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A Connection Between Pattern Classification by
Machine Learning and Statistical Inference

With the General Linear Model
J. M. Górriz , C. Jiménez-Mesa , F. Segovia , J. Ramírez, SiPBA Group, and J. Suckling

Abstract—A connection between the general linear
model (GLM) with frequentist statistical testing and ma-
chine learning (MLE) inference is derived and illustrated.
Initially, the estimation of GLM parameters is expressed as
a Linear Regression Model (LRM) of an indicator matrix;
that is, in terms of the inverse problem of regressing the
observations. Both approaches, i.e. GLM and LRM, apply to
different domains, the observation and the label domains,
and are linked by a normalization value in the least-squares
solution. Subsequently, we derive a more refined predictive
statistical test: the linear Support Vector Machine (SVM),
that maximizes the class margin of separation within a
permutation analysis. This MLE-based inference employs
a residual score and associated upper bound to compute a
better estimation of the actual (real) error. Experimental re-
sults demonstrate how parameter estimations derived from
each model result in different classification performance in
the equivalent inverse problem. Moreover, using real data,
the MLE-based inference including model-free estimators
demonstrates an efficient trade-off between type I errors
and statistical power.

Index Terms—General linear model, Linear Regression
Model, pattern classification, upper bounds, permutation
tests, cross-validation.

I. INTRODUCTION

D ESPITE the popularity of machine learning (MLE) as
a solution for a wide range of complex problems [14],
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[28], there remains an open question about its usefulness for
between-group statistical inference. Neuroimaging in particular
has embraced MLE as a technology to deliver diagnostic and
prognostic classification [3], [20] of neurological and psychiatric
disorders. Nevertheless, the mainstay of neuroimaging studies
are observational and mechanistic, seeking to identify regional
between-group differences in brain structure and function. Ef-
forts with MLE in this space are increasing with continuous
output variables ([4], with remarks in [31]) rather than the more
typical categorical classifications.

Several advances for combining p-value maps have been
proposed based on the concept of prevalence [18], [32] that
go beyond the fixed and mixed (random) effects models [10].
Common to these approaches is the assumption of a mixing of
subject classifications at each voxel that is more realistic than
those assumed in classic random effect approaches; for example,
homogeneity of the binary activation pattern [32], and offers the
possibility of a new framework for modern statistics.

The concept of prevalence as a fraction of individuals cor-
rectly classified by MLE algorithms in group comparisons is
not novel in neuroimaging, and is indeed the main focus of
predictive inference. As an example, out-of-sample general-
ization approaches, such as Cross-Validation (CV), try to es-
timate on unseen data the accuracy (Acc) of a classifier in
a binary classification problem. Although the methods and
goals of predictive CV inference are distinct from classical
extrapolation procedures [24], they are exploited within frame-
works aimed at assessing statistical significance [31]. Boot-
strapping, binomial or permutation (“resampling”) tests [39]
are all examples that have been demonstrated as competitive
outside classical statistics, filling otherwise-unmet inferential
needs.

In a pattern classification problem we usually assume the exis-
tence of classes (H1) that can be differentiated by classifiers with
their performance measured in terms of Acc or prevalence on an
independent dataset. Then, we accept (improperly in a statistical
sense) the alternative hypothesis H1 using empirical confidence
intervals such as standard deviations of the classification Acc

from dataset folds. In cases of limited sample sizes, the most
popular k-fold CV method [23] is sub-optimal under unstable
conditions [12], [13], [37]. In such circumstances, the predictive
power of the trained classifiers can be arguable. Moreover, it has
been partially demonstrated that when using only a classifier’s
empirical Acc as a test statistic, the probability of detecting
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differences between two distributions is lower than that of a
bona fide statistical test [22], [33].

Beyond empirical techniques for the estimation of perfor-
mance, MLE is well-established in data-driven statistical learn-
ing theory (SLT), which is primarily devoted to problems of
estimating dependencies with limited amounts of data [36].
Although CV-MLE approaches were not originally designed
to test hypotheses based on prevalence in brain mapping [11],
they are theoretically grounded to provide confidence intervals
(protected inference) in the classification of image patterns
formulated as maps of statistical significance [15]. This can be
achieved by assessing the upper bounds of the actual error in
a binary classification problem (a confidence interval), and by
using simple significance tests of a population proportion [15].
This results in improvements to the test’s statistical power based
on Acc. Thus, assessing with high probability the quality of the
fitting function (and its generalization ability) in terms of in-
and out-of-sample predictions can be conceptualized, under a
hypothesis testing scenario, as the inverse problem of “carefully
rejecting H0”; that is, the problem of rejecting H1, and thus
accepting H0 (that there is no effect, or it is not significant).

In this paper we show a connection between the classical
general linear model (GLM), including random effect models,
with the MLE framework for the estimation of model/classifier
parameters and subsequent analyses to achieve the level of sig-
nificance in group comparisons. In this sense, inference based on
the parametric T statistic and prevalence-based probability tests
are two different paths solving the same problem. We also show
a novel method for achieving statistical significance using MLE
and permutation tests based on concentration inequalities. This
approach assesses the worst case of the actual error and proposes
an estimation of the observed distribution of permuted data.

II. METHODS: CLASSICAL AND MLE STATISTICAL

INFERENCES

A. Background on Classical Statistics in Neuroimaging

The GLM [10] is defined for a single observation level, e.g.
in a between-subject comparison, as:

y = Xθ + ε (1)

where y is the N × 1 observation vector with units of time,
voxels, etc., ε is the N × 1 vector of errors that is assumed to
be Gaussian distributed, X is the N ×M matrix containing the
explanatory variables or constraints, and θ is the M × 1 vector
of parameters explaining the observations y. Note that: i) for
a hierarchical observation model each level requires the prior
estimation of the previous levels; and ii) in terms of MLE, X
plays the role of multidimensional labels or regressors acting on
the observations y. In the classic GLM, θ is usually estimated by
a Maximum Likelihood (ML) criterion based on the Gaussianity
assumption and is given by:

θ̂ = (XtC−1
ε X)−1XtC−1

ε y (2)

where Cε is the covariance matrix of errors. Inferences on this
estimate1: how large are the components of θ and the relationship
between classical GLM and MLE-based prevalence inferences
can be obtained using a linear compound specified by a contrast
weight vector c, and writing a T statistic as:

T =
ctθ̂√

ctCov(θ̂)c
(3)

where Cov(θ̂) = (XtC−1
ε X)−1. This T statistic gives us the

probability of observing the ML estimation under H0 and
when it is small enough, e.g. p < 0.05, the linear compound
is considered significantly different from zero. As an example,
given a set of two parameters in θ = [θ1, θ2]

T , if we select
c = [1− 1] we are assessing how large is the first parameter
with respect to the second; i.e. the difference θ1 − θ2. Thus,
if the T statistic suggests a small probability, the difference
is statistically significant and observations are generated from
different sources.

A similar procedure could be established based on a Bayesian
estimation and inference to handle complex hierarchical ob-
servational models. This framework is based on Expectation
Maximization (EM) for parameter estimation along with known
priors and a priori probability models, with the aim of eval-
uating the posterior probability (ppm). By thresholding the
ppm, relationships between this and the frequentist approach
can be established including similarities (statistical power) and
differences (specificity) [10].

1) Least Squares of the GLM: The GLM can be estimated
without any assumptions about the noise model by simply solv-
ing the associated Least Squares (LS) problem. Therefore, if we
assume that ε = 0 in the GLM, the problem is now to find the
“best” set of parameters θi that explains each observation yi by:

yj =

M∑
i=1

Xjiθi; for j = 1, . . . , N (4)

Thus, we need to solve the linear regression problem given in
(4) to estimate the parameters θi. The most popular estimation
method is LS, in which we select the coefficients θ to minimize
the residual sum of squares:

RS(θ) =

N∑
j=1

(
yj −

M∑
i=1

Xjiθi

)2

(5)

The solution to this problem (∂RS(θ)
∂θ

= 0), the Markov-Gauss
estimate, provides the smallest variance among all linear unbi-
ased estimates and is given by:

θ̂ = (XtX)−1Xty (6)

similar to the GLM solution ( (2)) but assuming Cε = I in the
latter model; that is, if the errors are assumed to be independently
and identically distributed the ML estimation is equivalent to the
LS solution in (6).

1Here, we refer to voxelwise inference since we use a threshold u to classify
voxels i as “active” if Ti ≥ u. Clusterwise inference uses a cluster-forming
threshold to define contiguous suprathreshold regions [29].
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B. Converting the Estimation of θ Into a LS Classification
Problem

In the LS multiclass classification problem, the goal is to
design M linear functions fi(y) = wt

iy, given a set of input
patterns yi and according to a suitable mean squared error
(MSE) criterion with respect to some desired discrete output
binary code xi, i.e. labels. Note that, in general, this setup is
found in neuroimage analyses where the design matrix contains
discrete values, e.g. experimental conditions in fixed-effects
analysis or in random effect modeling between groups. Recently,
the residual score or classification error obtained from several
methodologies beyond LS (e.g. by applying the fitted linear
hyperplanes to new unseen data) have been deployed to establish
a CV Acc test from data with permuted labels [15], [31].

1) The Inverse Problem: LS for Regressing an Indicator Ma-
trix: Consider the general inverse problem; that is, given a set
of observations {yi}, for i = 1, . . . , N , we are interested in ex-
plaining a set of “explanatory” binary-coded variablesxi (labels)
by a matrix W of parameters. This problem, referred to here as
the inverse problem in the label domain, is also known as the
linear regression of an Indicator Matrix or the linear regression
model (LRM) [16]. In this model, we regress the explanatory
variables instead of regressing the observed responses as in the
GLM. This regression can be more accurate depending on the
nature of the data to be fitted e.g. for a low number of discrete
classes in the specified design matrix X = [xim].

If we have M classes then X is a N ×M matrix, where each
row i = 1, . . . , N contains a singlexim = 1, form = 1, . . . ,M ,
Y is the N × P matrix of column responses yi and W is a
P ×M coefficient matrix. Thus, we fit a linear regression model
of the form:

X = YW (7)

where theP dimension allows the inclusion of several responses
(multimodality or multiframe acquisitions) given the same in-
dicator response matrix X. Following the methodology as that
leading to (6), the best estimation is given by:

Ŵ = (YtY)−1YtX (8)

which regresses inputs of observations on to a novel set of labels
or constraints:

X̂ = YŴ (9)

The novel set X̂ can be seen as a guess of the constraints
for the set of observation vectors yi, or an approximation of
the posterior probability p(class = m|y). Thus, it allows us to
compute an error model as:

εLS = X− X̂ (10)

2) Connection Between θ and w: For simplicity, and to con-
nect with the GLM as shown in Section II-A, let P = 1 in the
LRM, then W = w is a 1×M row vector and Y = y is an
N × 1 column vector. A simple relation between the GLM and
LRM approximations can be found taking into account that:

X = yŵ + εLS (11)

at the LS solution. Thus, multiplying both sides on the right by
wt we can solve the equation for y and obtain the corresponding
GLM as:

y = (X− εLS)θ̃ (12)

where we define θ̃ = ŵt(ŵŵt)−1 and the GLM noise model
is derived using ε = −εLS θ̃. The scalar term of (12) can be
expressed with the LS solution as:

(ŵŵt)−1 = (yty)2/((Xty)tXty) =
(
∑N

i=1 y
2
i )

2∑M
m=1

∑
i,j yimyjm

(13)
where yim denotes observation i belonging to class m. Thus, a
LS linear regression of the observations can be described by a
GLM regression on the observations (i.e. a linear regression on
the explanatory variables), and vice versa.2

3) Inference of the Inverse GLM Based on MLE: The LRM
can be seen as a generalization of the GLM for the responses,
coding x as a vector of continuous noisy responses, that is,
by constructing vector targets for each class [16]. From (11),
which is equivalent to the inverse GLM in (1), inference on this
model based on MLE could proceed as follows. Based on a
set of data pairs (yi,xi), we estimate the set of parameters w
using a similar expression to (8) or other more refined predictive
algorithms [6], [25], e.g. SVM. After the fitting process, we
assess its significance under the null hypothesis, likewise the
T-statistic inference on the GLM, on an independent set ΩCV

using a CV Acc test statistic:

TCV =
∑

i∈ΩCV

||(xi − (yiŵ)t||2 (14)

The null distribution is modeled by randomly rearranging labels
a large number of times π to create artificial data sets, (yi,xπp

),
for p = 1, . . . , O, i.e. a permutation test, and evaluating the sum
of squared residuals TCV with every unseen sample within the
permuted and original set. Consequently, the p-value is defined
by:3

pvalue =
card{Tπ

CV < TCV }+ 1

O + 1
(15)

where card(.) is the cardinality of a set and TCV and Tπ
CV are

the CV Acc tests on the original and permuted sets, respectively.
These p-values under the null hypothesis are pivotal quantities
and, in principle, could be used for multiple testing correction,
instead of the statistic image based on accuracy. The distribu-
tion of minimum p-values, pmin

j , used in the test to deal with
the multiple comparison problem is limited by the number of
permutations, 1

O ≤ pmin
j , and may cause considerable loss of

power [38]. Other methods, such as RFT [8] or a correction
based on the false-discovery rate (FDR) can be used once the
uncorrected p-values have been obtained for each voxel in the
image. In the experiments, due to the discreteness of the p-values
that is strongly limited for computational reasons (O = 1000),
we employ a combination of correction methods for multiple

2given a GLM on the observations, we can define a LRM on the explanatory
variables as w̃ = θT (θθT )−1, at the ML solution, with an error εLS = −εw̃

3the correction factor +1 in the numerator and denominator is justified by the
inclusion of the original sample set in the test
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testing, e.g. a single-threshold test applied to the map of uncor-
rected p-values for comparison purposes in the control of FWE
rates, or a Bonferroni corrected p-value calculated at each voxel
for assessing power.

In the latter test, also known as P-test [31], we assume that
we have a good procedure for estimating w. However, CV
is a standard procedure for estimating the actual error of any
classifier, which is found to be unstable in limited samples
sizes [13], [37]. We could improve this estimation by including
a term to cope with the possibility that the fitting process is
not as good as expected, and thus the resulting estimate is not a
good predictor. In this sense, other alternatives [1], [26] could be
tested by the assessment of the worst case based on concentration
inequalities and the resubstitution estimate as:

TRes =
∑
i∈Ω

||(xi − (yiŵ)t||2 +Δ2(N,P ) (16)

where Δ(N,P ) is model-free upper bound of the actual risk [5],
[13], [15], [36] with a probability at least 1− α and Ω is the
dataset at hand.

III. EXPERIMENTAL RESULTS

In the first of the experiments, and to clearly state the problem
and the solutions, we consider a simple group comparison with
only a single (second) level analysis (a Bayesian approach of
this problem is equivalent to the GLM based inference on this
single level), using a binary design matrix, e.g. it models the
population-specific effects. This is the well-known case-control
design often used as the basis for a diagnostic test; e.g. Alzheimer
patients vs unaffected controls. We adjusted the GLM and
the equivalent problems using LRM and SVM by regressing
observed variables using a simple explanatory matrix X and a
Gaussian model for the noise to obtain two parameters θ1, θ2,
as follows:

Y|N×1 = X|N×2θ|2×1 + ε|N×1

where, as an example,

X =

⎛
⎜⎜⎜⎜⎝

1 0
0 1
1 0
1 0
. . . . . .

⎞
⎟⎟⎟⎟⎠

is a matrix of explanatory variables containing 1 s and 0 s
indicating the class membership of the observation using a two-
element binary code. A more general hierarchical model with a
non-binary design matrix (including regressors, covariates, etc.)
could be processed the same way by fitting the set of parameters
step by step by pattern regression, however we are interested
in assessing the connection between θ and w in this paper
for a binary (design matrix) pattern classification problem. The
objective is two-fold: i) the estimation of model parameters using
both methodologies and domains, linking them by the theoretical
connection in (12); and, ii) to assess how completely they explain
observations and labels in both domains. The second objective
can be tackled by showing the estimations and the group of
observations in both domains, and by quantitatively evaluating

Fig. 1. Simulated data with noisy observations (DG1) example.

the classification error in the equivalent label domain, given the
expected ideal values for model parameters.

In the last part of this section, we show the inference anal-
ysis derived from the two methodologies in each domain. We
regressed on the observations and on the labels to construct and
assess the spatially extended statistical processes, generating
maps of significance, using the MRI ADNI dataset [15]. In
doing so we compared Statistical Parametric Maps (SPMs, a
two-sample T-statistic similar to (3)), where significance is first
individually assessed at each voxel, and then combined using
three configurations: first, with a cluster-defining threshold of
P = 0.001 (uncorrected for multiple comparisons) alone; sec-
ond, then adding a cluster extent threshold (CET) = 10 voxels;
and third, a Family Wise Error correction at P = 0.05 on the
clusters based on random field theory (RFT) [8]. In addition, the
P-tests described in Section II-B3 were also conducted.

A. Simulated Data With Noisy Observations (DG1)

A N -dimensional Gaussian noise vector v was randomly
drawn with zero mean and an N ×N covariance matrix with
2-norm equal to 1. A vector of observations was then constructed
by adding the noise to a binary vector (a column in the explana-
tory matrix of indicators); i.e. y = Xk + v for k ∈ {1, 2}. The
design matrix was then obtained by X = [XkX̄k], where (̄.)
denotes logical negation.

Once the observations were artificially drawn (see Fig. 1),
with increasing sample size we regressed both explanatory
variables (LRM by LS and SVM) and observations (GLM)
to obtain a set of two parameters for each model θ = [θ1, θ2],
w = [w1, w2]. All these methods can be employed to estimate
the regressed observed variables using equations (1) and (12),
given the explanatory matrix and the estimated parameters, as
shown in Fig. 2. In this figure we also plot the distribution
of the T-statistic over 1000 simulations (top), a sample of this
distribution that shows the variability of the estimation using
the GLM around the ideal value of θ2 − θ1 = 1 (middle) and
the estimated observation by each of the models (bottom).
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Fig. 2. Estimated Observations and T-statistic distribution. Note that in the GLM model we use the covariance matrix of the noise to evaluate (2);
that is, in the estimation of θ. We show the comparison between non-normalized statistics of all the estimations, i.e. suppressing the covariance
term in the GLM, in a random (R=1000) simulation. This clearly demonstrates that only on average does the ML statistic converge to the ideal
value θ2 − θ1 = 1 unlike the single sample of this distribution shown in the bottom left.

Fig. 3. Distribution of observations (y) and estimations of θ for GLM, LRM and SVM in DG1.
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Fig. 4. Estimations of the parameter w regressing the observations with increasing sample size in DG1.

Connected with the previous one-sample GLM estimations,
we plot in Fig. 3 the estimated parameters explaining the ob-
servations using all the methods along with the observations
they model. Note the large variability of the GLM estimation
with increasing sample size. In Fig. 4 we show the inverse
problem; how the methods estimate the w from the point of
view of the label regression. In this case, it is readily seen that
the one sample GLM model provides a sub-optimal estimation at
different sample sizes; i.e. the red curve lies above the blue curve.
As expected, the use of these parameters in the dual classification
problem results in a larger empirical error as shown in Fig. 5.

From these results we can conclude that the link between the
two approaches resides in the differing nature of the regression
procedure. In both domains there is an implicit classification
task once the parameters, that better explain the corresponding
observations, are derived. These parameters are fitted taking into
account only the empirical data available (including a noise
model, if present). Therefore, wm for a given model m, can
be used to regress the observations to obtain a novel data set in
the label space (new regressed labels), which can be associated
with the states (or classifications) of the explanatory matrix. This
classification task provides an empirical error (Fig. 5 and 154).
Other methods could be used to obtain such parameters in a
(non-)linear fashion. As an example, we compared the decision
boundary obtained by LRM with that with SVM (Fig. 5 and 15),
which illustrates the differences between methods in terms of
generalization ability.

B. Empirical Data: A Case-Control Design of the
ADNI Dataset

The data used were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

4[Online]. Available: https://www.ugr.es/∼gorriz/ERC.pdf

TABLE I
DEMOGRAPHIC DETAILS OF THE MRI ADNI DATASET, WITH GROUP MEANS

AND THEIR STANDARD DEVIATIONS

The ADNI database contains 1.5 T and 3.0 T T1-weighted
structural MRI scans from patients with Alzheimer’s disease
(AD), Mild Cognitive Impairment (MCI), and cognitively nor-
mal controls (NC) acquired at multiple time points. Here we
only included 1.5 T structural MRI. The original database
contains more than 1000 T1-weighted MRI images, although
for the proposed study only the first MRI examination of each
subject was included, resulting in 417 structural MRIs. Fol-
lowing the recommendation of the National Institute on Ag-
ing and the Alzheimer’s Association (NIA-AA) for the use of
imaging biomarkers [21], we considered the group comparison
NC vs. AD for establishing a clear framework for comparing
statistical paradigms (SPM and TCV ), since the MCI class is
strictly based on clinical criteria, without including any other
biomarker information [27]. Demographic data is summarized
in Table I. The dataset was preprocessed using standardised
neuroimaging methods and protocols implemented in the SPM
software (www.fil.ion.ucl.ac.uk/spm/), including registration in
MNI space by spatial normalization and segmentation to differ-
entiate grey and white matter and other brain tissues [9]. Here,
we used the grey matter (GM) estimates.

1) Assessing the Statistical Power: We fitted the set of pa-
rameters using linear SVM and evaluated the TCV statistic on
the original dataset; see Fig. 6. As shown in this figure, the resub-
stitution estimate is more optimistic in the Acc distribution than

https://www.ugr.es/&sim;gorriz/ERC.pdf
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Fig. 5. Classification boundaries and empirical errors given the observations (y) in GLM, LRM and SVM (N = 1000, DG1).

theK-fold based estimate. Note that this analysis is independent
of the selected fold as we performed ∼ 106 folds, one per voxel.
However, both are optimistic since the mean of the distribution
is not clearly located around 0.5 (it is already shifted to the right,
beyond the effect due to truly significant regions). The effect is
even larger when the groups are slightly imbalanced, simulating
the case of over-powered datasets, as shown in the bottom of
the Fig. 6. However, note how the corrected bound [13] clearly
shifts the Acc obtained by resubstitution to the left, resulting in
a better (more conservative) estimation of the statistic across the
whole volume.

Based on the TCV and TRes values from the original dataset,
and those obtained using a permutation analysis (O = 1000)
for a selection of structures (e.g. left hippocampus, a brain
structure with a well-established role in the progression of AD),
we compared the SPMs processed with the inference approaches
described in Section II-B3. Note that the large number of voxels
that composes an image limits the permutation analysis to spe-
cific structures. Results from the left hippocampus are depicted
in Fig. 7. The permutation analysis reveals how the power of the
TCV approach is affected in this featured region, where a true ef-
fect might be found in almost the entire structure. The statistical
power of the TRes is preserved through the permutation proce-
dure (2058 detected voxels vs 1024 voxels out of 2237, Fig. 7).
It is also worth mentioning the CDF of the errors derived in this

particular region and the corresponding distribution of p-values,
recalling that the dataset included patients with advanced AD,
and thus the selected structure should be significantly affected
by the disease.

To extend the analysis to the whole volume, we approximately
simulated the null distribution outside the left hippocampal
region in two steps. First, we computed the set of p-values in
the left hippocampus (around 2 · 103 voxels) following (15)
and determined the averaged T threshold, Tth, that approxi-
mately provided an appropriate significance level, e.g. 0.05.
Then, assuming that for any T < Tth the probability of an
observation is p-value< 0.05, we thresholded the remainder of
the image to obtain the significant voxels showing an effect.
This approach clearly requires multiple-comparison correction
as several dependent or independent statistical tests are being
performed simultaneously at a given significance level. There-
fore, we made the significance level more conservative with
α = 0.001 to reduce the presence of false positives (FP) in the
permutation analyses shown in Section II-B3 and then compared
it with the inference made using the three SPM configurations
across the whole volume. In Fig. 8 we show the detection ability
together with the control of type I errors in the TRes approach
(map in red font). Note how the permutation test affects the
detection ability of the classical k-fold CV approach (map in
green font), and how the uncorrected voxelwise approaches
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Fig. 6. Bottom: Distribution of voxelwise accuracies of the empirical dataset in two cases: balanced (188 vs 188) and imbalanced groups (188 vs
229), using k = 10-fold, resubstitution and concentration inequalities [15]. Up: 3D distribution of the accuracies using k-fold CV and the corrected
Accuracy by upper-bounding.

(in blue font, bottom left and middle) inflates the number
of FPs.

2) Controlling Type I Error: It is important to evaluate the
ability of the inference methods for controlling the FP rates [7],
[15]. As an example, in [15] the ability of upper-bound based
inference to control type I errors with increasing sample size
was demonstrated using a global test for a proportion within
the whole volume. Moreover, in [7] clusterwise inferences were
demonstrated to be under-conservative as they inflate false posi-
tives when the analysis is performed on resting-state fMRI data.
In this paper, we focus our analysis on specific standardized MRI
structures for computational reasons [19], e.g. the left Heschl
gyrus region, instead of doing that on whole-volume searches
as already analyzed in [7], [15] and are interested in comparing
the statistic images derived from the devised methods; i.e. the
number of activated voxels and FWE rates that arise from them,
rather than a specific inference to control the FWE rate.

In this analysis two groups of subjects (N = 114) were ran-
domly drawn from a relatively large (N = 228) pool of NC,
and the corresponding p-values, e.g. the ones defined in (15),
were computed accordingly. Thus, the null hypothesis of no
group difference in brain activation is true by construction. The
proportion of analyses that give rise to any significant results;
that is, the number of FPs detected, should be approximately
equal to the significance level.

First, we estimated the voxelwise activation rate provided
by the uncorrected SPM within standardized areas [34] in this
randomization analysis. In this case, each voxel statistic is tested
individually and the activation rate for each region is simply the
overall number of suprathrehold voxels divided by the number
of analysis (1000) times the number of voxels within the region
(Nv). Nevertheless, the ensemble of such partial results (the
omnibus test) using specific inferences provides the estimated
FPs given in [7], [15]. The estimated FWE rates are the number
of analyses with any significant group activation divided by the
number of analyses. From this figure we selected two dummy
regions, left Heschl gyrus and left hippocampus, since they
are small and provide extreme values for the between-group
difference.

A total of O = 1˜k random group draws were undertaken
to obtain the statistic images for each configuration (SPM unc,
SPM unc with CET=10 and P-tests) and then, the empirical
FP rates were computed on the selected regions using the same
Omnibus test. The estimated FP rates are simply the number of
significant results divided by the total number of permutations.
To establish a fair comparison between parametric (SPM unc,
SPM unc CET = 10) and non-parametric maps (CV P-tests),
we employed the same inference method for these configura-
tions. In particular, we employ a single-threshold test [19] ap-
plied to the p-value images of each method and select a threshold
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Fig. 7. Permutation analysis of the hippocampus. Note that O = 1000 and the upper bound [13] was obtained with a probability at least 0.05
and the similarity of the histograms for the p values derived from the analysis on the hippocampus (left, O = 1000) and on whole volume (right,
O = 263). In both cases the number of regions detected by Tres (red map) was larger than that detected by TCV (green map).

Fig. 8. Parametric and non-parametric statistical maps. Note the trade-off in detection and control of the FWE of the Tres approach (red map)
compared with TCV (green map) and the three SPM configurations (blue maps): on the left, a cluster-defining threshold of P = 0.001 (uncorrected
for multiple comparisons), in the middle, adding a cluster extent threshold = 10 voxels, and on the right a Family Wise Error correction at 0.05 on
the clusters.

α on the frequency that the minimum p-value distribution across
the region pmin

i , for i = 1, . . . , O derived from randomization
is less or equal the minimum p-value of the test image (see
Section II-B3). The FP rate is estimated accordingly as the

proportion of randomisation values less or equal to the number
of occurrences divided by O.

Fig. 9 illustrates similar results as those described in [7],
[15] for global analyses. First, in the figure above we show
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Fig. 9. Estimated activation and FP rates and histograms of the activated voxels for the selected structures at given significance levels α. On the
left, the Left hippocampus analysis: we show at the top the FP rates derived from the Omnibus test. In the middle, the probability of activation for
individual analyses (type I error control) and the histogram of activated voxels (counts vs. number of activated voxels per test). On the right, left
Heschl gyrus analysis. Note: no FPs were detected using over-conservative voxelwise SPM inference.

the activation rate for each structure by evaluating the voxel
statistic individually. Results are in agreement with the expected
significance levels. On the contrary, the Omnibus test on p-value
images reports more FPs than expected in all SPM configura-
tions, except for the one based on the over-conservative cluster-
wise inference, e.g. voxelwise SPM FWE corrected. Although
no precise control of FPs is assured, we found our CV-P tests
controls FWE below the significance level, whilst the same

inference on the SPMs had FWE ranging 20%− 70%. In other
words, the methods based on P = α CET = 10 voxels has a
FWE-corrected P value of 0.2− 0.7.

The P-tests (Tres and TCV ) maps based on the single-
threshold test provide a better control of the type I error than
those based on SPM, whilst it is worth mentioning that un-
corrected SPM-based inferences are clearly dependent on the
selected structure, e.g. in the left hippocampus is close to being
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valid, unlike the results found in previous global analyses [7].
A simple single-threshold inference on the minimum p-value
distribution derived from randomization relieves this issue. We
also show how the permutation approach based on the upper
bounds provides a similar estimated FWE rate as that based on
the k-fold CV P-test, but with larger statistical power as shown
in the preceding section.

IV. DISCUSSION

In the context of classification for statistical inference, there
are two primary strategies, either: i) performing k-fold cross-
validation and assessing Acc in several averaged folds; or, ii)
proposing a cross-validation based statistic (P-test) using an
estimation of the actual error of the classifier on a new set
of samples (8). In both cases, if this residual square (error) is
small a good classification is achieved and constitutes evidence
against the H0. In the second approach, to simulate the null
distribution researchers employ a technique (Section II-B3) that
is also used in frequentist inference: the permutation test. A set
of label permutations, πp for p = 1, . . . , O, is generated and
then applied to the dataset, using the same observations, y,
and permuted constraints, xπp

, estimating the parameters wpip

and computing a set of residuals for all the permutations. The
p-value is derived by dividing the number of times we randomly
obtain a residual score less than the one we obtain with the
original value over the number of permutations; i.e.p− value =
p(RSπ < RS). This methodology is called a CV-P test [31],
where LRM could be replaced by SVM or another predictive
algorithm.

Several limitations are found using only LRM for estimating
the posterior probability. Linear regression is only operative in
binary classification, e.g the regression could be negative or even
greater than zero [16]. Indeed, and as shown in the example,
in this case there is a strong correspondence between GLM
and LRM for a single level analysis in group comparisons.
Thus, complex classifiers and other loss functions are needed
for relieving bad estimations on the set of parameters. Beyond
that, the selected predictive algorithms build their P-tests on
the CV strategy that could be a biased estimator of the actual
error in heterogeneous datasets, such as those encountered in
neuroimaging [37].

Frequentist and Bayesian inferences depend on specified
models when proposing a T statistic and fitting parameters of
the GLM. This is partly solved again by the use of permutation
analysis in the estimation of the null distribution, but what about
the T statistic definition? This is also described in terms of the
error covariance matrix, which must be estimated on empirical
data in limited sample sizes. In the synthetic examples we
assumed a known covariance matrix in the formulation of the
GLM. Despite that, the T-statistic following on from the best
guess fluctuated around the ideal value and resulted in low clas-
sification rates. How is frequentist or Bayesian analysis actually
undertaken? Again, there are model selection and parameter
fitting stages to achieve where, in complex scenarios with a
limited sample size, heuristics are the common solutions [40].
Indeed, in the high dimensional case or under the assumption

of complex models, the performance and operation of these ap-
proaches are arguable [31]. Where the estimation of parameters
is computationally costly, the tendency is to use heuristics for
solving such issues. For example, in the FSL tools based on
Bayesian inference, such as BET (Brain extraction tool), TBSS
(tract-based spatial statistics), FLIRT (FMRIB’s linear image
registration tool), PRELUDE/FUGUE (phase unwarping and
MRI unwarping), and MELODIC ICA, the use of heuristics
is common practice and the estimation of the full posterior
distribution of model parameters is biased.

In summary, limited samples sizes and the selec-
tion/estimation of any specific model is still an issue in neu-
roimaging, made more difficult when the model and the inter-
action between model parameters becomes too complex for an
accurate posterior probability estimation, or a feasible numerical
computation of the Bayes rule. Given the connection between
the two observation models - GLM and LRM - in this paper we
propose a statistical inference that leverages an agnostic theory
about the estimation of dependencies, established in the pattern
classification problem with limited amounts of data [17], [36].

In this sense, given the connection between the two paradigms
of statistical inference, we are supported by MLE algorithms
to provide new statistical tests, e.g. the P-tests, to highlight
differences in patterns of imaging-derived measures between
groups. The P-test based on the upper bound correction provides
the same type I error control as the k-fold CV approach, and
a trade-off in statistical power between clusterwise inferences
(invalid for global analyses) and over-conservative voxelwise
parametric and k-fold CV P-test inferences, as shown in the
experiments.

V. CONCLUSION

In this paper we propose the application of permutation tests
and agnostic theory to the set of regressed outputs by the def-
inition of the residual score or Acc test. The latter framework
is a consequence of the connection between the classification
problem and statistical inference based on the GLM. Then, we
employed permutation tests and a better estimation of actual
error based on concentration inequalities to provide a trade-off
between the type I error and statistical power. Previous results
have demonstrated the ability of such estimator to provide maps
of significance [15] where a random simulation on controls
resulted in a nominal rate of FPs.

In particular, we see equivalence in the estimation of the obser-
vation and (explanatory) label domains, thus any test performed
in the label space using an Acc test is similar to those used
in neuroimaging over the last decade. Moreover, prevalence
(the scores in (14) and (16)) is a valid measure for statistical
inference without using any model as first assumptions. Our
approach computes this score using all the data available, in-
stead of using a k-fold strategy, and with the resulting set of
accuracies we estimate the true value based on the upper bounds
with probability at least 1− α. Then, a permutation analysis
is derived using this measure to simulate the distribution of
the null hypothesis and finally, a test can be formulated as a
classic statistical inference. Putative design tasks and random
experiments on empirical datasets to assess type I error and
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statistical power, respectively, confirm the nominal performance
of the methodology, and demonstrate its potential.
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