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1 Introduction

Low-energy high-luminosity experiments are attracting attention due to the absence of
physics beyond the Standard Model (BSM) at the LHC that far. In this context, the tests
of discrete symmetries offer a suggestive avenue to search for new physics, also in the field
of η and η′ physics thanks to the proposed high-luminosity η(′) factories such as JEF [1] or
REDTOP [2]. Notwithstanding, CP violation is highly constrained. In particular, C-even
P -odd observables suffer from stringent bounds due to electric dipole moment (EDM)
constraints [3]. A pertinent theoretical effort is to assess such bounds, which is timely with
the forthcoming high-luminosity η factories.

In refs. [4, 5], this task was initiated in the context of the Standard Model effective field
theory (SMEFT), with focus on leptonic η(′) decays. There, it was shown that CP violation
rooted in the strongly-interacting or the electromagnetic sector is severely constrained [3, 4],
whereas a certain class of D = 6 quark-lepton Fermi operators, whose EDM contribution
appears at the two-loop level, could avoid such constraints. In particular, with the current
bounds, CP violation could be observed in polarization observables in η → µ+µ− decays
at REDTOP. These kind of operators could leave as well CP -violating imprints on
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semileptonic η decays, whose study was relegated as they require a dedicated evaluation of
hadronic matrix elements. In ref. [6], the η(′) → π0µ+µ− (as well as η′ → ηµ+µ−) decays
were assessed, finding that CP -violating signatures in such decays are beyond REDTOP
statistics, partly due to isospin-breaking suppression.

In this work, we perform a dedicated study of η(′) → π+π−µ+µ− decays. Compared to
ref. [6], the CP -violating new-physics contribution is free of an isospin-breaking suppression
and its CP -violating signature does not require muon polarimetry, which makes this an a
priori interesting case. We note that such a process has been considered long ago in the
context of CP violation [7] (see also ref. [8]), albeit focusing on CP -violating electromagnetic
form factors that can be excluded based on EDM constraints [3]. As a result, we show
that in the current context a new plane asymmetry should be considered in CP -violating
searches. Further, we find that, within the SMEFT framework, CP -violating signatures in
η(′) → π+π−µ+µ− decays are tightly constrained by the nEDM at foreseeable future η(′)

factories, with η → µ+µ− still the most promising case.
This article is organized as follows. In section 2, we introduce the Standard-Model (SM)

process as well as the SMEFT CP -violating contribution, deriving the relevant plane
asymmetry that has been overlooked so far. Such an asymmetry requires the relevant
matrix elements for the SM and CP -violating contributions as input, which are described
in sections 3 and 4, respectively, with the latter representing the major work in this study.
Our final results and conclusions are given in sections 5 and 6.

2 Decay amplitude and CP -violating observables

In the Standard Model (SM), at leading order, the η(′)(P )→ π+(p1)π−(p2)µ+(p3)µ−(p4)
decay amplitude is both C- and P -even and reads

MSM = −e
2

s`
[ū(p4)γµv(p3)]

〈
π+(p1)π−(p2)

∣∣jµ(0)
∣∣η(′)(P )

〉
, (2.1)

with jµ = (2/3)ūγµu − (1/3)d̄γµd − (1/3)s̄γµs. The non-perturbative hadronic matrix
element above can be expressed as [3]〈

π+(p1)π−(p2)
∣∣jµ(0)

∣∣η(′)(P )
〉

= εµναβp
ν
1p
α
2 q

βFη(′)(s, t, u; s`), (2.2)

where ε0123 = 1, s = (p1 +p2)2, t = (P −p1)2, u = (P −p2)2, q = p3 +p4, and s` = (p3 +p4)2,
and is discussed in section 3.

In the presence of new physics, additional CP -violating contributions might appear.
In the following, we adopt SMEFT to parameterize them, implicitly assuming heavy new
physics. In this context, there are different possible sources of CP violation. One possibility,
studied long ago [7],1 consists on CP -violating electromagnetic form factors, whose origin in
SMEFT might be in the QCD sector or quark EDMs. Regardless of its origin, the neutron’s

1Introducing p = pπ+ + pπ− and p̄ = pπ+ − pπ− , the most general CP -violating hadronic matrix element
in eq. (2.1) can be written as (A1/2)[pµ(p̄q) − (pq)p̄µ] + A2[q2p̄µ − (p̄q)qµ], where q labels the photon
momentum, which can be derived from Leff = −iA1ηF

µν∂µπ
+∂νπ

−+ iA2η∂µF
µν(π+∂νπ

−−π−∂νπ+). The
one in ref. [7] corresponds to the A1 term, which is bounded by the neutron’s EDM [3]. In turn, using
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EDM (nEDM) sets stringent bounds on such a scenario [3]. Consequently, following ref. [4],
we shall focus on quark-lepton Fermi operators arising at D = 6 in SMEFT. Compared
to refs. [4, 6], besides scalar operators, tensor operators can contribute as well. However,
these produce a non-vanishing nEDM at the one-loop level, and are tightly constrained, see
ref. [9]. For this reason, we will focus on the scalar operators studied in refs. [4, 6], whose
contribution to the nEDM appears at the two-loop level, lessening the nEDM bounds. In
particular, we will restrict ourselves to the flavor-neutral CP -violating part of the O(1)

`equ

and O`edq operators [10] and will consider the muonic case only, since electrons suffer from
more stringent bounds from atomic physics [11] (see also comments on the additional chiral
suppression below). We pay special attention to the contribution of the strange-quark
operator (absent in O(1)

`equ), which is again less constrained from the nEDM than those of
the first quark generation [4]. The operators in question read

O(1)
`equ → −

GF√
2

Im c
(1)2211
`equ

[
(µ̄iγ5µ)(ūu) + (µ̄µ)(ūiγ5u)

]
,

O`edq →
GF√

2

{
Im c2211

`edq [(µ̄iγ5µ)(d̄d)− (µ̄µ)(d̄iγ5d)]

+ Im c2222
`edq [(µ̄iγ5µ)(s̄s)− (µ̄µ)(s̄iγ5s)]

}
, (2.3)

which produce the following CP -violating contribution to the current process:

MBSM = − GF

2
√

2
Im
(
c

(1)2211
`equ + c2211

`edq

)
[ū(p4)v(p3)]

〈
π+(p1)π−(p2)

∣∣P q∣∣η(′)(P )
〉

− GF√
2

Im c2222
`edq [ū(p4)v(p3)]

〈
π+(p1)π−(p2)

∣∣P s∣∣η(′)(P )
〉
, (2.4)

with the pseudoscalar operators P q,s = {ūiγ5u+ d̄iγ5d, s̄iγ5s} for the light- and strange-
quark contribution, respectively. The combination of the Wilson coefficients in the first
line follows from isospin symmetry. Note that all Wilson coefficients depend on the
renormalization scale, as the (pseudo)scalar quark operators are not renormalization-group
invariant. The description of the hadronic matrix elements above is postponed to section 4,
as it is inessential for the following discussion concerning the CP -violating asymmetry. Such
an asymmetry is produced via the interference of the SM and BSM contributions due to
their opposite CP nature,

dΓ = dΠ4
2Mη(′)

|M|2 ' dΠ4
2Mη(′)

[
|MSM|2 + 2 ReM∗SMMBSM + |MBSM|2

]
, (2.5)

with dΠ4 standing for the four-body phase space, see appendix A. Among the different
terms, only the interference one is of CP -odd nature. Making use of the definitions above,

∂µF
µν = −ejν the second term can be conceived microscopically as a (¯̀γµ`)(Oµ) hadron-lepton interaction,

where Oµ is an operator built from quark (and possibly gluon) fields. Note however that, based on discrete
symmetries, such a structure requires D > 3 to hadronize into η(π+∂νπ

− − π−∂νπ+). Its possible origin in
a SMEFT language is thus of D > 6, and a priori less relevant than the D = 6 case here discussed.
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one finds that

2 ReM∗SMMBSM = 8
√

2e2mµGF
s`

εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 Re

[
F∗η(′)(s, t, u; s`)

×
(〈
π+π−

∣∣1
2 Im

(
c

(1)2211
`equ + c2211

`edq

)
P q + Im c2222

`edqP
s
∣∣η(′)〉)]. (2.6)

The interference term above is of C-even, P -odd nature and, while it does not contribute
to the total decay width, it produces an angular asymmetry among the dilepton and dipion
planes. To show this, it is convenient to parameterize the phase space as described in
appendix A, in which the fully-contracted Levi-Civita tensor is proportional to sinφπ`
(where φπ` is the angle between the dilepton and dipion planes), allowing us to introduce
the angular asymmetry

Aη
(′)

φ = N(φπ` ∈ [0, π])−N(φπ` ∈ [π, 2π])
N

= − 1
Γ

√
2GF αmµ

212π4M3
η(′)

∫
ds ds` d cos θπ λ

√
s/s`β

2
`β

2
π sin θπ

× Re
[
F∗η(′)(s, t, u; s`)

〈
π+π−

∣∣1
2 Im

(
c

(1)2211
`equ + c2211

`edq

)
P q + Im c2222

`edqP
s
∣∣η(′)〉], (2.7)

where N stands for the number of events, Γ for the partial width, 2t(2u) = 2M2
π +M2

η(′) −
s+ s` ∓ λ1/2βπ cos θπ, with β2

π = 1− 4M2
π/s, β2

` = 1− 4m2
`/s`, θπ is the angle in the π+π−

frame, and λ ≡ λ(M2
η(′) , s, s`), with λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc the Källén

function. Note in addition the chiral suppression mµ/Mη due to the different chiral structure
of the SM and BSM contributions, which would imply a huge suppression for the electronic
case, making it even more irrelevant for our purpose, even beyond the stronger bounds
from atomic EDMs. With the hadronic input at hand, the equation above allows us to
estimate the sensitivity of Aφ to the Wilson coefficient, which is a valuable information for
experimentalists. Importantly, it is common in experimental searches to look for a sin(2φ)
asymmetry instead [12]. Such searches would miss the signature above, so an important
message for the experimentalists is to incorporate the Aφ asymmetry in their analyses. We
point out that in the similar decay KL → π+π−e+e−, the (dominant) sin(2φ) asymmetry
is associated with indirect CP violation, while a sinφ asymmetry would indicate direct CP
violation [13, 14].

The following sections are dedicated to the description of the hadronic matrix elements
that feed the equation above, with focus on the BSM part, whose corresponding matrix
element has not been assessed earlier to the best of our knowledge.

3 Standard-Model decay amplitudes

In this section, we briefly describe the hadronic matrix elements Fη(′)(s, t, u; s`). At vanishing
energies and in the chiral limit, they are given by low-energy theorems due to the Wess-
Zumino-Witten anomaly [15, 16],

Fη(0, 0, 0; 0) = 1
4
√

3π2F 3
π

≈ 18.6GeV−3, Fη′(0, 0, 0; 0) = 1
2
√

6π2F 3
π

≈ 26.3GeV−3,

(3.1)
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where for simplicity, we have also adopted the large-Nc limit in order to avoid further
corrections to the singlet part. Beyond that limit, these decays have been studied in chiral
perturbation theory (χPT) for real photons [17], as well as in unitarized versions thereof
both for real and virtual photons [18, 19]. More recently, a model-independent dispersion-
theoretical description in terms of the universal pion-pion final-state interactions has been
suggested [20], which reduces the description of the ππ spectra to a few phenomenological
polynomial parameters, which can be either matched to χPT or fitted to experimental
data [21–23].

Following refs. [24–27], the decay amplitudes can be expanded in partial waves according
to

Fη(′)(s, t, u; s`) =
∑

odd l

P ′l (cos θπ)fη
(′)

l (s, s`), cos θπ = t− u
λ1/2(M2

η(′) , s, s`)βπ(s)
. (3.2)

Since the amplitude is completely dominated by the first partial wave l = 1 in the decay
region [24], we adopt the P -wave approximation Fη(′)(s, t, u, s`) = fη

(′)

1 (s, s`). Further, we
shall make use of a model based on a factorization ansatz for the dependence on s and
sl, which has been shown to work surprisingly well even for dilepton energies in the range
1GeV ≤ √sl ≤ 2GeV [26], and is therefore expected to be safely sufficient to very high
accuracy in the decay region(s) of interest here. This simplifies the low-energy description,
which can be expressed in terms of the well-known Omnès function [28] as

fη
(′)

1 (s, s`) = fη
(′)

1 (s)F̄ (s`) = Pη(′)(s)Ω1
1(s)F̄ (s`), Ω1

1(s) = exp
(
s

π

∫
dz

δ1
1(z)

z(z − s)

)
, (3.3)

with Pη(′)(s) a polynomial, δ1
1 the P -wave ππ phase shift [29], and F̄ (0) = Ω1

1(0) = 1 such
that fη

(′)

1 (0, 0) = Pη(′)(0). For Pη(′)(s), we follow the work in refs. [20, 25, 27], where the
following parameterizations were used:

Pη(s) = Aη(1 + αηs), Pη′(s) = Aη′

(
1 + αη′s+ βη′s

2 + κ2
M2
ω − s− iMωΓω

)
, (3.4)

with input taken from their analyses of η(′) → π+π−γ decays. For the decay of the η
meson it was shown that a linear polynomial is sufficient to describe data by the KLOE
collaboration in the physical decay region [22], yielding Aη = (17.9± 0.4∓ 0.1)GeV−3 and
αη = (1.52± 0.06)GeV−2 [24]. In the case of the η′ decay, a quadratic polynomial seems
to fit the decay data very accurately, with the exception of isospin-breaking ρ–ω mixing
effects. The values of the coefficients are obtained by a fitting procedure to the BESIII
data [23], resulting in Aη′ = 16.7(4)GeV−3, αη′ = 1.00(4)GeV−2, βη′ = −0.55(4)GeV−4,
and κ2 = 6.72(24)× 10−3 GeV−1 [25]. Concerning F̄ (sl) note that, besides our convention
F̄ (0) = 1, it should only contain I = 1 vector resonances. As such, we adopt the following
model for the form factor

F̄ (s`) =
M2
ρM

2
ρ′[

M2
ρ − s` − i

√
s`Γρ(s`)

] [
M2
ρ′ − s` − i

√
s`Γρ′(s`)

] ,
ΓV (s`) = ΓV

√
s`

MV

β3
π(s`)

β3
π(M2

V )
θ(s` − 4M2

π), (3.5)
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Channel This work Experiment Ref.

η → π+π−e+e− 2.65(17)× 10−4 2.68(9)stat.(7)syst. × 10−4 [12]
η → π+π−µ+µ− 6.36(39)× 10−9 —
η′ → π+π−e+e− 2.21(15)× 10−3 2.11(12)stat.(15)syst. × 10−3 [32]
η′ → π+π−µ+µ− 2.25(14)× 10−5 1.97(33)stat.(19)syst. × 10−5 [33]

Table 1. Branching ratios for the various η(′) → π+π−`+`− decay channels in the Standard Model.

with βπ(s`) = (1 − 4M2
π/s`)1/2, that in addition ensures the appropriate asymptotic

behavior in the kinematic region of interest. To see this, note that the π+π− land-
scape is fully dominated by the ρ resonance at the energies of interest, so that our
form factor can be effectively thought of as 〈π+π−| jµ(0) |η〉 → 〈ρ| jµ(0) |η〉, with the
latter behaving asymptotically as 1/q4 [30, 31]. With the current description we obtain
Γ(η → π+π−µ+µ−) = 8.33(40)×10−15 GeV and Γ(η′ → π+π−µ+µ−) = 4.23(24)×10−9 GeV,
which will be used in section 5. The resulting branching fractions are compared to experiment
in table 1, where for completeness we also include the numbers for the electron-positron final
states. We find excellent agreement throughout, which further supports our description.

4 Beyond-the-Standard-Model decay amplitudes

The main task in our work is the evaluation of the pseudoscalar matrix elements that enter
the BSM contribution. This is split into the η and η′ parts, as they require using different
frameworks. In particular, for the η case we shall make use of SU(3) χPT. We advocate
that, while for the light-quark case an LO calculation should provide us with a reasonable
estimate, the strange-quark case demands an NLO evaluation due to the strong LO chiral
suppression, which is due to soft-pion theorems [34]. For the η′, we shall employ large-Nc

χPT at NLO (which is important due to the large η′ mass) together with a unitarization
method for the final π+π− state.

4.1 BSM η matrix elements

The current matrix elements 〈π+π−|P a |η〉 have not been computed before to the best of our
knowledge and might be of interest for model of new physics featuring pseudoscalar couplings.
At LO, there are two Feynman diagrams from the leading chiral Lagrangian: those where
the pseudoscalar current produces an η meson that later couples to an ηπ+π− state, and
those where the three pseudoscalar mesons are directly sourced from the pseudoscalar
current, see figure 1. As such, it is natural to separate the amplitude even beyond LO
according to

〈π+π−|P a |η〉 = 〈0|P a |η〉 1
M2
η − s`

Mηη→ππ +Mη;a
non-pole, (4.1)

where the residues of the η poles are given by the pseudoscalar matrix element of the η
with appropriate flavor, multiplied by the on-shell ηη → ππ scattering amplitudeMηη→ππ.
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η

π+

π−

P a

η

η

P a

π+

π−

Figure 1. Leading-order (LO) Feynman diagrams for 〈π+π−|P a|η〉 in χPT.

In this respect, it is important to note that the separation in eq. (4.1) is not necessarily in
one-to-one correspondence to specific Feynman diagrams, which are in general representation
dependent: Mη

non-pole also receives contributions from diagrams where the pseudoscalar
current couples to an η meson and off-shell effects need to be accounted for. At NLO, this
prevents us from taking the standard results for theMηη→ππ scattering amplitude [35–37]
straight away.

At LO, the two matrix elements in question are given by

〈π+(p1)π−(p2)|P s |η(P )〉 = − 2B0

3
√

3Fπ
M2
π

M2
η − s`

,

〈π+(p1)π−(p2)|P q |η(P )〉 = − 2B0√
3Fπ

(
1− M2

π

3(M2
η − s`)

)
. (4.2)

The low-energy constant B0 that is related to the quark condensate appears via the
pseudoscalar matrix element 〈0|P a |η〉 and the non-pole termMη;a

non-pole. Throughout this
work we use the value B0 = 2.39(18)GeV [38, 39], valid at a scale of 2GeV. Scale invariance
is restored in the products of B0 with the corresponding Wilson coefficients. We note that,
in both cases, the η-pole contribution is chirally suppressed by M2

π , which is a result of
the corresponding suppression of the LO scattering amplitudeMLO

ηη→ππ = M2
π/(3F 2

π ). The
residue is fixed completely by 〈0|P q |η〉 = −〈0|P s |η〉 = 2FπB0/

√
3. Furthermore, for the

strange current, there is no non-pole contribution at all, such that the chiral suppression
actually holds for the complete matrix element at LO. As a result, while the LO result can
provide a reasonable estimate for the light-quark matrix element, the strange one receives
comparatively large NLO corrections, which we evaluate in the following. First, to render
the separation into non-pole and pole parts unambiguous at NLO,2 we shall employ the
decomposition [37]

Mηη→ππ(s, t, u) = M2
π

3F 2
π

+Wηη(s) + Uηη(t) + Uηη(u), (4.3)

Mη;s
non-pole(s, t, u; s`) = W η;s

non-pole(s, s`) + Uη;s
non-pole(t) + Uη;s

non-pole(u). (4.4)

We follow ref. [40] and impose Uη(0) = U ′η(0) = 0, which uniquely fixes the separation at
NLO. The full NLO results for the quantities in eqs. (4.1), (4.3), and (4.4) are collected in

2Note that s+ t+ u− 2M2
π − 2M2

η = (s` −M2
η ) can be used to modify the pole and non-pole parts.
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appendix B. Note there the presence of contributions of the kind LiM
4
η /F

4
π to Mηη→ππ,

which have a size that is comparable to the LO result for MLO
ηη→ππ. The decomposition

adopted therein is such that each individual part in eq. (4.1) is UV-finite and scale-
independent, and the scattering amplitude reduces to that in refs. [35–37] on-shell, providing
a cross-check of our calculation.

A final cross-check comes from the following soft-pion theorem:

lim
pπc→0
M2
π→0

−Fπ
〈
πbπc

∣∣q̄iγ5λaq
∣∣η〉 = lim

M2
π→0

1
2
〈
πb
∣∣q̄{λa, λc}q∣∣η〉, (4.5)

where λc fulfills 〈0|Acµ |πc(p)〉 = ipµFπ. In particular, for the strange-quark operator
{λs, λc} = 0 and the amplitude must vanish in such a limit, which corresponds to Mπ = 0,
s = 0, t = M2

η , and u = s` (as well as t ↔ u). These Adler zeros [41, 42] provide a
non-trivial consistency check between pole and non-pole part of the matrix element at NLO
(as well as explaining the suppression observed at LO). Furthermore, for a = q the soft-pion
theorem relates our calculation to the corresponding η → π isovector scalar form factor,
which we checked to hold at LO in χPT.

4.2 BSM η′ matrix elements

To compute the η′ matrix elements we advocate the use of large-Nc χPT [43–47], which
combines the large-Nc limit of QCD with χPT to incorporate the η′ as the ninth Goldstone
boson. Such computation is performed in section 4.2.1 and parallels that of the η case, but
with the absence of loops and a few low-energy constants (LECs) that are suppressed in the
large-Nc limit, as well as the inclusion of the η − η′ mixing. However, in contrast to the η
case, an NLO evaluation is mandatory for both matrix elements due to potential O(p2

η′/Λ2)
corrections that prove to be significant. Further, the large available phase space demands to
include final-state interactions from the π+π− system, which is unitarized in section 4.2.2.

4.2.1 Large-Nc χPT amplitudes at NLO
Once more, the matrix element can be expressed as

〈π+π−|P a |η′〉 = 〈0|P a |η〉 Mηη′→ππ
M2
η − s`

+ 〈0|P a |η′〉 Mη′η′→ππ
M2
η′ − s`

+Mη′;a
non-pole. (4.6)

Following the notation in section 4.1, we decompose the four-meson amplitudes as

MAB→ππ(s, t, u) = cAB
M2
π

3F 2
π

+WAB(s) + UAB(t) + UAB(u), (4.7)

where cAB can be expressed in terms of the octet-singlet (quark-flavor) mixing angles θ81
(φqs) at NLO accuracy [48] as

cηη = 3 cos2 φqs, cη′η = 3 cosφqs sinφqs, cη′η′ = 3 sin2 φqs, (4.8)

with
√

3 cosφqs = cos θ81 −
√

2 sin θ81 and
√

3 sinφqs = sin θ81 +
√

2 cos θ81. The value for
the octet-singlet mixing angle θ81 is taken from the lattice [49]

θ81 = θ0 + θ8
2 = −8.1(1.8)◦ − 25.8(2.3)◦

2 = −17.0(1.5)◦, (4.9)
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which corresponds to a mixing angle in the quark-flavor basis of φqs = 37.8(1.5)◦. Note that
the coefficients in eq. (4.8) reflect the fact that, except for OZI-rule-violating contributions,
only the light-quark content of the η − η′ system contributes to the scattering amplitude.
The full results are given by

WAB(s) = cAB

[4(3L2 + L3)
3F 4

π

(
s2 − 2M4

π −M4
A −M4

B

)
− 4M2

πL5
3F 4

π

(
2M2

π +M2
A +M2

B

)
+ 16M4

πL8
F 4
π

]
+ Λ̃AB, (4.10)

where

{Λ̃ηη, Λ̃η′η′ , Λ̃ηη′} =
√

2M2
πΛ̃√

3F 2
π

{
cosφqs sin θ81,− sinφqs cos θ81,

sin 2θ81 − sin 2φqs
2

}
, (4.11)

with Λ̃ = Λ1−2Λ2 [43, 47] a scale-independent combination of OZI-rule-violating parameters.
We take Λ̃ = −0.51(21) from the lattice [49]. Similarly,

UAB(t) = cAB
4(3L2 + L3)

3F 4
π

t2. (4.12)

The results above are in good agreement on-shell with those in ref. [48], while they incorporate
the missing Λ1 terms in ref. [48] that are necessary to obtain the scale-independent Λ̃
combination. Concerning the non-pole contribution, we find3

Mη′;s
non-pole = 4

√
2B0
F 3
π

sin2 φqs cosφqs
(
M2
η′ −M2

η

)
(3L2 + L3),

Mη′;q
non-pole = 2B0

F 3
π

sinφqs
[
4(3L2 + L3)

(
s` + cos2 φqsM

2
η + sin2 φqsM

2
η′
)

+ 2M2
πL5

]
− 2B0

Fπ
sinφqs

[
1− 4L5

F 2
π

(
M2
η′ + 4M2

π − s`
)

+ 64L8M
2
π

F 2
π

]
+ 2B0

Fπ

Λ̃√
6

cos θ81,

(4.13)

where the last line comes from genuine non-pole diagrams that are present, at NLO accuracy,
only for the light-quark component. Finally, the pseudoscalar matrix elements at NLO read

〈0|P s |P 〉 = csP
√

2B0Fπ

[
1− 8L5M

2
K

F 2
π

+ 16L8(2M2
K −M2

π)
F 2
π

]
− cΛ

P

B0Fπ√
6

Λ̃,

〈0|P q |P 〉 = cqP 2B0Fπ

[
1− 8(L5 − 2L8)M2

π

F 2
π

]
− cΛ

P

B0Fπ

2
√

3
Λ̃, (4.14)

where cqη = csη′ = cosφqs, cqη′ = −csη = sinφqs, cΛ
η′ = cos θ81, and cΛ

η = − sin θ81. We take
the values for L5 = 1.66(23)× 10−3 and L8 = 1.08(13)× 10−3 from the lattice [49]. The
remaining combination of LECs, 3L2 + L3, is fixed based on the η′ → ηπ+π− decay in
appendix C. Once more, a consistency check for the non-pole part is provided by the
vanishing result of the strange-quark matrix element in the soft-pion limit discussed in
section 4.1.

3To LO precision, sinφqs cosφqs(M2
η′ −M2

η ) = (
√

2/3)M2
0 , whereas cos2 φqsM

2
η + sin2 φqsM

2
η′ = M2

π +
(2/3)M2

0 , with M2
0 the η′ mass in the chiral limit that, to LO accuracy, reads M2

0 = M2
η′ +M2

η − 2M2
K .
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4.2.2 Unitarization

Beyond the perturbative large-Nc χPT calculation, the η′ decay requires to account for non-
perturbative rescattering effects due to the relatively large available phase space. It is, in fact,
well known that the pure large-Nc χPT representation of the closely related decay amplitudes
η′ → ηππ fails to describe the available experimental data in a satisfactory manner [48],
such that some way of unitarization of the final-state interactions is phenomenologically
required [40, 48, 50, 51].4

The by far dominant rescattering effect at low energies occurs in the pion-pion isospin
I = 0 S-wave; the D-wave phase shift is known to be very small at the energies available.5

We therefore project our amplitude onto partial waves along the lines of ref. [48], which
allows us to express the amplitude as

MAB→ππ =Ml=0
AB→ππ +Ml=2

AB→ππ, Mη′

non-pole =Mη′l=0
non-pole, (4.15)

where we reflect the fact that, due to the essentially polynomial nature of the large-Nc

amplitudes, no partial waves beyond D-waves occur at all, and the non-pole part is in fact a
pure S-wave up to the order considered here. The partial waves obtained for the scattering
amplitude(s) in eq. (4.7) are found to be6

Ml=0
AB→ππ = cAB

M2
π

3F 2
π

+WAB(s)

+ cAB
4(3L2 + L3)

3F 4
π

[2
3λβ

2
π +

2M2
π(M2

η′ − s`)2

s
+ 2(M2

η′ −M2
π)(s` −M2

π)
]
,

Ml=2
AB→ππ = cAB

4(3L2 + L3)
3F 4

π

λβ2
π

6
(
3 cos2 θπ − 1

)
, cos θπ = t− u

λ1/2(M2
η′ , s, s`)βπ(s)

. (4.16)

We incorporate ππ rescattering effects for the S-wave component only, upon substituting

Ml=0 →Ml=0 (1 + αs)Ω0
0(s), Ω0

0(s) = exp
(
s

π

∫ ∞
4M2

π

ds′
δ0

0(s′)
s′(s′ − s)

)
, (4.17)

with Ω0
0(s) the corresponding Omnès function [28] from ref. [40]. The multiplicative linear

polynomial (1 + αs), with the free slope parameter α, effectively accounts for the coupled-
channel effects that set in above KK̄ threshold, which are known to be strong in the I = 0
S-wave and can impact the ππ final state very differently [54–58]; as well as for potential
left-hand cuts. Since our approach contains the η′ → ηππ subamplitude, we can test the
goodness of this unitarization approach by comparing our representation to Dalitz plot data
for η′ → ηπ+π− [59], which also allows us to fix the parameter α above. This comparison

4We consider analogous unitarization for the S-wave in the BSM amplitude for η → π+π−µ+µ− less
pressing at this stage, given the smallness of the available phase space, as well as the sizable uncertainties
induced by the NLO low-energy constants. Note that the one-loop representation of the strange matrix
element already contains perturbative unitarization at leading order.

5Similarly, left-hand cuts due to πη S-wave intermediate states are expected to be weak and suppressed
at low energies [37, 52, 53].

6Note that the last term in the first line of eq. (3.15) in ref. [48] should read 2m2
η′m

2
π/s instead of

2m2
η′m

2
η/s.
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is discussed in detail in appendix C, where our unitarization method is observed to work
very well. We from now on assume α to be universal for all rescattering effects, i.e., that
the value extracted from the η′ → ηπ+π− Dalitz plot is applicable in eq. (4.17).

5 Results

Taking the description in section 4 to feed the hadronic matrix element in eq. (2.7), we find
the following result for the asymmetry7

Aηφ = 47(14)× 10−5
(

Im c
(1)2211
`equ + Im c2211

`edq

)
− 0.4(2.2)× 10−5 Im c2222

`edq ,

Aη
′

φ = 2.9(5)× 10−5
(

Im c
(1)2211
`equ + Im c2211

`edq

)
− 1.4(5)× 10−5 Im c2222

`edq , (5.1)

where the SM part in the ratio has been taken from table 1. We note that the Wilson
coefficients above should be taken at a scale µ = 2GeV in order to match that of B0
and render the result scale-independent. The error for the η case is dominated, for the
strange-quark contribution, by Lr6 and 3Lr2 + Lr3, contributing to the total uncertainty
as 1.5 × 10−5 Im c2222

`edq and 1.2 × 10−5 Im c2222
`edq , respectively. For the η light-quark matrix

element, which we have only evaluated at LO, we assume a natural convergence behavior of
the SU(3) expansion and add a 30% uncertainty by hand. For the η′, the errors are harder
to assess. Theory uncertainties not yet covered consist of next-to-next-to-leading-order
(NNLO) corrections; note however that our unitarization scheme already includes potentially
large rescattering contributions in full, and we would expect parts of the remaining NNLO
contributions to be absorbed in a re-fit of the η′ → ηππ Dalitz plot, cf. appendix C. The
main effect at higher orders will therefore consist in corrections to the strict relation between
the η-pole contribution (rigorously fixed by η′ → ηππ) and the remaining parts of the
amplitude. We guesstimate this by taking the size of the NLO amplitude and divide it
by Nc. This leads to the uncertainties quoted in eq. (5.1). The above results can be used
to find the sensitivity that can be reached at a given experiment, which is limited by the
precision that can be achieved for the Aφ asymmetry. In the following, we estimate the
sensitivities at the proposed REDTOP facility, which would become the largest η/η′ factory
in the future. To do so, we make a poor-theorist estimate assuming that all backgrounds
arise from statistical fluctuations of the SM process itself, thus neglecting other backgrounds
that would require a dedicated experimental analysis. This yields ∆Aφ = 1/

√
N , where N

is the total number of events. Taking Nη = 5× 1012, Nη′ = 4× 1010,8 and considering a
single Wilson coefficient at a time, we find the results in table 2, which for completeness also
shows the results from previous studies for different channels [4–6]. As a result, we find that

7To illustrate the necessity of an NLO calculation for the strange quark, we remark that the LO result
for the η would read Aηφ = 2.5 × 10−5 Im c2222

`edq —an order of magnitude larger than the central value
of the full number in eq. (5.1); our final result arises from a cancellation of similar — but opposite —
LO and NLO contributions. Regarding the η′, ignoring unitarization effects, the LO result would read
Aη
′

φ = 3.5× 10−5( Im c
(1)2211
`equ + Im c2211

`edq

)
+ 0.3× 10−5 Im c2222

`edq , whereas including NLO corrections would
result in Aη

′

φ = 6.2× 10−5( Im c
(1)2211
`equ + Im c2211

`edq

)
− 2.7× 10−5 Im c2222

`edq , which reflects the anticipated sizable
NLO corrections in the η′ sector.

8These numbers include reconstruction efficiencies of 5% based on η(′) → 2µ+2µ− studies and input from
table XXIII of ref. [2]. We acknowledge C. Gatto for discussions on this point.
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Process Asymmetry Im c2222
`edq Im c

(1)2211
`equ Im c2211

`edq

η → π+π−µ+µ− Aφ 1584 12 12
η′ → π+π−µ+µ− Aφ 77 36 36

η → π0µ+µ− AL 0.7 0.07 0.07
η′ → π0µ+µ− AL 11 2.4 2.5
η′ → ηµ+µ− AL 5 68 79

η → µ+µ− AT 0.005 0.007 0.007

nEDM — ≤ 0.02 ≤ 0.001 ≤ 0.002

Table 2. Results for the REDTOP sensitivities to the Wilson coefficients associated with CP -
violating SMEFT operators. For completeness we also show the sensitivities from other leptonic and
semileptonic channels from refs. [4–6].

the precision that can be achieved for η(′) → π+π−µ+µ− at REDTOP is not competitive
with the bounds set by the nEDM, which are only beaten by the η → µ+µ− channel and
for the strange-quark operator.

At this stage one might wonder about the reasons behind the inferior sensitivity for
Im c2222

`edq for the η channel in particular as compared to η → π0µ+µ−, despite both processes
having similar branching ratios within the SM and with the latter having a BSM contribution
suppressed by isospin breaking (IB). This, together with the fact that muon polarimetry is
not required in Aφ, was the main point that made the present study such an appealing case.
To understand this, we note that η → π+π−µ+µ− is phase-space suppressed, which equally
affects the BSM part, while the η → π0µ+µ− suppression comes mainly from a factor of
(α/π)2 — in the SM, the decay proceeds dominantly via two-photon intermediate states [60].
Second, there is a lepton chiral suppression O(mµ/Mη) in this process (cf. the discussion in
section 2). Third, we have seen that the matrix element is chirally suppressed at LO as
M2
π/M

2
η . Finally, the LO and NLO contributions lead to an accidental order-of-magnitude

cancellation, so that we might estimate a suppression of the sensitivity in η → π+π−µ+µ−

relative to the one in η → π0µ+µ− according to(
Mπ

Mη

)2

χSU(3)

(
mµ

Mη

)
χ`

( 1
10

)
NLO

100IB

(
α

π

)
∼ 1

3500 , (5.2)

which roughly explains the difference. Regarding the η′ we find the current sensitivities
an order-of-magnitude lower than in η′ → π0µ+µ− (but comparable to η′ → ηµ+µ−), once
more due to the (α/π)-enhancement of the latter, which in the end seems to compensate
the lower SM branching ratio and isospin suppression — a feature that would have been
hard to anticipate without the current study.

This work complements the previous effort in refs. [4–6] in the context of CP -violation
searches in leptonic and semileptonic η and η′ decays within the SMEFT framework.
Within such framework, and considering REDTOP as the largest η factory in the future,
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the η → µ+µ− decay stands out as the single channel competitive with nEDM constraints,
though muon polarimetry is required.

6 Summary

With the advent of future η(′) factories aiming to find physics beyond the Standard Model
via discrete-symmetry tests, it is timely to assess the physics within reach to help guiding
the experimental programs. In this article, we extended the study of P - and CP -violating
η(′) semileptonic decays initiated in refs. [4–6] to η(′) → π+π−µ+µ−. CP violation in
these processes is severely constrained by the nEDM, which we have used to place bounds
using SMEFT. Within this framework, the most relevant contributions arise from scalar
quark-lepton dimension-6 Fermi operators, whose nEDM contribution appears only at two
loops. Interestingly enough, these operators induce a CP -violating sinφπ` asymmetry,
which should be incorporated in experimental analyses that commonly target a sin 2φπ`
asymmetry instead. The latter is motivated in scenarios with CP -violating form factors that,
we argued, suffer from yet stronger bounds from the nEDM or require higher-dimensional
operators in SMEFT.

In our study, we worked out the corresponding hadronic matrix elements appearing in
η(′) → π+π−µ+µ− using χPT and standard unitarization techniques; such matrix elements
might be also interesting for other BSM scenarios. As a result, we find moderate sensitivities
that probably cannot overcome nEDM bounds. This is mostly due to the small phase
space available for the η, as well as chiral suppression and accidental cancellations for the
strange-quark contribution. The results are compared to other channels, which should
help guiding the experimentalists targeting the most interesting decays. In particular, the
η → µ+µ− decay continues to be the most promising case at future η(′) factories, provided
muon polarization can be assessed. This mostly exhausts the list of semileptonic η(′) decays,
with the possible exception of η(′) → π0π0µ+µ−, which might be interesting to consider in
the future.
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A Phase space description

In the following, we adopt the Cabibbo-Maksymowicz [61] description for the four-body
phase space, see ref. [62] for details. In particular, the phase space can be described as
sequential two-body decays. Labeling the momenta and invariants as in section 2,

dΠ4 = λ1/2

214π6M2
η(′)

ds ds` βπ d cos θπ β` d cos θ` dφπ` , (A.1)

where in addition we introduced θ` as the angle in the dilepton frame (see details in ref. [62]).
The integration limits are given as s ∈ [4M2

π , (Mη(′) − 2m`)2], s` ∈ [4m2
` , (Mη(′) −

√
s)2],

cos θπ,` ∈ [−1, 1], and φπ` ∈ [0, 2π]. This way one can express all the relevant invariants as
follows (we use pij = pi + pj , p̄ij = pi − pj):

2p12 · p34 = M2
η(′) − s− s` , 2p̄12 · p34 = λ1/2βπ cos θπ, 2p̄34 · p12 = λ1/2β` cos θ` ,

2p̄12 · p̄34 = (M2
η(′) − s− s`)βπβ` cos θπ cos θ` − 2√s s`βπβ` sin θπ sin θ` cosφπ` ,

εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 = −

λ1/2√s s`
8 βπβ` sin θπ sin θ` sinφπ` , (A.2)

B BSM amplitude for the η meson at NLO

The single-variable functions Wηη(s) and Uηη(t) appearing in the decomposition of the
scattering amplitude read

Wηη (s) = 1
F 4
π

{(
s− 2M2

π

) (
s− 2M2

η

) [
4
(

2Lr1 + Lr3
3

)
− 3

8
1

16π2 (1 + LK)
]

+M2
πM

2
η

[
32
(
−Lr7 + Lr6 −

1
6L

r
5 − Lr4

)
+ 1

16π2

(23
18 + 2LK −

2
9Lη

)]
+M4

π

[
16Lr8 + 32Lr7 + 1

16π2

(
−1

9 −
2
9Rπη −

1
6LK −

1
6Lη −

1
2Lπ

)]
+ sΣηπ

[
8Lr4 −

1
2

1
16π2 (1 + LK)

]
+ sM2

π

[
1
3

1
16π2 log

(
M2
K

M2
π

)]

− 1
6 J̄ππ (s)M2

π

(
M2
π − 2s

)
+ 1

54 J̄ηη (s)M2
π

(
16M2

K − 7M2
π

)
− 1

24 J̄KK (s) s
(
8M2

K − 9s
)

+ 2Σηπ (s− Σηπ)
[
4
(
Lr2 + Lr3

3

)
− 3

8
1 + LK

16π2

]

+ 2Σηπ − s
288π2

[
2M2

K +M4
π

Σηπ − 2M2
ηRπη

(M2
π −M2

η )2

]}
, (B.1)

which agrees with the expression in ref. [37] except for the last line (that originates from
our condition U(t) = U ′(t) = 0), and

Uηη(t) = 1
F 4
π

{
t2
[
4
(
Lr2 + Lr3

3

)
− 3

8
1

16π2 (1 + LK)
]
− t

288π2

[
2M2

K +M4
π

Σηπ − 2M2
ηRπη

(M2
π −M2

η )2

]

+ 1
9M

4
π J̄πη(t) + 1

24
(
4M2

K − 3t
)2
J̄KK(t)

}
, (B.2)
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Lr1 Lr2 Lr3 Lr4 Lr5 Lr6 Lr7 Lr8

1.0(1) 1.6(2) −3.8(3) 0.0(3) 1.2(1) 0.0(4) −0.3(2) 0.5(2)

Table 3. Values for the LECs (in units of 10−3) taken from ref. [64]. We choose the results of
the combined fit at NLO for the range −0.3× 103 ≤ Lr4 ≤ 0.3× 103. The renormalization scale is
µ = 0.77GeV.

which also agrees with ref. [37] once removing the U(0) and U ′(0) terms. The matrix
element 〈0|s̄iγ5s|η〉 appearing in the pole part is given by

〈0|s̄iγ5s|η〉 = − 2√
3
FπB0

[
1 + M2

πLπ
16π2F 2

π

−
M2
ηLη

24π2F 2
π

−
4M2

η

F 2
π

(
3Lr4 + Lr5 − 6Lr6 − 6Lr7 − 6Lr8

)
− 4M2

π

F 2
π

(
3Lr4 + Lr5 − 6Lr6 + 6Lr7 + 2Lr8

)]
. (B.3)

Finally, the single-variable functions appearing in the non-pole part are given by

W η;s
non-pole(s, s`) = 2B0Fπ√

3F 4
π

{
33Dη + 72M2

η + 52M2
π − 42s

1152π2 +M4
π

Σηπ − 2M2
ηRπη

288π2(M2
π −M2

η )2

+ sJ̄KK(s)
8 + 2M2

π J̄ηη(s)
9 + 4s

(
Lr2 − 2Lr1 + 2Lr4 −

LK
128π2

)
+ 4M2

π

(
4Lr1 + 2Lr3

3 − 6Lr4 −
Lr5
3 + 8Lr6 − 4Lr7 −

Lη
288π2

)

− 4 (Dη + 2Σηπ)
(
Lr2 + Lr3

3 −
3LK

512π2

)}
(B.4)

and
Uη;s

non-pole(t) = B0Fπ

4
√

3F 4
π

{(
4M2

K − 3t
)
J̄KK(t)− t

24π2

}
, (B.5)

where, following refs. [36, 37], we have introduced

LP = log
(
M2
P

µ2

)
, RPQ =

M2
P log

(
M2
P /M

2
Q

)
M2
P −M2

Q

, Dη = s` −M2
η , (B.6)

with µ the renormalization scale, which is conventionally taken as µ = 0.77GeV [63, 64].
We note that the combinations in brackets and parenthesis in the equations above are
indeed scale-invariant; the β-functions determining the scale dependence of the Lri can be
found in ref. [65]. The values used for the LECs at such reference scale are given in table 3.

Finally, J̄PQ(s) = JPQ(s)− JPQ(0) is related to the standard scalar two-point function
as 16π2JPQ(s) = B0(s,M2

P ,M
2
Q). Its particular expression reads [65]

J̄PQ(s) = 1
32π2

[
2 +

(
∆PQ

s
− ΣPQ

∆PQ

)
log

(
M2
Q

M2
P

)
− ν(s)

s
log

(
(s+ ν(s))2 −∆2

PQ

(s− ν(s))2 −∆2
PQ

)]
,

(B.7)
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where ΣPQ = M2
P +M2

Q, ∆PQ = M2
P −M2

Q, and ν2(s) = λ(s,M2
P ,M

2
Q). For equal masses,

the expression simplifies considerably to

J̄PP (s) = 1
16π2

[
2 + βP (s) log

(
βP (s)− 1
βP (s) + 1

)]
. (B.8)

C Phenomenology of η′ → ηππ

The scattering amplitude Mη′η→ππ that is part of the η-pole contribution to the matrix
element in eq. (4.6) can be related to the decay amplitudeMη′→ηππ via crossing symmetry.
However, it was shown that large-Nc χPT to NLO is not able to describe the decay η′ → ηππ

properly [40, 48]. If the pseudoscalar matrix element in eq. (4.6) were dominated by the
η pole, as one may have naively expected, one possibility might have been to employ the
dispersion-theoretical amplitude representations for η′ → ηππ [40, 51] directly. However,
since the asymmetry involves the interference of the BSM and the SM contributions, with the
latter lacking an η pole, the asymmetry contains a single propagator (s` −M2

η + iMηΓη)−1

rather than its square. Consequently, both terms in its decomposition into principal value
and imaginary part survive, and both pole and non-pole contributions must be taken into
account. Furthermore, in order for the amplitude to fulfill the Adler consistency conditions,
all its parts — η and η′ pole terms as well as the non-pole contribution — need to be
calculated consistently within the same framework. For this reason, we need to develop a
somewhat simplified unitarization scheme that can be applied throughout.

The simplest possibility to account for non-perturbative ππ S-wave rescattering is to
multiply the S-wave component with the corresponding Omnès function Ω0

0(s),

Ml=0 →Ml=0 Ω0
0(s). (C.1)

However, as we will see below, this representation does not describe the η′ → ηππ Dalitz
plot data well enough. In order to improve the phenomenology and provide a little more
flexibility, we furthermore multiply the Omnès factor by a linear polynomial P (s) = 1 + αs

according to
Ml=0 →Ml=0 Ω0

0(s)P (s) =Ml=0 Ω0
0(s)(1 + αs). (C.2)

The linear polynomial has to fulfill P (s = 0) = 1 in order to preserve the soft-pion theorem,
see section 4.1. The additional free parameter α is determined from a fit to the Dalitz plot
distribution. The physical motivation to multiply the S-wave component not only with
the Omnès function but also with a linear polynomial is to take potentially large inelastic
effects of KK̄ intermediate states in the I = 0 S-wave into account, and probably also allow
for left-hand cut contributions to some extent.

It is desirable to obtain an estimation about the goodness of the different models. The
LECs inMl=0 as well as the parameter α are taken as constants that have to be fitted to
data. As the low-energy constants L5, L8, and Λ̃ come with a factor M2

π and are therefore
suppressed, we only adjust the combination (3L2 + L3) and the slope α to the decay rate
ΓPDG
η′→ηπ+π− and the Dalitz plot distribution according to the recent BESIII data [59]. The
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remaining low-energy constants have been fixed from the literature [49], see section 4.2. For
the combined fit to the decay rate ΓPDG

η′→ηπ+π− and the BESIII data, we minimize

χ2 =
∑
i

(
N × |Mη′→ηππ(Xi, Yi)|2 −NBESIII(Xi, Yi)

∆NBESIII(Xi, Yi)

)2

+
(

Γη′→ηπ+π− − ΓPDG
η′→ηπ+π−

∆ΓPDG
η′→ηπ+π−

)2

,

(C.3)
with N being a normalization factor taking care of the fact that BESIII data is given
in arbitrary units. We use ΓPDG

η′→ηπ+π− = 79.9(2.7) keV [66]. Moreover, the decay rate
Γη′→ηπ+π− in terms of the squared matrix element |Mη′→ηππ|2 is given by

Γη′→ηπ+π− = 1
512π3M3

η′

∫
ds

∫
d cos(θπ)βπλ1/2(s,M2

η′ ,M
2
η )|Mη′→ηπ+π− |2. (C.4)

The minimization of χ2 has been performed upon restricting 3L2 +L3 to positive values, as
it should not deviate too much from the literature values; in the limit Mπ → 0, the decay
amplitude Mη′→ηπ+π− is strictly proportional to 3L2 + L3 and therefore both decay rate
and Dalitz plot are insensitive to the sign.

After fixing the fit parameters through minimization of χ2, the Dalitz plot parameters
can be obtained via the expansion of the squared amplitude around the center according
to [67–69]

|Mη′→ηππ|2 = |N |2[1 + aY + bY 2 + cX + dX2], (C.5)

where |N |2 is a normalization factor and the variables X and Y are defined according to

X =
√

3
Q

(Tπ+ − Tπ−) , Y = Mη + 2Mπ

Mπ

Tη
Q
− 1, (C.6)

with

Tη = (Mη′ −Mη)2 − s
2Mη′

, Tπ+ = (Mη′ −Mπ)2 − t
2Mη′

, Tπ− = (Mη′ −Mπ)2 − u
2Mη′

, (C.7)

and Q = Tη + Tπ+ + Tπ− = Mη′ −Mη − 2Mπ. In the following, we set c = 0 as odd terms
in the Dalitz plot variable X are forbidden due to charge conjugation symmetry [51]. The
resulting values for the three different models can be found in table 4. The number or data
points required to calculate the reduced χ2 is given by 10795 bins in the Dalitz plot of
ref. [59], plus the partial width.

We see from table 4 that multiplying the S-wave component with the relevant Omnès
function times a linear polynomial is the best model to describe the decay η′ → ηππ. The
respective χ2 suggests a very good fit that describes the data very well. Moreover, as
it was pointed out in ref. [43], we can compare the resulting value for 3L2 + L3 to the
corresponding SU(3) value, suggesting good agreement, see table 3. However, the value for
α is large (and negative) and modifies the distribution even more strongly than the Omnès
function Ω0

0(s). Hence the modification through the linear polynomial should be seen as the
introduction of an additional phenomenological fit parameter. We note that the polynomial
introduces a zero in the S-wave for s ∼ 0.33GeV2; as the available phase space only goes
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Ml=0 Ml=0 Ω0
0(s) Ml=0 Ω0

0(s)P (s) Ref. [59]

N 2.38(7)× 10−3 1.96(5)× 10−3 2.88(10)× 10−3

3L2 + L3 1.06(1)× 10−3 0.74(1)× 10−3 0.98(2)× 10−3

α — — −3.05(2)GeV−2

χ2/d.o.f. 1.409 2.282 1.005
a −0.288 −0.480 −0.050(4) −0.056(4)(2)
b −0.000 0.046 −0.124(1) −0.049(6)(6)
d −0.081 −0.051 −0.0793(3) −0.063(4)(3)

Table 4. Results for the combined fit for all three models. Presented are the fit parameters as
outcome of the minimization routine of χ2 and the respective Dalitz slope parameters.

up to s ∼ 0.17GeV2, this zero is located outside of the physical decay region. A similar
observation can be made in more sophisticated amplitude analyses of this decay [70].

The resulting values for the slope parameters also point towards the need to include
the linear polynomial for the S-wave component. They can be compared to the values from
refs. [40, 59], only showing a slight remaining tension with the value for the parameter b.
Note that the Dalitz plot parameters corresponding to the models without the parameter α
are fixed theoretically when neglecting M2

π-suppressed terms, as the fitting procedure only
adjusts the combination 3L2 + L3 related to the normalization of the branching ratio.
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