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Sentinel2GlobalLULC: A Sentinel-2 
RGB image tile dataset for global 
land use/cover mapping with deep 
learning
Yassir Benhammou  1,2,3 ✉, Domingo Alcaraz-Segura  4,5,6 ✉, Emilio Guirado  6,7 ✉, 
Rohaifa Khaldi1,3, Boujemâa Achchab2, Francisco Herrera1 & Siham Tabik  1 ✉

Land-Use and Land-Cover (LULC) mapping is relevant for many applications, from Earth system 
and climate modelling to territorial and urban planning. Global LULC products are continuously 
developing as remote sensing data and methods grow. However, there still exists low consistency 
among LULC products due to low accuracy in some regions and LULC types. Here, we introduce 
Sentinel2GlobalLULC, a Sentinel-2 RGB image dataset, built from the spatial-temporal consensus of up 
to 15 global LULC maps available in Google Earth Engine. Sentinel2GlobalLULC v2.1 contains 194877 
single-class RGB image tiles organized into 29 LULC classes. Each image is a 224 × 224 pixels tile at 
10 × 10 m resolution built as a cloud-free composite from Sentinel-2 images acquired between June 
2015 and October 2020. Metadata includes a unique LULC annotation per image, together with level of 
consensus, reverse geo-referencing, global human modification index, and number of dates used in the 
composite. Sentinel2GlobalLULC is designed for training deep learning models aiming to build precise 
and robust global or regional LULC maps.

Background & Summary
Land-Use and Land-Cover (LULC) mapping aims to characterize the continuous biophysical properties of the 
Earth surface as categorical classes of natural or human origin, such as forests, shrublands, grasslands, marsh-
lands, croplands, urban areas or water bodies, etc.1. High resolution LULC mapping plays a key role in many 
fields, from natural resources monitoring, to biodiversity conservation, urban planning, agricultural manage-
ment or climate and earth system modelling2–4. Multiple LULC products have been derived from satellite infor-
mation at the global scale (Table 2), contributing to a better monitoring, understanding, and territorial planning 
of our planet5,6. However, despite the acceptable global accuracy of each individual product, a considerable disa-
greement among products has been reported4,7–22. These reports explain that this disagreement is due to several 
methodological reasons, including: (1)Given that different satellite sensors with different spatial resolutions 
were used in each product, the difference in precision from coarse to fine resolution imagery partially deter-
mines the final quality of each product. (2)Different pre-processing techniques, like atmospheric corrections, 
cloud removal and image composition were used in each product. (3)Each product has a different updating 
frequency (from regularly to never updated products). (4)Different classification systems (i.e., LULC legends) 
were adopted in each product, usually each one focusing on a distinct application. (5)Different classification 
techniques, field-data collection approaches, and subjective interpretations were used to create each product. 
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(6)Different validation techniques and different ground truth reference data were used in each product, which 
impedes a reliable accuracy comparison.

Over the last few years, several attempts have been made to overcome these inconsistencies with a harmo-
nised approach capable of providing better control in the validation and comparison over the growing number 
of existing LULC products23,24. Even though, users still have some issues regarding appropriate product selection 
due to the following factors: (1)In most cases, users are unable to find a product that fits their desired LULC class 
or geographic region of interest25,26. (2)These products are usually collected at a coarse resolution, which makes 
analysis at a finer scale difficult12. (3)These products offer a limited number of LULC classes that usually change 
from one product to another27.

In parallel, deep artificial neural networks, also known as Deep Learning (DL), are increasingly used in LULC 
mapping with promising potential28. This interest is motivated by the good performance of DL models in com-
puter vision and, particularly of Convolutional Neural Networks (CNNs) in remote sensing image classification 
and many applications29–33. However, to reach high performance, DL models need to be trained on large smart 
datasets34. The concept of smart data involves all pre-processing methods that improve its data value and verac-
ity, in addition to the quality of its associated expert annotations35.

Currently, there exist several remote sensing datasets derived from satellite and aerial imagery ready for 
training DL models for LULC mapping (Table 1). However, they still suffer from some limitations, particularly 
the following factors that complicate their application with DL models: (1)First, none of them represent the 
global heterogeneity of the broad categories of LULC classes throughout the Earth. Usually, they are biased 
towards specific regions of the world, limited to national or continental scales, which can propagate such bias 
to the DL models36–38. As illustration, the reader can see how visual features of urban areas may change from 
one country to another (Fig. 1). (2)Second, they are relatively small and have only hundreds to few thousands 
of annotated data records39. (3)Third, they suffer from high variability in atmospheric conditions, and they have 
high inter-class similarity and intra-class variability, which makes their class differentiation difficult39.

To overcome these limitations, we introduce in this paper Sentinel2GlobalLULC40, a smart dataset with 
29 annotated LULC classes at global scale built with Sentinel-2 RGB imagery. Every image in this dataset is 
geo-referenced and has a unique LULC annotation. Each image label was carefully built from a consensus 
approach by combining up to 15 global LULC maps available in Google Earth Engine(GEE)41. We released a 
tif and jpeg version of each image and a CSV file for each LULC class containing the coordinates of each image 
center, and additional metadata. Sentinel2GlobalLULC aims to foster the creation of accurate global LULC 
products by exploiting the currently offered advantages by DL. Sentinel2GlobalLULC could be used to train and/
or evaluate DL based models for global LULC mapping. We expect this dataset to improve our understanding 
and modelling of natural and human systems around the world.

Methods
To build Sentinel2GlobalLULC, we followed two main steps. First, we established a spatio-temporal consensus 
between 15 global LULC products for 29 LULC classes. Then, we extracted the maximum number of Sentinel-2 
RGB images representing each class. Each image is a tile that has 224 × 224 pixels at 10 × 10 m spatial resolution 
and was built as a cloud-free composite from all the Sentinel-2 images acquired between June 2015 and October 

Dataset Source

Source 
mapping 
type

Number of 
images Image Size

Spatial 
Resolution

No. 
Bands

No. 
Classes Extent

ISPRS Vaihingen56 — Airborne 33 im 2000 × 2000 0.09 3 6 Local

ISPRS Postdam56 — Airborne 38 im 6000 × 6000 0.09 3 6 Local

Brazilian coffee 
scenes57 SPOT-5 Spaceborne 50,004 im 64 × 64 10 3 3 Local

SAT-458 NAIP program Airborne 500,000 im 28 × 28 1 4 4 Local

SAT-658 NAIP program Airborne 405,000 im 28 × 28 1 4 6 Local

UCMerced59 OPLS Airborne 2100 im 256 × 256 0.3 4 21 Local

Zeebruges (link) LiDAR Airborne 100,000 im 10 × 10 0.05 3 8 Local

WHU-RS1960 Google Earth Airborne 1005 im 600 × 600 Up to 0.5 3 19 Local

SIRI-WHU61 Google Earth Airborne 2.240 im 200 × 200 2 3 12 Local

RSSCN762 Google Earth Airborne 2800 im 400 × 400 — 3 7 Local

RSC11 (link) Google Earth Airborne 1232 im 512 × 512 0.2 3 11 Local

NWPU-RESISC4518 — — 31,500 im 256 × 256 30� –0.2 3 45 Local

AID63 Google Earth Airborne 10,000 im 600 × 600 8�-0.5 3 30 Local

BigEarthNet19 Sentinel-2 Satellite 590,326 img. — — — —
10 
European 
countries

SpaceNet-764
Dove Satellite 
Constellation 
Planet Labs’

Satellite img. — — — — 100 cities

Table 1. List of existing Land-Use and Land-Cover (LULC) datasets ready for training Deep Learning (DL) 
models.
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2020. Both tasks were implemented using GEE, an efficient programming, processing and visualisation plat-
form that allowed us to have free manipulation and access to all used LULC products and Sentinel-2 imagery, 
simultaneously.

Finding spatio-temporal agreement across 15 global LULC products. To establish the 
spatio-temporal consensus between different LULC products for each one of the 29 LULC classes, we followed 
four steps: (1)Identification of the LULC products to be used in the consensus, (2)Standardization and harmoni-
zation of the LULC legend that was subsequently used to annotate the image tiles, (3)Spatio-temporal aggregation 
across LULC products, and (4)Spatial reprojection and tile selection based on optimized spatial purity thresholds.

Global LULC products selection. The adopted purity measure for spatio-temporal agreement across the 15 
global LULC products we selected from GEE (Table 2) aims to find areas of high consensus to maximize the 
annotation quality. Spatial and temporal consensus across such rich diversity of LULC products, in terms of 
spatial resolution, time coverage, satellite source, LULC classes and accuracy, was used as a source of robustness 
for our subsequent LULC annotation. Products outside GEE were not used due to computing limitations.

Standardization and Harmonization of LULC legends. Land cover (LC) data describes the main type of natural 
ecosystem that occupies an area; either by vegetation types such as shrublands, grasslands and forests, or by 
other biophysical classes such as permanent snow, bare land and water bodies. Land use (LU) includes the way 
in which humans modify or exploit an area, such as urban areas or agricultural fields.

To build our 29 LULC classes nomenclature, we established a standardization and harmonization approach 
based on expert knowledge. During this process, we took into account both the needs of different practitioners 
in the global and regional LULC mapping field and the thematic resolution of the global LULC legends available 
in GEE. Our nomenclature consists of 23 LC and 6 LU distinct classes identified through specific consensus rules 
across 15 LULC products (see Table 4). A six-level (L0 to L5) hierarchical structure was adopted in the creation 
of these 29 LULC classes (Fig. 2). To facilitate the inter-operability of our 29 legends at the finest level L5 across 
all LULC products and with the widely used FAO’s hierarchical Land Cover Classification System (LCCS)1, we 
have established an LULC classification system where the 29 classes can be mapped directly to FAO’s LCCS as 
explained in the table of Supplementary File 1. The LC part in our dataset contains 20 terrestrial ecosystems and 
3 aquatic ecosystems. The terrestrial systems are: Barren lands, Grasslands, Permanent snow, Moss and Lichen 
lands, Close shrublands, Open shrublands, in addition to 12 Forests classes that differed in their tree cover, 
phenology, and leaf type. The aquatic classes are: Marine water bodies, Continental water bodies, and Wetlands; 
furthermore, wetlands were divided into 3 classes: Marshlands, Mangroves and Swamps. The LU part is com-
posed of urban areas and 5 coarse cropland types that differed in their irrigation regime and leaf type. In Table 3, 
you can find the semantic definition of each one of the 29 classes in Sentinel2GlobalLULC. We provided a table 
in Supplementary File 2, for a more detailed definition of each LULC class.

Combining products across time and space. For each one of the 29 LULC classes, we combined in space and 
time the global LULC information among the 15 GEE LULC products. This way, each image was annotated with 
a LULC class only if all combined products agreed in its corresponding tile (i.e., 100% of agreement in space and 
time). For each product and LULC type, we first set one or more criteria to create a global mask at the native 
resolution of the product in which each pixel was classified as 1 or 0 depending on whether it met the criteria 
for belonging to that LULC type or not, respectively (see first stage in Table 4). For certain LULC classes, some 
products did not provide any relevant information, so they were not used. For example (Table 4), in Grasslands 
(C3), Open Shrublands (C4) and Close Shrublands (C5), we combined 14 products, while in UrbanBlUpArea 
(C29) and Permanent Snow (C23) we only combined 10 and 7 products, respectively.

Then (see second stage in Table 5), for each LULC type, we calculated the average of all the masks obtained 
from each product to create a final global probability map from all products with values ranging between 0 
and 1. Value 1 meant that all products agreed to assign that pixel to a particular LULC class, while 0 meant 

Fig. 1 Illustration from different countries of the Sentinel-2 satellite images corresponding to one of the 29 
Land-Use and Land-Cover (LULC) classes (e.g. Urban and built-up area) extracted from Sentinel2GlobalLULC 
dataset. Each image has 224 × 224 pixels of 10 × 10 m resolution. Pixel values were calculated as the 25th-
percentile of all images captured between June 2015 and October 2020 that were not tagged as cloudy. Fifteen 
LULC products available in Google Earth Engine agreed in annotating each image to represent one LULC class.
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4Scientific Data |           (2022) 9:681  | https://doi.org/10.1038/s41597-022-01775-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

that none of the products assigned it to that particular class (Fig. 3). These 0-to-1 values are interpreted as the 
spatio-temporal purity level of each pixel to belong to a particular LULC class and are provided as metadata with 
each image.

As an example of the first stage (see details in Table 4), to specify if a given pixel belongs to Dense Evergreen 
Needleleaf Forest, we evaluated its tree cover level using “ ≤ “ and “ ≥ “, while for bands containing the leaf type 
information, we used the equal operator “ = “. For the spatio-temporal combination of multiple criteria we have 
used the following operators: “AND”,“OR” and “ADD”. For example, we combined the tree cover percentage 
criteria with the leaf type criteria using “AND” to select forest pixels that met both conditions. To combine many 
years instances of the same product, we used “ADD”, except for product P13, where we used “AND” to identify 
permanent water areas only. Whenever we used the “ADD” operator, we normalized pixel values afterwards to 
bring it back to a probability interval between 0 and 1 using the division by the total number of combined years 
or criteria.

In the second stage (see details in Table 5), we combined for each LULC class the 15 global probability maps 
previously derived from each product to create a final global probability map (Fig. 3). This combination was 
carried out using various operators such as “ADD”, “MULTIPLY” and “OR”, depending on the LULC type. When 
“ADD” was used, the final pixel values were normalized by dividing the final addition value of each pixel by 
the total number of added products. The “MULTIPLY” operator was mostly used at the end, to remove urban 
areas from non-urban LULC classes, or to remove water from non-water LULCs. The multiplication operator 
was also adopted to make sure that a certain criteria was respected in the final probability map. For instance, 
for the swamp class, we multiplied all pixels in the final stage by a water mask where saline water areas have a 
value of 0 in order to eliminate mangrove from swamp pixels and vice versa. Finally, we used “OR” operator 
between different water related products to take advantage of the fact that they complement each other in terms 
of spatial-temporal coverage and accuracy.

In GEE, when two products are aggregated using “ADD”, “MULTIPLY” or any other operator, the output 
is aggregated at the spatial resolution of the product at the left of the operator. Hence, to maintain the finest 
spatial resolution in the final probability map, we multiplied everything by product P15 and placed it at the left 
of the final “MULTIPLY” operation (See Table 5). Hence, all the 29 final probability maps were generated at the 

LULC product Satellite or Spaceborne Resolution Used years Reference

P1: MCD12Q1.006 MODIS LULC
Type Yearly Global 500 m
LULC Type1: Annual International Geosphere-Biosphere
Programme (IGBP) classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 65

P2: MCD12Q1.006 MODIS LULC
Type Yearly Global 500 m
LULC Type 2: Annual University of Maryland (UMD) 
classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 65

P3: MCD12Q1.006 MODIS LULC
Type Yearly Global 500 m
LULC Type 3: Annual Leaf Area Index (LAI) classification 
(version 6)

Aqua, Terra 500 meters 2017 to 2019 65

P4: MCD12Q1.006 MODIS LULC
Type Yearly Global 500 m
LULC Type 4: Annual BIOME-Biogeochemical Cycles (BGC) 
classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 65

P5: MCD12Q1.006 MODIS LULC
Type Yearly Global 500 m
LULC Type 5: Annual Plant Functional Types (PFT) 
classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 65

P6: Copernicus Global LULC Layers: CGLS-LC100 collection 3 
(version 3.0.1) PROBA-V 100 meters 2017 to 2019 66

P7: Global Forest Cover Change (GFCC) Tree Cover Multi-Year 
Global 30 m (version 3.0) Multi-satellite 30 meters 2015 67

P8: GlobCover: Global LULC Map (version 2.0) ENVISAT 300 meters 2009 ESA 2010 and 
UCLouvain

P9: GFSAD1000: Cropland Extent 1 km Multi-Study Crop Mask, 
Global Food-Support Analysis Data (version 0.1) Multi-satellite 1000 meters 2010 68

P10: Global PALSAR-2/PALSAR Forest/Non-Forest Map 
(version fnf) ALOS, ALOS 2 25 meters 2017 69

P11: Hansen Global Forest Change (version 1.7) Landsat 8 1 arc seconds 2000 to 2019 70

P12: Global Forest Canopy Height (version 2005) Lidar 30 arc seconds 2005 71

P13: JRC Yearly Water Classification History (version 1.2) Landsat (5,7,8) 30 meters 2017 to 2019 72

P14: JRC Global Surface Water Mapping Layers (version 1.2) Landsat(5,7,8) 30 meters 1984 to 2019 72

P15: Tsinghua FROM-GLC year of change to impervious 
surface(version 10) Landsat 30 meters 1985 to 2019 73

Table 2. Main characteristics of the 15 global Land-Use and Land-Cover (LULC) products available in Google 
Earth Engine (GEE) that were combined to find consensus in the global distribution of 29 main LULC classes.
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P15 spatial resolution of 30 m/pixel (except the urban class C29 which maintained the 30 m/pixel resolution of 
product P14).

Re-projection and Selection of purity threshold. Since our objective was finding pure Sentinel-2 image tiles of 
224 × 224 10-m pixels representing each LULC class, we reprojected the 30 m/pixel probability maps to 2240 m/
pixel using the spatial mean reducer in GEE. That is, each pixel value at 2240 m resolution was computed using 
the mean over all the 30m-pixel values contained within it. Hence, the resulting pixel values at 2240 m resolution 
represent the purity level that each Sentinel-2 image tile of 224 × 224 10-m pixels has. We illustrated the repro-
jection and selection processes in Fig. 4.

For each one of the reprojected maps, we defined a pixel value threshold to decide whether a given 
2240 × 2240 m tile was representative of each LULC class or not. Since training DL image classification models 
needs a large number of high quality (both in terms of image quality and annotation quality) image tiles to reach 
a good accuracy, when the spatial purity of 100% (full agreement across products in all the pixels of the 224 × 224 
tile) resulted in a small number of agreement tiles for a particular class, the purity threshold was decreased for 
that class until the number of tiles was larger than 1000 or further decreased in less abundant classes to a min-
imum of 75% of purity. The found purity value is always provided as metadata for each image in the dataset, so 
the user can always restrict its analysis to those image tiles and classes at any desired purity level. Decreasing the 

Fig. 2 Tree representation of the six-level (L0 to L5) hierarchical structure of the Land-Use and Land-Cover 
(LULC) classes contained in the Sentinel2GlobalLULC dataset. Outter circular leafs represent the final or most 
detailed 29 LULC classes (C1 to C29) of level L5. The followed path to define each class is represented through 
inner ellipses that contain the names of intermediate classes at different levels between the division of the Earth’s 
surface (square) into LU and LC (level L0) and the final class circle (level L5). All LULC classes belong to three 
levels at least, except the 12 forest classes that belong to L5 only.
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L0 L1 L2 L3 L4 L5 Semantic definition

Land 
Cover

Terrestrial 
Lands

C1 BarrenLands
Bare land where at least 60% of the surface are non-vegetated barren areas (sand, rock, soil) with < 
10% of vegetation cover, < 10% of tree cover, without gains or losses of tree cover during the study 
period, tree height < 1 m, not cropped or urbanized, and never covered by seasonal or permanent 
water

C2 MossAndLichen
Lands vegetated by mosses and lichens where at least 60% of the surface is non-vegetated barren 
land with < 10% of vegetation cover, < 10% of tree cover, without gains or losses of tree cover during 
the study period, tree height < 1 m, not cropped or urbanized, and never covered by seasonal or 
permanent water

C3 Grasslands
Grasslands dominated by herbaceous annuals (< 2 m height), including plants without persistent stem, 
where tree and shrub cover are < 10%, without gains or losses of tree cover during the study period, 
tree height < 1 m, not cropped or urbanized, and never covered by seasonal or permanent water

Shrublands

C4 ShrublandOpen
Open shrublands dominated by woody perennials with persistent and woody stems (1-2 m height) 
with a shrub cover between 10% and 60%, tree cover < 10%, without gains or losses of tree cover 
during the study period, tree height < 2 m, not cropped or urbanized, and never covered by seasonal or 
permanent water

C5 SrublandClose
Close shrublands dominated by woody perennials with persistent and woody stems (1-2 m height) 
with a shrub cover > 60%, tree cover < 10%, without gains or losses of tree cover during the study 
period, tree height < 2 m, not cropped or urbanized, and never covered by seasonal or permanent 
water

Forests

ForestsDe

ForestsDeBr

C6 
ForestsOpDeBr

Forests dominated by deciduous broadleaf trees with tree cover between 15% and 30%, tree height > 
2 m, without gains or losses of tree cover during the study period, not urbanized, and never covered by 
seasonal or permanent water

C7 
ForestsClDeBr

Forests dominated by deciduous broadleaf trees with tree cover between 40% and 60%, tree height > 
2 m, without gains or losses of tree cover during the study period, not urbanized, and never covered by 
seasonal or permanent water

C8 
ForestsDeDeBr

Forests dominated by deciduous broadleaf trees with tree cover > 60%, tree height > 2 m, without 
gains or losses of tree cover during the study period, not urbanized, and never covered by seasonal or 
permanent water

ForestsDeNe

C9 
ForestsOpDeNe

Forests dominated by deciduous needleleaf larch trees with tree cover between 15% and 30%, tree 
height > 2 m, without gains or losses of tree cover during the study period, not urbanized, and never 
covered by seasonal or permanent water

C10 
ForestsClDeNe

Forests dominated by deciduous needleleaf larch trees with tree cover between 40% and 60%, tree 
height > 2 m, without gains or losses of tree cover during the study period, not urbanized, and never 
covered by seasonal or permanent water

C11 
ForestsDeDeNe

Forests dominated by deciduous needleleaf larch trees with tree cover > 60%, tree height > 2 m, 
without gains or losses of tree cover during the study period, not urbanized, and never covered by 
seasonal or permanent water

ForestsEv

ForestsEvBr

C12 
ForestsOpEvBr

Forests dominated by evergreen broadleaf trees with tree cover between 15% and 30%, tree height > 
2 m, without gains or losses of tree cover during the study period, not urbanized, and never covered by 
seasonal or permanent water

C13 
ForestsClEvBr

Forests dominated by evergreen broadleaf trees with tree cover between 40% and 60%, tree height > 
2 m, without gains or losses of tree cover during the study period, not urbanized, and never covered by 
seasonal or permanent water

C14 
ForestsDeEvBr

Forests dominated by evergreen broadleaf trees with tree cover > 60%, tree height > 2 m, without 
gains or losses of tree cover during the study period, not urbanized, and never covered by seasonal or 
permanent water

ForestsEvNe

C15 
ForestsOpEvNe

Forests dominated by evergreen needleleaf conifer trees with tree cover between 15% and 30%, tree 
height > 2 m, without gains or losses of tree cover during the study period, not urbanized, and never 
covered by seasonal or permanent water

C16 
ForestsClEvNe

Forests dominated by evergreen needleleaf conifer trees with tree cover between 40% and 60%, tree 
height > 2 m, without gains or losses of tree cover during the study period, not urbanized, and never 
covered by seasonal or permanent water

C17 
ForestsDeEvNe

Forests dominated by evergreen needleleaf conifer trees with tree cover > 60%, tree height > 2 m, 
without gains or losses of tree cover during the study period, not urbanized, and never covered by 
seasonal or permanent water

C23 PermanentSnow Permanent snow and ice where at least 60% of area is covered by snow and ice for at least 10 moths of 
the year, not urbanized, and never covered by seasonal or permanent water

Aquatic 
Lands

Wetlands

C18 WetlandMangro
Permanently inundated lands with seasonal or permanent water with a water cover between 30 and 
60% and tree cover > 10%, containing closed (> 40%) broadleaved semi-deciduous and/or evergreen 
forest regularly flooded with saline water, tree height > 2 m, without gains or losses of tree cover during 
the study period, and not urbanized

C19 WetlandSwamps

Permanently inundated lands with seasonal or permanent water with a water cover between 30 
and 60% and tree cover > 10%, containing closed (> 40%) broadleaved forest regularly flooded 
with freshwater, or closed to open (> 15%) vegetation like grassland, shrubland, woody vegetation 
on regularly flooded, or waterlogged soil with fresh, brackish or saline water but strictly different 
from closed (> 40%) broadleaved semi-deciduous and/or evergreen forest regularly flooded with 
saline water. Tree height > 2 m, without gains or losses of tree cover during the study period, and not 
urbanized

C20 WetlandMarshl
Permanently inundated lands with seasonal or permanent water with a water cover between 30 and 
60%, tree cover 10% containing closed to open (> 15%) vegetation like grassland, shrubland, woody 
vegetation on regularly flooded or waterlogged soil with fresh, brackish or saline water, tree height > 
2 m, without gains or losses of tree cover during the study period, and not urbanized

WaterBody
C21 WaterBodyMari Water bodies (oceans and seas) where at least 60% of area is covered by permanent water bodies, and 

not urbanized

C22 WaterBodyCont Water bodies (lakes, reservoirs and rivers, can be either fresh or salt-water bodies) where at least 60% 
of area is covered by permanent water bodies, and not urbanized

Continued
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purity threshold down to 75% for the less abundant classes (e.g swamp, mangrove, etc.) was a trade-off between 
maintaining a good data annotation quality and providing a sufficient number of tiles in each class. In Table 6, we 
present the number of agreement tiles found at different purity thresholds ranging from 75% to 100% for each 
LULC class. This spatial purity was not further decreased since machine learning image classification models are 
known to be robust when the target class is spatially dominant in each training image (it occupies more than 60% 
of the pixels in the scene)42. On the other hand, when the number of pure tiles for a LULC class was too large to 
be downloaded (i.e., greater than 14000), we applied a selection algorithm as described in the Supplementary 
File 3, to download a maximum of 14000 spatially representative images. For this, the world was divided into a 
one-degree squared cell grid. If a cell contained less than 50 image tiles, we selected them all. If it contained more 

Fig. 3 Example of the process of building the final global probability map for one of the 29 Land-Use and Land-
Cover (LULC) classes (e.g. C1: "Barren") by means of spatio-temporal agreement of the 15 LULC products 
available in Google Earth Engine (GEE). The final map is normalized to values between 0 (white, i.e., areas with 
no presence of C1 in any product) and 1 (black spots, i.e., areas containing or compatible with the presence of 
C1 in all 15 products), whereas the shades of grey corresponds to the values in between (i.e., areas that did not 
contain or were not compatible with the presence of C1 in some of the products). This process is divided into 
two stages: the first stage (the blue part, see details in Table 4) and the second stage (the yellow part, see details 
in Table 5). LULC products available for several years are represented with superposed rectangles, while single 
year products are represented with single rectangles. GMP: global probability map, NA: Not Available.

L0 L1 L2 L3 L4 L5 Semantic definition

Land 
Use

Croplands

C24 CropSeasWater Croplands flooded with seasonal, ephemeral seasonal or permanent to seasonal water where at least 
60% of area is cultivated cropland dominated by herbaceous annuals (< 2 m), and not urbanized

CropCerea

C25 CropCereaIrri
Irrigated cereal croplands where at least 60% of area is cereal cropland dominated by herbaceous 
annuals (< 2 m), with single or multiple season cropping systems under major or minor irrigation, not 
urbanized, and never covered by seasonal or permanent water

C26 CropCereaRain
Rainfed cereal croplands where at least 60% of area is cereal cropland dominated by herbaceous 
annuals (< 2 m), with single or multiple season cropping systems under rainfed or with minor or very 
minor fragments of rainfed agriculture, not urbanized, and never covered by seasonal or permanent 
water

CropBroad

C27 CropBroadIrri
Irrigated broadleaf croplands where at least 60% of area is broadleaf cropland dominated by 
herbaceous annuals (< 2 m), with single or multiple season cropping systems under major or minor 
irrigation, not urbanized, and never covered by seasonal or permanent water

C28 CropBroadRain
Rainfed broadleaf croplands with at least 60% of area is broadleaf cropland dominated by herbaceous 
annuals (< 2 m), with single or multiple season cropping systems under rainfed or with minor or very 
minor fragments of rainfed agriculture, not urbanized, and never covered by seasonal or permanent 
water

C29 UrbanBlUpArea
Urban and built-up areas with artificial surfaces and associated areas (urban areas) > 50%, with at 
least 30% of impervious surface area including building materials and asphalt and vehicles, and never 
covered by seasonal or permanent water

Table 3. Semantic signification of each one of the 29 Land Use and Land Cover (LULC) classes contained in the 
Sentinel2GlobalLULC dataset according to the six-level (L0 to L5) hierarchical structure.
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LULC class P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
Number of 
Products

C1 BarrenLands 16 15 NA 7 11 60 TCC < 10 200 0 2

(TC < 10) ∩  
(G = 0) ∩  
(L = 0)  
∩ (D≠2)

TH < 1 1 ∪ 0 0 Not(≥1) 14

C2 MossAndLichen 16 15 NA 7 11 NA TCC < 10 200 ∪ 150 0 2

(TC < 10) ∩  
(G = 0)  
∩ (L = 0) ∩  
(D≠2)

TH < 1 1 ∪ 0 0 Not(≥1) 13

C3 Grasslands 10 10 1 6 6 30 TCC < 10 140 NA 2

(TC < 10) ∩  
(G = 0)  
∩ (L = 0) ∩  
(D≠2)

TH < 2 1 ∪ 0 0 Not(≥1) 14

C4 ShrublandOpen 7 7 2 NA 5 20 ∩ (10 <  
SCF < 50) TCC < 10 150 0 2

(TC < 10) ∩  
(G = 0)  
∩ (L = 0) ∩  
(D≠2)

TH < 2 1 ∪ 0 0 Not(≥1) 14

C5 SrublandClose 6 6 2 NA 5 20 ∩ (SCF  
> 50) TCC < 10 130 0 2

(TC < 10) ∩  
(G = 0)  
∩ (L = 0) ∩  
(D≠2)

TH < 2 1 ∪ 0 0 Not(≥1) 14

C6 ForestsOpDeBr NA NA NA 4 4 4 + (15 <  
TCF < 30)

15 <  
TCC < 30 60 NA 1

(15 < TC < 30)  
∩ (G = 0) 
 ∩ (L = 0) ∩  
(D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 11

C7 ForestsClDeBr NA NA NA 4 4 4 + (40 <  
TCF < 60)

40 <  
TCC < 60 50 NA 1

(40 < TC < 60)  
∩ (G = 0) ∩  
(L = 0) ∩ (D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 11

C8 ForestsDeDeBr 4 4 6 4 4 4 +  
(TCF > 60) TCC > 60 50 NA 1

(TC > 60) ∩  
(G = 0) ∩ (L = 0)  
∩ (D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 14

C9 ForestsOpDeNe NA NA NA 3 3 3 + (15 <  
TCF < 30)

15 < TCC  
< 30 NA NA 1

(15 < TC < 30)  
∩ (G = 0)  
∩ (L = 0) ∩ (D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 10

C10 ForestsClDeNe NA NA NA 3 3 3 + (40 <  
TCF < 60)

40 < TCC  
< 60 NA NA 1

(40 < TC < 60)  
∩ (G = 0) ∩  
(L = 0) ∩ (D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 10

C11 ForestsDeDeNe 3 3 8 3 3 3 +  
(TCF > 60) TCC > 60 NA NA 1 (TC > 60) ∩ (G = 0)  

∩ (L = 0) ∩ (D≠2) TH > 2 1 ∪ 0 0 Not(≥1) 13

C12 ForestsOpEvBr NA NA NA 2 2 2 + (15 <  
TCF < 30)

15 < TCC  
< 30 40 NA 1

(15 < TC < 30)  
∩ (G = 0)  
∩ (L = 0) ∩ (D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 11

C13 ForestsClEvBr NA NA NA 2 2 2 + (40 <  
TCF < 60)

40 < TCC  
< 60 40 NA 1

(40 < TC < 60)  
∩ (G = 0) 
 ∩ (L = 0) ∩ (D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 11

C14 ForestsDeEvBr 2 2 5 2 2 2 +  
(TCF > 60) TCC > 60 40 NA 1

(TC > 60) ∩  
(G = 0) ∩ (L = 0)  
∩ (D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 14

C15 ForestsOpEvNe 9 9 NA 1 1 1 + (15 <  
TCF < 30)

15 < TCC  
< 30 90 NA 1

(15 < TC < 30) 
 ∩ (G = 0) ∩ (L = 0) 
 ∩ (D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 13

C16 ForestsClEvNe 8 8 4 1 1 1 + (40 <  
TCF < 60)

40 < TCC  
< 60 70 NA 1

(40 < TC < 60)  
∩ (G = 0) ∩ (L = 0)  
∩ (D≠2)

TH > 2 1 ∪ 0 0 Not(≥1) 14

C17 ForestsDeEvNe 1 1 7 1 1 1 + (TCF  
> 60) TCC > 60 70 NA 1 (TC > 60) ∩ (G = 0) 

 ∩ (L = 0) ∩ (D≠2) TH > 2 1 ∪ 0 0 Not(≥1) 14

C18 WetlandMangro 11 11 NA NA NA 90 TCC > 10 170 NA NA (TC > 10) ∩ (G = 0) 
 ∩ (L = 0) ∪ (D = 2) TH > 2 2 ∪ 3 1 Not(≥1) 10

C19 
WetlandSwamps 11 11 NA NA NA 90 TCC > 10 CritP8a:160 ∪ 180 

CritP8b:Not(170) NA NA (TC > 10) ∩ (G = 0) 
 ∩ (L = 0) ∪ (D = 2) TH > 2 2 ∪ 3 1 Not(≥1) 10

C20 WetlandMarshl 11 11 NA NA NA 90 TCC < 10 160 ∪ 170 ∪180 NA NA (TC<10) ∩ (G=0) 
∩ (L=0) ∪ (D=2) TH > 2 2 ∪ 3 1 Not(≥1) 10

C21 WaterBodyMari 17 0 0 0 0 200 NA 210 NA 3 NA NA 3 1 Not(≥1) 11

C22 WaterBodyCont 17 0 0 0 0 80 NA 210 NA 3 NA NA 3 1 Not(≥1) 11

C23 PermanentSnow 15 NA NA NA 10 70 NA 220 NA NA NA NA 1 ∪ 0 0 Not(≥1) 7

C24 CropSeasWater 12 12 3 ∪ 1 5 ∪ 6 7 ∪ 8 40 NA 11 ∪ 14 1 ∪ 2 ∪ 3   
∪ 4 ∪ 5 NA NA NA 2 ∪ 3 0 ∪ 4 ∪   

∪ 8 ∪ 10 Not( ≥ 1) 11

C25 CropCereaIrri 12 12 1 6 7 40 NA 11 1 ∪ 2 NA NA NA 1 ∪ 0 0 Not( ≥ 1) 11

C26 CropCereaRain 12 12 1 6 7 40 NA 14 3 ∪ 4 ∪ 5 NA NA NA 1 ∪ 0 0 Not( ≥ 1) 11

C27 CropBroadIrri 12 12 3 5 8 40 NA 11 1 ∪ 2 NA NA NA 1 ∪ 0 0 Not( ≥ 1) 11

C28 CropBroadRain 12 12 3 5 8 40 NA 14 3 ∪ 4 ∪ 5 NA NA NA 1 ∪ 0 0 Not( ≥ 1) 11

C29 UrbanBlUpArea 13 13 10 8 9 50 NA 190 NA NA NA NA 1 ∪ 0 0 NU 10
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than 50, we applied that automatic maximum geographic distance algorithm that selected images as far from each 
other as possible in a number proportional to the number of existing images in that cell. The map in Fig. 6 shows 
the global distribution of the selected 194877 image tiles contained in Sentinel2GlobalLULC and distributed in 
29 LULC classes.

Data extraction. Sentinel2GlobalLULC provides the user with two types of data: Sentinel-2 RGB images 
(jpeg and geotif versions) and CSV files with associated metadata. In the following subsections, we describe the 
process for associating metadata, including the Global Human Modification (GHM) index.

Global human modification index extraction. As an additional metadata related to the level of human influence 
in each image, we calculated for each tile in GEE, the spatial mean of the global human modification index for 
terrestrial lands43, where 0 means no human modification and 1 means complete transformation. Since the 
original GHM product was mapped at 1 × 1 km resolution, we reprojected it to 2240 × 2240 m using the same 
reprojection procedure explained in (Re-projection and Selection of purity threshold).

CSV files generation. Once the tiles were selected, for each LULC class we listed the image tiles in descendent 
order of purity. Metadata included: geographical coordinates of each tile centroid, tile purity value, name and ID 
of the LULC class, and average GHM index for that tile. Then, we used the geographical coordinates of each tile 
to identify its exact administrative address geolocation. To implement this reverse geo-referencing operation, 
we used a free request-unlimited python module called reverse_geocoder. This way, we assigned a country code, 
two levels of administrative departments, and the locality to each tile.

For LULC classes that had more than 14000 pure tiles, we have released the coordinates before and after the 
distance-based selection in case the user wants to download more tiles or use our consensus coordinates for 
other purposes.

Sentinel-2 RGB images exportation. After extracting all these pieces of information and grouping them into 
CSV files, we went back to the geographic center coordinates of each tile and used them to extract the corre-
sponding 224 × 224 Sentinel-2 RGB tiles using GEE. Each exported image was identical to the 2240 × 2240 m 
area covered by its Sentinel-2 tile.

We chose “Sentinel-2 MSI (Multi-Spectral Instrument) product” since it is free and publicly available in GEE 
at the fine resolution of 10 × 10 m. We chose “Level-1C” (i.e., top-of-atmosphere reflectance) since it provides 
the longest data availability of Sentinel-2 images without any modification of the data. To build RGB images, we 
extracted the three bands B4, B3 and B2 that correspond to Red, Green and Blue channels, respectively. More 
bands available in Sentinel-2 or even in Sentinel-1 images can be incorporated in the future to our dataset. 
However, computational limitations (i.e., the size of the dataset would be impractical) did not allowed us to 
handle it as a first goal. In addition, the spatial resolution of the images would be heterogeneous across bands.

To minimize the inherent noise due to atmospheric conditions (e.g. clouds, aerosols, smoke, etc.) that 
could affect the satellite RGB images, every image was built as a temporal aggregation of all images gathered 
by Sentinel-2 satellites between June 2015 and October 2020. During this aggregation, only the highest quality 
images in the corresponding image collection were considered, as we firstly discarded all image instances where 
the cloud probability exceeded 20% according to the metadata provided in their corresponding Sentinel-2 col-
lection. Then, we calculated the 25th-percentile value between all remaining images for each reflectance band 
(R, G, and B), and built the final image with the obtained 25-percentile values in each pixel for its RGB bands. 
The 25th-percentile choice was adopted giving its suitability in atmospheric noise reduction44–48.

Usually, Sentinel-2 MSI product includes true colour images in JPEG2000 format, except for the “Level-1C” 
collection used here. The three original bands (B4, B3, and B2) required a saturation mapping of their reflectance 
values into 0–255 RGB digital values. Thus, we mapped the saturation reflectance of 3558 into 255 to obtain true 
RGB channels with digital values between 0 and 255. The choice of these mapping numbers was taken from the 
Sentinel-2 true colour image recommendations section of Sentinel user guidelines. Finally, after exporting the 
selected tiles for each LULC class as “.tif ” images, we converted them into “.jpeg” format using a lossless conver-
sion algorithm.

Table 4. First stage of the rule set criteria used to find consensus across the 15 Land-Use and Land-Cover 
(LULC) products available in Google Earth Engine (GEE) for each of the 29 LULC classes contained in the 
Sentinel2GlobalLULC dataset. P1 to P15: product 1 to 15. C1 to C29: class 1 to class 29. For each LULC class, 
we used a different number of products, and in the last column we present the total number of used products 
per class. For each product, one or multiple criteria were established to create a global probability map (pixel 
values 0 or 1) for a given LULC class. The numbers in each column (i.e., from 0 to 220) correspond to the pixel 
values from each product band. NU: Not Used, NA: Not Available, TC: Tree Cover, G: Tree Gain, L: Tree Loss, 
D: Datamask, TH: Tree Hight, TCC: Tree Canopy Cover, TCF: Tree-Cover Fraction, and SCF: Shrub-Cover 
Fraction. ∩ :“AND”, ∪ :“OR”, + :“ADD”. In Supplementary File 2, we explain the signification of each on of 
these criteria in details. (In class C19, the product P8 was used at two different steps of the consensus with a 
distinct rule in each one: CritP8a and CritP8b. We explain their utilisation at each step of C19 consensus in its 
corresponding row within Table 5).
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Technical implementation. To implement all our methodology steps, we first created a javascript in GEE 
for each LULC class. Each script is a multi-task javascript where we implemented a switch command to control 
which task we want to execute (between the spatio-temporal aggregation task, the spatial reprojection and tiles 
selection task, or the data exportation task). In each one of these scripts, we selected from GEE LULC datasets 
repository the 15 LULC products used to build the consensus of that LULC class. Each script was responsible of 
elaborating the spatio-temporal combination of the selected products and generating the final consensus map for 
that LULC class as described in the subsection “Combining products across time and space”. Then, it exports the 
final global probability map as an asset into GEE server storage to make its reprojection faster. In the same script, 
once the consensus map exportation was done, we imported it from the GEE assets storage and reprojected it to 
2240 × 2240 m resolution; then, we exported the new reprojected map into GEE assets storage again to make its 
analysis and processing faster. Afterwards, we imported the reprojected map into the same script and applied 
different processing tasks. During this processing phase, many purity threshold values were evaluated. Then, we 
elaborated in this same script the pure tiles identification and their center coordinates exportation into a CSV file. 
A distinct GEE script was developed to import, reproject and export the global GHM map. The resulted GHM 
map was saved as an asset too, then imported and used in each one of the 29 LULC multi-task scripts.

A python script was developed separately to read the exported CSV files for each LULC class and apply the 
reverse geo-referencing on their pure tiles coordinates then add the found geolocalization data (country code, 

Class ID LULC class Spatial Combination

C1 Barren lands Norm(P15*P14*P13*(Add(P1,P2,P4:P12)))

C2 Moss and Lichen lands Norm(P15*P14*P13*(Add(P1,P2,P4,P5,P7:P12)))

C3 Grasslands Norm(P15*P14*P13*(Add(P1:P8,P10:P12)))

C4 Open Shrublands Norm(P15*P14*P13*(Add(P1:P3,P5:P12)))

C5 Close Shrublands Norm(P15*P14*P13*(Add(P1:P3,P5:P12)))

C6 Open Deciduous Broadleaf Forests Norm(P15*P14*P13*(Add(P4:P8,P10:P12)))

C7 Close Deciduous Broadleaf Forests Norm(P15*P14*P13*(Add(P4:P8,P10:P12)))

C8 Dense Deciduous Broadleaf Forests Norm(P15*P14*P13*(Add(P1:P8,P10:P12)))

C9 Open Deciduous Needleleaf Forests Norm(P15*P14*P13*(Add(P4:P7,P10:P12)))

C10 Close Deciduous Needleleaf Forests Norm(P15*P14*P13*(Add(P4:P7,P10:P12)))

C11 Dense Deciduous Needleleaf Forests Norm(P15*P14*P13*(Add(P1:P7,P10:P12)))

C12 Open Evergreen Broadleaf Forests Norm(P15*P14*P13*(Add(P4:P8,P10:P12)))

C13 Close Evergreen Broadleaf Forests Norm(P15*P14*P13*(Add(P4:P8,P10:P12)))

C14 Dense Evergreen Broadleaf Forests Norm(P15*P14*P13*(Add(P1:P8,P10:P12)))

C15 Open Evergreen Needleleaf Forests Norm(P15*P14*P13*(Add(P1,P2,P4:P8,P10:P12)))

C16 Close Evergreen Needleleaf Forests Norm(P15*P14*P13*(Add(P1:P8,P10:P12)))

C17 Dense Evergreen Needleleaf Forests Norm(P15*P14*P13*(Add(P1:P8,P10:P12)))

C18 Mangrove Wetlands Norm(P15*(Add(P1,P2,P6:P8,P11:P14)))

C19 Swamp Wetlands Norm(P15*P8b*(Add(P1,P2,P6,P7,P8a,P11:P14)))

C20 Marshland Wetlands Norm(P15*(P11 OR P12 OR 
P7)*(Add(P1,P2,P6,P8,P13,P14)))

C21 Marine Water Bodies Norm(P15*P14*P13*(Add(P1:P6,P8,P10)))

C22 Continental Water Bodies Norm(P15*P14*P13*(Add(P1:P6,P8,P10)))

C23 Permanent Snow Norm(P15*P14*P13*(Add(P1,P5,P6,P8)))

C24 Croplands Flooded with seasonal 
water Norm(P15*(P13 OR P14)*(Add(P1:P6,P8,P9)))

C25 Cereal Irrigated Cropland Norm(P15*P14*P13*(Add(P1:P6,P8,P9)))

C26 Cereal Rainfed Cropland Norm(P15*P14*P13*(Add(P1:P6,P8,P9)))

C27 Irrigated Broadleaf Cropland Norm(P15*P14*P13(Add(P1:P6,P8,P9)))

C28 Rainfed Broadleaf Cropland Norm(P15*P14*P13(Add(P1:P6,P8,P9)))

C29 Urban and built-up areas Norm(P14*P13(Add(P1:P6,P8)))

Table 5. Second stage of the rule set criteria used to find consensus across the 15 Land-Use and Land-Cover 
(LULC) products available in Google Earth Engine (GEE) for each of the 29 LULC classes contained in the 
Sentinel2GlobalLULC dataset. P1 to P15: product 1 to 15. C1 to C29: class 1 to class 29. For each LULC class, 
the 15 global probability maps (with pixel values 0 or 1) obtained in the first stage from products P1 to P15 
were spatially combined to build 29 final global probability maps (with pixel values 0 to 1), one for each LULC 
class (C1 to C29). “Add”:ADD, “*”:MULTIPLY, “Norm”: the normalization using division by number of used 
products.(The aggregation order in the column “Spatial Combination” is the real adopted order of products 
aggregation in GEE operations. In class C19, two different global probability maps from product P8 were used: 
P8a and P8b. Each one of these two maps was generated with a distinct selection rule: CritP8a and CritP8b 
respectively. Both rules are explicitly represented in row C19 of Table 4).

https://doi.org/10.1038/s41597-022-01775-8
https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/


1 1Scientific Data |           (2022) 9:681  | https://doi.org/10.1038/s41597-022-01775-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

locality…etc) to the original CSV files as new columns. Then, another python script was implemented to read 
the new resulted CSV files with all their added columns (reverse geo-referencing data, GHM data) and use the 
center coordinates of each pure tile in that class to export first its corresponding Sentinel-2 satellite geotiff image 
within GEE through the python API. Finally, after downloading all the selected geotiff images from our Google 
drive, we created another python script to convert these geotiff images into JPEG format.

Data Records
Sentinel2GlobalLULC v2.140 dataset is stored in the following Zenodo repository (https://doi.org/10.5281/
zenodo.6941662). This dataset consists of three zip compressed folders:

•	 Sentinel-2 GeoTiff images folder: This folder contains the exported Sentinel-2 RGB images for each LULC 
class grouped into sub-folders named according to each LULC class. Each image has a filename with the 

Fig. 4 Example of the workflow to obtain a Sentinel-2 image tile of 2240 × 2240 m for one of the 29 Land-
Use and Land-Cover (LULC) classes (e.g. C1: “Barren”). The process starts with the reprojected final global 
probability map obtained from stage two (Table 5) and ends with its exportation to the repository of a Sentinel-2 
image tile of 224 × 224 pixels. The white rectangle is the only one having a probability value of 1 (Recall that 
the purity threshold used for Barren was 1, i.e., 100%). The black pixels has a null probability value, while the 
probability values between 0 and 1 are represented in gray scale levels.
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following structure: “LULC class ID_LULC class short name_Pixel probability value_Image ID_GHM 
value_(Latitude,Longitude)_Country code_Administrative department level1_Administrative department 
level2_Locality”. Pixel probability value can be interpreted as the spatial purity of the image to represent that 
LULC class and was calculated as the spatial mean of all the pixels of the final probability maps contained in 
each image tile, reprojected and expressed as a percentage. Short names for all classes were derived from the 
original ones in a way to have exactly 13 characters each, and IDs for different classes were assigned randomly. 
This information for each class is explained in Table 7.

•	 Sentinel-2 JPEG images folder: This folder contains the same images as in the GeoTiff folder, but converted 
into “.jpeg” format while preserving the same nomenclature and organization. In Fig. 5, we illustrate an image 
tile for each one of the 29 classes in JPEG format.

•	 CSV files folder: For user convenience, the metadata of every image tile (i.e., the same information already 
contained in the image filenames) is also provided in CSV format. Image tiles in the CSV files are organized 
from the highest to the lowest consensus probability value. These CSV files have 12 columns: ID of LULC 
Class, Short name of LULC Class, ID Image, Pixel Probability Value as percentage, GHM Value, Center Lat-
itude, Center Longitude, Country Code, Administative Departement Level 1, Administative Departement 
Level 2, Locality, Number of S2 images which represent the number of found instances in the corresponding 
Sentinel-2 image collection between June 2015 and October 2020, when aggregated and exported as a final 
image.

For too large LULC classes (i.e., with more than 14000 potential image tiles) that had to undergo the 
distance-based selection, we provide the user with 2 CSV files: one containing all pure tiles coordinates with-
out geo-referencing columns, and another file containing just the 14000 exported tiles coordinates with their 
geo-referencing information and metadata.

LCLU Class

Consensus probability values (%)

Number of selected 
images

Post-
selection0.75 (75%) 0.80 (80%) 0.85 (85%) 0.90 (90%) 0.95 (95%)

1.00 
(100%)

C29 Urban 63953 50940 34102 21814 12590 192 12590 no

C1 Barren 4330418 4195584 4055836 3876467 3545756 2668009 14000 (2668009) yes

C2 Moss and Lichen 59120 36455 18438 4656 1158 0 4656 no

C5 Close Shrublands 41407 11937 1872 226 16 0 11937 no

C4 Open Shrublands 2461415 1884514 1209375 644272 101288 805 14000 (101288) yes

C20 Marshland 4205 2349 675 143 15 0 4205 no

C19 Swamp 487 164 4 0 0 0 487 no

C18 Mangrove 416 255 63 3 0 0 416 no

C3 Grassland 4022949 3041842 1894337 943177 128263 8869 8869 no

C28 Rainfed Broadleaf Cropland 427314 316696 209143 99337 32123 413 413 no

C27 Irrigated Broadleaf Cropland 224867 144115 92488 53064 30691 353 353 no

C26 Cereal Rainfed Cropland 1185497 911167 604459 284914 91147 1020 1020 no

C25 Cereal Irrigated Cropland 517789 310790 167994 52959 23555 842 842 no

C24 Cropland Seasonal Water 6048 4522 3192 2004 995 15 2004 no

C17 Dense Evergreen Needleleaf Forest 474138 322443 178293 66151 13991 0 13991 no

C16 Close Evergreen Needleleaf Forest 43040 3872 69 0 0 0 3872 no

C15 Open Evergreen Needleleaf Forest 17462 3914 331 0 0 0 3914 no

C14 Dense Evergreen Broadleaf Forest 2131269 1995950 1829897 1594657 1232914 144026 14000 (144026) yes

C13 Close Evergreen Broadleaf Forest 12512 1258 77 1 0 0 1258 no

C12 Open Evergreen Broadleaf Forest 567 42 0 0 0 0 567 no

C11 Dense Deciduous Needleleaf Forest 60866 31414 12954 2880 148 0 2880 no

C10 Close Deciduous Needleleaf Forest 42166 6380 35 0 0 0 6380 no

C9 Open Deciduous Needleleaf Forest 10438 23 0 0 0 0 10438 no

C8 Dense Deciduous Broadleaf Forest 399264 273134 176176 97182 31284 1 14000 (31284) yes

C7 Close Deciduous Broadleaf Forest 71127 12654 1348 23 1 0 1348 no

C6 Open Deciduous Broadleaf Forest 25342 4437 466 2 0 0 4437 no

C23 Permanent Snow 1065127 1049822 1033466 1013490 984014 877232 14000 (877232) yes

C22 Continental Water Bodies 3543953 3327019 3199652 343779 318483 265214 14000 (265214) yes

C21 Marine Water Bodies 3606955 3438966 3357810 2903459 2822544 2577444 14000 (2577444) yes

Table 6. Summary of the varying number of found and eventually selected Sentinel-2 image tiles of 
224 × 224 pixels depending on the different consensus level reached across the 15 Land-Use and Land-Cover 
(LULC) products available in Google Earth Engine (GEE) for each of the 29 LULC classes contained in the 
Sentinel2GlobalLULC dataset. LULC classes that due to the very large number of image tiles had to undergo a 
post-selection by maximizing geographical distance between them, are highlighted in bold.
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Technical Validation
To provide an independent assessment of the quality of the obtained automatic annotation, two of our co-authors 
who are experts in vegetation mapping have visually inspected a geographically representative sample of 2900 
images from the dataset (100 images per class) selected by an algorithm that maximizes the geographical dis-
tance between the selected image tiles. This visual inspection was elaborated using very high resolution imagery 
from both Google Earth and Bing Maps as ground truth. The validation process was established in three stages: 

Fig. 5 Image tiles examples for each one of the 29 Land-Use and Land-Cover (LULC) classes contained in the 
Sentinel2GlobalLULC dataset.
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First, for each LULC class, we selected 100 image tiles to visually verify their LULC annotation. To maximize 
the global representativeness of the validated image tiles, their selection was carried out by maximizing the geo-
graphical distance among them using an add-hoc script in R. In Fig. 7, we present the distribution map of the 
100 image tiles selected for each LULC class. Second, each one of the selected image tiles was visually inspected 
in Google Earth and Bing Maps by two of the co-authors (E.G. and D.A-S.) to independently assign it to one of 
the 29 LULC classes. These two experts assigned each image tile to a LULC class when it occupied more than 
70% of the image tile. Third, a confusion matrix for this validation was calculated at six different levels of our 
LULC classification hierarchy (from L0 to L5 as presented in Fig. 2). In Table 8, we summarized the obtained F1 
scores at each level.

The obtained mean F1 scores ranged from 0.99 at level L0 to 0.91 at level L5 (Table 8). Such decrease in 
accuracy as the number of classes increased from level L0 to level L5 was mainly due to the hard distinction for 
the human eye between forest types at L5 and to the visual features complexity in Grasslands and Shrublands 
classes from level L2.

Usage Notes
To make the Sentinel2GlobalLULC40 dataset easier to use, reproduce, and exploit and to promote its usage 
for DL models training, we have provided users with a python code to load all RGB images and train sev-
eral Convolutional Neural Networks (CNNs) models on them using different learning hyper-parameters. 
These CNNs can only be trained on Sentinel2GlobalLULC to classify scene images into one of 29 LULC types. 
Knowing that most CNN frameworks admit only jpeg or png image formats, we provide a python script to 
convert “.tif ” into “.jpeg” format with a full control on the conversion quality. Moreover, since for some LULC 
classes we limited the number of exported images to 14000, we provide a python script that can help the user to 
export more Sentinel-2 images and bands of each class if needed, using the coordinates stored in the CSV files.

In addition, to provide a global insight about the consistency and accuracy of the global distribution of these 
29 LULC classes, we also publicly share their final reprojected global consensus maps as GEE assets. To assist the 
user in visualizing the global distribution of each LULC class, we have provide a GEE script with the LULC assets 
links to import, manipulate, and visualize. Further image exportation is also possible through GEE python API 
and we gave the user a complete control on the number of tiles to export, the time interval to select for image 
collections, the cloud removal parameters, the true RGB colors calibration values, and the Google drive account 
where to store the exported images. The user should be aware that GEE currently imposes a limited request 
number with a maximum of 3000 exportation tasks to run simultaneously on the same Google account.

Fig. 6 Global map of the distribution of the 2240 × 2240 m tiles representing 29 Land-Use and Land-Cover 
(LULC) classes that were generated from the spatio-temporal agreement across the 15 global LULC products 
available in Google Earth Engine. The purity threshold used for each LULC class is specified in Table 6.
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Limitations
In this section, we highlight the limitations of Sentinel2GlobalLULC40 dataset, its suitable DL setting and new 
perspectives of its usage.

Sentinel2GlobalLULC is specifically designed for scene image classification, so each image was annotated 
with one LULC class at scene level, not at pixel level. That is, it does not contain mixed classes, such as mixed 
forests (e.g. where both evergreen and deciduous trees coexist) or mosaics of croplands and natural vegetation, 
and it does not allow to identify polygons of different classes within an image scene.

Another point that the user should take into consideration is that some LULC classes have an inherently 
restricted geographical distribution since they only occur in particular environmental conditions of the world 
(e.g. Mangroves, Swamps, Seasonally flooded croplands, etc.). For these naturally restricted classes, one can not 
expect to find a broad geographical distribution of the training image tiles in our dataset. Other LULC classes 
(e.g. different types of forests, shrublands or grasslands, barren lands, etc…) are more widely distributed around 
the world. However, there exist conceptual and methodological differences across current LULC products on 
the definition of each class and used methods to map them. As a result of these inconsistencies, for widely dis-
tributed classes, one can not expect either to find a continuous geographical distribution of the training image 
tiles in our dataset. On the one hand, annotation quality of the training dataset is critical to get accurate models 
and it constitutes the one of the main challenges for the users49. Our approach to maximize the annotation 
quality was done via consensus across multiple LULC products over the world. On the other hand, a wide rep-
resentativeness in the training dataset under different environmental conditions per class around the globe is 
preferred to provide transferability of the model to the widest set of existing geographical locations of each class 
around the world. Hence, to find a trade-off in our dataset between a wide representativeness across the world 
for each class while maintaining a high annotation quality, we decreased the threshold for spatial purity up to 
75% in some classes. As a result, we provided a larger number of image tiles per class which are geographically 
distributed around the world in the best way possible. Deep learning models are known to be robust and gen-
eralizable in scene classification problems when the training images contain a dominant part of the target class 

LCLU Class Short name Class ID

Urban UrbanBlUpArea C29

Barren BarrenLands__ C1

Moss and Lichen MossAndLichen C2

Close Shrublands SrublandClose C5

Open Shrublands ShrublandOpen C4

Marshland WetlandMarshl C20

Swamp WetlandSwamps C19

Mangrove WetlandMangro C18

Grassland Grasslands___ C3

Rainfed Broadleaf Cropland CropBroadRain C28

Irrigated Broadleaf Cropland CropBroadIrri C27

Cereal Rainfed Cropland CropCereaRain C26

Cereal Irrigated Cropland CropCereaIrri C25

Cropland Seasonal Water CropSeasWater C24

Dense Evergreen Needleleaf Forest ForestsDeEvNe C17

Close Evergreen Needleleaf Forest ForestsClEvNe C16

Open Evergreen Needleleaf Forest ForestsOpEvNe C15

Dense Evergreen Broadleaf Forest ForestsDeEvBr C14

Close Evergreen Broadleaf Forest ForestsClEvBr C13

Open Evergreen Broadleaf Forest ForestsOpEvBr C12

Dense Deciduous Needleleaf Forest ForestsDeDeNe C11

Close Deciduous Needleleaf Forest ForestsClDeNe C10

Open Deciduous Needleleaf Forest ForestsOpDeNe C9

Dense Deciduous Broadleaf Forest ForestsDeDeBr C8

Close Deciduous Broadleaf Forest ForestsClDeBr C7

Open Deciduous Broadleaf Forest ForestsOpDeBr C6

Permanent Snow PermanentSnow C23

Continental Water Bodies WaterBodyCont C22

Marine Water Bodies WaterBodyMari C21

Table 7. Dictionary to map each Land-Use and Land-Cover (LULC) class to its corresponding short name and 
ID in the Sentinel2GlobalLULC dataset.
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(i.e. the annotated class occupies more than 60% of all pixels in the scene)42. Geographical transferability of DL 
classification models is known to be high, i.e., models trained with images from one geographical location main-
tain high classification accuracy when applied to very distant geographical locations50. In addition, it is known 
that models trained only with a limited part of a data distribution actually reach similar test error than models 
trained on the complete data distribution51. However, the inherent under-representation of some LULC classes 
and regions remains a limitation of our dataset, especially in disagreement areas. In addition, the inter-regions 
variation in terms of spatial patterns within the same LULC class (e.g. croplands in central Europe versus crop-
lands in Subsaharan Africa) could constitute a serious limitation to geographical transferability. Thus, additional 
data and further analysis of DL performance could be required to help these models reach and maintain the 
same classification performance in every LULC class and region of the world. To give Sentinel2GlobalLULC 
users a clear information about the geographic representativeness in the 29 LULC classes, we included in the 
same repository with the dataset, a compressed file called “Geographic_Representativeness” that contains a csv 
file for each LULC class with the complete list of countries represented in that class. Each csv file has two col-
umns, the first one gives the country code and the second one gives the number of images provided in that 
country for that LULC class. In addition to these 29 csv files, we provided another csv file that maps each ISO 
Alpha-2 country code to its original full country name.

The spatial resolution of the images in our dataset is that of Sentinel-2 RGB bands, i.e. 10 m/pixel, and the 
annotation is organized in image tiles of 2240 × 2240 m. Hence, this dataset is conceived to build models that 
use image tiles around 2240 × 2240 m at a spatial resolution of 10 m/pixel. As a result, the output LULC map 
produced by these models will have a native spatial resolution of 2240 × 2240 m. To overcome this spatial resolu-
tion limitation, Image super-resolution (SR) techniques could be of great utility. SR techniques improve various 
remote sensing applications by allowing users to create finer spatial details than those captured by the original 
acquisition sensors, and have shown to be very effective in this application52. Thus, a very promising solution for 
this limitation would be to artificially fine-tune Sentinel2GlobalLULC images resolution using SR as a preproc-
essing strategy before the training step and to offer more flexibility regarding the spatial resolution at the global 
mapping step.

Deep learning CNNs are usually trained only with the RGB channels available in each image. Thus, our 
dataset contains only RBG images. Nevertheless, multi-input CNNs nowadays are effectively combining infor-
mation provided by different remote sensing sources at different scales and with various data types53. To give 
Sentinel2GlobalLULC users a possibility to take advantage from these multi-input models, we provided in the 
shared Github code54 (https://doi.org/10.5281/zenodo.5638409) of our dataset, a data exportation script with a 
full control on the satellite source to choose (e.g. Sentinel-1..etc) and the spectral bands (e.g NIR, NDVI..etc) 
they want to export from these satellites.

Fig. 7 Global distribution of the selected 100 images for each Land-Use and Land-Cover (LULC) class to 
perform the validation of the 29 LULC classes contained in the Sentinel2GlobalLULC dataset. An add-hoc 
script in R was used to maximize the geographical distance among the 100 points of each class.
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Another important point that the user should take into consideration is that to build each image in our 
dataset, we combined Sentinel-2 images that were acquired at all available dates in the corresponding image col-
lection between June 2015 and October 2020. Thus, each image is built from a different number of images since 
image collections in most locations of the northern hemisphere contains more than those situated in the south-
ern hemisphere. To highlight this difference between both parts of the planet, we present in Fig. 8, the number 
of Sentinel-2 images (dates) used to build each image tile in the world. In addition, we give in Supplementary 
File 4, 29 figures similar to Fig. 8, but this time each one represent this number of collected Sentinel-2 dates for 
a different LULC class (from C1 to C29). Furthermore, we added to the 29 CSV files of Sentinel2GlobalLULC 
dataset, a new column representing the number of Sentinel-2 aggregated images to composite each exported 
image (this column is called “Number of S2 images”).

The user should be aware that our 25th-percentile composite method was realized on each one of the three 
reflectance bands (R, G and B) independently, which means that their 25th percentile could have been selected 
from different dates from June 2015 to October 2022. Despite applying the median independently on each band 
is a frequent method for compositing time-series of Landsat and Sentinel-2 imagery (e.g.46,48), we used the 25th 
percentile independently on each band since it is more conservative to remove clouds and other atmospheric 
noise in very cloudy regions44,45,47. In addition, compositing each band independently was motivated by compu-
tational resources limitations in GEE, since extracting the overall 25-percentile of all these 10 m resolution bands 
combined was more prone to lead to out of memory time-out errors.

Despite these limitations, Sentinel2GlobalLULC remains to our knowledge the first global LULC mapping 
dataset that includes up to 29 LULC classes, a number much higher than the valuable Dynamic World dataset55, 
which only provides 9 LULC classes yet.

L0 F1 L1 F1 L2 F1 L3 F1 L4 F1 L5 F1

Land Cover 0.99

Terrestrial Lands 1.00

BarrenLands 0.97 BarrenLands 0.97 BarrenLands 0.97 C1 BarrenLands 0.97

MossAndLichen NA MossAndLichen NA MossAndLichen NA C2 MossAndLichen NA

Grasslands 0.75 Grasslands 0.75 Grasslands 0.75 C3 Grasslands 0.75

Shrubland 0.89
ShrublandOpen 0.76 ShrublandOpen 0.76 C4 ShrublandOpen 0.76

SrublandClose 0.97 SrublandClose 0.97 C5 SrublandClose 0.97

Forests 1.00

ForestsDe 1.00

ForestsDeBr 1.00

C6 ForestsOpDeBr 0.82

C7 ForestsClDeBr 0.89

C8 ForestsDeDeBr 0.96

ForestsDeNe 1.00

C9 ForestsOpDeNe 0.92

C10 ForestsClDeNe 0.88

C11 ForestsDeDeNe 0.95

ForestsEv 0.99

ForestsEvBr 0.99

C12 ForestsOpEvBr 0.70

C13 ForestsClEvBr 0.72

C14 ForestsDeEvBr 0.91

ForestsEvNe 1.00

C15 ForestsOpEvNe 0.82

C16 ForestsClEvNe 0.88

C17 ForestsDeEvNe 0.99

PermanentSnow 1.00 PermanentSnow 1.00 PermanentSnow 1.00 C23 PermanentSnow 1.00

Aquatic Lands 0.98

Wetland 0.96

WetlandMangro 0.96 WetlandMangro 0.96 C18 WetlandMangro 0.96

WetlandSwamps 0.99 WetlandSwamps 0.99 C19 WetlandSwamps 0.99

WetlandMarshl 0.94 WetlandMarshl 0.94 C20 WetlandMarshl 0.94

WaterBody 0.99
WaterBodyMari 0.95 WaterBodyMari 0.95 C21 WaterBodyMari 0.95

WaterBodyCont 0.93 WaterBodyCont 0.93 C22 WaterBodyCont 0.93

Land Use 0.98
Croplands 0.98

CropSeasWater 0.93 CropSeasWater 0.93 CropSeasWater 0.93 C24 CropSeasWater 0.93

CropCerea 0.99
CropCereaIrri 1.00 CropCereaIrri 1.00 C25 CropCereaIrri 1.00

CropCereaRain 0.98 CropCereaRain 0.98 C26 CropCereaRain 0.98

CropBroad 0.99
CropBroadIrri 1.00 CropBroadIrri 1.00 C27 CropBroadIrri 1.00

CropBroadRain 0.99 CropBroadRain 0.99 C28 CropBroadRain 0.99

UrbanBlUpArea 0.99 UrbanBlUpArea 0.99 UrbanBlUpArea 0.99 UrbanBlUpArea 0.99 C29 UrbanBlUpArea 0.99

Mean 0.99 0.98 0.95 0.95 0.95 0.91

Table 8. Results of the validation procedure of the representativeness of the images contained in the 
Sentinel2GlobalLULC dataset for each Land-Use and Land-Cover (LULC) class at different levels of the 
hierarchical legend (from L0 to L5). Accuracy is expressed as the mean F1 score (i.e., a balance between 
precision and recall) for each LULC class at each level, rounded to two decimal values.

https://doi.org/10.1038/s41597-022-01775-8


1 8Scientific Data |           (2022) 9:681  | https://doi.org/10.1038/s41597-022-01775-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

Code availability
All used scripts to implement or use our dataset and links to the GEE stored assets are available in the following 
Github repository54 (https://doi.org/10.5281/zenodo.5638409) repository with guidelines stored in a README 
file explaining all instructions about their execution.
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