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Abstract. This paper introduces a general modeling framework for a multi-type maximal
covering location problem in which the position of facilities in different metric spaces are si-
multaneously decided to maximize the demand generated by a set of points. From the need of
intertwining location decisions in discrete and in continuous sets, a general hybridized problem
is considered in which some types of facilities are to be located in finite sets and the others
in continuous metric spaces. A natural non-linear model is proposed for which an integer lin-
ear programming reformulation is derived. A branch-and-cut algorithm is developed for better
tackling the problem. The study proceeds considering the particular case in which the contin-
uous facilities are to be located in the Euclidean plane. In this case, taking advantage from
some geometrical properties it is possible to propose an alternative integer linear programming
model. The results of an extensive battery of computational experiments performed to assess
the methodological contribution of this work is reported on. The data consists of up to 920
demand nodes using real geographical and demographic data.

1. Introduction

Among the most popular problems in Location Analysis are those in which a user can receive
a service in case it is located close enough to an open facility providing it. These problems are
usually called Covering Location problems. Two different paradigms have been considered when
classifying this type of problems. The first considers a cost-oriented objective and the main goal
is to satisfy the demand of all the users by minimizing the setup costs of the facilities. These
problems are referred to in the literature as Set Covering Problems, and were mathematically
introduced by Toregas et al. (1971). The most popular problem in this family is the p-center
problem (Hakimi, 1965). On the other hand, the second paradigm assumes the existence of
a budget for opening facilities and the goal is to accommodate it to satisfy as much demand
of the users as possible. These problems belong to the family of Maximal Covering Location
Problems (MCLP) that have attracted the attention of many researchers since its introduction
by Church and ReVelle (1974), both because its practical interest in different disciplines see
(see Chung, 1986) and the mathematical challenges it poses. The interested readers are referred
to the surveys by Church and Murray (2018) and Garcia-Quiles and Maŕın (2019) for further
details on covering location problems.

As in most facility location problems, the MCLP have been analyzed within three main
frameworks attending to the space where the facilities can be located: discrete (see Arana-
Jiménez et al., 2020; Cordeau et al., 2019), network (see Baldomero-Naranjo et al., 2021; Berman
et al., 2016; Church and Meadows, 1979) and continuous (see Blanco and Gázquez, 2021; Drezner
et al., 2019; He et al., 2016; Tedeschi and Andretta, 2021). The applicability of each of these
frameworks mainly depends on the nature of the facilities to be located and the decision maker’s
knowledge in terms of the available information. While in a discrete setting the centers to open
are selected from a finite set of possibilities, in continuous location the facilities are allowed
to be located in the whole underlying space. In network problems the centers can be located
anywhere in a network. Like for many minsum facility location problems on networks, in the
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case of covering problems often a finite dominating set can be identified which allows casting
the problem in a discrete setting giving great prominence to the research done in the latter.

Discrete facility location is mostly applied to locate physical services (e.g., ATMs, stores,
hospitals); continuous location is known to be more adequate when locating telecommunication
services (e.g. routers, surveillance equipment, alarms, sensors, etc.) where more flexibility is
allowed for their optimal positions.

A feature shared by most of the exiting literature focusing the MCLP concerns the existence
of a single type of facility. However, in practice, this may not be the case. If not by other reasons,
the progressive technology development often calls for older equipment that is still operational
to be used together with more recent one. Another possibility emerges when two technologies
can be looked at as complementing each other. For instance, when locating equipment for early
fire detection in forests, surveillance facilities requiring human resources operating them may be
complemented with equipment such as remotely controlled cameras to ensure a better coverage
of the area of interest. When facilities can be installed in different phases (e.g. multi-period
facility location) the facilities to be located in each phase can also be looked at as belonging to
a different group (that we still call type) of facilities.

In this paper we investigate maximal covering location problems with multiple facility types.
We assume that the number of facilities of each type to be located is known beforehand and that
each type of facilities is characterized by the shape of their coverage areas and the metric space
from which they are selected. A plan is to be devised for a multi-stage process with each stage
corresponding to installing one type of facility. The facilities opened in each stage perform the
same tasks and thus complement the facilities installed in previous stages. In turn, they will be
complemented by the facilities to be located in the subsequent stages. We show that instead of
making sequential decisions for each facility type, coverage gains can be achieved by making an
integrated decision involving all facility types.

We start by presenting a general formulation for the problem. Afterwards, motivated by some
practical settings we investigate the hybridization of discrete and continuous facility location.
We consider that several types of facilities are to be selected in finite sets of possibilities (one for
each type) whereas the other types of facilities can be located continuously in the whole space.

By considering a hybrid setting it becomes possible to take advantage from choosing some
services in finite sets of pre-specified preferred locations and then deciding flexible positions of
the servers in the whole space. This setting can be useful, for instance, in telecommunications
networks with a certain number of the servers (sensors, antennas, routers, etc.) being located
inside adequately prepared infrastructures (buildings, offices, air-conditioned cabins, roofs, etc.)
and additional servers being located at any place in the given space. The goal is of course to
capture/cover as much demand as possible no matter the equipment doing it. The continuous
facilities can be looked at as a set of servers to be located in the future and that must complement
the equipment located in a discrete setting. To decide the positions of the centers, one could
proceed by first locating the initial centers (in a fully discrete framework) maximizing the covered
demand and then locate the future centers (in a fully continuous framework), maximizing the
covered demand of the customers that are still uncovered by the initial servers. Although
allowing the application of well-known existing tools in the context discrete and continuous
maximal covering location, this procedure may easily lead to sub-optimal solutions: a better
planning (i.e., covering more demand) can be obtained by considering an integrated approach
which is what we propose.

The literature is quite rich when it comes to considering multi-type facility location problems.
Nevertheless, more often than not, we are led to problems stemming from logistics or telecommu-
nications applications in which a multi-layered or a hierarchical facility structure is to be setup.
In such a case, each facility type lies within a specific layer of the network or in the hierarchy
and has a specialized function. The reader can refer to Contreras and Ortiz-Astorquiza (2019)
and Heckmann and Nickel (2019) as well as to the references there in for overviews on many
such problems.

In the current work, we are concerned with facilities that provide the same service, and thus
can be used to complement each other although having some different characteristics. Wu et al.
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(2006) investigated one such problem in the context of capacitated facility location. In that
paper, general setup costs are considered that depend on the size and location of the facility.
The problem lies in the context of fixed-charge facility location (Fernández and Landete, 2019).

Mesa (1991) investigated several multi-period problems on networks. In particular, the author
introduced the so-called absolute multi-period (α1, . . . , α|T |)−median problem where T stands for
the number of periods in the planning horizon. This is possibly the first multi-period extension
of the network p-median. We can look at the facilities to be located in each period as being of
different types. Unlike we are considering in the current paper, some facilities may just replace
others (the former are closed when the latter are opened) and the location space is the same for
all facilities.

Berman and Drezner (2008) consider a two-type discrete facility location problem. This is a
p-median problem under uncertainty consisting of locating p initial facilities plus an uncertain
number of extra additional ones. In both cases, the potential facilities to open belong to a finite
set that coincides with the demand points and thus the problem is cast as a stochastic discrete
p-median problem. In the current paper we assume that we know beforehand the number of
each type of facility to locate. Furthermore, we consider specific location spaces according to
the different types of facilities.

Heyns and van Vuuren (2018) investigate a problem in which multiple types of facilities can be
located in specific zones identified beforehand. Type-specific location requirements are assumed
for the facilities. In each zone a finite set of candidate locations for the facilities are assumed,
i.e., a pure discrete facility location setting is adopted. All facility types can in principle be
located in all zones.

Considering also a finite set for locating the facilities, we find works considering a hierarchy
between the facility-types in line to the models discussed by Contreras and Ortiz-Astorquiza
(2019), i.e., the facilities in a higher level extend the service provided by the facilities in lower
levels. Moore and ReVelle (1982) are possibly the first authors introducing such type of problem.
In each potential facility location one must decide the type of facility to locate (if some). Other
works deepening this type of analysis include Espejo et al. (2003), Ratick et al. (2009), and Xia
et al. (2009). More recently, Küçükaydın and Aras (2020) also investigate a multi-type discrete
facility location problem but they consider so-called consumer preference. Each demand point
has a preference for one facility type. The facilities are to be located in such a way that an
optimal coverage in terms of the consumer preference is achieved.

In the current paper we go beyond the existing literature by proposing a general modeling
framework for a multi-type maximal covering location problem. We do not restricted the problem
to a discrete setting. Instead, we assume some location space for each facility type. The
general framework proposed is motivated by some applications calling for hybridizing discrete
and continuous facility location problems. For this reason, we deepen the study by considering
that hybridized case: several types of facilities are to be located in a finite set of possible locations
with their service being complemented by other facility types that can be located anywhere
in underlying continuous space. We propose a ‘natural’ non-linear model that nonetheless,
raises some computational difficulties. For this reason we also develop an integer linear model.
Afterwards we focus on on the Euclidean plane. This allows using other types of modeling
frameworks that we also investigate. We report on a series results obtained from a series of
computational tests performed to assess the different models proposed. Real geographical data
is consider in these tests.

The remainder of the paper is organized as follows. In Section 2 the investigated problem
is detailed and a general mathematical model is introduced. Section 3 specializes the general
modeling framework to a hybridized discrete-continuous setting. Afterwards, in Section 4 we
focuses on the the Euclidean plane provided additional insights in this case. The results of
the computational tests performed to asses different developments proposed in the paper are
reported in Section 5. The paper end with an overview of the work done and some suggestions
for further research.
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2. The Multitype Maximal Covering Location Problem

Consider a finite set A = {a1, . . . , an} of demand points in Rd indexed in set N = {1, . . . , n},
each of which with a weight given by a non-negative value ci representing the demand of node
ai, for all i ∈ N . Throughout the paper we often call a demand point interchangeably by the
node ai or by the index i.

Let us assume that there is a finite set of facility types, indexed in a set T = {1, . . . , T}. A

facility of type t ∈ T can be located in some metric space that we denote by S(t) ⊆ Rd. Consider
a distance function of interest, say ‖ · ‖(t), in S(t). Also for a facility of type t ∈ T we consider a
coverage radius, say ρ(t), t ∈ T . Given one such facility, we say that node ai, i ∈ N , is covered
by the facility if the distance between ai and the facility does not exceed ρ(t). The node ai is
said to be covered if there is at least one open facility (no matter its type) covering it. For any

finite subset of open facilities of type t ∈ T , X (t) ⊆ S(t), we denote by C(X (t)) ⊆ N the indices

of the nodes in A covered by at least one point in X (t), i.e.,

C(X (t)) = {i ∈ N : ‖ai − b‖(t) ≤ ρ(t), for some b ∈ X (t)}.

Given p = (p1, . . . , pT ) ∈ N× T· · · ×N , the problem that we call the p-Multitype Maximal
Covering Location Problem (p-MTMCLP, for short) seeks to locate pt facilities of type t ∈ T
so that the covered demand is maximized.

With the above notation, the p-MTMCLP can be formally formulated as the following opti-
mization problem:

V(p) := max
X (t)⊆S(t), |X (t)|=pt

∑
i∈

⋃
t∈T C(X (t))

ci. (p-MTMCLP)

Observe that the difference between the different types of facilities to be located is the metric
space where the locations are to be found as well as the coverage radii. In case the metric spaces
coincide for two different types of facilities, one may also consider that they are of the same type
and define different coverage radii, resulting in the same model.

The following example illustrates the problem we are investigating. Furthermore, it shows
that a sequential decision making process in which we locate one type of facility in each step
may lead to a sub-optimal solution.

Example 1. We randomly generated a set of 50 demand nodes in [0, 1]× [0, 1]—our set A. Let

us assume three types of facilities with S(1) = A and S(2) = S(3) = R2. Additionally, assume
that ‖ · ‖(1) = ‖ · ‖(2) are the Euclidean norm and ‖ · ‖(3) is the `3-norm. Regarding the coverage
radii we take ρ(1) = 0.2 and ρ(2) = ρ(3) = 0.1. The number of facilities to open was fixed to
p = (2, 2, 1). The weights ci were all set equal to one.

First, we look into locating two facilities in S(1) maximizing the number of covered points in
A, and after that we look for the best three additional facilities (two in S(2) and one in S(3))
maximizing the number of covered points (i.e., covered demand) that were not already covered

with the two initial facilities. We denote the resulting solution as (S(1) → S(2)&S(3)). Using the
same instance, a different solution is obtained when we revert the sequence of decisions, i.e.,
we first look simultaneously for the two + one facilities in S(2) and S(3), respectively and after
that we seek to find the additional two facilities in S(1) maximizing the still not covered demand.
The resulting solution is denoted by (S(2)&S(3) → S(1)). In a third experiment, we compute the
solution using the integrated model (p-MTMCLP).

The solution (S(1) → S(2)&S(3)), which is depicted in Figure 1a, is such that 74% of the

demand nodes are covered. In case of solution (S(2)&S(3) → S(1)), depicted in Figure 1b, this
percentage decreases to 66%. Finally, when we consider the solution obtained using model (p-
MTMCLP)—Figure 1c—we obtain a 76% demand coverage. These results show that a sequential
decision making process (even aggregating some types) may lead to a sub-optimal solution, which
gives strength to the integrated modeling framework we are investigating.

It is also worth noticing the change in the shape of the covered area associated with facility to
be located is S(3).
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(a) (S(1) → S(2)&S(3)) (b) (S(2)&S(3) → S(1)) (c) p-MTMCLP

Figure 1. Sequential versus integrated decision making.

The above model is much general and accommodates many situations as discussed in the
introductory section. In particular the location spaces S(t), t ∈ T , may correspond to finite
sets, networks, continuous spaces or a combination of all. Heyns and van Vuuren (2018) and
Küçükaydın and Aras (2020) consider a pure discrete setting. In the next section we focus on
a case that raises some interesting challenges and that corresponds to having some types of
facilities to be located in discrete spaces and the others located in continuous ones.

3. The hybridized discrete-continuous Maximal Covering Location Problem

In this section we propose suitable mathematical programming formulations for a wide family
of problems in the shape of (p-MTMCLP) namely, the one that result when one assumes that

the metric spaces S(t) are either finite sets of points or the entire space Rd.
We keep considering the set of demand points A already introduced as well as the index set

for it elements, N = {1, . . . , n}. We assume that two main families of types of facilities are to
be located, say T1 of type discrete and T2 of type continuous, so we have a total of T = T1 + T2

types of facilities. In particular, we consider the set of type indices given by T = T1 ∪ T2 where
T1 = {1, . . . , T1}, and T2 = {T1 + 1, . . . , T}.

For the first T1 types of facilities, we consider that S(t) = {b(t)1 , . . . , b
(t)

m(t)} is a finite set of

points in Rd, indexed in set M (t) = {1, . . . ,m(t)} that have been identified as potential locations
for the facilities of type t, for t ∈ T1.

As in the general framework, a facility of type t ∈ T is endowed with a coverage radius ρ(t).
However, for the finite location spaces, we can go further in terms of coverage radii specifica-
tion by assuming facility-dependent radii for the facilities in S(1), . . . ,S(T1). We assume that a

facility located at b
(t)
j is endowed with a coverage radius equal to ρj(t). In fact, the hybridized

discrete-continuous setting we are considering is motivated by some practical applications (e.g.
in telecommunication networks planning) an thus it makes sense to consider different coverage

areas (typically larger) for the facilities chosen from the pre-specified sets S(1), . . . ,S(T1) than

those for the extra facilities—facilities located in S(T1+1), . . . ,S(T ) since the physical infrastruc-
tures may be prepared for a better service. Moreover, the fact that we know the potential
locations in advance allows specifying a coverage radius that is location-specific. On the other
hand, the common radii assumed for the different types of continuous facilities reflect a guaran-
teed coverage provided by the equipment no matter the point in the space it will end up being
located.

For each t ∈ T we denote by Pt the index set for the facilities of type t to be located, i.e.,
Pt = {1, . . . , pt}.
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For t ∈ T2, we consider metric spaces St = Rd such that pT1+1, . . . , pT locations are to be found
respectively, in each of these spaces for installing additional facilities. These facilities have a
coverage radius equal to ρ(t), respectively for type t ∈ T2. In case one requires the continuous
facilities to be located in a specific region of Rd instead of the entire space, most of the results
presented in this paper can be adapted conveniently in case the sets S(t) are polyhedra or second
order cone representable sets, by adding the suitable constraints defining each specific set.

In the following example we illustrate the problem on a three-dimensional instance.

Example 2. We randomly generated a set of 50 demand nodes in [0, 1]× [0, 1]× [0, 1]−our set

A. In this case, we consider that ‖ · ‖(1) = ‖ · ‖(2) is the Euclidean norm. Finally, the rest of

parameters are selected in the same way: two types of facilities with S(1) = A and S(2) = R3,
the coverage radii we take ρ(1) = 0.2 and ρ(2) = 0.1, the number of facilities to open was fixed
to p = (2, 3), and the weights ci were all set equal to one.

Figure 2. Solution of p-MTMCLP for the 3-dimensional instance of Example
2.

In the figure, the covered areas for the discrete facilities are drawn in light gray color while
those of the continuous facilities are drawn in dark gray. Red dots indicate covered points and
black dots the uncovered ones. The solution achieves an overall demand coverage of 32% being
16% covered by each of the two types of facilities.

3.1. A ‘Natural’ Non-Linear Model. The modeling framework (p-MTMCLP) derived in the
previous section is of course valid in the hybridized discrete-continuous setting we are considering.
The only distinguishing aspect is that in the definition of a set X (t) ⊆ S(t) for the finite spaces

(i.e., t = 1, . . . , T1) we must now consider location-specific radii namely, ρj(t) for location b
(t)
j ∈

S(t), j ∈M (t).
For the sake of deriving a suitable mathematical programming formulation for the problem

we introduce the following decision variables:

ytj =

{
1, if facility b

(t)
j ∈ S(t) is selected,

0, otherwise,
for all t ∈ T1, j ∈M (t).

xti =

1, if demand node ai is covered
by the facilities located in S(t),

0, otherwise,
for all t ∈ T1, i ∈ N.

ztik =

1, if node ai is covered
by the k-th facility in S(t),

0, otherwise,
for all i ∈ N, t ∈ T2, k ∈ Pt.

Xt
k ∈ S(t) : Coordinates of the k-th out of the pt facilities located in S(t), for t ∈ T2, k ∈ Pt.

Using the above decision variables, (p-MTMCLP) can be formulated as follows:
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max
∑
i∈N

ci

∑
t∈T1

xti +
∑
t∈T2

pt∑
k=1

ztik

 , (p-MTMCLPNL1 )

s. t.
∑

j∈M(t)

ytj = pt, ∀t ∈ T1, (p-MTMCLPNL2 )

xti ≤
∑

j∈M(t):

‖ai−b
(t)
j
‖(t)≤ρj(t)

ytj , ∀i ∈ N, ∀t ∈ T1, (p-MTMCLPNL3 )

T1∑
t=1

xti +
T∑

t=T1+1

pt∑
k=1

ztik ≤ 1, ∀i ∈ N, (p-MTMCLPNL4 )

‖ai −Xt
k‖(t) ≤ ρ(t) + U(1− ztik), (p-MTMCLPNL5 )

∀i ∈ N, ∀t ∈ T2, ∀k ∈ Pt,
xti ∈ {0, 1}, ∀t ∈ T1, ∀i ∈ N, (p-MTMCLPNL6 )

ytj ∈ {0, 1}, ∀t ∈ T1, ∀j ∈M (t), (p-MTMCLPNL7 )

ztik ∈ {0, 1}, ∀i ∈ N, ∀t ∈ T2, ∀k ∈ Pt, (p-MTMCLPNL8 )

Xt
k ∈ S(t), ∀t ∈ T2, ∀k ∈ Pt. (p-MTMCLPNL9 )

In the above model, the objective function (p-MTMCLPNL1 ) measures the weighted coverage of
the nodes inA using either the discrete or the continuous facilities; Constraints (p-MTMCLPNL2 )

ensure that exactly pt discrete facilities are selected in the finite set S(t); Inequalities (p-MTMCLPNL3 )
state that node i is covered by a discrete facility iff there is such a facility covering it that has been
opened. Inequalities (p-MTMCLPNL4 ) guarantee that at most one open facility “nominated” for
each node and thus each weight ci is accounted for at most once in the objective function. Con-
straints (p-MTMCLPNL5 ) ensure the proper definition of the z-variables. In these constraints,

‖ai−Xk‖(t) denotes the ‖ · ‖(t)-based distance between point aj and the k-th continuous facility

in S(t) and U is a large enough value. Finally, constraints (p-MTMCLPNL6 )–(p-MTMCLPNL9 )
state the domain of the decision variables.

The large U can be fine tuned. We can consider a common U for all t ∈ T . In this case,
any value U ≥ max i,j∈N

t∈T
‖ai − aj‖(t). Alternatively, for every t ∈ T we can set a t-specific value

Ut ≥ maxi,j∈N ‖ai − aj‖(t).
Observe that for p2 = . . . , pT = 0, the problem to solve is a classical discrete p1-MCLP, which

can be formulated as above but omitting all terms involving facilities of types 2, . . . , T and thus
removing all the z- and X-variables. The case pt = 0 ∀t ∈ T \{T1 + 1} and pT1+1 = 1 reduces
to the classical continuous pT1+1-MCLP which can be also formulated using a reduced set of
variables.

Remark 1. (p-MTMCLPNL) is a Mixed-Integer Non-Linear Programming (MINLP) problem

because of (p-MTMCLPNL5 ). In case for some t ∈ T2 ‖ · ‖(t) is the Euclidean norm, it is
well known that such a type of constraints can be re-written as the following set of linear and
second-order cone inequalities:

vtikl ≥ ail −Xt
kl, ∀i ∈ N, ∀k ∈ Pt, ∀l ∈ {1, . . . , d}, (2)

vtikl ≥ −ail +Xt
kl, ∀i ∈ N, ∀k ∈ Pt, ∀l ∈ {1, . . . , d}, (3)

stik ≥
d∑
l=1

(
vtikl

)2
, ∀i ∈ N, ∀k ∈ Pt, (4)

stik ≤ ρ(t) + U (1− ztik), ∀i ∈ N, ∀k ∈ Pt, (5)
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vtikl ≥ 0, ∀i ∈ N, ∀k ∈ Pt, ∀l ∈ {1, . . . , d}, (6)

stik ≥ 0, ∀i ∈ N, ∀k ∈ Pt, (7)

where vtikl represents (via (2) and (3)) the absolute value |ail −Xt
kl| (here ail and Xt

kl stand for

the l-th coordinate of demand point ai and the k-th facility selected in S(t), respectively) and stik
determines the euclidean distance (by (5)) as the squared sum of the absolute differences between
the coordinates of ai and Xt

k.

Consequently, if all the types of continuous facilities use the Euclidean norm, (p-MTMCLPNL)
simplifies to a mixed-integer second-order cone programming problem, which can be solved using
any available off-the-shelf solver.

Remark 2. In Remark 1 one can replace Euclidean distances by block-norm based distances
(deriving linear programming models) or by `τ -norm (with τ ≥ 1) based distances inducing
again mixed-integer second-order cone optimization problems. One may even consider mixed
distances (one for each demand point, if one desires to model different coverage areas). The
interested reader should refer to Blanco et al. (2014) for further details.

Remark 3. Apart from regular coverage areas represented by convex surfaces, one could also
represent non-convex coverage areas by means of unions of convex (second-order cone repre-
sentable sets). This type of sets can be efficiently represented using disjunctive constraints that
are usually modeled through binary variables (see Dolu et al., 2020, for further details on suitable
representations of these regions in a location problem).

3.2. An Integer Linear Optimization Model. The above mixed integer non-linear model
becomes intractable for medium or large size instances of the problem even if Euclidean distances
are considered. Therefore, to successfully tackle the problem other possibilities must to be
considered.

Next, we derive an integer linear model based upon projecting out the X-variables—which
represent the coordinates of the services—by ensuring that these can be easily found (in poly-
time) once the different sets of demand points allocated to the same facility are known.

In what follows, we impose that every selected facility must cover at least one demand point,
which, we believe, is a reasonable assumption in practice. Furthermore, we consider T1 = T2 = 1,
i.e., a single type of discrete and a single type of continuous facilities are to be located. The
presented results and models can be adapted to the general case. Nevertheless, this would make
the contents of this section significantly more involved but not more informative. Accordingly,
that there are p1 discrete and p2 continuous facilities to locate.

Let us assume that S(2) = Rd.In such a space we define the ‖ · ‖(2)-ball centered at a ∈ Rd
and radius ρ(2) as

Bρ(2)(a) = {X ∈ Rd : ‖X − a‖(2) ≤ ρ(2)}.
The new model we propose relies on Lemma 1 whose proof is straightforward:

Lemma 1. Let N1, . . . , Np2 ⊆ N be p2 nonempty disjoint subsets of N . Then, they induce a
solution to the (p1, p2)−MTMCLP in the X-variables (where Nk are the points covered by Xk)
if and only if ⋂

i∈Nk

Bρ(2)(ai) 6= ∅, ∀k ∈ P2.

Lemma 1 allows us to rewrite constraints (p-MTMCLPNL5 ) (for T = 2) as linear constraints
and thus to formulate the Hybridized (p1, p2)-Maximal Covering Location problem (HMCLP, for
short) as follows:

max
∑
i∈N

ci

[
xi +

∑
k∈K

zik

]
, (HMCLPIP1 )

s. t.
∑
j∈M

yj = p1, (HMCLPIP2 )
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xi ≤
∑
j∈M

‖ai−bj‖(1)≤ρj(1)

yj , ∀i ∈ N, (HMCLPIP3 )

xi +

p2∑
k=1

zik ≤ 1, ∀i ∈ N, (HMCLPIP4 )∑
i∈Q

zik ≤ |Q| − 1, ∀k ∈ P2, ∀Q ⊆ N :
⋂
i∈Q

Bρ(2)(ai) = ∅, (HMCLPIP5 )

xi ∈ {0, 1}, ∀i ∈ N,
yj ∈ {0, 1}, ∀j ∈M,

zik ∈ {0, 1}, ∀i ∈ N, ∀k ∈ P2.

In this model, we have simplified some notation namely by removing the type index from the
decision variables as well as from set M since we only have one type of discrete and one type
of continuous facilities. Also in the above model, (HMCLPIP5 ) ensure that the set of points
covered by a continuous facility verifies the condition of Lemma 1, i.e., sets of incompatible
demand points are not allowed to be allocated to the same continuous facility. This constraint
replaces the non-linear constraint in (p-MTMCLPNL).

Moreover, the above model does no include the variables Xk. In fact, once an optimal solution
is obtained for (HMCLPIP ), we can use the values of the z-variables, say {z̄}, to find explicit
optimal coordinates for the new facilities to install. In particular, the coordinates of the k-th
facility to install (k ∈ P2) can be given by any vector Xk satisfying:

Xk ∈
⋂
i∈N :
z̄ik=1

Bρ(2)(ai), for all k ∈ P2.

A center Xk in the above intersection can be found in polynomial time either solving a second
order cone optimization problem or by solving a one-center facility location problem.

Solving (HMCLPIP ) requires incorporating exponentially many constraints—inequalities (HMCLPIP5 ).
Interestingly, the above formulation can be simplified (reducing from exponential to polynomi-
ally many constraints in the form of (HMCLPIP5 )) by means of Helly’s Theorem (Helly, 1923)
(see also Danzer et al., 1963). Invoking that result, provided that the continuous space is Rd,
only intersections of (d+ 1)-wise balls are needed to check:

Bρ(2)(ai1) ∩ · · · ∩ Bρ(2)(aid+1
),

for all ai1 , . . . , aid+1
∈ A.

Despite this simplification, the number of constraints may still be large and thus making
the problem more difficult to solve. Instead, the problem can be tackled by considering an
incomplete formulation (removing (HMCLPIP5 )) and iteratively incorporating these constraints
on-the-fly, as needed.

The selection of the constraints to incorporate in each iteration is found using the following
separation strategy: After solving (HMCLPIP ) with none or part of the constraints (HMCLPIP5 )
a solution, say z̄, is obtained. Then, for each k ∈ P2 the define set Qk = {i ∈ N : z̄ik = 1}. One
can check for the validity of the set Qk as a feasible cluster of demand points for our problem
by solving the 1-center problem for the points in such a set. In case the optimal coverage radius
obtained is less than or equal to ρ(2), one knows that Qk is a valid subset of demand points that
can be covered by the same server. Otherwise, the solution violates the relaxed constraints, and
thus we add the cut ∑

i∈Qk

zik′ ≤ |Qk| − 1,∀k′ ∈ P2, (9)

to ensure that such a solution is no further deemed feasible and thus obtained again.
The 1-center problem with Euclidean distances on the plane is known to be solvable in poly-

nomial time (see e.g., Elzinga and Hearn, 1972). Extensions to higher dimensional spaces and
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generalized covering shapes have been recently proved to be also poly-time solvable (Blanco and
Puerto, 2021).

The above procedure can be embedded into a branch-and-cut approach by means of lazy
constraints.

The following result holds, which helps finding (and thus ignoring) dominated cuts:

Proposition 2. Let z ∈ {0, 1}n×p2 and Q,Q′ ⊆ N be such that Q ⊂ Q′. Then, if z violates
(HMCLPIP5 ) for the set Q violates, then, z also violates the constraint forthe set Q′. Thus, the
cut induced by Q strictly dominates the one induced by Q′.

Proof. We suppose that Q violates the constraint (HMCLPIP5 ), this means
⋂
i∈Q Bρ(2)(ai) = ∅

and we get
∑
i∈Q

zik > |Q| − 1. Therefore,

∑
i∈Q′

zik =
∑
i∈Q

zik +
∑

i∈Q′\Q

zik > |Q| − 1 + (|Q′| − |Q|) = |Q′| − 1, ∀k ∈ P2.

Then, we have thatQ′ also violates the constraints and the cut induced byQ strictly dominates
the one induced by Q′. �

In the next section we provide further details on how we can take advantage from these
contents using a more specific setting.

4. The Particular Case of the Euclidean Plane

In this section we focus on the particular case in which the continuous facilities are to be
located in the Euclidean plane. This allows deepening the discussion already presented and also
to consider an alternative model for the problem.

4.1. A Branch-and-Cut Algorithm based on (HMCLPIP ). Let us take again the integer
linear model (HMCLPIP ). In the case of the plane (d = 2), the application of Helly’s Theorem
described above guarantees that we only need to check intersection or 3-wise balls. In particular,
we need to check if such intersections are empty. If so, we incorporate the adequate constraints
to avoid searching for facilities in those intersections. Note that is true for every norm we adopt.
Two cases may emerge for any set of three demand points {ai1 , ai2 , ai3} ⊂ A:

Case 1:: Bρ(2)(al1) ∩ Bρ(2)(al2) = ∅ for some l1, l2 ∈ {i1, i2, i3}.
In this case, points al1 and al2 are incompatible—they cannot be covered by the same

center. Hence impose

zl1k + zl2k ≤ 1, ∀k ∈ P2. (2-Wise)

Case 2:: The pairwise intersections are non-empty but Bρ(2)(ai1) ∩ Bρ(2)(ai2) ∩ Bρ(2)(ai3) = ∅.
In this case, the three points cannot be covered by the same facility and thus we

impose

zi1k + zi2k + zi3k ≤ 2, ∀k ∈ P2. (3-Wise)

Constraints (2-Wise) and (3-Wise) for all subsets of three points in A replace the constraint
(HMCLPIP5 ) in formulation (HMCLPIP ) in the planar case. Although these constraints (in worst
case) are O(n3), most of them are needless to construct the optimal solution of the problem.

The problem can now be solved considering an incomplete formulation (removing constraints
(3-Wise) from (HMCLPIP )) and incorporating these constraints on-the-fly, as needed using a
similar strategy than the one used for the general formulation and described above. It avoids
checking the three-wise intersections of points which can be computationally costly for large
instances. We embed this approach into a Branch-and-Cut scheme which is reinforced by the
following elements:

Separation Oracle: Given an optimal solution z̄ to the incomplete model, for every k ∈ P2

we consider the set Qk = {i ∈ N : z̄ik = 1}. The validity of the cluster Qk is checked using
the algorithm proposed by Elzinga and Hearn (1972) that computes (in polynomial time), the
center and the minimum radius covering the demand points in Qk.
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To make this work self-contained, we recall that the algorithm proposed by Elzinga and Hearn
(1972) is based on the construction of disks covering three points until the whole set is covered.
Thus is accomplished sequentially in such a way that the covering radius increases at each step
of the procedure.

We take further advantage from this procedure to incorporate more than a single cut in each
iteration of the branch-and-cut algorithm. Considering a set of points Qk, if at some step when
applying the algorithm by Elzinga and Hearn (1972) the coverage radius becomes larger than
ρ(2) (it is not feasible to clustering the points in Qk to be served by the same server), then all
the sets of two or three points used to construct the minimum enclosing disks so far are used to
generate constraints (2-Wise) and (3-Wise). This strategy has proven to alleviate the resolution
of the problem.
Initial Pool of Constraints: We propose procedure to generate an initial pool of constraints in
the form of (3-Wise) to be included in the initial incomplete model. First, we construct clusters
of demand points with maximum distance between two clustered points fixed to ρ(2) + ε, with
ε > 0 (implemented in the Python module scipy through the function fcluster). At each
of these clusters, we checked the validity of them as a solution of our MCLP using the same
strategy used in our separation oracle. In case some of them is not valid, we incorporate the pool
all the constraints of type (3-Wise) that are violated. The procedure is repeated for different
values of ε.
Symmetries: Our formulation (HMCLPIP ) is highly symmetric in the sense that any permuta-
tion of the k indices in the z-variables results in an alternative solution (with the same objective
value). To break symmetries in our model thus hoping to speed up the resolution of the problem,
we incorporate the following constraints that we can observe to be straightforwardly valid for
the problem: ∑

i∈N
wizi(k−1) ≤

∑
i∈N

wizik, ∀k ∈ P2\{1}. (10)

With these constraints, among all the posible sorting of facilities, we choose one producing a
non-decreasing sequence of covered demand.

4.2. An Alternative IP Model. As largely explained, model (HMCLPIP ) is quite general;
it is valid in metric spaces of any dimension d ≥ 2 and for every distance of interest. In 2-
dimensional spaces and in addition to the developments presented in Section 4.1, we can derive
an alternative Integer Linear Programming formulation. This is accomplished by finding a finite
dominating set, which is done using the discretization technique proposed by Church (1984) for
the MCLP.

Let B be the set consisting of the demand points in A and also the intersection points of the
pairwise intersections of the boundary of the ‖ · ‖(2)-balls centered at the demand points with
radius ρ(2), i.e.,

B = A ∪
⋃
i,l∈N :
i<l

(
∂Bρ(2)(ai) ∩ ∂Bρ(2)(al)

)
,

where ∂Bρ(2)(a) stands for the boundary of the ball Bρ(2)(a). Inspired by the terminology used
by Church (1984) the set B will be designated by the Balls Intersection Points Set (BIPS).

Lemma 3. There exists an optimal solution to (p1, p2)-MTMCLP where the continuous facilities
belong to the set B.

Proof. Let X 2 = {X1, . . . , Xp2} be optimal positions for the continuous facilities. Clearly, Xk

belongs to the intersection of the balls centered at the covered points, i.e.,

Xk ∈
⋂

i∈N : ‖ai−Xk‖(2)≤ρ(2)

Bρ(2)(ai).

Thus, we can replace Xk by any of those intersection points keeping the same coverage level.
Clearly, these points belong to B. �
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Considering the set B, it is possible to reformulate (p1, p2)-MTMCLPNL as an integer linear
programming problem, in which the selection of the continuous facilities is replaced by the search
of the optimal B-points to open. Let us denote by B = {γ1, . . . , γ|B|} and L = {1, . . . , |B|}, and
consider the following sets of decision variables:

y1
j =

{
1, if facility bj is selected,

0, otherwise,
∀j ∈M ,

y2
l =

{
1, if point γl ∈ B is selected,

0, otherwise,
∀l ∈ L.

The problem can be reformulated as follows:

max
∑
i∈N

cixi (HMCLPBIPS1 )

s. t.
∑
j∈M

y1
j = p1, (HMCLPBIPS2 )

∑
l∈L

y2
l = p2, (HMCLPBIPS3 )

xi ≤
∑
j∈M

‖ai−bj‖(1)≤ρj(1)

y1
j +

∑
l∈L

‖ai−cl‖
(2)≤ρ(2)

y2
l , ∀i ∈ N, (HMCLPBIPS4 )

xi ∈ {0, 1}, ∀i ∈ N,
y1
j ∈ {0, 1}, ∀j ∈M,

y2
l ∈ {0, 1}, ∀l ∈ L,

where constraint (HMCLPBIPS2 ) enforces opening exactly p1 of the facilities from S(1), while
constraint (HMCLPBIPS3 ) ensures opening exactly p2 of the additional (continuous) facilities in

S(2) = R2. Constraints (HMCLPBIPS4 ) allow to determine whether a demand point is covered

or not by any of the available open facilities (from S(1) or B). Note that in the above model the
domain of the x-variables can be relaxed to the interval [0, 1].

The problem above is a particular version of the classical Discrete Maximal Covering Location
problem in which two different types of facilities are desired to be open, p1 of type discrete and
p2 of type continuous.

A major issue of concern in the above model is the number of y2-variables, which coincides
with the number of points in B. This number is of order O(n2) considering one type of continuous
facilities but will be of course larger if additional continuous facilty types exist since we must
add additional sets of y−variables—one for each facility type.

Still considering a single type of continuous facilities, the size of the set B can be reduced
following the strategy proposed in Church (1984). However, again we must note that that
author worked only with `1- and `2-norm for which a dominance relation between the points
allows removing some elements from B. In our case, although working in the Euclidean plane,
we can consider distances other than the `1-norm and the `2-norm. This, again, creates some
challenges to the above model since finding the BIPS is far from straightforward.

Overall, the model just proposed can be promising under a particular case: only one type of
continuous facilities exist and the distances of interest reduce to `1 or `2 norms.

5. Computational Experiments

In this section we report on the results of a series of computational experiments performed
to empirically assess our methodological contribution for the hybridized MCLP presented in the
previous sections.
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5.1. The Test Data. To run the experiments, we made use of real geographic and demo-
graphic information from Manhattan Island, NY, USA. The data was collected from data.

cityofnewyork.us. The main instance consists of the (planar) geographical coordinates of the
920 main buildings on the island with demand weights given by the number of people living
in at each of the buildings. The complete data set used in our experiments is available in our
repository github.com/vblancoOR/MTMCLP.

To test the scalability of the problem we are investigating, different subsets of the complete
data we considered each with a different size. We sorted the location indices of the buildings
according to demands and we made subsets from the buildings with the largest demands. We
have considered subsets of cardinality n ∈ {400, 500, 700, 920} with 920 corresponding to the
complete data set. Figure 3 depicts the different sizes considered for the Manhattan data set.

(a) n = 100. (b) n = 400. (c) n = 700. (d) n = 920.

Figure 3. Different instances considered from the Manhattan dataset.

We assume one type of discrete facility and one type of continuous facility. Additionally,
we suppose that the potential facility location for the discrete facilities correspond to buildings
underlying the instance of the problem and we consider that the coverage radius is equal for all
of them. As for facilities to locate we adopted p1, p2 ∈ {1, 2, 3, 4, 5}. Finally, we consider two
radii for each type of facilities: for discrete facilities we consider ρ(1) ∈ {0.008, 0.012} and for
the continuous radii the values are ρ(2) ∈ {0.005, 0.01}. These radii are adjusted to the real
coordinates (latitude and longitude) of the demand points and are equivalent to {810, 1280} (for
ρ(1)) and {430, 1050} (for ρ(2)) meters. Combining all the parameters, a total of 400 instances
have been tested (four values for n, five values for p1, five values for p2, two values for ρ1 and
two values for ρ2).

In the tests whose results we detail next, we run: (i) the non-linear formulation (p-MTMCLPNL),
(ii) the integer programming formulation (HMCLPIP ) (with constraints (2-Wise) and (3-Wise)
and the Branch-and-Cut approach derived from an incomplete formulation of (HMCLPIP ) in
which only the pair-wise intersection constraints are considered, and (iii) the integer program-
ming formulation (HMCLPBIPS),

All the experiments have been run on a virtual machine in a physical server equipped with 12
threads from a processor AMD EPYC 7402P 24-Core Processor, 64 Gb of RAM and running a
64-bit Linux operating system. The models were coded in Python 3.7 and we used Gurobi 9.1
as optimization solver. A time limit of 1 hour was fixed for all the instances.

5.2. Results. Figure 4 depicts results for the smallest instances with the purpose of compar-
ing the non-linear formulation (p-MTMCLPNL) and the complete pure integer formulation
(HMCLPIP ). We show in that figure the average CPU times for both approaches by aggre-
gating the different values of p1 and ρ(1). The instances with n = 100 demand nodes were
considered in these tests.

https://data.cityofnewyork.us/Housing-Development/Housing-New-York-Units-by-Building/hg8x-zxpr
data.cityofnewyork.us
https://data.cityofnewyork.us/Housing-Development/Housing-New-York-Units-by-Building/hg8x-zxpr
data.cityofnewyork.us
github.com/vblancoOR/MTMCLP
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We show how the computational times increase when the number of continuous facilities to
locate increases for the two values of ρ(2). In particular we observe that the CPU time reaches
the time limit for p2 = 5. These results give strong evidence to our intuition: the non-linear
formulation is computationally demanding even for small instances of the problem.

1 2 3 4 5

0

600

1200

1800

2400

3000

3600

p2

TimeNL

TimeIP

(a) ρ(2) = 0.005

1 2 3 4 5

p2

(b) ρ(2) = 0.01

Figure 4. Average of CPU times required by models (p-MTMCLPNL) (straight
line) and (HMCLPIP ) (dashed line) when solving the instances with 100 demand
nodes.

Given the results presented in Figure 4 we decided to proceed the tests without the non-linear
model.

Focusing on model (HMCLPIP ), Table 1 contains the number constraints (2-Wise) and
(3-Wise) generated as well as the CPU time required for that generation. In this table we
observe that the linear model grows a lot when the number of demand points increases, which
makes is clearly more difficult to tackle. Moreover, the CPU time required to check all inter-
sections increases significantly for constraints (3-Wise). Summing up, we easily conclude that
making use of a branch-and-cut approach such as the one we propose in Section 4.1 is totally
advisable in this case since we can avoid the clear burden that corresponds to computing and
using all the constraints.

Next, we focus on the results corresponding to running the B&C procedure devised for tackling
model (HMCLPIP ) and also the when formulation (HMCLPBIPS) is adopted. The common



15

(2-Wise) (3-Wise)
n ρ(2) CPUTime # Inequalities CPUTime # Inequalities

400
0.005 0.62 71780 490.70 1457
0.01 0.55 61532 2658.11 5925

500
0.005 0.91 112404 1483.38 3701
0.01 0.91 94279 9273.37 16600

600
0.005 1.35 161160 3997.49 6937
0.01 1.29 133860 25277.75 30218

700
0.005 1.85 218260 9596.85 12171
0.01 1.80 179211 61696.80 58717

920
0.005 3.14 369085 52788.62 40047
0.01 3.09 290690 358966.03 184221

Table 1. Averaged number of Constraints (2-Wise) and (3-Wise) generated and
the CPU time (seconds) required for their generation.

ground for this comparison is the Euclidean plane using the Eucliden distance. In fact, this is
the setting in which we can use model (HMCLPBIPS). Another possibility would be to use the
`1-norm but then we would clearly be favor model (HMCLPBIPS), which is already done using
the Euclidean distance.

In tables (2) and (3) we present the results obtained. Each table refer to a different covering
radius for the continuous facilities (ρ(2) = 0.005 and ρ(2) = 0.01, respectively) and are similarly
organized. Both tables show the information aggregating the different values of the discrete
facilities, p1, and the radii of them, ρ(1). The first three columns provide the details of the
instance being solved: the radii used for the continuous facilities, the number of demand nodes,
and the number of continuous facilities to locate. Next, seven blocks of columns are presented.
In the blocks, the columns contains results for model (HMCLPBIPS) (BIPS) and the branch-
and-cut procedure devised for tackling model (HMCLPIP ) (B&C). Some blocks only contain
information of the branch-and-cut approach since it is not applicable to the BIPS approach.
The first block (columns 4 and 5) gives the overall CPU time in seconds (averaged only on the
instances that were solved up to optimality within the time limit) required to solve the problem.
This time includes: the time required by Gurobi to solve the IP models (second block) of solved
instances; the pre-processing time—time for generating the BIPS in the case of Constraints
(HMCLPBIPS4 ) and the time for building the initial pool of Constraints (2-Wise) in the case of
model (HMCLPIP ) (third block); the time to generate the difficult constraint (HMCLPBIPS4 )
and its respective in the (HMCLPIP ) formulation (fourth block); callback times for the branch-
and-cut approach (fifth block); percentage gap at termination and number of unsolved instances
within the time limit– out of 10 (sixth block); and total number of constraints used (sixth
block). The percentage gaps and the number of unsolved instances are not reported for the
BIPS approach since all the instances were solved up to optimality within the time limit.

In view of the results of tables (2) and (3) we draw several conclusions. First, we realize that
the difficulty in using model HMCLPBIPS stems from loading Constraints (HMCLPBIPS4 ). In
fact, to accomplish this we need to check all the intersections. This takes a long time if the size
of BIPS is large. Another challenge for that model regards the time to find the BIPS. When the
number of demand nodes increases and the radius is large enough to require checking all (or a
large majority of) points, then it takes a long time. From the above observations we conclude
that in applications with a huge number of points and large radii (e.g. clustering problems easily
lead to such cases) model HMCLPBIPS may become intractable. Still concerning this model, we
note that the CPU time required to solve it seems quite indifferent to the number of continuous
facilities to locate.
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We turn now our attention to the B&C algorithm devised for model (HMCLPIP ). From tables
(2) and (3) we see that the model becomes more challenging when the number of continuous
facilities to locate increase. Nevertheless, in those cases in which a proven optimal solution could
not be found within the time limit imposed, the final gap is quite small. Still concerning the B&C
procedure we observe that the pre-processing time as well as that for generating violated cuts
and for the callback checks are all very low. This makes the whole algorithm more efficient. The
number of continuous facilities to locate is clearly the factor influencing the most the performance
of the algorithm since the number of incorporate cuts increases significantly. Still, we see that the
B&C algorithm outperforms the plain use of model HMCLPBIPS when the number of continuous
facilities to locate is small (one or two). Nevertheless, we must recall that the comparison that
can be observed in both tables can be made only because we are working on the Euclidean plane
and using the Euclidean distance. As discussed above, if this was not the case, then we would
certainly need to resort to the B&C algorithm devised since it is quite insensitive to the adopted
norm, which is far from the case when we need to determine BIPS. The results show that the
B&C approach is certainly a viable algorithm, which is quite general.

CPUTime (secs.)

Total Solving Prepr. Ctrs. Gen. Callback MIPGAP #Unsolved #Ctrs

n p2 BIPS B&C BIPS B&C BIPS B&C BIPS B&C B&C B&C B&C BIPS B&C

400

1 53.45 6.24 0.27 3.75 7.10 1.38 46.09 1.10 0 0 0 402 72587
2 53.28 51.91 0.23 49.41 7.10 1.36 45.96 1.10 0.04 0 0 402 144373
3 53.46 229.64 0.24 227.00 7.10 1.37 46.12 1.12 0.15 0 0 402 216159
4 53.43 732.37 0.24 729.61 7.10 1.36 46.08 1.09 0.31 0 0 402 287945
5 53.01 1516.04 0.23 1512.93 7.10 1.37 45.68 1.09 0.65 0 0 402 359731

500

1 103.46 10.21 0.47 5.98 14.56 1.86 88.43 2.38 0 0 0 502 113418
2 103.23 87.44 0.42 83.17 14.56 1.85 88.25 2.37 0.05 0 0 502 225835
3 102.28 473.58 0.46 469.20 14.56 1.85 87.26 2.32 0.21 0 0 502 338252
4 102.60 1326.84 0.52 1322.02 14.56 1.85 87.51 2.34 0.63 0 0 502 450669
5 103.73 2589.89 0.50 2584.69 14.56 1.85 88.67 2.34 1.65 0.01 5 502 563086

700

1 318.71 56.62 1.60 50.02 59.45 3.23 257.66 3.36 0.01 0 0 702 219694
2 318.78 391.64 1.52 384.99 59.45 3.23 257.81 3.34 0.07 0 0 702 437987
3 321.05 1631.95 1.57 1624.82 59.45 3.24 260.03 3.34 0.81 0.01 1 702 656280
4 320.33 3165.19 1.57 3158.33 59.45 3.23 259.31 3.38 1.56 0.12 9 702 874573
5 319.01 TL 1.57 TL 59.45 3.25 258.00 3.34 0.03 28.21 10 702 1092866

920

1 937.45 548.75 14.23 535.54 216.81 5.05 706.40 8.01 0.15 0 0 922 370949
2 927.92 2809.78 13.98 2795.74 216.81 5.06 697.13 7.99 1.03 0.12 2 922 740057
3 927.02 TL 14.26 TL 216.81 5.06 695.94 8.16 0.18 0.94 10 922 1109165
4 928.00 TL 14.01 TL 216.81 5.04 697.18 8.07 0.08 26.68 10 922 1478273
5 932.15 TL 13.64 TL 216.81 5.05 701.70 7.93 0.01 38.09 10 922 1847381

Table 2. Performance of the computational experiments for ρ(2) = 0.005

In Figure 5, we show the solutions of four instances of our testbed obtained with the BIPS

approach painted on the Manhattan map. We draw the solutions for the larger instances (n =
920 demand points), radii ρ(1) = 0.008 and ρ(2) = 0.005 and different values of p1 and p2.
In the figure, red dots represent the covered demand nodes, green squares the positions of the
discrete facilities, and blue triangles the positions of continuous facilities; the coverage areas for
the discrete facilities are drawn in light green color and those of the continuous facilities are
colored in gray. The percentages of covered demand for these instances ranges between 29%
(Figure 5a) and 75% (Figure 5d).

6. Conclusions and Further Research

In this paper we investigated the multi-type maximal covering facility location problem.
A general modeling framework was discussed, which was adapted to an hybridized discrete-
continuous facility location problem. In this case we could go deeper in our analysis. For the
particular case in which the space underlying the continuous location problem is the Euclidean
space and when the euclidean norm is used a third model could be proposed. The results high-
lighted the viability of a branch-and-cut algorithm for dealing with the problem in its general
form. In particular, instances with up to 920 demand nodes and two types of facilities (discrete
and continuous) could be solved rather efficiently. This defines a new state-of-the-art in terms of
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CPUTime (secs.)

Total Solving Prepr. Ctrs. Gen. Callback MIPGAP #Unsolved #Ctrs

n p2 BIPS B&C BIPS B&C BIPS B&C BIPS B&C B&C B&C B&C BIPS B&C

400

1 130.38 11.92 3.05 9.90 24.49 0.89 102.84 1.11 0.02 0 0 402 62344
2 130.23 109.60 2.59 107.50 24.49 0.89 103.14 1.16 0.05 0 0 402 123887
3 129.79 691.50 2.64 689.38 24.49 0.89 102.67 1.10 0.13 0 0 402 185430
4 130.17 2252.92 2.87 2250.76 24.49 0.89 102.80 1.11 0.22 0.01 4 402 246973
5 130.23 3299.38 2.98 3297.28 24.49 0.93 102.76 1.22 0.22 0.45 9 402 308516

500

1 288.18 22.46 9.13 18.71 66.61 1.35 212.44 2.36 0.04 0 0 502 95286
2 289.67 427.25 9.93 423.48 66.61 1.34 213.14 2.34 0.09 0 0 502 189571
3 289.07 1467.77 9.70 1463.84 66.61 1.34 212.76 2.34 0.26 0.01 1 502 283856
4 289.85 2614.43 9.89 2610.61 66.61 1.34 213.36 2.34 0.24 0.42 9 502 378141
5 289.29 TL 9.92 TL 66.61 1.34 212.76 2.36 0.03 28.37 10 502 472426

700

1 1001.96 67.20 40.67 61.42 325.38 2.35 635.91 3.36 0.08 0 0 702 180619
2 1000.09 1519.78 41.36 1513.80 325.38 2.35 633.35 3.36 0.28 0 1 702 359837
3 999.35 3289.82 40.67 3284.10 325.38 2.35 633.30 3.35 0.16 4.14 9 702 539055
4 1000.46 TL 41.06 TL 325.38 2.35 634.02 3.33 0.01 30.58 10 702 718273
5 999.80 TL 42.02 TL 325.38 2.35 632.40 3.35 0.01 36.89 10 702 897491

920

1 3253.39 471.14 141.97 458.74 1401.62 3.84 1709.81 7.94 0.63 0 0 922 292544
2 3270.67 3320.87 141.63 3303.30 1401.62 3.84 1727.42 8.07 0.97 5.50 9 922 583247
3 3267.82 TL 142.66 TL 1401.62 3.83 1723.55 7.95 0.01 22.84 10 922 873950
4 3268.61 TL 145.35 TL 1401.62 3.85 1721.64 8.07 0.01 29.14 10 922 1164653
5 3258.10 TL 147.56 TL 1401.62 3.83 1708.92 7.93 0.01 35.09 10 922 1455356

Table 3. Performance of the computational experiments for ρ(2) = 0.01

maximal covering location problems with a large potential number of locations for the discrete
facilities.

The work done encourages some other research lines. These include more work on the devel-
opment of valid inequalities for the general integer linear programming model thus leading to
an even better polyhedral description of the feasibility set, the inclusion of time as a decision
dimension, and the inclusion of uncertainty either in the demand or in the number of facilities
that can be open.
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