geometric Mean (GM): 𝐺(𝐱) = 𝑛
√

∏

𝑥𝑖

3.3. Ordered Weighted Averaging operators (OWA)

𝐰 = (𝑤1,… , 𝑤𝑛) ∈ [0, 1]𝑛 is called a weighting vector if ∑𝑛
𝑖=1 𝑤𝑖 = 1.

he OWA operator associated to 𝐰 is the mapping OWA𝐰 ∶ [0, 1]𝑛 →
[0, 1] defined for every 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ [0, 1]𝑛 by [67]:

𝑂𝑊𝐴(𝐱) = 𝑤1𝑥𝛾(1) +⋯ +𝑤𝑛𝑥𝛾(𝑛) (2)

where 𝛾 ∶ {1,… , 𝑛} → {1,… , 𝑛} is a permutation such that: 𝑥𝛾(1) ≥
𝑥𝛾(2) ≥ ⋯ ≥ 𝑥𝛾(𝑛).

The weighting vector can be computed used a quantifier function,
Q. For this study, we have used the following one:

𝑤𝑖 = 𝑄𝑎,𝑏(
𝑖
𝑛
) −𝑄𝑎,𝑏(

𝑖 − 1
𝑛

) (3)

𝑄𝑎,𝑏(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝑥 < 𝑎

1, if 𝑥 > 𝑏
𝑥−𝑎
𝑏−𝑎 , otherwise

(4)

where 𝑎, 𝑏 ∈ [0, 1] and 𝑎 < 𝑏. Depending on the value of the parameters
𝑎 and 𝑏, different weight vectors can be obtained. We have considered
three different ones:

• OWA1: 𝑎 = 0.1, 𝑏 = 0.5
• OWA2: 𝑎 = 0.5, 𝑏 = 1
• OWA3: 𝑎 = 0.3, 𝑏 = 0.8

.4. Choquet integral

Having 𝑁 = {1,… , 𝑛}, a function 𝑚 ∶ 2𝑁 → [0, 1] is a fuzzy measure
if, for all 𝑋, 𝑌 ⊆ 𝑁 , it satisfies the following properties [28]:

(𝑚1) Increasingness: if 𝑋 ⊆ 𝑌 , then 𝑚(𝑋) ≤ 𝑚(𝑌).
(𝑚2) Boundary conditions: 𝑚(∅) = 0 and 𝑚(𝑁) = 1.

The discrete Choquet integral with respect to 𝑚 is defined as the
function 𝐶𝑚 ∶ [0, 1]𝑛 → [0, 1] given for every 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ [0, 1]𝑛,
by:

𝐶𝑚(𝐱) =
𝑛
∑

𝑖=1
(𝑥𝜎(𝑖) − 𝑥𝜎(𝑖−1)) ⋅ 𝑚(𝐴𝑖) (5)

where 𝐱𝜎 is an increasing permutation of x such that 0 ≤ 𝑥𝜎(1) ≤ ⋯ ≤
𝑥𝜎(𝑛). With the convention that 𝑥𝜎(0) = 0, and 𝐴𝑖 = {(𝑖), (𝑖 + 1),… , (𝑛)}.

Two important generalizations of the Choquet integral are the
CF [61] the C𝐹1,𝐹2 [68] integrals, and the d-Choquet integrals, in
which the difference between the inputs in Eq. (5) is changed by a
dissimilarity [69].

3.4.1. CF integral
The CF is a generalization of the Choquet integral that replaces

the product used in Eq. (5) for a more general function 𝐹 . In [70]
the authors detail the required properties for 𝐹 so that the 𝐶𝐹 is an
aggregation or a pre-aggregation function, and conclude that the best
𝐹 in their experimental results is the Hamacher T-norm. For this reason,
we have chosen it for our experimentation, as detailed in the following
expressions:

𝑇𝐻 (𝑥, 𝑦) =

⎧

⎪

⎨

⎪

0, if 𝑥 = 𝑦 = 0
𝑥𝑦 , otherwise

(6)
⎩

𝑥+𝑦−𝑥𝑦

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.

t
T

𝐶

f

𝐶𝐹𝑚(𝐱) =
𝑛
∑

𝑖=1
𝑇𝐻 (𝑥𝜎(𝑖) − 𝑥𝜎(𝑖−1), 𝑚(𝐴𝑖)) (7)

3.4.2. C𝐹1,𝐹2 integral
The original product of the Choquet Integral can be decomposed on

wo product functions using the distributive property of the product.
herefore, the Choquet integral can be written as:

𝑚(𝐱) =
𝑛
∑

𝑖=1
𝑥𝜎(𝑖)𝑚(𝐴𝑖) − 𝑥𝜎(𝑖−1)𝑚(𝐴𝑖) (8)

Then, the product functions are substituted for two more generic func-
tions: 𝐹1 and 𝐹2. In [68] the authors explain the properties that must
hold 𝐹1 and 𝐹2 so that the C𝐹1,𝐹2 is an aggregation or a pre-aggregation
unction. Consequently, the expression for the 𝐶𝐹1,𝐹2 is the following:

𝐶𝐹1,𝐹2(𝐱) =
𝑛
∑

𝑖=1
𝐹1((𝑥𝜎(𝑖)), 𝑚(𝐴𝑖)) − 𝐹2((𝑥𝜎(𝑖−1)), 𝑚(𝐴𝑖)) (9)

For our experimentation, we take 𝐹1 =
√

𝑥𝑦 and 𝐹2 is the
Łukasiewicz T-norm.

3.5. Sugeno integral

Let 𝑚 ∶ 2𝑁 → [0, 1] be a fuzzy measure. The discrete Sugeno integral
with respect to 𝑚 is defined as a function 𝑆𝑚 ∶ [0, 1]𝑛 → [0, 1], given
for every 𝐱 = (𝑥1,… , 𝑥𝑛) [71], following the same notation as in the
Choquet integral in Eq. (5):

𝑆𝑚(𝐱) = max{𝑚𝑖𝑛(𝑥𝜎(𝑖), 𝑚(𝐴𝑖))|𝑖 = 1,… , 𝑛} (10)

Two generalizations of the Sugeno Integral are the Hamacher-based
Sugeno integral and the FG-Sugeno.

3.5.1. Hamacher-based Sugeno integral
If we consider using the Hamacher T-norm instead of the minimum

in Eq. (10), we obtain the following expression [72]:

𝑆𝑇𝐻
𝑚 (𝐱) = max{𝑇𝐻 (𝑥𝜎(𝑖), 𝑚(𝐴𝑖))|𝑖 = 1,… , 𝑛} (11)

3.5.2. FG-Sugeno
If we replace the minimum for the product, and the maximum for

the sum in Eq. (10), we obtain the following expression [62]:

𝑆𝐹𝐺
𝑚 (𝐱) =

𝑛
∑

𝑖=1
(𝑥𝜎(𝑖)𝑚(𝐴𝑖)) (12)

4. The Krypteia ensemble

The Krypteia ensemble is a novel classifier ensemble algorithm
designed to maximize the effectiveness of each individual subject and
the variability and performance of their outputs when combined. It
does so by mimicking the ancient rite of Krypteia in the ancient Sparta,
designed to train the future elites of the Spartan army and government.

This algorithm consists of three main steps:

1. Survival ordeal: in this phase we train each classifier individ-
ually. In order to induce diversity in the training process, we
modify the training task for each one in a stochastic process, so
that some of them have a easier or harder task than the original
classification task. We discard all the classifiers that did not meet
the expected accuracy rate in their own task.

2. Social ordeal: this second phase follows an OCS scheme in which
we discard those classifiers that have a very similar output to
other classifiers with higher accuracy rate. The aim is to avoid
having samples with much more weak learners classifying them
correctly than others.

3. Aggregation learning: we learn which is the most appropriate
function to combine the output of all the surviving classifiers.
286
The resulting population from this process is called a Krypteia Unit.
A general scheme of the Krypteia algorithm is displayed in Fig. 1.

The following subsection briefly describes the Krypteia ritual in an-
cient Sparta design method and Section 4.2 describes each step of the
Krypteia ensemble in detail.

4.1. Krypteia in the ancient Sparta

The Krypteia was a particularly brutal initiation rite in the Spartan
society for the young men of the higher ranks of the state [36].
According to Plutarch [73], each year the young noblemen of Sparta
would declare war to the Helot population of Sparta, so that any killing
or robbery committed was not considered crime. Armed with nothing
but a knife, the young Spartans were left alone and sent out in the
night to the Helot settlements. They were supposed to obtain their own
methods of survival by stealing and killing in their circumvent area.

The origins and exact purpose of the Krypteia are still under debate.
This ritual was supposed to be a form of terrorizing and subjugating
the Helot population, alongside training the next generation of Spartan
leaders, as no young man could aspire to hold positions of power if he
had not passed through this ordeal. It is also believed that the Krypteia
participants could have been organized as a unit in the Spartan army. In
any case, such brutal practices seemed to be effective, as Sparta made
a place for itself in history thanks to is great military capacity, and as
long as the Krypteia took place, the Helot population stayed under their
rule.

It is believed that the Krypteia was disbanded in the battle of
Sellasia, in 222 BC, where Sparta lost against the Macedonian army
commanded by Antigonus III [74]. This resulted in the emancipation
of many helots and without a Helot population, it was impossible to
organize the Krypteia.

4.2. Krypteia ensemble: bringing the ancient ritual to modern computational
systems

In this section we detail both the Survival and Social ordeals, and
how to combine their outputs.

4.2.1. Survival ordeal (Fig. 1-Step 2)
The Survival ordeal is a diversity induction process that consists

of randomly modifying the original task in order to obtain a different
version of the weak learner. The aim is that this new task should be
more difficult than the original most of the times, so that the result-
ing Krypteia Unit will have classifiers adapted to harder or extreme
situations compared to the original, single classifier.

We alter the tasks using two different techniques: sampling modi-
fications, denoted as ‘‘Data ordeal’’, and prediction alterations, which
we called ‘‘Bias ordeal’’. The Data ordeal consists of performing an
undersampling, data augmentation, or oversampling technique of one
or various classes in the classification task. The Bias ordeal consists of
adding an artificial bias to one or more classes to the actual output of
the classifier. Whether or not a classifier is affected by the Data ordeal
or the Bias ordeal, the extent of that ordeal and the number of classes
affected, is all decided randomly.

Once the Data ordeal and Bias ordeal have been completed we
evaluate the performance of the altered classifier. If this performance is
less than a survival threshold, we discard that classifier. Following the
Krypteia metaphor, this means that the soldier was not strong enough
to survive the ritual and was killed by the Helots or the environment.

The ordeals can be too hard, so that all classifiers fail. It might
also happen that the number of surviving classifiers is higher than the
expected value. So, it is important to take into consideration the natural
difficulty of the original classification task in order to establish the
survival threshold, or to establish additional measures to guarantee that
a reasonable number of weak learners survive the Survival ordeal.

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
Fig. 1. Visual scheme of the Krypteia algorithm. 1. We generate random sets of parameters. 2. Each of these parameter settings creates a different Survival ordeal, where the
weak learners need to correctly solve a stochastically modified version of the original classification task. The modification includes the Data ordeal (2.1), where we manipulate
the training data, and the Bias ordeal (2.2), where we compute a random vector that we will add as an artificial bias to each of the classifiers predictions. 3. If they pass the
Survival ordeal, a selection of the surviving classifiers is performed by 𝑘 Variability Guarantors in the Social ordeal to minimize redundancies. 4. We choose the best aggregation
function for the decision making phase of the ensemble. 5. The output of the Social ordeal is the Krypteia Unit. Section 4.2 contains a detailed description of each component
behaviour.
4.2.2. Social ordeal (Fig. 1-Step 3)
Once the individual classifiers have been proved by the Survival

ordeal, we make the population of classifiers pass through the Social
ordeal, which is an OCS scheme that measures how diverse is the
‘‘society’’ formed by these classifiers and removes those that produce
redundant results with respect to the rest of the population.

The idea is that, although the variability within the Survival ordeal
itself makes the classifiers different, there could be redundancies, espe-
cially if the survival rate is high. For example, given 0 as a complete
failure and 1 as a total success in the Survival ordeal, if we set
the survival threshold to 0.95, then we are forcing all the surviving
classifiers to present very similar outputs.

To solve this problem, in the Social ordeal we create a set of 𝑛
Variability Guarantors (VGs), whose aim is to guarantee the diversity
in the output of each classifier in the final Krypteia Unit. To do so, each
VG subsamples a very small fraction of the input data for each subject
(1%, for example) and then checks how each classifier performs for this
data split.

Each VG marks as ‘‘good’’ the subjects that correctly classified its
subsampled data. Since each VG takes only a small fraction of the input
data, the intersection of the data chosen among the VGs will be virtually
null. In this way, we avoid having in the final Krypteia Unit a long
list of classifiers that performed very well in the same subset of data,
whilst performed very poorly on other. Besides, since the VGs uniformly
sample the dataset, their subsampled data can contain both easy and
hard to correctly classify observations. In this way, VGs reject those
classifiers that performed well only on the easy set of observations, even
if they obtained a higher accuracy rate than the classifiers marked as
good by the VGs.

4.2.3. Decision making
The most straightforward way to make a decision with a Krypteia

Unit is to fuse the output of each weak learner using any of the aggre-
gation functions presented in Section 3. However, although a Krypteia
Unit can obtain good results on its own, the stochastic nature of the
training process can result in many different outcomes. This is one of
the strengths of the Krypteia, but it can also result in poor performance
in some cases. To minimize the negative impact of the possible faulty
units, we propose to stack different Krypteia Units in different decision
making phases, in a hierarchical decision making scheme. This proposal
287
has another benefit: we can use different aggregation functions in each
level, which can result in better performance.

The different hierarchical schemes that can be used are illustrated
in Fig. 2. A decision from a set of 𝑁 Krypteia units can be obtained in
three different ways:

1. Unit-all: we fuse the output from all weak learners within the
Krypteia units in one phase, using just one aggregation function.

2. Division-all: we denote as a Krypteia Division the appending
of the output of different Krypteia Units. Then, the Division-all
scheme consists of fusing the output of various Krypteia Divi-
sions obtained from the 𝑁 Krypteia units, using one aggregation
function in each Krypteia Unit and another for the Krypteia divi-
sions. Krypteia units are assigned to different Krypteia divisions
randomly.

3. Krypteia army: consists of obtaining the output for every
Krypteia Division individually and then fusing their outputs,
using a total of three aggregation functions.

5. Training a Krypteia Unit for a classification problem

In this section we focus on how to implement the following stages
of a Krypteia Unit training process:

1. How to setup the parameters.
2. How to perform the Survival ordeal, and how difficult it should

be.
3. How to configure the Social ordeal.
4. How to choose the aggregation function to make the decision.

5.1. Parameter setup

For the case of a classification system, a Krypteia consists of a set
of weak learners. However, we do not specify each one individually;
instead, we set a list of parameters for the whole Krypteia Unit (see
Table 1 for example) in order to induce diversity within each unit.
These parameters are:

1. The number of subjects wanted in the Krypteia Unit.
2. The proportion of each type of classifiers.

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
Fig. 2. Visual scheme showing the algorithm proposed in Section 4.2.3 to generate and combine the output of multiple Krypteia Units. A Krypteia Division is obtained by appending
the output from 𝑁 Krypteia Units and a Krypteia Army by appending and fusing the output of 𝑀 Krypteia Divisions. A decision from a set of 𝑁 Krypteia Units can be obtained
in three different ways: Decision 1: consists of fusing all the weak learners within the Krypteia Units in one phase, using just one aggregation function. This scheme is denoted
‘‘Unit-all’’. Decision 2: consists of appending the output of the Krypteia Divisions, using one aggregation function to fuse each Krypteia Unit and another for the Divisions. This
scheme is called ‘‘Division-all’’. Decision 3: consists of fusing every Krypteia Division individually and the fusing the output from all of them, using a total of three different
aggregation functions. This scheme is the Krypteia Army. Images taken from [75].
Table 1
Example of two Krypteia Unit configurations. For each unit, we specify the number of
classifiers wanted in the final population and the proportion of each kind, the number
of VGs, the minimum accuracy needed to pass the Survival ordeal, and the ordeals
performed in this unit.

N KNN LDA QDA SVM Tree VGs Survival Thr. Ordeal

24 0.08 0.12 0.20 0.12 0.25 6 0.5067 Survival and Social
7 0.14 0.14 0.14 0.28 0.28 – 0.9266 Survival

3. The number of VGs in the Social ordeal.
4. The initial Survival Threshold.
5. Which Ordeals to perform.

By setting different parameters for each unit, we can maximize the
diversity between various Krypteia Units trained for the same task. This
can be of use, for example, if we want to train different Krypteia Units
and then choose the best one, or if we want to use the Krypteia Division
or a Krypteia Army decision schemes.

For our tests, we have worked with five different types of classifiers:

• K-Nearest Neighbours (KNN) (K = 6 for this experimentation)
[12].

• Linear Discriminant Analysis (LDA) [76].
• Quadratic Discriminant Analysis (QDA) [77].
• Support Vector Machines (SVM) [13].
• Decision trees [78].

We choose a random proportion for each type of classifier, a random
number between 1 and 10 for the number of VGs, and a random number
between 0 and 1 for the Survival Threshold. The type of Ordeal can be:
Survival only, Social only, or both, each of the possibilities with the
same probability.

5.2. Designing the Survival ordeal

The Survival ordeal consists of two complementary ordeals: the Data
ordeal and the Bias ordeal, in which we artificially modify the weak
learner behaviour. Once both ordeals have been stated, we also need
288
to adjust the Survival Threshold so that the survival rate is within
acceptable boundaries.

5.2.1. Data ordeal
The Data ordeal consists of modifying the training data for a weak

learner. We can do so by subsampling the data, which theoretically
makes the problem harder, by using oversampling techniques, which
should make the problem easier for the classifier, or by using both. In
that case we can also differ in which order both procedures are applied.
The idea is not to necessarily obtain a stratified dataset, which is not
guaranteed to happen, but to obtain maximum variation in the different
synthetic training sets generated.

We have used the following techniques to perform the sampling
manipulations:

• Random undersampling: which consists of randomly sampling a
percentage of the original data.

• Centroid Undersampling (CU): we use the K-means algorithm to
compute 𝑘 centroids, being 𝑘 the number of samples wanted from
the original data.

• Synthetic Minority Over-sampling TEchnique [79] (SMOTE): gen-
erates new samples by interpolating examples from the same
class.

• SMOTE + Tomek Links (SMOTETomek) [80]: combines the over-
sampling of SMOTE and Tomek Links to delete overlapping ob-
servations between classes.

• SMOTE + Wilson’s Edited Nearest Neighbour Rule (SMOTEEN)
[80]: combines the oversampling of SMOTE with undersampling
based on the Edited Nearest Neighbour Rule [81].

In order to determine how much each event is going to happen,
we set a parameter 𝑝. The lower this 𝑝, the more likely is that a data
manipulation happens.

The scheme the followed by the Data ordeal is:

1. Draw a random number. If this number is bigger than 𝑝, then the
Data ordeal takes place (step 2); if not, then there are no data
manipulations (step 3).

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
2. Draw a random number. If this number is bigger than 0.5,
then we proceed to subsample the data and then oversample it
(step 2.1). If not, first we perform the oversampling and then
undersampling (step 2.2).

2.1. Draw a random number. If this number is bigger than
𝑝, then we perform the undersampling (Alg. 2). Draw a
random number again, and if is bigger than 𝑝, we perform
the oversampling (Alg. 1).

2.2. Draw a random number. If this number is bigger than
𝑝, then we perform the oversampling (Alg. 1). Draw a
random number again, and if is bigger than 𝑝, we perform
the undersampling (Alg. 2).

3. We train the weak learner on the resulting data.

Algorithm 1: Generating Data Advantage in the Data ordeal
Result: 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎
Input: 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑝
𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚()
if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 > 𝑝 then

if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑝 + 1∕3 ∗ (1 − 𝑝) then
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑆𝑀𝑂𝑇𝐸𝑇𝑜𝑚𝑒𝑘(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

else if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑝 + 2∕3 ∗ (1 − 𝑝) then
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑆𝑀𝑂𝑇𝐸𝐸𝑁(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

else
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑆𝑀𝑂𝑇𝐸(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

end
end

Algorithm 2: Undersampling in the Data ordeal
Result: 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎
Input: 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑝
𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚()
if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 > 𝑝 then

if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑝 + 1∕2 ∗ (1 − 𝑝) then
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑢𝑛𝑑𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

else
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑢𝑛𝑑𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

end
end

5.2.2. Bias ordeal
The Bias ordeal consists of inducing an artificial bias in the weak

learners predictions. The process follows a similar procure to the Data
ordeal. We draw a random number, if that number is higher than 𝑝, the
Bias ordeal takes place, if not, no bias is induced.

To perform the bias induction we draw 𝐶 random numbers from
a uniform distribution in the [0, 1] interval, where 𝐶 is the number
of classes in the classification task, obtaining the vector 𝑟𝐶 . When the
classifier predicts the probability for each class for a sample, we add
the 𝑟𝐶 vector to those probabilities.

Although the aim of this ordeal is to augment the variance among
weak learners by reducing the individual accuracy of each one, we also
have found cases where this artificial bias also improved the perfor-
mance of individual weak learners. This might be because under the
right circumstances, like a very imbalanced training set, this artificial
bias can work as a regularization factor.

5.2.3. Setting the Survival Threshold
The Survival Threshold quantifies the level of exigence that we

impose to the weak learners after they passed their Survival ordeal
in order to accept them as valid weak learners. It is expressed as the
minimum accuracy rate required to obtain in the original training set
289
after passing the Data and Bias ordeals. It is a very important factor
for the final Krypteia Unit: if it is too low, the resulting classifiers
can output almost random predictions; if it is too hard, no classifier
will come out. However, this value cannot be interpreted as the ordeal
difficulty or the percentage of survival rate. A Survival Threshold of 0.9
can be too easy for a classification task that any individual classifier can
perform almost perfectly, and a Survival Threshold of 0.5 can be too
much if the learning task is very difficult.

The solution to this problem is an adaptative threshold, i.e to start
with a random Survival Threshold, and then decrease it if the death
rate is too high. We reduce the Survival Threshold by 0.05 each time
we register as many deaths as twice the number of classifiers in the
Unit until the desired number of classifiers is obtained. That mimics
the robust approaches followed by metaheuristics to adapt their main
diversification–intensification trade-off parameter [82].

5.3. Configuring the Social ordeal

The VGs compose the Social ordeal. They are supposed to convert a
pack of good individual classifiers into a truly functional ensemble of
classifiers. Two parameters are important to form a collective of VGs
that perform a meaningful Social ordeal:

• VG exigence: this is the percentage of the original data that the VG
will use to evaluate each weak learner. The lower this parameter
is, the more strict each VG will be. This might present a problem
if the VGs are too strict, because if the number of test samples is
too low, then many of the classifiers might get all of them right,
or on the contrary, fail them all. If we choose a value that is
too high, then the VGs will have a significant intersection among
them, which would also make the diversity search futile. We have
chosen value 1% as it seems to correctly balance both issues and
avoids oversaturation of one VG.

• Number of VGs: the more VGs, the more subjects will be marked
as ‘‘good’’. We have opted to draw a distribution between 1 and
10, so that with a exigence of 1%, the VGs will sample around
1−10% of the original data.

5.4. Choosing the aggregation function

Once all the subjects have passed through all the ordeals, the final
population forms a Krypteia Unit ensemble. This ensemble of classifiers
needs to fuse the output of each individual weak learner to reach a final
decision. We have studied the functions mentioned in Section 3.1 as
possible aggregation functions for the Krypteia.

In order to discriminate the best aggregation function, we have
opted for performing a 5-fold validation in the training set for each
one of them, and choose the aggregation that resulted in a best accuracy
according to this evaluation criteria. In the case of the Krypteia Division
and the Krypteia Army, we have tested using all possible combinations
of aggregation functions in each phase.

6. Experimental results for different Krypteia ensembles

In this section we study the performance of the Krypteia ensem-
ble for a wide range of classification datasets. We show the perfor-
mance for different decision making strategies, a study of the im-
portance of the different parameters of a Krypteia Unit, and how
the Krypteia ensembles compare to other kinds of classifier ensemble
design approaches.

6.1. Datasets studied in the experimentation

For our experimentation, we used a large set of 52 different classi-
fication datasets, obtained from the Keel database [83]. The number of
samples and attributes for each one are reported in Table 2. We take a
standard 80∕20 training-test partition for each dataset. The metric used

to measure the performance is the standard classification accuracy.

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
Table 2
Datasets used for our experimental results.
Dataset Instances Features Classes Dataset Instances Features Classes

abalone 4173 8 28 nursery 12 959 8 5
appendicitis 105 7 2 optdigits 5619 64 10
australian 689 14 2 page-blocks 5471 10 5
balance 624 4 3 penbased 10 991 16 10
banana 5299 2 2 phoneme 5403 5 2
bands 364 19 2 pima 767 8 2
breast 276 9 2 post-operative 86 8 3
bupa 344 6 2 ring 7399 20 2
car 1727 6 4 saheart 461 9 2
chess 3195 36 2 satimage 6434 36 6
coil2000 9821 85 2 segment 2309 19 7
contraceptive 1472 9 3 sonar 207 60 2
crx 652 15 2 spambase 4596 57 2
dermatology 357 34 6 spectfheart 266 44 2
ecoli 335 7 8 splice 3189 60 3
flare 1065 11 6 texture 5499 40 11
german 999 20 2 thyroid 7199 21 3
haberman 305 3 2 tic-tac-toe 957 9 2
housevotes 231 16 2 titanic 2200 3 2
ionosphere 350 33 2 twonorm 7399 20 2
iris 149 4 3 vehicle 845 18 4
letter 19 999 16 26 vowel 989 13 11
magic 19 019 10 2 wdbc 568 30 2
mammographic 829 5 2 wine 177 13 3
mushroom 5643 22 2 wisconsin 682 9 2
newthyroid 214 5 3 yeast 1483 8 10
6.2. Results for the Krypteia Unit

In this section we have studied the results using 300 Krypteia Units
for each dataset, trained using the procedures in Section 5. We chose
that number to honour the famous Battle of Thermopylae between
Spartans and Persians [84].

Table 3 collects the results for the Krypteia Units in each one of the
datasets considered, divided into three columns. In the first column, we
show the average of all the Krypteia Units’ performance. In the second
column, we show the results that the best Krypteia Unit obtained (the
one with better average accuracy for all the datasets), and finally in the
third column we show the best results obtained by a Krypteia Unit in
that particular dataset.

In most of them, the difference between the average result and the
best Krypteia Unit is not significant, which shows that the Krypteia
training process is indeed capable of generally generate good results.
However, in some datasets, for example in ‘‘letter’’, there is a +30%
accuracy difference between the average and the best unit. This shows
that the Krypteia training process is also capable to create vastly
superior subjects than the average Krypteia Unit.

In Table 4 we show the average for each column in Table 3, in order
to obtain the average performance for all Krypteia Units, the average
performance for the best Krypteia Unit, and the average best result
over all the datasets considered. We can see here that the best unit
generated is clearly superior to the average performance of the rest of
the units, and that there is still an average of 2% of difference between
the optimal result and the best unit obtained.

6.3. Feature importance in the Krypteia ensemble

As many parameters as the Krypteia Unit has, it is natural to think
that some of them are more important than others. In order to compute
the importance of each feature, we built a classification and regression
tree (CART). The CART model have been used widely in medicine as a
way to measure the effects of different treatments in the outcome of a
patient. This algorithm trains a random forest with the parameters of
a model as inputs and the final outcome of the model as labels [85]. It
predicts the performance of a model based on its parameters. Then, we
290

can study the coefficients that the CART model applied to each factor
to make its prediction, to learn how they affect the performance of the
studied system.

In Table 5 we displayed the results for this analysis, illustrating the
Krypteia Units performance. From this table we can infer that the most
important factor is the Survival Threshold by a large margin, followed
by the Unit size. The proportion of different classifiers seems to be
equally important, although using trees seemed to be less important
than the rest. The kind of ordeal performed seems not to have much
effect.

6.4. Results for the Krypteia Division

In this case, we used the same Krypteia Units as in Section 6.2, but
instead of studying the performance of each individual Spartan unit, we
followed the process detailed in Section 4.2.3 to stack different Krypteia
Units. Table 6 collects the results for each dataset for the average of
all Krypteia Divisions, the best Krypteia Division, and the best result
obtained by a Krypteia Division for each one.

In Table 7 we show the average of all columns in Table 6. In this
case, we obtained a lesser difference between the best and the average
result compared to the unit results. This seems to indicate that stacking
the units in this way mitigates the impact of bad units, although the
best possible result is inferior to that obtained using Krypteia Units.

6.5. Results for the Krypteia Army

In this case we have stacked the Krypteia Units forming one Krypteia
Army. We used the same Krypteia Divisions as in Section 6.4 in order
to directly compare the effect of an additional level of complexity.

We display the results obtained with the Krypteia Army in Ta-
ble 8 and the correspondent aggregation trio that achieved that re-
sult. We can observe that even though the arithmetic mean is most
of the times the chosen aggregation, studying additional aggregation
functions allows in many cases to improve the result.

6.6. Comparison of the different Krypteia ensembles

In Table 9 we show the comparison for the average performance
of the different Krypteia ensembles: the best Krypteia Unit generated,

the best Krypteia Division generated, and the Krypteia Army. We found

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
Table 3
Results for the Krypteia Units.
Dataset Avg. Best unit Best Res. Dataset Avg. Best unit Best Res.

abalone 99.73 100.00 100.00 nursery 89.83 99.96 100.00
appendicitis 94.67 95.24 100.00 optdigits 93.80 93.51 98.84
australian 81.57 87.68 88.41 page-blocks 38.61 96.99 97.44
balance 99.78 100.00 100.00 penbased 87.53 97.31 99.49
banana 88.02 90.09 90.47 phoneme 88.54 88.90 90.56
bands 99.34 94.52 100.00 pima 99.64 100.00 100.00
breast 99.44 100.00 100.00 post-operative 39.69 100.00 100.00
bupa 67.35 68.12 78.26 ring 91.11 93.72 98.51
car 99.77 100.00 100.00 saheart 99.97 100.00 100.00
chess 99.96 100.00 100.00 satimage 89.55 90.37 92.15
coil2000 93.54 94.50 94.66 segment 97.29 97.40 98.92
contraceptive 53.22 54.92 58.64 sonar 99.85 100.00 100.00
crx 99.62 100.00 100.00 spambase 92.11 92.72 93.80
dermatology 86.84 98.61 100.00 spectfheart 74.93 79.63 85.19
ecoli 96.68 98.51 100.00 splice 98.41 100.00 100.00
flare 99.77 100.00 100.00 texture 94.31 94.55 99.91
german 89.91 100.00 100.00 thyroid 98.60 99.79 100.00
haberman 99.99 100.00 100.00 tic-tac-toe 99.99 100.00 100.00
housevotes 99.72 100.00 100.00 titanic 72.44 80.45 82.27
ionosphere 99.94 100.00 100.00 twonorm 91.11 86.01 98.37
iris 100.00 100.00 100.00 vehicle 99.39 99.41 100.00
letter 69.81 99.72 100.00 vowel 88.92 90.40 97.98
magic 100.00 100.00 100.00 wdbc 99.97 100.00 100.00
mammographic 80.06 81.33 85.54 wine 99.01 100.00 100.00
mushroom 100.00 99.82 100.00 wisconsin 93.34 93.43 97.08
newthyroid 97.88 100.00 100.00 yeast 98.77 99.33 100.00
Table 4
Performance summary for the Krypteia Units.

Average units Best unit Best result

Average Acc. 87.48 94.09 𝟗𝟔.𝟎𝟐

Table 5
Feature importance for the Krypteia ensemble computed using a CART model.

Feature % of importance

No of KNN 7.47%
No of LDA 7.61%
No of QDA 7.40%
No of SVM 8.19%
No of trees 5.13%
Unit size 11.55%
VG sample size 7.02%
Survival threshold 39.95%
Full ordeal 2.00%
Survival-only ordeal 1.57%
Social-only ordeal 2.08%

the Krypteia Army to beat the other two by a 1.5% points margin.
We have also computed a homogeneous version of the Krypteia army
using only SVM classifiers and the arithmetical mean as the aggre-
gation function. This version of the Krypteia performed worst than
the rest of the Krypteia configurations, reinforcing the idea that both
the heterogeneity and the aggregation functions improve the ensemble
performance.

6.7. Results for unit-all and division-all fusion schemes

Instead of performing the decision making scheme of the Krypteia
Army, we can fuse all the 300 units using the unit-all or the division-all
fusion schemes.

In Fig. 3 we studied the expected performance for the 300 units in
the Krypteia Army studied in Section 6.5 using the division-all fusion
scheme (fusing 𝑛 different units as if they were just one division). To do
so, we have computed the average accuracy for all the datasets using
up to 300 Krypteia Units. These Krypteia Units are the same as those
used in previous sections, selected randomly. There we can see that
291

this system seems to reduce performance beyond 𝑛 = 10, and drops
significantly when 𝑛 > 50, stabilizing around 92.40%. In no case this
scheme performed better than the Krypteia Army.

In Fig. 4 we performed the same experiment using the unit-all
(fusing 𝑛 different subjects as if they were just one unit) decision
making phase. A similar situation happens in this case, where a 20−30%
of the original army seems to perform greatly when fused in this way,
but then stabilizes in an inferior performance. Again, in no case the
average accuracy obtained was better than the Krypteia Army.

6.8. Performance for each aggregation function

Each time we use a Krypteia ensemble, we need to choose among
one of many aggregation functions. Based on the results from our
experiments, we counted the number of times each one of them was the
best performing aggregation. By profiling each one the aggregations,
we hope to discard the worst ones in future trainings and to reduce the
number of possible candidates.

In Fig. 5 we show the times that each of the different aggregations
provided the best result in an experiment. We found the classical
arithmetic mean to be the one that won most of the times, but with
only a very small margin with respect to the maximum, the minimum,
the OWA operators, the n-overlap functions, and the Choquet integral.
Sugeno integrals performed poorly and the generalizations of the Cho-
quet integral never won in any case. However, it is worth pointing
out that the performance of the fuzzy integrals depends on the fuzzy
measure used.

7. Comparing the Krypteia ensemble with other ensemble classi-
fiers

In this section we compared the results obtained with the Krypteia
ensemble with seven very diverse types of classifier ensembles [86].
Three of them are classical ensemble algorithms: adaboost, bagging,
and majority vote using SVMs and random forests. The hyperparame-
ters for these algorithms were fixed according to the parameter values
reported in [86]. The other four schemes perform OCS, using oracles,
synthetic data, a reference classifier, and meta-features to discard faulty

subjects:

Information Fusion 90 (2023) 283–297

292

J. Fumanal-Idocin et al.

Fig. 3. Average accuracy for all the studied datasets using ensembles of 𝑛 randomly chosen Krypteia Units in the Krypteia Army studied in Section 6.5.

Fig. 4. Average accuracy for all the studied datasets using ensembles of 𝑛 random weak learners from the original Krypteia Army studied in Section 6.5.

Fig. 5. Number of times each aggregation yielded the best results in all the experiments performed with Krypteia ensembles.

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
Table 6
Results for the Krypteia divisions.
Dataset Average Best division Best result Dataset Average Best division Best result

abalone 100.00 100.00 100.00 nursery 89.97 99.96 99.96
appendicitis 85.71 85.71 85.71 optdigits 94.76 95.28 95.37
australian 81.30 81.88 81.88 page-blocks 38.88 97.26 97.26
balance 100.00 100.00 100.00 phoneme 89.64 89.64 89.82
banana 88.61 89.81 89.81 penbased 98.99 99.04 99.40
bands 100.00 100.00 100.00 pima 100.00 100.00 100.00
breast 100.00 100.00 100.00 post-operative 40.00 100.00 100.00
bupa 67.25 66.67 69.57 ring 91.86 90.88 92.57
car 100.00 100.00 100.00 saheart 100.00 100.00 100.00
chess 100.00 100.00 100.00 satimage 91.10 90.83 91.30
coil2000 92.04 92.16 92.47 segment 98.46 98.48 98.70
contraceptive 52.81 52.54 53.56 sonar 100.00 100.00 100.00
crx 100.00 100.00 100.00 spambase 92.74 92.72 93.26
dermatology 86.67 95.83 98.61 spectfheart 75.00 77.78 77.78
ecoli 97.01 97.01 97.01 splice 100.00 100.00 100.00
flare 100.00 100.00 100.00 texture 94.35 94.36 94.91
german 90.00 100.00 100.00 thyroid 99.82 99.86 99.86
haberman 100.00 100.00 100.00 tic-tac-toe 100.00 100.00 100.00
housevotes 100.00 100.00 100.00 titanic 72.41 80.45 80.45
ionosphere 100.00 100.00 100.00 twonorm 92.24 92.57 93.11
iris 100.00 100.00 100.00 vehicle 99.41 99.41 99.41
letter 69.81 99.72 100.00 vowel 90.81 90.91 91.92
magic 100.00 100.00 100.00 wdbc 100.00 100.00 100.00
mammographic 78.98 79.52 80.12 wine 100.00 100.00 100.00
mushroom 100.00 100.00 100.00 wisconsin 93.14 92.70 93.43
newthyroid 97.67 97.67 97.67 yeast 99.73 100.00 100.00
Table 7
Performance summary for the Krypteia divisions.

Average division Best division Best result

Average Acc. 94.09 94.49 𝟗𝟒.𝟓𝟖

• Adaboost [21]: it serially trains each classifier. In each iteration,
it weights each instance according to its difficulty to be clas-
sified, aiming to correctly classify it in the next iteration. For
our experimentation, we have used 50 decision trees to form the
Adaboost.

• Bagging (Bootstrap Aggregation) [20]: it aims to increase accu-
racy by combining the outputs of the classifiers in the ensemble
that were trained using different subsamples of the original data.
Sampling with replacement is used to train all the classifiers in
the ensemble and thus some of the instances may appear more
than once in the training set. For our experimentation, we have
used 10 decision trees to form the Bagging classifier.

• Majority vote SVM: it consists of different SVM classifiers trained
with a different kernel. For our case, we have trained 5 different
RBF kernels classifiers with five different 𝜎 parameters evenly
spaced such as: [0.5, 1.5]∕(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠).

• Random Forest [87]: it combines the output of many different
decision trees computed from different subsamples of the original
data. The final decision is taken as the majority vote of all of
the trees outputs’. We have set as 100 the number of trees in the
Random Forest for our experimentation.

• K-Nearest Oracles Eliminate (K-NORAE) [88]: it selects the clas-
sifiers that correctly classify all the samples in their region of
competence.

• Dynamic Ensemble Selection Multiclass Imbalance (DES-MI) [89]:
it generates artificial training sets of randomly balanced data
and then chooses the classifiers that correctly discriminated the
minority class samples.

• Randomized Reference Classifier (DES-RRC) [90]: it combines
Dynamic Ensemble Selection with a measure to evaluate each pos-
sible classifier in the final ensemble using a reference classifier.

• META-DES [53]: it selects a set of classifiers from a list, using five
293

different meta-features to test each classifier’s competence.
• Extreme Gradient Boosting (XGBoost) [91]: gradient boosting is
a generalization of Adaboost that consist of using a differentiable
loss function. This function is optimized using a gradient descent
procedure, so that in each step a new weak learner is included to
reduce the loss of the system. Gradient boosting is considered to
be the state-of-the-art in classification of tabular data [92].

We computed the analogous experiments with these ensemble clas-
sifiers as in the Krypteia ensembles. Table 9 collects the average ac-
curacy for all the datasets for the different ensemble classifiers. We
found the Krypteia Army to be the most effective classifier, followed
by the Best Krypteia Division and the Best Krypteia Unit. All of them
outperform the best performing of the seven classifier ensembles tested,
DES-MI. In Table 10 we have computed how many times each algo-
rithm performed best (counting ties as winnings for both). We found
that most of the times the Krypteia Army showed the best result and
that every Krypteia variant again outperform all the benchmarking
classifier ensembles.

In Table 11 we show the 𝑃 -values obtained using a Wilcoxon
statistical test, comparing all the ensembles used with the Krypteia
Army, which was the ensemble with the highest average accuracy. We
found statistical differences favouring the Krypteia Army compared to
any of the other classifiers tested.

Finally, we have tested the performance of the Krypteia algorithm
in a setting with higher dimensionality and more samples. In order to
do so, we have used a dataset that is very popular in the deep learning
literature: CIFAR10 [93]. This dataset consists of 600 000 images that
belong to 10 different classes, 50 000 used for training and 10 000 for
test. In order to apply our proposal to this dataset, we used a LeNet
convolutional network architecture [94]. Once the network is trained,
we discard the last layer of this network and compute its output for
each sample. We use this output as the features to train the different
classification algorithms.

In Table 12 we show the accuracy results in the test set for the
Krypteia Army and two benchmarking classical ensemble approaches
that performed better, Random Forest and Extreme Gradient boosting.
We can see that both the Random Forest and the Extreme Gradient
Boosting performed worse than the original performance of this LeNet
architecture for this dataset, that achieved an accuracy rate of 65.84,
while the Krypteia army performed slightly better (65.87) and per-

formed the best overall. This is an interesting result keeping in mind

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
Table 8
Performance for the Krypteia army, with the corresponding aggregations that obtained that result.
Dataset Ag1 Ag2 Ag3 Acc. Dataset Ag1 Ag2 Ag3 Acc.

abalone Mean Mean Mean 100 nursery Mean Min Min 100
appendicitis Median Min Median 90.4 optdigits Min Max S-Ham. 98.1
australian Min Max S-Ham. 86.9 page-blocks Choquet Max Min 97.5
balance Mean Mean Mean 100 penbased Min Max Min 99.0
banana Min Mean Max 90.5 phoneme Max Median Sugeno 90.6
bands Mean Mean Mean 100 pima Mean Mean Mean 100
breast Mean Mean Mean 100 post-operative Mean Mean Mean 100
bupa Min Mean Max 72.4 ring Min Max S-Ham. 97.7
car Mean Mean Mean 100 saheart Mean Mean Mean 100
chess Mean Mean Mean 100 satimage GM Max Median 91.9
coil2000 OWA1 Max Max 94.5 segment S-Ham. Min OWA3 99.1
contraceptive Min Max Min 55.9 sonar Mean Mean Mean 100
crx Mean Mean Mean 100 spambase OWA2 Min OWA2 93.8
dermatology Mean Min Max 98.6 spectfheart HM Min Median 81.4
ecoli Mean Min Max 100 splice Mean Mean Mean 100
flare Mean Mean Mean 100 texture HM Max Max 98.5
german Mean Mean Mean 100 thyroid Mean Mean Mean 99.8
haberman Mean Mean Mean 100 tic-tac-toe Mean Mean Mean 100
housevotes Mean Mean Mean 100 titanic Mean Mean Mean 80.4
ionosphere Mean Mean Mean 100 twonorm Max Choquet OWA1 97.7
iris Mean Mean Mean 100 vehicle Mean Min Mean 100
letter OWA3 Min OWA3 100 vowel Min Max Mean 94.9
magic Mean Mean Mean 100 wdbc Mean Mean Mean 100
mammographic Min Max Sugeno 83.1 wine Mean Mean Mean 100
mushroom Mean Mean Mean 100 wisconsin Min Mean Max 94.8
newthyroid Min Max Min 100 yeast Min Median Median 100
Table 9
Average performance for different ensemble classifiers and the best instance of Krypteia
ensemble classifiers used.

Algorithm Accuracy

Adaboost 83.84 ± 19.65
Bagging 90.99 ± 9.81
Majority vote SVM 68.90 ± 21.84
Random forest 92.61 ± 8.53

K-NORAE 90.05 ± 11.00
DES-MI 93.87 ± 10.59
DES-RRC 92.74 ± 10.72
META-DES 93.60 ± 10.70
XGBoost 95.14 ± 9.81

SVM-Krypteia mean 93.30 ± 10.34
Krypteia Unit 94.09 ± 14.36
Krypteia division 94.49 ± 12.85
Krypteia army 𝟗𝟓.𝟖𝟑 ± 𝟖.𝟑𝟓

that the Krypteia approach was not initially designed to handle such
high dimensional classification problems. In fact, we aim to extend our
approach to deal with these kinds of problems in the short future.

8. Discussion of the empirical results obtained

In the results presented in this the Krypteia ensemble obtained
favourable results compared to the rest of the ensemble classifiers
tested. The best proposal, the Krypteia Army, also presented the lowest
standard deviation compared to the rest of its competitors and Krypteia
schemes.

The SVM-only mean-only Krypteia performed well, but not better
than the XGBoost, DES-MI, and META-DES approaches. This might
help explain why the other Krypteia schemes performed better: adding
more variability in the aggregation process and the classifiers did
significantly improve the performance of the system. The CART analysis
collected in Table 5 showed that the unit size and specially the survival
threshold were instrumental for a unit performance, which can also
294
Table 10
Number of times each ensemble beat the others in the different datasets. Ties are
considered as wins for both.

Algorithm No of times that won

Adaboost 5
Bagging 24
Majority vote SVM 24
Random forest 25

K-NORAE 23
DES-MI 22
DES-RRC 22
META-DES 21
XGBoost 𝟐𝟔

Krypteia Unit 25
Krypteia division 𝟑𝟓
Krypteia army 𝟑𝟗

Table 11
𝑃 -values for all the ensembles compared to the Krypteia army.

Algorithm 𝑃 -value

Adaboost 𝑃 < .001
Bagging 𝑃 < .001
Majority vote SVM 𝑃 < .001
Random forest 𝑃 < .001

K-NORAE 𝑃 < .001
DES-MI 𝑃 < .001
DES-RRC 𝑃 < .001
META-DES 𝑃 < .001
XGBoost 𝑃 < .001

Krypteia Unit 𝑃 < .001
Krypteia division 𝑃 < .001

explain the advantages in performance with respect to the models that
used OCS based on their individual accuracy: the Krypteia not only
discards subjects, but keeps generating more that are potentially useful.
Those that are redundant can be then discarded by the VGs in the social
ordeal.

One of the main advantages of the Krypteia scheme over its com-
petitors, is that it does not really have any hyperparameter to be tuned,

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
Table 12
Accuracy values for the CIFAR10 dataset. A LeNet model is considered to compute the
features for each image.

Algorithm Accuracy

LeNet base performance 65.84

Extreme Gradient boosting 64.09
Random forest 65.37

Krypteia army 65.87

as almost every parameter is sampled from a random distribution. The
only parameters that cannot be stochastically fixed are the number of
units in the Krypteia Army and the aggregation functions used, that we
chose using a five-fold validation on the training set. On the contrary,
it has quite different steps, which makes its computation more complex
than its rivals. The CART analysis performed in this study could be a
good starting point to choose those elements that could be simplified
without affecting performance.

Although there is not a theoretical limit for the size of the problems
the Krypteia scheme can tackle, this scheme is designed for data that
can fit completely in memory. When using other paradigms for datasets
of bigger sizes, we must take into account further consideration to
fully support and exploit mini-batches or map-reduce approaches. For
example, it is possible to use classifiers that perform some kind of
online-learning, or it is also possible to use dedicated classifiers for each
batch. Besides, the use of VGs can be focused in keeping the classifiers
that performed best on the data that is significantly different to what
the system has already processed. The performance of all these options
needs to be tested properly in order to determine which is the best
option to scale the Krypteia scheme to large databases and will be a
subject of study in future works.

9. Conclusions and future lines

In this paper we presented the Krypteia ensemble: a new form
to generate classifier ensembles based on an ancient Spartan ritual
to train the future elites of their society. We detailed the process
needed to compute these classifiers and we explained how they relate
to this ancient tradition, by exposing each different subject to distinct
hardships. Then, we studied how different aggregation functions work
in different Krypteia ensembles.

We tested the different Krypteia ensembles on a large experimen-
tal study including 52 datasets. We have studied the performance
of different forms of the Krypteia ensemble, and the effect of the
various parameters that define the Krypteia training process. Then, we
compared the results obtained by the Krypteia against 7 other ensemble
design algorithms, obtaining significantly better results.

Future research shall aim to improve the way in which Krypteia
Units are assembled to form Krypteia Divisions. We are also interested
in expanding the Krypteia scheme to support environments where the
data size is too big to fit in memory, like in deep learning, where
the dataset is loaded in mini-batches, and big data. Refining the per-
formance of the different ordeals, i.e. adding label perturbation and
different loss functions to the survival ordeal, will also be explored. Fi-
nally, we also intend to study the application of the Krypteia and other
social phenomena to other domains different from classification [95].

CRediT authorship contribution statement

J. Fumanal-Idocin: Conceptualization, Methodology, Software,
Writing – original draft. O. Cordón: Writing – review & editing. H.
Bustince: Supervision.
295
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Data availability

No data was used for the research described in the article.

Acknowledgements

Javier Fumanal Idocin and Humberto Bustince’s research has been
supported by project PID2019-108392 GB I00 (AEI/10.13039/
501100011033).

Oscar Cordón’s research has been funded by the Spanish Min-
istry of Science and Innovation (MICIN), Agencia Estatal de Investi-
gación (AEI), Spain, under grant CONFIA (PID2021-122916NB-I00),
and by the Regional Government of Andalusia under grant EXAISFI
(P18-FR-4262), both including European Regional Development Funds
(ERDF).

Open access funding provided by Universidad Pública de Navarra.

References

[1] M. Berthold, D.J. Hand, Intelligent Data Analysis, Springer, 2003.
[2] S. Brandt, Data Analysis, Springer, 1998.
[3] D.A. Keim, Information visualization and visual data mining, IEEE Trans. Vis.

Comput. Graphics 8 (1) (2002) 1–8.
[4] R. Cooley, B. Mobasher, J. Srivastava, Web mining: Information and pattern

discovery on the world wide web, in: Proceedings Ninth IEEE International
Conference on Tools with Artificial Intelligence, IEEE, 1997, pp. 558–567.

[5] N. Zhong, Y. Li, S.-T. Wu, Effective pattern discovery for text mining, IEEE Trans.
Knowl. Data Eng. 24 (1) (2010) 30–44.

[6] J.-P. Brunet, P. Tamayo, T.R. Golub, J.P. Mesirov, Metagenes and molecular
pattern discovery using matrix factorization, Proc. Natl. Acad. Sci. 101 (12)
(2004) 4164–4169.

[7] M.M. Petrou, C. Petrou, Image Processing: The Fundamentals, John Wiley &
Sons, 2010.

[8] C.C. Aggarwal, Data classification, in: Data Mining, Springer, 2015, pp. 285–344.
[9] H. Ramchoun, M.A.J. Idrissi, Y. Ghanou, M. Ettaouil, Multilayer perceptron:

Architecture optimization and training, Int. J. Interact. Multimedia Artif. Intell.
4 (1) (2016) 26–30.

[10] A.F.M. Hani, H.A. Nugroho, H. Nugroho, Gaussian Bayes classifier for medical
diagnosis and grading: application to diabetic retinopathy, in: 2010 IEEE EMBS
Conference on Biomedical Engineering and Sciences, IECBES, IEEE, 2010, pp.
52–56.

[11] D. Ververidis, C. Kotropoulos, Emotional speech classification using Gaussian
mixture models, in: 2005 IEEE International Symposium on Circuits and Systems,
IEEE, 2005, pp. 2871–2874.

[12] L.E. Peterson, K-nearest neighbor, Scholarpedia 4 (2) (2009) 1883.
[13] C. Cortes, V. Vapnik, Support vector machine, Mach. Learn. 20 (3) (1995)

273–297.
[14] N. Saleena, et al., An ensemble classification system for twitter sentiment

analysis, Procedia Comput. Sci. 132 (2018) 937–946.
[15] X. Feng, Z. Xiao, B. Zhong, J. Qiu, Y. Dong, Dynamic ensemble classification for

credit scoring using soft probability, Appl. Soft Comput. 65 (2018) 139–151.
[16] C.B.C. Latha, S.C. Jeeva, Improving the accuracy of prediction of heart disease

risk based on ensemble classification techniques, Inform. Med. Unlocked 16
(2019) 100203.

[17] L. Rokach, Ensemble-based classifiers, Artif. Intell. Rev. 33 (1–2) (2010) 1–39.
[18] R. Polikar, Ensemble based systems in decision making, IEEE Circuits Syst. Mag.

6 (3) (2006) 21–45.
[19] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[20] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.
[21] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning

and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119–139.
[22] A. Rojarath, W. Songpan, C. Pong-inwong, Improved ensemble learning for clas-

sification techniques based on majority voting, in: 2016 7th IEEE International
Conference on Software Engineering and Service Science, ICSESS, IEEE, 2016,
pp. 107–110.

[23] R.M. Cruz, D.V. Oliveira, G.D. Cavalcanti, R. Sabourin, FIRE-DES++: Enhanced
online pruning of base classifiers for dynamic ensemble selection, Pattern
Recognit. 85 (2019) 149–160.

[24] A. Onan, S. Korukoğlu, H. Bulut, A multiobjective weighted voting ensemble clas-
sifier based on differential evolution algorithm for text sentiment classification,

Expert Syst. Appl. 62 (2016) 1–16.

http://refhub.elsevier.com/S1566-2535(22)00158-0/sb1
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb2
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb3
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb3
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb3
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb4
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb4
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb4
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb4
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb4
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb5
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb5
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb5
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb6
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb6
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb6
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb6
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb6
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb7
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb7
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb7
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb8
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb9
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb9
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb9
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb9
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb9
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb10
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb10
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb10
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb10
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb10
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb10
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb10
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb11
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb11
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb11
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb11
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb11
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb12
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb13
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb13
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb13
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb14
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb14
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb14
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb15
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb15
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb15
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb16
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb16
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb16
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb16
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb16
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb17
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb18
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb18
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb18
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb19
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb20
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb21
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb21
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb21
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb22
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb22
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb22
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb22
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb22
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb22
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb22
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb23
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb23
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb23
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb23
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb23
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb24
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb24
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb24
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb24
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb24

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
[25] J.M. Moyano, E.L. Gibaja, K.J. Cios, S. Ventura, Review of ensembles of multi-
label classifiers: models, experimental study and prospects, Inf. Fusion 44 (2018)
33–45.

[26] D. Partridge, W.B. Yates, Engineering multiversion neural-net systems, Neural
Comput. 8 (4) (1996) 869–893.

[27] L. Wang, T. Mo, X. Wang, W. Chen, Q. He, X. Li, S. Zhang, R. Yang, J. Wu,
X. Gu, et al., A hierarchical fusion framework to integrate homogeneous and
heterogeneous classifiers for medical decision-making, Knowl.-Based Syst. 212
(2021) 106517.

[28] G. Beliakov, H. Bustince, T. Calvo, A Practical Guide to Averaging Functions,
Vol. 329, Springer, 2016.

[29] G.P. Dimuro, J. Fernández, B. Bedregal, R. Mesiar, J.A. Sanz, G. Lucca, H.
Bustince, The state-of-art of the generalizations of the Choquet integral: from
aggregation and pre-aggregation to ordered directionally monotone functions,
Inf. Fusion 57 (2020) 27–43.

[30] S. Abbaszadeh, E. Hullermeier, Machine learning with the Sugeno Integral: The
case of binary classification, IEEE Trans. Fuzzy Syst. (2020).

[31] L. De Miguel, M. Sesma-Sara, M. Elkano, M. Asiain, H. Bustince, An algorithm
for group decision making using n-dimensional fuzzy sets, admissible orders and
OWA operators, Inf. Fusion 37 (2017) 126–131.

[32] L. De Miguel, D. Gómez, J.T. Rodríguez, J. Montero, H. Bustince, G.P. Dimuro,
J.A. Sanz, General overlap functions, Fuzzy Sets and Systems 372 (2019) 81–96.

[33] H. Bustince, G. Beliakov, G.P. Dimuro, B. Bedregal, R. Mesiar, On the definition
of penalty functions in data aggregation, Fuzzy Sets and Systems 323 (2017)
1–18.

[34] S.T. Hadjitodorov, L.I. Kuncheva, L.P. Todorova, Moderate diversity for better
cluster ensembles, Inf. Fusion 7 (3) (2006) 264–275.

[35] V. Bolón-Canedo, A. Alonso-Betanzos, Ensembles for feature selection: A review
and future trends, Inf. Fusion 52 (2019) 1–12.

[36] A.J. Bayliss, The Spartans, Oxford University Press, 2020.
[37] W. Wang, Some fundamental issues in ensemble methods, in: 2008 IEEE

International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), IEEE, 2008, pp. 2243–2250.

[38] L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy, Mach. Learn. 51 (2) (2003)
181–207.

[39] Q. Dai, R. Ye, Z. Liu, Considering diversity and accuracy simultaneously for
ensemble pruning, Appl. Soft Comput. 58 (2017) 75–91.

[40] L. Liu, W. Wei, K.-H. Chow, M. Loper, E. Gursoy, S. Truex, Y. Wu, Deep
neural network ensembles against deception: Ensemble diversity, accuracy and
robustness, in: 2019 IEEE 16th International Conference on Mobile Ad Hoc and
Sensor Systems, MASS, IEEE, 2019, pp. 274–282.

[41] A. Rahman, S. Tasnim, Ensemble classifiers and their applications: A review,
2014, arXiv preprint arXiv:1404.4088.

[42] H. Drucker, C. Cortes, L.D. Jackel, Y. LeCun, V. Vapnik, Boosting and other
ensemble methods, Neural Comput. 6 (6) (1994) 1289–1301.

[43] L. Rokach, O. Maimon, I. Lavi, Space decomposition in data mining: A clustering
approach, in: International Symposium on Methodologies for Intelligent Systems,
Springer, 2003, pp. 24–31.

[44] B. Seijo-Pardo, I. Porto-Díaz, V. Bolón-Canedo, A. Alonso-Betanzos, Ensemble
feature selection: homogeneous and heterogeneous approaches, Knowl.-Based
Syst. 118 (2017) 124–139.

[45] Z.H. Kilimci, S. Akyokus, Deep learning-and word embedding-based het-
erogeneous classifier ensembles for text classification, Complexity 2018
(2018).

[46] J.N. van Rijn, G. Holmes, B. Pfahringer, J. Vanschoren, The online performance
estimation framework: heterogeneous ensemble learning for data streams, Mach.
Learn. 107 (1) (2018) 149–176.

[47] R. Lysiak, M. Kurzynski, T. Woloszynski, Optimal selection of ensemble classifiers
using measures of competence and diversity of base classifiers, Neurocomputing
126 (2014) 29–35, Recent trends in Intelligent Data Analysis Online Data
Processing.

[48] H.G. Zefrehi, H. Altınçay, Imbalance learning using heterogeneous ensembles,
Expert Syst. Appl. 142 (2020) 113005.

[49] R.M. Cruz, R. Sabourin, G.D. Cavalcanti, Dynamic classifier selection: Recent
advances and perspectives, Inf. Fusion 41 (2018) 195–216.

[50] V.Y. Kulkarni, P.K. Sinha, Pruning of random forest classifiers: A survey and fu-
ture directions, in: 2012 International Conference on Data Science & Engineering,
ICDSE, IEEE, 2012, pp. 64–68.

[51] R. Hu, S. Zhou, Y. Liu, Z. Tang, Margin-based Pareto ensemble pruning: An
ensemble pruning algorithm that learns to search optimized ensembles, Comput.
Intell. Neurosci. 2019 (2019).

[52] C. Lin, W. Chen, C. Qiu, Y. Wu, S. Krishnan, Q. Zou, LibD3C: ensemble classifiers
with a clustering and dynamic selection strategy, Neurocomputing 123 (2014)
424–435.

[53] R.M. Cruz, R. Sabourin, G.D. Cavalcanti, T.I. Ren, META-DES: A dynamic
ensemble selection framework using meta-learning, Pattern Recognit. 48 (5)
(2015) 1925–1935.

[54] K. Trawiński, O. Cordón, A. Quirin, A study on the use of multiobjective genetic
algorithms for classifier selection in FURIA-based fuzzy multiclassifiers, Int. J.
Comput. Intell. Syst. 5 (2) (2012) 231–253.
296
[55] K. Trawinski, O. Cordón, A. Quirin, Embedding evolutionary multiobjective
optimization into fuzzy linguistic combination method for fuzzy rule-based
classifier ensembles, in: 2014 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), IEEE, 2014, pp. 1968–1975.

[56] R.C.T. de Souza, C.A. de Macedo, L. dos Santos Coelho, J. Pierezan, V.C. Mariani,
Binary coyote optimization algorithm for feature selection, Pattern Recognit. 107
(2020) 107470.

[57] M. Elkano, M. Galar, J.A. Sanz, P.F. Schiavo, S. Pereira Jr., G.P. Dimuro, E.N.
Borges, H. Bustince, Consensus via penalty functions for decision making in
ensembles in fuzzy rule-based classification systems, Appl. Soft Comput. 67
(2018) 728–740.

[58] L. Rokach, Pattern Classification using Ensemble Methods, Vol. 75, World
Scientific, 2010.

[59] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F. Herrera, Ordering-
based pruning for improving the performance of ensembles of classifiers in the
framework of imbalanced datasets, Inform. Sci. 354 (2016) 178–196.

[60] J. Fumanal-Idocin, Y.-K. Wang, C.-T. Lin, J. Fernández, J.A. Sanz, H. Bustince,
Motor-imagery-based brain-computer interface using signal derivation and aggre-
gation functions, IEEE Trans. Cybern. (2021) 1–12, http://dx.doi.org/10.1109/
TCYB.2021.3073210.

[61] G. Lucca, J.A. Sanz, G.P. Dimuro, B. Bedregal, H. Bustince, R. Mesiar, CF-
integrals: A new family of pre-aggregation functions with application to fuzzy
rule-based classification systems, Inform. Sci. 435 (2018) 94–110.

[62] F. Bardozzo, B. De La Osa, L. Horanská, J. Fumanal-Idocin, M. delli Priscoli, L.
Troiano, R. Tagliaferri, J. Fernandez, H. Bustince, Sugeno integral generalization
applied to improve adaptive image binarization, Inf. Fusion 68 (2021) 37–45.

[63] G. Beliakov, J.-Z. Wu, Learning fuzzy measures from data: simplifications and
optimisation strategies, Inform. Sci. 494 (2019) 100–113.

[64] K. Trawiński, O. Cordón, L. Sánchez, A. Quirin, A genetic fuzzy linguistic
combination method for fuzzy rule-based multiclassifiers, IEEE Trans. Fuzzy Syst.
21 (5) (2013) 950–965.

[65] M. Papčo, I. Rodríguez-Martínez, J. Fumanal-Idocin, A.H. Altalhi, H. Bustince, A
fusion method for multi-valued data, Inf. Fusion 71 (2021) 1–10.

[66] M. Gupta, J. Qi, Theory of T-norms and fuzzy inference methods, Fuzzy Sets and
Systems 40 (3) (1991) 431–450.

[67] R.R. Yager, J. Kacprzyk, The Ordered Weighted Averaging Operators: Theory
and Applications, Springer Science & Business Media, 2012.

[68] G.P. Dimuro, G. Lucca, B. Bedregal, R. Mesiar, J.A. Sanz, C.-T. Lin, H.
Bustince, Generalized cf1f2-integrals: From Choquet-like aggregation to ordered
directionally monotone functions, Fuzzy Sets and Systems 378 (2020) 44–67.

[69] H. Bustince, R. Mesiar, J. Fernandez, M. Galar, D. Paternain, A. Altalhi, G.
Dimuro, B. Bedregal, Z. Takáč, D-Choquet integrals: Choquet integrals based on
dissimilarities, Fuzzy Sets and Systems 414 (2021) 1–27, Aggregation Functions.

[70] G. Lucca, J. Antonio Sanz, G. Pereira Dimuro, B. Bedregal, R. Mesiar, A. Kole-
sarova, H. Bustince, Preaggregation functions: Construction and an application,
IEEE Trans. Fuzzy Syst. 24 (2) (2016) 260–272.

[71] M. Sugeno, Theory of Fuzzy Integrals and its Applications (Ph.D. thesis), Tokyo
Institute of Technology, 1974.

[72] L.-W. Ko, Y.-C. Lu, H. Bustince, Y.-C. Chang, Y. Chang, J. Ferandez, Y.-K. Wang,
J.A. Sanz, G.P. Dimuro, C.-T. Lin, Multimodal fuzzy fusion for enhancing the
motor-imagery-based brain computer interface, IEEE Comput. Intell. Mag. 14 (1)
(2019) 96–106.

[73] D. Futter, Plutarch, Plato and Sparta, Akroterion 57 (1) (2012) 35–51.
[74] J. Ducat, Spartan Education: Youth and Society in the Classical Period, ISD LLC,

2006.
[75] I. Joseph, The deadliest blogger: Military history page, 2021, https://

deadliestblogpage.wordpress.com/. Accessed: 2021-04-26.
[76] A.J. Izenman, Linear discriminant analysis, in: Modern Multivariate Statistical

Techniques, Springer, 2013, pp. 237–280.
[77] S. Srivastava, M.R. Gupta, B.A. Frigyik, Bayesian quadratic discriminant analysis,

J. Mach. Learn. Res. 8 (Jun) (2007) 1277–1305.
[78] Y. Freund, L. Mason, The alternating decision tree learning algorithm, in:

International Conference on Machine Learning, Vol. 99, 1999, pp. 124–133.
[79] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic

minority over-sampling technique, J. Artificial Intelligence Res. 16 (2002)
321–357.

[80] G.E. Batista, R.C. Prati, M.C. Monard, A study of the behavior of several methods
for balancing machine learning training data, ACM SIGKDD Explor. Newsl. 6 (1)
(2004) 20–29.

[81] D.L. Wilson, Asymptotic properties of nearest neighbor rules using edited data,
IEEE Trans. Syst. Man Cybern. SMC-2 (3) (1972) 408–421.

[82] X.-S. Yang, S. Deb, S. Fong, Metaheuristic algorithms: optimal balance of
intensification and diversification, Appl. Math. Inf. Sci. 8 (3) (2014) 977.

[83] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, F.
Herrera, Keel data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework, J. Mult.-Valued Logic Soft
Comput. 17 (2011).

[84] E. Bradford, Thermopylae: The Battle for the West, Open Road Media, 2014.
[85] E.A. Antipov, E.B. Pokryshevskaya, Mass appraisal of residential apartments: An

application of random forest for valuation and a CART-based approach for model
diagnostics, Expert Syst. Appl. 39 (2) (2012) 1772–1778.

http://refhub.elsevier.com/S1566-2535(22)00158-0/sb25
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb25
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb25
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb25
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb25
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb26
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb26
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb26
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb27
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb27
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb27
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb27
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb27
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb27
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb27
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb28
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb28
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb28
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb29
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb29
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb29
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb29
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb29
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb29
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb29
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb30
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb30
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb30
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb31
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb31
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb31
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb31
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb31
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb32
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb32
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb32
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb33
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb33
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb33
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb33
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb33
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb34
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb34
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb34
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb35
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb35
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb35
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb36
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb37
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb37
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb37
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb37
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb37
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb38
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb38
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb38
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb38
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb38
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb39
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb39
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb39
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb40
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb40
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb40
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb40
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb40
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb40
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb40
http://arxiv.org/abs/1404.4088
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb42
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb42
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb42
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb43
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb43
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb43
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb43
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb43
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb44
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb44
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb44
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb44
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb44
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb45
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb45
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb45
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb45
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb45
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb46
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb46
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb46
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb46
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb46
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb47
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb47
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb47
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb47
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb47
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb47
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb47
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb48
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb48
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb48
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb49
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb49
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb49
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb50
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb50
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb50
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb50
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb50
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb51
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb51
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb51
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb51
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb51
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb52
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb52
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb52
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb52
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb52
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb53
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb53
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb53
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb53
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb53
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb54
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb54
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb54
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb54
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb54
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb55
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb55
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb55
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb55
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb55
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb55
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb55
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb56
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb56
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb56
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb56
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb56
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb57
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb57
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb57
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb57
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb57
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb57
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb57
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb58
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb58
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb58
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb59
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb59
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb59
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb59
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb59
http://dx.doi.org/10.1109/TCYB.2021.3073210
http://dx.doi.org/10.1109/TCYB.2021.3073210
http://dx.doi.org/10.1109/TCYB.2021.3073210
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb61
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb61
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb61
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb61
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb61
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb62
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb62
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb62
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb62
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb62
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb63
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb63
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb63
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb64
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb64
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb64
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb64
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb64
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb65
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb65
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb65
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb66
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb66
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb66
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb67
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb67
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb67
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb68
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb68
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb68
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb68
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb68
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb69
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb69
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb69
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb69
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb69
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb70
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb70
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb70
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb70
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb70
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb71
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb71
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb71
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb72
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb72
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb72
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb72
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb72
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb72
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb72
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb73
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb74
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb74
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb74
https://deadliestblogpage.wordpress.com/
https://deadliestblogpage.wordpress.com/
https://deadliestblogpage.wordpress.com/
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb76
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb76
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb76
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb77
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb77
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb77
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb78
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb78
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb78
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb79
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb79
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb79
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb79
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb79
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb80
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb80
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb80
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb80
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb80
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb81
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb81
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb81
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb82
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb82
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb82
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb83
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb83
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb83
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb83
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb83
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb83
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb83
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb84
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb85
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb85
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb85
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb85
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb85

Information Fusion 90 (2023) 283–297J. Fumanal-Idocin et al.
[86] U. Agrawal, A.J. Pinar, C. Wagner, T.C. Havens, D. Soria, J.M. Garibaldi,
Comparison of fuzzy integral-fuzzy measure based ensemble algorithms with the
state-of-the-art ensemble algorithms, in: International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems,
Springer, 2018, pp. 329–341.

[87] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[88] A.H. Ko, R. Sabourin, A.S. Britto Jr., From dynamic classifier selection to dynamic

ensemble selection, Pattern Recognit. 41 (5) (2008) 1718–1731.
[89] S. García, Z.-L. Zhang, A. Altalhi, S. Alshomrani, F. Herrera, Dynamic ensemble

selection for multi-class imbalanced datasets, Inform. Sci. 445 (2018) 22–37.
[90] T. Woloszynski, M. Kurzynski, A probabilistic model of classifier competence for

dynamic ensemble selection, Pattern Recognit. 44 (10–11) (2011) 2656–2668.
297
[91] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings
of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 785–794.

[92] C. Bentéjac, A. Csörgő, G. Martínez-Muñoz, A comparative analysis of gradient
boosting algorithms, Artif. Intell. Rev. 54 (3) (2021) 1937–1967.

[93] A. Krizhevsky, G. Hinton, Learning Multiple Layers of Features from Tiny Images,
Technical Report, Computer Science Department, University of Toronto, 2009.

[94] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[95] J. Fumanal-Idocin, A. Alonso-Betanzos, Ó. Cordón, H. Bustince, M. Minárová,
Community detection and social network analysis based on the Italian wars of
the 15th century, Future Gener. Comput. Syst. 113 (2020) 25–40.

http://refhub.elsevier.com/S1566-2535(22)00158-0/sb86
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb86
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb86
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb86
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb86
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb86
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb86
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb86
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb86
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb87
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb88
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb88
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb88
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb89
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb89
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb89
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb90
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb90
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb90
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb91
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb91
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb91
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb91
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb91
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb92
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb92
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb92
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb93
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb93
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb93
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb94
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb94
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb94
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb95
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb95
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb95
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb95
http://refhub.elsevier.com/S1566-2535(22)00158-0/sb95

	The Krypteia ensemble: Designing classifier ensembles using an ancient Spartan military tradition
	Introduction
	Related work
	Individual classifier generation and diversity induction
	Classifier selection
	Classifier combination

	Preliminaries
	Properties of aggregation functions
	T-norm
	Overlap functions

	Ordered Weighted Averaging operators (OWA)
	Choquet integral
	CF integral
	CF1,F2 integral

	Sugeno integral
	Hamacher-based Sugeno integral
	FG-Sugeno

	The Krypteia ensemble
	Krypteia in the ancient Sparta
	Krypteia ensemble: bringing the ancient ritual to modern computational systems
	Survival ordeal (fig:krypteia-Step 2)
	Social ordeal (fig:krypteia-Step 3)
	Decision making

	Training a Krypteia Unit for a classification problem
	Parameter setup
	Designing the Survival ordeal
	Data ordeal
	Bias ordeal
	Setting the Survival Threshold

	Configuring the Social ordeal
	Choosing the aggregation function

	Experimental results for different Krypteia ensembles
	Datasets studied in the experimentation
	Results for the Krypteia Unit
	Feature importance in the Krypteia ensemble
	Results for the Krypteia Division
	Results for the Krypteia Army
	Comparison of the different Krypteia ensembles
	Results for unit-all and division-all fusion schemes
	Performance for each aggregation function

	Comparing the Krypteia ensemble with other ensemble classifiers
	Discussion of the empirical results obtained
	Conclusions and future lines
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

