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Abstract
Biological profile estimation, of which sex estimation is a fundamental first stage, is a really important task in forensic

human identification. Although there are a large number of methods that address this problem from different bone

structures, mainly using the pelvis and the skull, it has been shown that the humerus presents significant sexual dimor-

phisms that can be used to estimate sex in their absence. However, these methods are often too subjective or costly, and the

development of new methods that avoid these problems is one of the priorities in forensic anthropology research. In this

respect, the use of artificial intelligence may allow to automate and reduce the subjectivity of biological profile estimation

methods. In fact, artificial intelligence has been successfully applied in sex estimation tasks, but most of the previous work

focuses on the analysis of the pelvis and the skull. More importantly, the humerus, which can be useful in some situations

due to its resistance, has never been used in the development of an automatic sex estimation method. Therefore, this paper

addresses the use of machine learning techniques to the task of image classification, focusing on the use of images of the

distal epiphysis of the humerus to classify whether it belongs to a male or female individual. To address this, we have used

a set of humerus photographs of 417 adult individuals of Mediterranean origin to validate and compare different

approaches, using both deep learning and traditional feature extraction techniques. Our best model obtains an accuracy of

91.03% in test, correctly estimating the sex of 92.68% of the males and 89.19% of the females. These results are superior to

the ones obtained by the state of the art and by a human expert, who has achieved an accuracy of 83.33% using a state-of-

the-art method on the same data. In addition, the visualization of activation maps allows us to confirm not only that the

neural network observes the sexual dimorphisms that have been proposed by the forensic anthropology literature, but also

that it has been capable of finding a new region of interest.

Keywords Deep learning � Biomedical image analysis � Forensic anthropology � Biological profile estimation �
Sex estimation � Image classification

1 Introduction

In the field of forensic anthropology (FA),1 sex estimation

is a task of great importance as a first step in the identifi-

cation of individuals from their skeletal remains, condi-

tioning how later phases of the identification process are

addressed [2]. It is usually carried out by the analysis of the

pelvis [3] or the skull [4, 5], although in their absence there

are other methods that also obtain good results, such as

odontometry [6] and the metric or morphological analysis

of the postcranial skeleton [7], as would be the case with

the morphological analysis of the distal epiphysis of the

humerus [8–10]. The latter is of special interest due to the

resistance of the bone and the preservation of its distal end

(see Fig. 1). These properties make the humerus an ideal

option for sex estimation in the absence of the pelvis and

the skull, as it can resist when those two are not available.

In general, these methods focus on the visual observation

of the sexual dimorphisms (difference in size and shape

between male and female individuals) that are present in

the bones, which makes them subjective, error-prone and

hardly replicable (see Fig. 2). However, there are also

methods that focus on a geometric morphometric analysis

[10], being less subjective but also much slower.Javier Venema and David Peula have been contributed

equally to this work.

Extended author information available on the last page of the article

1 Forensic anthropology deals with the study of the skeleton and its

application to medico-legal problems [1].
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As an alternative, artificial intelligence (AI), concretely

machine learning (ML), and mainly deep learning (DL) as

a set of techniques within it could reduce the classical

methods subjectivity. In addition, it could automate,

accelerate and reduce the costs in time of the techniques

used in FA. In this sense, the last advances in deep neural

networks, and more specifically in convolutional neural

networks (ConvNets), may allow us to address the task of

sex estimation in an automated manner.

The aim of this paper is to obtain a model that automates

the task of sex estimation in adult individuals from the

humerus bone, providing forensic anthropologists with an

alternative method for solving human identification prob-

lems in a precise, objective, efficient, easy and

Fig. 1 Location of the humerus

in the postcranial skeleton (A).
Distal epiphysis of the humerus

(B). Images were obtained and

modified from [8]

Fig. 2 Sexual dimorphisms proposed by [8] for sex estimation from

the humerus. The trochlear constriction (in blue): the angle of the

central part of the trochlea respect to the central axis of the humerus

tends to curve gradually and to a lesser extent in the masculine, unlike

the feminine, which tends to curve sharply and more accentuated; the

trochlear symmetry (in red): the central part of the trochlea tends to be

more symmetrical in the female humerus than in the male humerus;

morphology of the olecranial fossa (in green): it is usually more

superficial and triangular in the male humerus, unlike in the female,

which tends to be deeper and oval. Images were obtained and

modified from [8]
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reproducible manner (see Fig. 3). Since little data are

available, we will perform a comparative analysis between

classical computer vision techniques, which use hand-

crafted features and a separated classification, and recent

DL models trained in an end-to-end manner. Regarding

those end-to-end models and also because of the little data

available, our first approach will be based on applying

transfer learning to well-established networks. After per-

forming the analysis, we will test the best model and

compare its results to those obtained by a human expert

who used a visual method [8] on the same data and with

state-of-the-art results in sex estimation using the humerus

[10]. Finally, we will visualize activation maps to have an

intuition about which regions of the input images have a

larger impact on the output. This will allow us to identify

new discriminative regions in anthropological terms.

Therefore, the main contributions of this paper are:

• The development of an automatic and precise sex

estimation method, which is more objective and

reproducible than the visual method proposed in [8]

and less time consuming than the morphogeometric

method proposed in [10].

• The objective validation of the dimorphic traits that

have already been proposed for sex estimation from the

humerus, as well as the discovery of a new region of

interest.

This paper is organized as follows. Section 2 describes

previous work, both in FA methods to estimate sex using

the humerus and in sex estimation using AI techniques.

Section 3 discusses the experimental protocols (dataset and

AI techniques) used to find an accurate sex estimation

model. The results of these experiments are shown and

discussed in Sect. 4, which also compares the best method

with a human expert. Conclusions and future works are

outlined in Section 5.

2 Related works

In this case, related works should be divided into two

different groups. On the one hand, since this work is related

to FA, and more precisely with sex estimation using the

humerus bone, we must describe which are the main

methods used in the field to perform this task. Moreover,

since we want to compare our results with those that can be

obtained with classical FA methods, it is important to show

their performance. On the other hand, it is also fundamental

to describe the main works that use AI for the task of

forensic sex estimation.

ConvNets have been extensively applied in the field of

medicine, but there is little work in FA and even less in sex

estimation. There are proposals that have applied DL

techniques for classifying images of different bones to

estimate sex. Bewes et al. [11] achieved a 95% accuracy

using skull images of adult individuals by applying transfer

learning to a GoogleNet [12] model that had been pre-

trained on ImageNet [13]. Rajee and Maythili applied fine-

tuning to the ResNet50 [14] architecture using 1000 noise-

filtered dental X-ray images, achieving an accuracy of

98.27%. They also visualized activation maps to observe

what the model was learning. Vila et al. proposed a method

Fig. 3 The main objective of

this paper is to obtain an

automatic, fast and easy to use

method that, once trained with

labeled images, is capable of

estimating sex when receiving

new images of the humerus.

This figure outlines the

methodology that is followed to

build that model
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for sex estimation using panoramic dental radiographs.

They tested three different approaches to perform this task.

The first one is DASNet, which was proposed in [15] as a

ConvNet for age estimation from panoramic radiographs.

DASNet is composed by two ConvNets, one for age esti-

mation and another one for sex estimation. The latter is

used to extract sex features that are then concatenated with

the age features obtained by the other network just before

performing the age prediction (as sex is important to esti-

mate age). Although DASNet is not conceived for sex

estimation, it obtains state-of-the-art results, so the authors

proposed DSANet, which uses the same structure as

DASNet but inversely, that is, it uses age features to esti-

mate sex instead of sex features to estimate age. They also

tested using a VGG16-based [16] architecture, but DSANet

gave the best results, getting an accuracy over 80% in

every age group, including children, and an accuracy

between 90% and 96% in every adult group (over 16 years

old). Cao et al. [17] used pelvis CT scans to estimate sex.

They obtained 3D shapes from those CT scans and then

extracted three views of interest from them. As each of

those views is a 2D image, they can use a 2D ConvNet, in

this case GoogleNet [12] pre-trained on ImageNet [13], for

sex estimation from each of them. When combining the

three models, which is done using an average weighted by

the test accuracy of each of them, they obtain an accuracy

of 97.1% in a single-blind trial, being more precise than the

anthropologist with whom they compare. In [18], the

authors followed a similar approach, but in this case, they

obtained an accuracy of 100% in test using only the images

corresponding to the view of the ventral pubis.

Some authors, like Ortega et al. [19] and Kaloi et al.

[20], also used ConvNets for estimating sex, but they

focused on children individuals. The former used pelvis

images to perform a comparative study between different

methods, of which VGG16 [16] was the best option, getting

an accuracy of 59% that was very close to the 61%

obtained by a human expert. The latter used hand radio-

graphs and obtained a 98% accuracy by training their own

architecture, which contained four convolutional layers and

two dense layers, ReLU as activation function and a

dropout [21] rate of 0.8, from scratch using the Adam [22]

algorithm.

Other research has focused on using techniques that do

not involve the use of ConvNets. On the one hand, there are

some papers that develop semi-automatic methods. In these

works, a forensic anthropologist manually extracts some

geometric features from the bone. Those features are then

used to train a classifier. [23] and [24] are relevant

examples in this regard. In the former, the authors extracted

38 features from the pelvis and used them to train a partial

least squares model. In the latter, the authors positioned 16

semilandmarks over images of the posterior view of the

humerus and used them to train an LDA model. As it can

be seen, since this kind of methods requires a manual

feature extraction phase, they are slow and difficult to

apply.

On the other hand, there are also some fully automatic

methods that just do not use ConvNets. For instance, in

[25], the authors employ the wavelet transform to create a

method for the objective quantification of sexually dimor-

phic features and use it to successfully estimate sex in a

pilot sample of three-dimensional meshes of the skull. In

[26], the authors present a hybrid approach of artificial

neural networks and metaheuristics to estimate sex from

hand radiographs of children. To do that, they divide the

images into six age groups and measure the length of 19

bones of the hand in an automated manner. Using those

lengths as features, they get an accuracy of � 70%. Finally,

Imaizumi et al. [27] developed a method for sex estimation

of adult individuals using 3-dimensional shapes of the

skull. They obtained 100 skull shapes from CT scans and

created three different models from them: use the whole

skull, the cranium only and the mandible only. They

obtained a point cloud from the meshes and then used

partial least squares regression for dimensionality reduc-

tion. Using SVM for classification, they obtained a 100%

accuracy both using the skull and its separate parts. Those

results were obtained in a double-looped cross-validation

process, where the first loop is used for hyperparameter

tuning and the second one for accuracy estimation.

It can be seen that every work that has been mentioned

uses images from the skull, pelvis, hand or teeth. As a

result, neither the humerus nor any other long bone has

been used in the development of any automated sex esti-

mation method. However, sex estimation from a robust

bone, such as the humerus, can be important in multiple

situations in which the aforementioned methods would not

be applicable because of the deterioration, breakage or

disappearance of the used bones, as well as in situations

that require the study of isolated bone remains without

anatomical connection, such as the study of ossuaries.

Moreover, these situations often require the identification

and therefore sex estimation of a great quantity of indi-

viduals, which makes the automation of the estimation

even more important. Some examples include natural dis-

asters, genocides, terrorism, accidents involving several

people or mass graves.
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3 Materials and methods

3.1 Dataset

We have worked with a dataset of humerus photographs

obtained from two identified collections (from the Ceme-

tery of San Jose and the Cemetery of Lucena) located in the

Physical and Forensic Anthropology Laboratory of the

University of Granada (Spain). Individuals in the collec-

tions used are of current chronology (20th century) and

population of Mediterranean origin. These are identified

collections, of which reliable information is available

thanks to the existence of death and/or burial data. Around

90% of the skeletons that make up these collections are in a

good state of conservation. Exclusion criteria for the study

have been a poor state of preservation, pathological alter-

ations, subadult individuals and the lack of antemortem

information. Once they have been applied, we are left with

401 individuals, with 213 males and 188 females whose

ages range between 22 and 102 years old (see Table 1 for

more information). We used images of the right humeri.

The photographs were made with a Lumix DC-GH5

camera (Panasonic Corp, Japan) with Lumix G Vario

14-42 mm lens (Panasonic Corp, Japan). In order for the

epiphysis to remain focused and undistorted, the distal end

of the humerus was placed in the center of the frame with a

scale and label of the corresponding individual. The pho-

tographs were taken with a diaphragm value f/8 to 0.4

meters with a focal length of 42 mm. The resulting images

are shown in Fig. 4.

These images have been divided in a random and

stratified manner into a training set, with 80% of the

images, and a test set, which will be used to evaluate the

best model once it has been selected by the application of

5-fold cross-validation. This test set initially contained all

of the images that were not in the training one, but we

dropped three of them since the expert with whom we want

to compare our results dropped them because of their bad

state of preservation. By doing this, we can perform this

comparison with the exact same data.

3.1.1 Methods

As previously said, because of the little data available, we

have carried out a comparative analysis between hand-

crafted feature extraction methods followed by a classifier

and neural models trained end-to-end. In the first case,

HOG features [28] have been extracted and provided as the

input of three different models: SVM [29], random forest

[30] and logistic regression. HOG features are usually good

enough for image classification tasks, as they capture shape

information well. Other well-known feature extraction

algorithms, such as SIFT [31], SURF [32] or ORB [33],

which detect points of interest before the feature extraction,

are usually more suitable for different tasks, such as object

matching. With respect to the tested classification algo-

rithms, SVM is usually used after HOG feature extraction,

while logistic regression and random forest have been

introduced as a simple and a more complex but powerful

model.

As for the DL-based approach, we have used transfer

learning techniques over two different architectures:

VGG16 [16] and ResNet50 [14], both of them pre-trained

on ImageNet, as well as early stopping to halt training

when it starts worsening and the Grad-CAM algorithm [34]

to obtain activation maps that allow us to visualize what

the network is learning. Adam [22] was employed as

optimization algorithm. The use of transfer learning over

well-established architectures has two main reasons.

Firstly, it has been shown that using a properly tuned well-

established architecture works just as well as using an ad

hoc network [35]. Secondly, we have little data. In this

sense, we do not have enough data to train a model from

scratch, as it is difficult to obtain big amounts of annotated

data in the field of FA. Transfer learning is the general

approach to address this problem [36].

For model selection, we follow a simple procedure. In

the case of the more traditional ML techniques, we first

obtain the HOG features of the images to use them as the

input to the models. Once this is done, we use the grid

search technique with 5-fold cross-validation for hyperpa-

rameter tuning. In the case of DL techniques, it is impos-

sible to use grid search cross-validation due to the

computational complexity of the methods. In this case,

starting from a common initial configuration for all the

architectures that are tested, we follow an iterative

approach in which we change the value of a certain

hyperparameter or introduce some technique at each step.

Then, we observe how that change affects the values of the

error metrics using 5-fold cross-validation, and what effect

does it have in the evolution of the loss function (both in

training and validation for every fold) along the training

procedure. More details on the aforementioned initial setup

will be given in the experiments section.

Table 1 Information of age and number of individuals used in the

study

Men Women Total

Cementery of San Jose 125 104 229

Average age (years) 65 76

Cementery of Lucena 87 85 172

Average age (years) 73 82
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The usage of 5-fold cross-validation allows us to obtain

an optimal version of every model by tuning their hyper-

parameters. Once we have these optimal models, we select

the best among them and evaluate it on a never seen test

set. By doing this, we are able to obtain non-biased results

that can be used to compare the proposed method with a

human expert and the state of the art in FA. After per-

forming this comparison and to increase the interpretability

of the selected model, which ended up being ResNet50, we

used the Grad-CAM algorithm [34], which obtains acti-

vation maps that allow us to visualize what the network is

learning. More precisely, these activation maps highlight

the characteristics of the input that strongly influence the

output of the network, allowing us to explain why that

output is given and to compare if the important regions are

the same for the human expert and the model. This visu-

alization technique is related to explainable AI, which is a

field of great and increasing importance [37, 38] in AI

research, and that could be even of greater importance in

FA because of the need to justify decisions when applied to

medico-legal problems.

4 Experiments

4.1 Preliminary experiments

Although we have two photographs per individual, with

one image of the posterior view and another one of the

anterior view, we cannot use them all to train the same

model. To select which of them would be used, we per-

formed an initial test in which we took VGG16 [16] pre-

trained on ImageNet [13], substituted the last layer by

another one with just one neuron (for binary classification)

and applied transfer learning freezing the whole network

but the added layer. Then, we separately trained the model

with both the anterior and the posterior views. The results

showed that the posterior view was slightly better for

estimating sex, as the model reached an accuracy of 86%

when used, being higher than the accuracy of 85.5%

obtained when using the anterior view.

The accuracy (percentage of correctly classified exam-

ples) has been the main metric that we have observed to

evaluate model performance, although due to the slight

imbalance in the data, precision and recall have also been

calculated. In this case, precision refers to the percentage

of examples classified as males that are truly males (so it

decreases when the number of incorrectly classified

females increases), while recall refers to the percentage of

examples that are truly males and that were classified as

such (so it decreases when the number of incorrectly

classified males increases). In addition, to improve the

interpretability of the results in the final comparison, the

confusion matrix has also been obtained, which allows us

to observe the specific results without summarizing them in

a single value.

Table 2 shows the values of the metrics in cross-vali-

dation for the best version of each of the tested models.

While it can be seen that all models perform considerably

Fig. 4 Images that are taken for

each individual of the

collection. They include both

the anterior and posterior view

of the bone

Table 2 Comparison of the best results obtained by each model in

validation (best in bold)

Model Accuracy (%) Precision (%) Recall (%)

VGG16 88.8 89.1 89.9

ResNet50 87.8 91.4 85.9

SVM 86.6 88.0 86.4

Random forest 86.9 88.7 86.4

Logistic regression 86.3 88.8 84.6

Random 50.0 52.8 49.9

We include a random model (last row of the table) to show that every

classifier is clearly superior to it
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well, it is important to note that the DL techniques are

slightly superior. Regarding the selection of the best model,

although it can be observed from the values of the metrics

that VGG16 seems better than ResNet50, it is necessary to

highlight two important factors. The first one is that

ResNet50 is lighter than VGG16, so it can be more easily

aggregated into an application. The second and most

important one is that in the graphs that show the evolution

of the validation loss along the training process we

observed a much higher variability for VGG16 than for

ResNet50. By this, we mean that while ResNet50 loss

gradually declined along consecutive epochs, VGG16 loss

was varying a lot, with high increases and decreases (what

we called variability) during the training process. This is

due to the higher learning rate used for the optimizer in the

case of VGG16 (as it improved cross-validation results).

This second factor is very important due to the use of early

stopping, since the stopping and evaluation of the model

are done on the same validation set for every fold. As it can

be noted, this introduces a slight bias in the validation

process, because we stop when the model works best and

then evaluate it on the same data. This bias will be higher if

there is a lot of variability, since the model worsens more

after stopping training, which makes us think that

ResNet50 will extrapolate better to the test set and to a real

scenario. The best version of VGG16 that does not have so

much variability between epochs is slightly worse than

ResNet50, and that conditioned us to take ResNet50 as the

best model.

The tested and best hyperparameters for each model

were the following:

• VGG16: Fine-tuning of the last 0, 2, 4 and 6 layers. We

started with 0 (no fine-tuning) and increased from there

until the results started worsening because of an

increase in variance. We retrain only a few layers

because of the danger of overfitting due to the little data

available. Adam optimizer with b1 ¼ 0:9, b2 ¼ 0:999

and a learning rate of 0.001, 0.0001, 0.01 and 0.1 for the

first tuning phase (before unfreezing the layers at the

end of the model, which means training only the

classification layer); and 1e-5 and 1e-6 for the second

tuning phase (after unfreezing the layers). Batch size of

32, 64 and 128. Early stopping with patience of 5

epochs and a maximum of 30 epochs, as we observed

that we needed no more than that. The best version

retrained the last four layers, used the Adam optimizer

with a learning rate of 0.01 in the first phase and of

1e-5 in the second phase and took a batch size of 32.

• ResNet50: Fine-tuning of the last 0, 6, 10 and 14 layers.

As in VGG16, we started with 0 (no fine-tuning) and

increased from there. In this case retraining 10 and 14

layers gave similar results, obtaining a bias close to 0

that made it unnecessary to increase the number of

retrained layers to reduce it. Adam optimizer with

b1 ¼ 0:9, b2 ¼ 0:999 and a learning rate of 0.001,

0.0001 and 0.01 for the first tuning phase (before

unfreezing the layers at the end of the model, which

means training only the classification layer); and 1e-5

and 1e-6 for the second tuning phase (after unfreezing

the layers). Batch size of 32 and 64. Early stopping with

patience of 5 epochs and a maximum of 30 epochs. The

best version retrained the last ten layers, used Adam

optimizer with a learning rate of 0.001 in the first phase

and of 1e-5 in the second phase and took a batch size

of 32.

• SVM: For the regularization hyperparameter C, where

the higher the C the weaker the regularization, we start

trying with consecutive values in a logarithmic scale

from 0.01 to 10. After observing that 0.1 was the best

option we refined the hyperparameter with close values

to it (from 0.04 to 0.08 by 0.02 and from 0.2 to 0.8 by

0.2) only for the linear kernel once we saw it was the

best one. For the kernel, we tried linear (no kernel),

Gaussian, sigmoid and polynomial with degrees 2, 3, 4

and 5. For the c parameter of the Gaussian and sigmoid

kernel, which is used in scikit-learn to obtain r, we tried
1/m and 1/ðm� VarðXtrainÞÞ where m is the number of

features and VarðXtrainÞ is the variance of the training

set, as those are common values. The best option was

using a linear kernel with C ¼ 0:2.

• Random forest: 50 and 100 trees, as we saw these were

enough estimators. For m the number of features used to

split each node, we tried with m ¼ p, m ¼ ffiffiffi

p
p

and

m ¼ log2p, where p is the total number of features, as

these are the common values. For the splitting criteria,

we used Gini and the entropy; and for the minimum

number of samples required to split a node (this is to

reduce variance) we tried 2 (splitting at every impure

node), 0.1n and 0.2n, being n the number of samples.

The best version uses 50 estimators, Gini as splitting

criteria, m ¼ p (so we end up using bagging) and

0.1n samples required to split a node.

• Logistic regression: We tried both L1 and L2 regular-

ization with a C of 0.01 to 10 once more in consecutive

values of a logarithmic scale. After seeing that the best

option was L2 regularization with C ¼ 1, we tried to

refine C by trying with 0.5, 2, 3, 4 and 5 first, and with

every value from 1.25 to 2.75 by 0.25 after that. The

best option was using L2 regularization with C ¼ 1:5.
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• For the HOG features extraction, we used the default

parameters of the algorithm, which are detailed in [28],

as they are not usually modified.

All the experiments have been performed using Google

Colaboratory. We have used Keras (2.8.0) over tensorflow

(2.8.2) for the DL experiments, and OpenCV (4.6.0) and

scikit-learn (1.0.2) for traditional ML techniques. The code

and the best model (ResNet50) weights are available as

supplementary material. A web application for sex esti-

mation using humerus images will be available at the

Panacea Cooperative Research website (https://www.pana

cea-coop.com/).

4.2 Comparison with state-of-the-art
and discussion

Once ResNet50 has been selected as the best model, its

results in test can be compared with the human expert using

the state-of-the-art visual method [8], as well as with the

morphogeometric method proposed in [10] without using

the centroid size (since ResNet50 does not have that

information) and using it (since it is part of the method).

The comparison with the expert is performed using exactly

the same data, while for the morphogeometric method we

used the best results (obtained with the same posterior view

that we used) that are given in [10] with a set of 32 adult

females and 40 adult males. The overall comparison is

shown in Table 3, while Table 4 displays the confusion

matrices obtained by ResNet50 and by the human expert.

Results show that the DL model that we have developed

is able to obtain better results than a human expert using

the same data. It is also more accurate than the method

proposed in [10] when the centroid size is not introduced,

but slightly worse than this same method when the centroid

size is added. In respect with our objectives, we have not

only succeeded in the development of a competitive, effi-

cient and objective automatic model, but we have also

improved the results obtained by the methods that are

currently used and that add no extra information such as the

centroid size. When the centroid size is added, the

Table 3 Comparison between the best model (in test), a human expert

(with the same data) and the morphogeometric method without using

the centroid size (NCS) and using it (WCS)

Men (%) Women (%) Total (%)

Human expert 80.49 86.49 83.33

ResNet50 92.68 89.19 91.03

Morphogeometric NCS [10] 77.92 71.78 75.19

Morphogeometric WCS [10] 90.77 94.88 92.60

The table presents the percentage of correct classifications (best in

bold)

Table 4 Confusion matrices for

ResNet50 (in test) and the

human expert

Predicted

woman

Predicted

man

Predicted

woman

Predicted

man

Woman 32 5 Woman 33 4

Man 8 33 Man 3 38

Human expert ResNet50

Fig. 5 Results of applying Grad-CAM on correctly classified images (the more yellow the region, the higher its importance in the classification).

We show the three regions that are mainly observed independently, but for most images two or all of them are observed at the same time
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morphogeometric method is slightly superior but compa-

rable to our model. Given that, it could be concluded that

the bone shape information (without considering the size of

the centroid) is sufficient to perform an adequate estima-

tion, although it cannot be ruled out that the introduction of

information about the size of the centroid could contribute

to improving the results of DL and ML methods.

That said, accuracy is not the only thing that is important

in sex estimation. On the one hand, our model, which gives

precise, replicable and observer-independent metrics, is

more objective than the visual method proposed in [8] and

used by the human expert. On the other hand, the devel-

oped method is less time consuming than the morphogeo-

metric method proposed in [10] that requires the location of

landmarks over the bone. This improvement in time effi-

ciency is greater when the centroid size is obtained, since it

has to be measured from those landmarks. In our case, once

the network has been trained, it takes less than a second to

estimate sex.

Once the comparison is done, we use the Grad-CAM

[34] algorithm to obtain heat maps as the ones shown in

Fig. 5. These visualizations allow us to verify that some of

the regions that have more weight in the estimation are the

ones proposed by the FA literature [8]. More precisely, the

model observes the olecranon fossa and the trochlea in its

estimations. The fact that the neural network has been able

to identify sexual dimorphisms in these regions without

previous information is not only a guarantee that the model

learns what it should, but also an objective validation of the

dimorphic traits proposed in FA and a demonstration of the

ability of the model to replicate human knowledge. In

addition, the visualizations show that the neural network

has detected other possible dimorphic traits of the humerus

not yet considered, so it does not only replicate knowledge,

but also generates it. In this case, we have detected a new

region of interest in the humerus shaft that could be rele-

vant in order to achieve better results than the expert. More

precisely, we think it is the width of the yellow region in

Fig. 5c what could be an important trait for sex estimation.

That being said, further anthropological studies are needed

to corroborate these new hypotheses.

The superiority with respect to the human expert could

be due to the ability of the model to perform the estimation

with the combination of various sexual dimorphisms,

whereas the human expert decided to focus only on the area

of the olecranon fossa (see Fig. 6). This is because, as has

happened to other authors [9], observing it exclusively is

what gave him the best results. The ability of the model to

use the new detected region could also be having an impact

in its good results.

5 Conclusions and future works

In this paper, we have addressed sex estimation from

humerus bone images using DL techniques. This is a highly

complex and useful task in FA, since it contributes to

forensic human identification from skeletal remains. For

this purpose, we have compared DL and classical computer

vision techniques. Our best model obtains better results

than a human expert applying the visual method proposed

in [8]. It also outperforms the morphogeometric method

proposed in [10] when the centroid size is not considered

and has comparable results to it when considering it. The

visualization of activation maps allows us to confirm that

Fig. 6 Examples that where misclassified by the human expert but correctly classified by the model. While the expert focuses on the olecranon

fossa, the network gives more attention to the other two dimorphic regions in these specific examples

Neural Computing and Applications

123



the model observes the regions proposed by [8], as well as

a new region that has not been considered before.

Two main conclusions arise from the results of this

work. Firstly, it has been shown, considering the criterion

that a sex estimation method must exceed 80% of correctly

classified cases to be considered usable [39], that the

humerus bone, and more specifically images of its posterior

view, allows us to obtain an effective automatic method for

sex estimation. Secondly, it has been proven that the

application of AI techniques allows to replicate and even

improve the results that human experts are able to obtain by

visual methods of sex estimation. In this sense, while the

human expert is able to correctly classify 83.33% of the

individuals, the best developed model achieves an accuracy

of 91.03%. The morphogeometric method proposed in [10]

reaches only 75.19% accuracy when not considering the

centroid size, which is much lower than ours. However,

this accuracy increases to a 92.60% when considering the

centroid size.

It should be noted that the proposed model obtains

objective error metrics that do not depend on the observer

analyzing the bones, which is the case with visual FA

methods, and that it is fast and easy to apply, which are the

downsides of the morphogeometric method [10]. Thus, we

have developed an automatic method of sex estimation that

is not only useful and precise, but also cheap, fast and

objective at the same time. This objectivity, as well as the

ability to provide error metrics, is especially relevant in the

medico-legal field.

The study, in the field of FA, of the proposed dimorphic

region; the search or validation of sexual dimorphisms in

other bones by using algorithms such as Grad-CAM; and

the validation of the model in populations that are not of

Mediterranean origin, constitute our main lines of future

work. Other research may focus on improving results,

either by adding the centroid size as input to the developed

models or through experimentation with other ConvNet

architectures or feature extractors. This improvement in

results does not only include increasing the accuracy of the

model, but also making it usable for its application to

images that have not been obtained using the acquisition

protocol described in Sect. 3. In this regard, our model is

the first existing prototype for automatic sex estimation

from the humerus bone, but we cannot assure that it would

work with images obtained under different conditions.

Because of that, we ought to keep training the model

incrementally with new images that are not acquired using

the protocol that we have described.

For its good results, the method proposed in this paper

will be included in the biological profile estimation toolbox

of Skeleton-ID,2 the only commercial solution for AI-dri-

ven forensic identification when using DNA or fingerprint

analysis is not feasible.
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