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Abstract: The combination of graphitic carbon nitride and the metal-organic framework UiO-66-NH2

has been developed with the aim to enhance the photocatalytic activity of pure semiconductors.
Different proportions of g-C3N4 and UiO-66-NH2 were combined. Complete characterization analysis
of the resulting photocatalytic materials was conducted, including N2 adsorption isotherms, XRD,
FTIR, STEM-EDX microscopy, DRS-UV-visible, and photoluminescence. The photocatalytic activity
was tested in an aqueous solution for the removal of acetaminophen as the target pollutant. From the
obtained results, less than 50% of UiO-66-NH2 incorporated in the g-C3N4 structure enhanced the
photocatalytic degradation rate of both bare semiconductors. Concretely, 75% of g-C3N4 in the final
g-C3N4/UiO-66-NH2 heterostructure led to the best results, i.e., complete acetaminophen elimination
initially at 5 mg·L−1 in 2 h with a pseudo-first order rate constant of ca. 2 h−1. The presence of
UiO-66-NH2 in the g-C3N4 enhanced the optoelectronic properties, concretely, the separation of the
photo-generated charges was improved according to photoluminescence characterization. The better
photo-absorption uptake was also confirmed by the determination of the quantum efficiency values
of the heterostructure if compared to either pure g-C3N4 or UiO-66-NH2. This photocatalyst with the
best activity was further tested at different pH values, with the best degradation rate at a pH close to
the pHpzc ~4.15 of the solid. Sequential recycling tests demonstrated that the heterostructure was
stable after five cycles of use, i.e., 15 h. A high contribution of photo-generated holes in the process of
the degradation of acetaminophen, followed marginally by superoxide radicals, was suggested by
scavenger tests.

Keywords: photocatalysis; graphitic carbon nitride; UiO-66-NH2; water treatment; acetaminophen

1. Introduction

Freshwater is one of the most important resources on Earth, which has been threatened
in recent decades by anthropogenic activities, raising the need for the removal of pollu-
tants to potentiate the reuse and the implementation of the circular economy concept [1].
The need to ensure the availability and sustainable management of water and sanitation is
included in the sixth sustainable development goal of the United Nations 2030 agenda [2].
The traditional water treatment technologies developed for urban sewage must be updated
to accommodate current human lifestyle in which multiple different organic compounds
are discharged into wastewater effluents. Commonly, many of these complex pollutants are
not easily removed by the conventional biological oxidation processes based on activated
sludge [3,4]. These organic anthropogenic compounds have been labeled as contaminants
of emerging concern, and have been detected at low concentrations, i.e., at the µg·L−1 level
in the effluent of urban wastewater treatment plants [4,5]. The nature of these pollutants
is diverse and includes pharmaceutical compounds, pesticides, personal care products,
detergents, flame retardants, plasticizers, and other industrial chemical compounds [6].
Although the consequences for living beings are unknown in the long term in many cases,
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some of them have been reported as endocrine disruptors since they can alter the functions
of hormones, which results in diverse health effects [7,8].

Chemical processes have been demonstrated as an efficient strategy to remove aqueous
pollutants that cannot be addressed by traditional methods [9,10]. Among them, diverse
techniques, namely advanced oxidation processes, are based on the generation of hydroxyl
radicals, a powerful species capable of unselectively oxidizing organic matter. Photocataly-
sis is a process respectful of the environment and capable of taking advantage of radiation
to transform it into chemical energy. The process consists of the activation of a semiconduc-
tor when irradiated with photons of energy larger than their bandgap. Then, the electrons
of the valence band can move to the conduction band, producing holes in the valence band.
The electron–hole pairs can migrate to the surface of the photocatalyst where some reactive
species can be produced. Due to the powerful oxidant capability of these species, including
superoxide and hydroxyl radicals or photo-generated holes, the photocatalytic abate-
ment of contaminants of emerging concern has been raised as an efficient technology for
water treatment [11,12].

Titanium dioxide has been exploited as a semiconductor for water photocatalytic
applications due to its abundance, inexpensiveness, low toxicity, and bandgap energy of
approximately 3.2 eV, which allows photo-excitation with radiation up to 387 nm [13]. How-
ever, great efforts have been paid to overcome the main limitations of titanium dioxide as
a semiconductor, i.e., limited absorption of the solar spectrum in the visible region and the
high recombination rate of the photo-generated electron–hole pair [14]. In this sense, many
materials with photocatalytic activity have been developed to address these issues. For ex-
ample, graphitic carbon nitride (g-C3N4) is a two-dimensional π-conjugated polymeric
graphitic-like structure built from the covalent bonds between carbon and nitrogen, which
has been recognized as a promising semiconductor for environmental applications [15].
g-C3N4 displays high chemical and thermal stability with a mild bandgap energy of 2.7 eV,
which enables the excitation with radiation up to 460 nm [16]. Metal–Organic Frameworks
(MOFs) are porous structures built by metal oxo clusters or secondary building units (SBU)
and organic linkers acting as a bridge between the SBU. As a result, a highly porous struc-
ture with active redox behavior is produced, which can be used as a potential photocatalyst
for water purification [13,17]. MOFs display the advantage of an easy design of certain
properties such as the size of the porous cages by selecting appropriate organic ligands,
or the tuning of the photocatalytic response by the functionalization of the ligand with
certain organic groups. UiO-66 is a Zr-MOF first synthesized at the University of Oslo [18].
The structure is made of Zr6O4(OH)4 octahedron oxo clusters as SBU 12-coordinates with
benzenedicarboxylic acid molecules, which act as ligands. The UiO-66 structure is extraor-
dinarily stable in an aqueous solution [19]. Moreover, the bandgap energy of UiO-66 can
be tuned by the functionalization of the aromatic ring [20,21], giving the functionalized
UiO-66-NH2 a promising photocatalytic response and lower bandgap since the amino
group acts as the antenna of the visible radiation.

The coupling of two semiconductors to build a heterojunction is one of the most inter-
esting strategies to minimize the individual withdrawals of bare photocatalysts; therefore,
enhancing the photocatalytic response. An adequate choice of the relative conduction
and valence bands positions of the two selected photocatalysts leads to a selective charge
transfer, guiding the electrons to the surface of the desired phase of the composite [22].
Thus, the combination of graphitic carbon nitride with other semiconductors, such as
TiO2 and/or Ag particles, has been proven efficient [23]. The heterojunctions based on
UiO-66-NH2 have been also reported as a proficient approach [24]. One-pot synthesis
routes, when possible, are preferred for promoting good hetero-interfacial contact between
the two semiconductors [25]. However, the synthesis of the heterojunction is not always
possible in only one step. This is the case for the g-C3N4/UiO-66-NH2 composite. g-C3N4
is prepared from the thermal decomposition of nitrogen-rich organic precursors under
a controlled atmosphere at temperatures as high as 500 ◦C [16], which is incompatible
with the hydrothermal synthesis of MOFs under mild conditions [17]. For that reason,
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a two-step route in which the MOF grows onto the surface of a previously synthesized
g-C3N4 is required [26].

This work reports the synthesis, characterization, and photocatalytic activity assess-
ment of the heterostructure that combines g-C3N4 and UiO-66-NH2, intending to overcome
the limitations of these two semiconductors and produce a synergistic activity in the re-
moval of aqueous pollutants. Although the g-C3N4/UiO-66-NH2 heterojunction has been
demonstrated as effective for CO2 [27] and Cr6+ reduction [28] or H2 production, this
work is focused on the characterization, catalytic assessment of acetaminophen removal,
and quantification of the absorbed radiation based on intrinsic kinetic parameters of the
reaction as the quantum efficiency. For the synthesis, UiO-66-NH2 has been grown onto
the surface of the g-C3N4 to ensure good interfacial contact between the two semicon-
ductors. Acetaminophen has been selected as the target pollutant since it is labeled as
ubiquitous in the list of pollutants of emerging concern due to its frequent detection and
the high concentration that is reported [29,30]. Different ratios of g-C3N4 to UiO-66-NH2
have been considered to establish the optimum relative proportion that minimizes the
undesirable recombination effect. The photocatalytic response of the optimum sample has
been further assessed at different pH values, the reusability in sequential cycles has been
tested, and a photocatalytic activation mechanism has been proposed based on a chemical
scavenger study.

2. Results and Discussion
2.1. Characterization of the g-C3N4/UiO-66-NH2 Heterostructures

The crystalline structure of the heterostructures was assessed by XRD. Figure 1A
depicts the XRD diffractograms obtained for pure g-C3N4, UiO-66-NH2, and their combi-
nation at different proportions. The patterns obtained for the MOF structure are in good
accordance with what is reported in the literature, file CCDC-1405751 [31]. This struc-
ture displays two intense peaks located at 2θ = 7.4◦ and 8.5◦, corresponding to (111) and
(200) crystallographic planes, respectively. On the other side, the XRD pattern of the
graphitic carbon nitride structure generates two peaks [32–34]. One is located at 2θ = 13.4◦,
attributed to the (100) plane, usually at low intensity, corresponding to the heptazine units.
In the obtained XRD pattern of g-C3N4, this peak was poorly defined. However, the second
peak that is attributed to the (002) plane, which appears as the consequence of the graphitic
character of the interlayered construction, was well-defined. The heterostructures with
different g-C3N4 to UiO-66-NH2 ratios displayed the peaks of both crystalline phases, with
a clear increase in the (002) peak of g-C3N4, as the amount of this component was raised.
This tendency in the XRD patterns has been observed in the case of this heterostructure [35]
or other MOFs, such as NH2-MIL-125, when combined with graphitic carbon nitride [26].

FTIR analysis was conducted to confirm the formation of the structures of the carbon
graphitic nitride and MOF UiO-66-NH2. Figure 1B depicts the FTIR spectra of the synthe-
sized heterostructures and pure components. In the case of g-C3N4, the typical footprint
of the vibration of the tri-s-triazine structure was obtained. The vibration of –NH−H and
–NH− groups generate a wide band located between 3000 and 3500 cm−1. The stretching
of the aromatic C−N rings of the tri-s-triazine group produces a group of peaks between
1000 and 1800 cm−1. Among them, the most intense peaks, located at 1620 and 1530 cm−1

are attributed to the aromatic C−N vibration, while the bands at 1310 and 1230 cm−1 are
responsible for the stretching vibration of C−N−(C)−C or C−NH−C bonds [36,37]. A very
characteristic peak at 810 cm−1 is registered in the g-C3N4 structure due to the interaction
of the different layers of triazine rings [38]. The FTIR spectra of UiO-66-NH2 displayed
some characteristic peaks in response to the vibration of the bonds in the MOF structure,
i.e., 2-amino-terephthalic acid (ATA) and the [Zr6O6(OH)4] oxo cluster. At ca. 1660 cm−1,
a peak appears, representative of the in-plane scissoring bending on N−H2 [39]. Two char-
acteristic peaks at ~1390 and 1570 cm−1 are attributed to symmetric and asymmetric
vibration of the O−C=O bond, respectively [40]. A very low-intensity peak located at
approximately 1500 cm−1 is representative of C=C aromatic bonds [41]. The bond between
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the aromatic carbon and the N of the amino group of the ATA molecule generates a peak
located at 1280 cm−1 [42]. The very intense peak at 765 cm−1 is characteristic of the C−H
bond [43,44]. Finally, the vibration of the [Zr6O6(OH)4] oxo cluster produces an intense
peak at ca. 655 cm−1 [21,45]. If the FTIR spectra of pure g-C3N4 and UiO-66-NH2 are
compared to the heterostructures containing both, a gradual contribution of the peaks can
be observed in each case.
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Figure 1. XRD patterns (A) and FTIR spectra (B) of the g-C3N4/UiO-66-NH2 heterostructures.

The morphological properties were studied by the STEM technique, see Figure 2. From
the micrographs obtained, two well-distinguishable phases were observed. The UiO-66-NH2
displayed very small particles, ranging from 20–50 nm with an octahedral shape, which were
aggregated in bigger groups. The g-C3N4 appeared joined to some of these aggregations
as irregular particles of bigger size, i.e., 200 nm. This heterogeneous interaction has been
reported for this heterostructure [27]. An EDX analysis allowed for the mapping of the
element composition to ensure the identification of both phases. As depicted in Figure 2,
the presence of the carbon nitride region was confirmed as the proportion of nitrogen was
higher, see EDX analysis on area #1, Figure 2E. Zr, C, and N at lower intensity were detected
in the small particles, a reminder of the octahedral shape as a probe of the UiO-66-NH2
presence. An EDX analysis on these particles, area #2, confirmed this hypothesis (Figure 2F).
Good contact between the two semiconductors was observed due to the smaller size of
the MOF. The UiO-66-NH2 particles, ten times smaller, appeared surrounding the g-C3N4
sheets. However, due to the agglomeration nature of the MOFs particles, not all of them
have the same opportunity to be in contact with the g-C3N4. This aspect predicts that there
should be an optimum ratio of UiO-66-NH2 proportion, a ratio that promotes the presence of
a layer of the MOF with enhanced contact with g-C3N4. A MOF excess would not necessarily
improve the photocatalytic activity since those MOF particles in excess would grow connected
to MOF particles onto the already covered g-C3N4 core. The photocatalytic activity of the
samples, discussed in the next subsection, corroborates this theory, proving that the prepared
heterostructures with an MOF of less than 50% led to the best results.
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N2-adsorption isotherms (Table 1) were carried out to assess the textural properties of
the synthesized solids. The isotherm of UiO-66-NH2 depicted a sharp N2 uptake typical
of Type I-like isotherms, see Figure S1, with a small hysteresis loop, which confirms
the high microporosity and surface area reached in the MOF, specific BET surface area
665 m2·g−1. This highly developed porosity is in accordance with the literature, in which
values up to 900 m2·g−1 have been reported for the UiO-66 family [46]. In contrast, g-C3N4
described a Type IV-like isotherm with almost negligible N2 adsorption uptake except at
high relative pressures, i.e., the BET surface area barely displayed 20 m2·g−1 and pore
volume 0.101 cm3·g−1. This fact provides evidence of the fairly scarce mesoporosity of
a non-porous material. The hybrid heterostructures showed textural properties within
the extremes of both phases. Higher porosity was obtained if the relative amount of the
MOF was raised. Moreover, the reduction in N2 uptake does not necessarily follow a linear
tendency with the expected proportion of the MOF in the final solid. This aspect has been
attributed to a partial blockage of MOF pores by g-C3N4 particles [26].

Table 1. Textural and optical properties of the g-C3N4/UiO-66-NH2 heterostructures.

Sample
N2 Isotherm DRS-UV-Vis

SBET (m2·g−1) SMP (m2·g−1) VT (cm3·g−1) VMP (cm3·g−1) EBG (eV)

UiO-66-NH2 665 463 1.256 0.250 2.84
25%-g-C3N4/UiO-66-NH2 505 346 0.839 0.177 2.82
50%-g-C3N4/UiO-66-NH2 379 252 0.648 0.130 2.80
75%-g-C3N4/UiO-66-NH2 196 132 0.315 0.065 2.78

g-C3N4 20 0 0.101 0 2.70

SBET: total specific surface area by BET method; SMP: micropore surface area by t-plot method; VT: total pore
volume; VMP: micropore volume by t-plot method; EBG: bandgap by Tauc plot method.

The optical properties were studied by the DRS-UV-visible technique. Figure 3 de-
picts the absorbance spectra and the estimation of the bandgap values by the Tauc plot
method considering them as indirect semiconductors [21]. The absorption spectra of the
UiO-66-NH2 displayed two well-defined peaks in the UV region. The first one located



Int. J. Mol. Sci. 2022, 23, 12871 6 of 18

at ca. 250 nm appears as a consequence of electronic transitions in the secondary built
unit of the MOF, i.e., electronic transition from the O atom to Zr in the oxo cluster [47].
A second peak located between 320 and 380 nm is attributed to the ligand-to-metal charge
transfer mechanism [48], which means transitions of π electrons from the amino group of
the linker to the metal oxo cluster [49]. These two bands in the heterostructures were less
defined as g-C3N4 was incorporated. All the samples extend their radiation harvesting to
the visible region, i.e., from 400–420 nm. From the values obtained for the bandgap values
(see Table 1), pure UiO-66-NH2 presents a higher value than g-C3N4, i.e., 2.84 vs. 2.70 eV,
which is consistent with the already reported values in the literature [16,47]. The bandgap
values of the heterostructures obtained by their combination are in accordance with the
relative content of both phases, within the limits of the pure phases.
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2.2. Photocatalytic Activity of the g-C3N4/UiO-66-NH2 Heterostructures

The photocatalytic activity of the g-C3N4/UiO-66-NH2 heterostructures at different
relative proportions was tested in the degradation of a target pollutant of emerging con-
cern as acetaminophen (ACE), whose presence in wastewater effluents has been frequently
reported [5,50]. Figure 4A shows the results obtained. A negligible contribution of adsorp-
tion was observed in all the heterostructures, including the pure g-C3N4 and UiO-66-NH2,
during the 30 min adsorption step carried out before irradiation. The sole contribution of
365 nm radiation, i.e., photolysis, led to 40% of ACE degradation in 4 h. The photocatalytic
tests led to the complete removal of ACE in all the samples tested after 4 h of treatment.
The pure UiO-66-NH2 sample displayed less photocatalytic activity than graphitic carbon
nitride. If the pseudo-first order rate constants (kObs) are calculated as a mere compara-
tive tool, the g-C3N4 sample performed ~1.6 times higher value if compared to the MOF,
i.e., kObs (g-C3N4) = 1.17 h−1 vs. kObs (UiO-66-NH2) = 0.74 h−1. Regarding the heterostruc-
tures, it was observed that the combination of both semiconductors enhanced the pho-
tocatalytic activity, reaching improved results if the UiO-66-NH2 was minor in the final
heterojunction, e.g., less than 50%. According to the pseudo-first order rate constant cal-
culated in each case (Figure 4B), the values followed the order 75%-g-C3N4/UiO-66-NH2
> 50%-g-C3N4/UiO-66-NH2 > g-C3N4 > 25%-g-C3N4/UiO-66-NH2 > UiO-66-NH2. The sam-
ples containing 50% and 75% of g-C3N4 led to a synergistic effect with boosted degradation,
which cannot be explained as the relative contribution of the pure phases. Concretely, the
sample 75%-g-C3N4/UiO-66-NH2 displayed a kObs = 2.0 h−1, which means ~1.7 folded value
concerning pure g-C3N4 and ~2.7 times the obtained with the pure MOF. An adsorption blank
test was carried out with this optimized sample, leading to no removal of ACE during the
whole period tested.
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Figure 4. Photocatalytic degradation of acetaminophen (ACE) with g-C3N4/UiO-66-NH2 heterostruc-
tures. (A) Temporal evolution of acetaminophen with the different samples. (B) Pseudo-first order
rate constant (kObs) of the different samples. Experimental conditions: V = 350 mL; T = 20 ◦C,
CACE = 5 mg·L−1; CCAT = 0.5 g·L−1.

The outstanding photocatalytic activity of 75%-g-C3N4/UiO-66-NH2 was also corrobo-
rated in terms of radiation uptake efficiency. The values of quantum efficiency at the beginning
of the photocatalytic reaction, e.g., time zero, shown in Table 2, after the estimation of the
local volume rate of photon absorption and the initial reaction rate. The values also followed
an outstanding performance of the sample 75%-g-C3N4/UiO-66-NH2, QE,0 = 0.052%.

Table 2. Quantum efficiency values of the g-C3N4/UiO-66-NH2 heterostructures.

Sample eα,ν (Einstein·cm−3·s−1) rACE,0 (mmol·cm−3·s−1) QE,0 (%)

UiO-66-NH2 3.50 × 10−8 6.82 × 10−9 0.019
25%-g-C3N4/UiO-66-NH2 3.50 × 10−8 8.73 × 10−9 0.024
50%-g-C3N4/UiO-66-NH2 3.55 × 10−8 1.42 × 10−8 0.040
75%-g-C3N4/UiO-66-NH2 3.55 × 10−8 1.83 × 10−8 0.052

g-C3N4 3.63 × 10−8 1.07 × 10−8 0.031

The optimum activity response of the heterostructures compared to the pure phases
cannot be explained according to the bandgap values obtained since the values were higher
than the 2.70 eV of pure g-C3N4 and the radiation used was monochromatic (365 nm).
For that purpose, an extra further analysis with the photoluminescence technique was used
to assess the effect of the recombination effect of the electron–hole pair, as a plausible reason
for the differences observed in the photocatalytic activity. The intensity of the PL peak is
linked to the rate of the recombination of the photo-generated charges. Thus, the higher
the intensity of the PL peak, the higher the recombination effect, which is undesirable for
the process [51]. The PL spectra of all the prepared samples are depicted in Figure 5. From
this figure, it is observed that the g-C3N4 displayed a higher PL intensity located at 462 nm
compared with UiO-66-NH2, whose maximum was moved slightly to a lower wavelength.
It can be deduced that the higher recombination rate of g-C3N4 is probably due to the
higher photo-activity of this sample. If the behavior of the heterostructures is analyzed,
the optimum ratios of 50 and 75% obtained in the tests of ACE degradation match the
lowest intensity of the PL peak. As the sample 75%-g-C3N4/UiO-66-NH2 performed the
best results, it was selected as the optimum sample for further study.
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2.3. Effect of the pH

The effect of the solution pH on the photocatalytic performance of the 75%-g-C3N4/UiO-
66-NH2 sample was assessed. Figure 6A depicts the influence of pH on the pseudo-first
order rate constant. This figure shows an important influence of the pH on kObs. At pH
values between 4 and 5, the highest value of kObs ~2 h−1 was obtained. If the pH was
raised or decreased from this interval, a drastic drop in the kinetic constant was registered.
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66-NH2. (A) Pseudo-first order rate constant (kObs). Experimental conditions: V = 350 mL; T = 20 ◦C,
CACE = 5 mg·L−1; CCAT = 0.5 g·L−1. (B) Determination of the pHpzc of 75%-g-C3N4/UiO-66-NH2 sample
by the drift method.
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The determination of the pH of zero charge was carried out to explain this behavior.
Figure 6B depicts the determination of the pHpzc by the drift method. A value of pHpzc = 4.15
was estimated, which means that the surface of the photocatalyst was positively charged below
this value and negatively charged over the pHpzc. The values reported in the literature for
either UiO-66-NH2 or g-C3N4 are close to that obtained in this work for the heterostructure.
A high acidic character of the MOF UiO-66-NH2 has been reported, with a value for the
pHpzc of 4.3 [52] or even lower, i.e., 3.9 [47]. This acidic character has been ascribed to the
change in the protonation stage of the Zr oxo cluster rather than the presence of the amino
group [53]. In the case of g-C3N4, whose presence is a majority in the 75%-g-C3N4/UiO-66-NH2
sample, the pHpzc has been reported at approximately 4.2 [54].

The acetaminophen molecule displays a weak acid behavior, with a pKa = 9.6–9.8 [55,56].
Over the pKa, the –OH group is deprotonated, leading to the ACE− anion. However, in the
pH range studied during the photocatalytic degradation tests, the acetaminophen molecule
was present in the neutral form (ACE0); thus, the influence of electrostatic interaction between
the ACE0 molecule and the surface of the photocatalyst seems to have a low impact on
the adsorption step required for approaching the surface where the reactions preferably
take place. Other interactions described for ACE with the solid include π-π and hydrogen
bonds [57], which would explain why the optimum results reached pH = 4–5, i.e., around the
circumneutral conditions for surface charge (pHpzc).

2.4. Stability and Reusability

The sample with the optimum ratio of graphitic carbon nitride and the MOF, i.e., 75%-g-
C3N4-UiO-66-NH2, was tested in sequential tests of recycling and reusing.
Figure 7A shows the results obtained after five consecutive runs. In terms of conversion, it
is observed that no significant loss was observed, with acetaminophen being completely
removed after 180 min. The kinetics of the process followed a slight decrease in the calcu-
lated pseudo-first order rate constant; i.e., 1.90 h−1 (1st run), 1.45 h−1 (2nd run), 1.42 h−1

(3rd run), 1.31 h−1 (4th run), and 1.26 h−1 (5th run). This marginal decrease in the kinetics
parameter could be due to the adsorption of final oxidation products onto the surface of the
photocatalyst, subtracting photocatalytic active points for oxidation of new acetaminophen
molecules. The stability of the solid was also assessed by analyzing the structure after
the final run. As depicted in Figure 7B, no changes in the XRD pattern were registered.
The characteristic points of both phases, g-C3N4 and UiO-66-NH2, were well-defined in
the reused sample. Less than 10% loss of intensity in the highest peak was reached in the
reused sample. Regarding the FTIR spectra, a very similar pattern was obtained after the
fifth cycle, with the most characteristic peaks of the heterostructure well-defined, as in the
fresh sample. Concretely, the peak located at 810 cm−1, characteristic of the interaction
of different layers of triazine rings, did not lose intensity. The aromatic C−N vibration
(1620 and 1530 cm−1) was also well-defined. The peaks responsible for the UiO-66-NH2
structure, such as O−C=O (1390 and 1570 cm−1), the in-plane scissoring bending on N−H2
(1660 cm−1), the C−H in the aromatic ring (765 cm−1), or the peak at 655 cm−1 that appears
due to the presence of the oxo cluster unit, were defined in a very similar intensity and
shape similar to the fresh sample. Therefore, it can be concluded that the sample displayed
stability in terms of photocatalytic activity and structure after five sequential reusing cycles.



Int. J. Mol. Sci. 2022, 23, 12871 10 of 18

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 19 
 

 

appears due to the presence of the oxo cluster unit, were defined in a very similar intensity 
and shape similar to the fresh sample. Therefore, it can be concluded that the sample dis-
played stability in terms of photocatalytic activity and structure after five sequential reus-
ing cycles. 

 
Figure 7. Stability tests of 75%-g-C3N4/UiO-66-NH2 sample. (A) Photocatalytic degradation of acet-
aminophen in sequential experiments of photocatalyst reuse. Experimental conditions: V = 350 mL; 
T = 20 °C, CACE = 5 mg·L−1; CCAT = 0.5 g·L−1. (B) XRD diffractograms before and after use in the 5th run. 
(C) FTIR spectra before and after use in the 5th run. 

2.5. Plausible Mechanism of Photocatalytic Degradation 
The influence of the reactive oxidation species (ROS) involved in the process of the 

photocatalytic degradation of ACE with the 75%-g-C3N4/UiO-66-NH2 sample was tenta-
tively studied by the addition of specific chemical scavengers. Figure 8A depicts the 
pseudo-first order rate constant for the blank test and the values registered in the presence 
of different specific chemical scavengers. The role played by superoxide radicals (O2•−) 
was studied by replacing the O2 bubbling with N2. The kObs in the presence of N2 was 
reduced ~2.3 times compared to the blank test, which provides evidence of the importance 
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was evaluated by adding ethanol (EtOH), due to the high potential of alcohols to react 
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Figure 7. Stability tests of 75%-g-C3N4/UiO-66-NH2 sample. (A) Photocatalytic degradation of ac-
etaminophen in sequential experiments of photocatalyst reuse. Experimental conditions: V = 350 mL;
T = 20 ◦C, CACE = 5 mg·L−1; CCAT = 0.5 g·L−1. (B) XRD diffractograms before and after use in the
5th run. (C) FTIR spectra before and after use in the 5th run.

2.5. Plausible Mechanism of Photocatalytic Degradation

The influence of the reactive oxidation species (ROS) involved in the process of the pho-
tocatalytic degradation of ACE with the 75%-g-C3N4/UiO-66-NH2 sample was tentatively
studied by the addition of specific chemical scavengers. Figure 8A depicts the pseudo-first
order rate constant for the blank test and the values registered in the presence of different
specific chemical scavengers. The role played by superoxide radicals (O2

•−) was studied by
replacing the O2 bubbling with N2. The kObs in the presence of N2 was reduced ~2.3 times
compared to the blank test, which provides evidence of the importance played by O2

•−

in the overall photocatalytic scheme. The hydroxyl radical contribution was evaluated by
adding ethanol (EtOH), due to the high potential of alcohols to react with HO• [58]. In this
case, ca. 26% of reduction in kObs with respect to the blank test was recorded. It is important
to highlight that alcohols have been reported as good HO• scavengers but their presence
can also alter the adsorption mechanism of ACE since they may compete with ACE for the
initial adsorption sites, which trigger the photocatalytic reactions. Oxalic acid has been
reported as a good inhibitor of photo-generated holes (h+) [59,60]. Under the presence of
oxalic acid, the photocatalytic performance was negligible and the kObs obtained was very
close to that reached under photolysis, therefore, highlighting the importance of the holes
in the photocatalytic process.
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CCAT = 0.5 g·L−1. (B) Bandgap alignment proposal of g-C3N4/UiO-66-NH2 heterostructure.

Taking into consideration the results attained in the scavenger tests, a mechanism
scheme based on the band alignment of both semiconductors in the heterostructure was
proposed. The energy of the conduction band for pure UiO-66-NH2 has been reported as
nearly −0.80 V vs. NHE [47,61,62]. In the case of g-C3N4, the conduction band is located at
ca. −1.25 V vs. NHE [63,64]. That means that the conduction band of the graphitic carbon
nitride is more negative than the MOF. Considering the bandgaps values calculated for
the pure phases, the conduction bands were located at +2.84 and 2.70 V vs. NHE for the
MOF and g-C3N4, respectively. The resulting heterojunction follows a Type II scheme [65],
displayed in Figure 8A. According to this mechanism, g-C3N4 as the majority species in
the heterojunction, would be photo-activated by the UVA radiation; however, UiO-66-NH2
could be also. Photo-generated electrons of g-C3N4 have the possibility of migration to the
conduction band of UiO-66-NH2. Additionally, they could be recombined with the holes
in g-C3N4 [28]. This band structure would enhance the spatially effective separation of
photo-induced charges [27], minimizing the undesirable recombination effect, as suggested
in the PL results.

Considering this bands scheme, neither UiO-66-NH2 nor g-C3N4 display positive
enough valence band energy to generate HO•. This is the reason why the contribution of
HO• was not as important in the ACE degradation, as the test in the presence of EtOH
suggested. However, both holes and O2

− would participate in the oxidation of ACE, with
a higher contribution of the first if compared to the second. According to the literature,
in the case of UiO-66-NH2, the photocatalytic activity has been attributed to the photo-
generated holes and/or superoxide radical [47,52] since the valence band is not positive
enough to trigger the formation of HO•. In the case of g-C3N4, the superoxide radical has
been reported as the main radical species responsible for aqueous pollutants oxidation [66].

3. Materials and Methods
3.1. Chemicals and Synthesis of the Photocatalytic Heterostructures

The chemicals were at least analytical grade, purchased from Merck®, and used as
received. HPLC quality acetonitrile (99.9%) was used as a mobile phase in chromatographic
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analysis. All the stock solutions were prepared in ultrapure water (18.2 MΩ·cm) from
a Direct-Q®-UV device (Millipore®).

The graphitic carbon nitride, g-C3N4, was synthesized by pyrolysis of melamine
(99%) at 500 ◦C for 2 h. The resulting yellowish solid was suspended in water and the
higher particles that decanted were discharged, collecting the suspended particles that
were filtered and dried at 80 ◦C.

The UiO-66-NH2 was obtained by a hydrothermal method in the presence of dimethyl-
formamide (DMF, 99.9%), adapting a recipe from the literature [21,47]. Briefly, 3 mmol
of ZrOCl2·8H2O (98%) and 3 mmol of 2-amino-terephthalic acid (99%) were dissolved in
40 mL of DMF in a Scotch bottle of 100 mL. Next, 20 mL of acetic acid (99.7%) was added.
The bottles were sealed and introduced in an oven at 120 ◦C for 24 h. The as-obtained yel-
lowish solid was recovered by centrifugation (4200 rpm, 5 min) and washed with methanol
and water.

The hetero-structures g-C3N4/UiO-66-NH2 were prepared following the same pro-
cedure during the synthesis of pure UiO-66-NH2. Different ratios were considered by
adding a certain amount of g-C3N4, according to the yield achieved for pure UiO-66-NH2.
The desired amount of g-C3N4 was added during the precipitation of the MOF pre-
cursors in the DMF solution, therefore, promoting the formation of the metalorganic
structure onto the suspended graphitic carbon nitride particles. Different mass percent-
ages of g-C3N4 (X: 25, 50, and 75%) were tested, labeling the resulting photocatalysts as
X-g-C3N4/UiO-66-NH2.

3.2. Characterization of the Photocatalytic Heterostructures

The crystalline structure was assessed by the X-ray Diffraction (XRD) technique.
A Bruker D8 Discover diffractometer equipped with a PILATUS3R 100K-A detector was
used, working with a radiation source of Cu Kα (λ = 1,5406 Å). The signal was registered
within a 2θ range from 2–65◦ (30 s·step−1, step = 0.02◦).

The textural and morphological properties were studied by N2 adsorption–desorption
isotherms at 77 K in a 3P Sync 200 apparatus (3P instruments©). The total surface area was
determined by the BET method (SBET), the micropore area (SMP) by the t-plot method, the
total pore volume (VT) from the adsorbed amount at P/P0 = 0.99, and the volume of the
micropore (VMP) by the t-plot method.

The Fourier Transform InfraRed (FTIR) analysis was used to study the nature of the
organic stretching bonds and was carried out in a Perkin–Elmer device model Spectrum65
between wavenumber 400–4000 cm−1.

The morphology and distribution of the carbon nitride sheet and UiO-66-NH2 particles
in the generated heterostructure were studied by Scan Transmission Electron Microscopy
(STEM) coupled to High-Angle Annular Dark Field (HAADF) detection and Electron
Disperse X-Ray (EDX) analysis in a Thermo Fisher Scientific TALOS F200X device.

The optical properties were analyzed by Diffuse Reflectance Spectroscopy (DRS-UV-
visible) in a Varian Cary 5E spectrophotometer. The absorbance and reflectance spectra
were recorded and the bandgap values were calculated from the application of the Tauc
plot method [67,68]. The photoluminescence (PL) technique was carried out as an indirect
analysis of the recombination rate of the electron–hole pair. The analysis was conducted in
a Varian Cary Eclipse fluorescence spectrometer, fixing 365 nm as the excitation wavelength.

The pH of the point of zero charge in an aqueous solution (pHpzc) was determined by
the pH drift method [69]. Basically, 50 mL of solutions containing 0.1 M NaCl (99.7%) were
placed in Erlenmeyer flasks and the pH was adjusted to a certain desired value between
2 and 9 by adding diluted solutions of NaOH (98%) and/or HCl (37%). Then, 100 mg of
the solid sample was added and kept under stirring at 25 ◦C for 48 h. The final pH value
was then measured. The pHpzc was calculated from the intercept between the plotted final
vs. the initial pH with the bisector.
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3.3. Photocatalytic Degradation Tests

The photocatalytic activity of the prepared materials was tested in a UVA photo-reactor
equipped with two 9 W lamps emitting at 365 nm. The lamps were placed in the inner
space of a jacketed annular reactor made of borosilicate glass, circulating the liquid solution
through the jacketing space and magnetically stirred in the bottom. The liquid was pumped
and recirculated to an auxiliary tank, also stirred, and equipped with a refrigeration system
to maintain the temperature of the solution to 20 ◦C. Air was bubbled into this tank to
keep the solution saturated in O2. Figure 9 depicts a scheme of the photo-reactor setup.
The irradiating intensity of the lamps was quantified by an in situ chemical actinometry
consisting of the photo-reduction of the ferrioxalate complex combined with a polyoxomet-
alate salt (Na2SiW12O6) to register the temporal abatement of the ferrioxalate complex into
CO2 [70]. The experimental conditions for this determination were oxalic acid (98%) 60 mM,
FeCl3·6 H2O (97%) 5 mM, and H4SiW12O40 (99.9%) 1 mM. The pH of the solution was kept
at 4.5 with HCl and NaOH adjustment to prevent the plausible auto-decomposition of the
polyoxometalate complex. Taking into account the quantum yield value during the photo-
production of (SiW12O40)5− (φ = 0.18 mol·Einstein−1 at 365 ± 10 nm) [70], the radiation
intensity value estimated was I0 = (3.5 ± 0.2) 10−4 Einstein L−1·min−1.
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The photocatalytic tests started by loading the aqueous acetaminophen (98%) solution
with an initial concentration of 5 mg·L−1. Next, the photocatalyst at a dose of 0.5 g·L−1 was
added to the tank until a homogeneous dispersion was reached. Before irradiation, a 30 min
adsorption step was carried out in darkness. After switching the lamps on, samples were
extracted from the tank at regular intervals and the photocatalyst was removed with syringe
filters (nylon, 0.45 µm). In the experiments carried out in the presence of scavengers, the
desired amount of the scavenger (10 mM) was added to the aqueous solution before
loading the catalyst. N2 was replaced by air in the quenching experiment that assessed the
importance of O2 (superoxide radical). Oxalic acid was used for suppressing the effect of
photo-generated holes and ethanol (96%, vol.) for hydroxyl radicals.

The concentration of the contaminants was quantified by High-Pressure Liquid
Chromatography (HPLC) in a Shimadzu LC-10 HPLC device coupled with diode ar-
ray UV-visible detection. The stationary phase consisted of a Zorbax Bonus-RP column
(4.6 × 150 mm, 5 µm). The injection volume was 90 µL. The mobile phase, pumped at
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1 mL·min−1 under the isocratic mode, was a mixture of 20% acetonitrile (A) and 80%
acidified water (B, 0.1% v/v H3PO4), performing the quantification at 247 nm.

The quantum efficiency value (QE) was obtained following the IUPAC recommen-
dations, which establishes the QE as the ratio of the number of ACE molecules reacting,
i.e., the reaction rate, by the number of photons that interact with the photocatalyst, i.e., the
local volume rate of photon absorption (LVRPA, eα,ν):

QE0
=

rACE0

(
mol ACE·m−3·s−1)

eα,ν(E·m−3·s−1)
(1)

where the initial degradation rate (rACE,0) was obtained considering pseudo-first order ki-
netics, and the photon absorption rate was determined from the radiative transfer equation
(RTE), which was solved for the photoreactor from the determination of the optical proper-
ties of the photocatalytic suspensions. The followed methodology consisted of a discrete
ordinate method in rectangular spectrophotometer cells in combination with a nonlinear,
multiparameter regression procedure [71], see Figure S2. The simulation of the photoreactor
led to the definition of the photon absorption profiles depicted in Figure 10. The study was
carried out for the sample with the best photocatalytic activity as will be discussed in the dis-
cussion and results section, i.e., 75%-g-C3N4-UiO-66-NH2. Bare g-C3N4 and UiO-66-NH2
were also considered for comparison purposes. Detailed information about the procedure
of the simulation of the LVRPA profiles is described in the Supplementary Information.
The LVRPA profiles show that the highest absorption rate was located, as expected, in the
center of the z-axis, and gradually decreased with the radial distance. The order among
the samples was UiO-66-NH2 > 75%-g-C3N4/UiO-66-NH2 > g-C3N4, which drives the
detection of some differences in light penetration through the r coordinate. The relatively
high absorption of pristine UiO-66-NH2 in comparison with g-C3N4-containing samples
increases the edge absorption effects, which reduces the progressing of radiation in the
r-coordinate. Such effect is detected at all the z-positions evaluated. The identification
of an absorption profile dominated by the g-C3N4 structure as well, suggests that the
activity enhancement detected must be unequivocally associated with an improvement in
the charges photo-handling caused by an optimized g-C3N4/UiO-66-NH2 interface.
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4. Conclusions

The combination of graphitic carbon nitride with the MOF UiO-66-NH2 results in
an efficient heterostructure that enhances the photocatalytic activity of the pure phases
during the degradation of acetaminophen in water. The optimum proportion suggests
a preference for g-C3N4 as the majority in the final heterojunction, i.e., around 75%, accord-
ing to the pseudo-first order kinetics and the estimation of the quantum efficiency. This
boosted ratio was suggested, according to the characterization of the catalyst, by the lowest
recombination effect registered with photoluminescence analysis. STEM pictures combined
with EDX mapping confirmed good contact between the two phases, a relevant aspect to
promote the electronic transfer between the semiconductors. In addition, as the analysis of
the optical properties suggests, the light absorption profile (LVRPA) is dominated by the
phase g-C3N4 of the binary systems, which seems to be in line with obtaining a maximum
for the sample 75%-gC3N4/UiO-66-NH2.

The pH during the reaction highly affected the performance of the process and the
best results were achieved at a pH close to the pHpzc of the photocatalyst. The solid demon-
strated stability and reusability with marginal loss of photocatalytic activity and practically
negligible modification of XRD and FTIR patterns. Superoxide radicals, and, especially,
photo-generated holes, were the reactive oxidant species responsible for acetaminophen
degradation. The bands’ scheme suggests a Type II heterojunction with no contribution to
hydroxyl radical formation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232112871/s1.
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