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ABSTRACT 

Downy mildew is a major disease of grapevine. Conventional methods for assessing crop 
diseases are time-consuming and require trained personnel. This work aimed to develop and 
validate a new method to automatically estimate the severity of downy mildew in grapevine 
leaves using fuzzy logic and computer vision techniques. Leaf discs of two grapevine varieties 
were inoculated with Plasmopara viticola and subsequently, RGB images were acquired under 
indoor conditions. Computer vision techniques were applied for leaf disc location in Petri 
dishes, image pre-processing and segmentation of pre-processed disc images to separate the 
pixels representing downy mildew sporulation from the rest of the leaf. Fuzzy logic was applied 
to improve the segmentation of disc images, rating pixels with a degree of infection according 
to the intensity of sporulation. To validate the new method, the downy mildew severity was 
visually evaluated by eleven experts and averaged score was used as the reference value. A 
coefficient of determination (R2) of 0.87 and a root mean squared error (RMSE) of 7.61 % 
was observed between the downy mildew severity obtained by the new method and the visual 
assessment values. Classification of the severity of the infection into three levels was also 
attempted, achieving an accuracy of 86 % and an F1 score of 0.78. These results indicate that 
computer vision and fuzzy logic can be used to automatically estimate the severity of downy 
mildew in grapevine leaves. A new method has been developed and validated to assess the 
severity of downy mildew in grapevine. The new method can be adapted to assess the severity 
of other diseases and crops in agriculture.

 KEYWORDS:  non-invasive sensing technologies, plant disease detection, Plasmopara viticola, 
precision viticulture.
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INTRODUCTION

Grapevine is globally considered one of the most important 
crops for its economic relevance (Buonassisi et  al.,  2017). 
The occurrence of diseases caused by fungi, bacteria and 
viruses is the cause of severe economic losses due to the 
reduced quantity and quality of production. Among grapevine 
diseases, downy mildew is considered of primary importance 
(Buonassisi et al., 2017) due to the significant yield losses 
that it causes and the costs of the protection measures. Downy 
mildew is caused by the biotrophic oomycete Plasmopara 
viticola, an obligate parasite of grapevine. Under favourable 
weather conditions, the pathogen can infect all leaves 
and bunches of the plant if it is not adequately controlled 
(Toffolatti et al., 2018). As a result, grapevine downy mildew 
has become a pressing issue that has deserved attention 
worldwide.

The assessment of plant disease can be expressed in terms of 
incidence, i.e., the proportion of the plant units that are diseased 
in a defined population or sample (Madden  et  al.,  2017), 
or severity, which is the proportion of the plant exhibiting 
visible disease symptoms or sporulation, usually expressed 
as a percentage (Madden  et  al.,  2017). To perform the 
disease evaluation, personnel with appropriate competence 
and expertise must be selected (Mokhtar et al., 2015).  The 
traditional phenotyping techniques, in fact, rely on visual 
ratings of the disease symptoms in grapevine leaves and 
bunches or the sporulation extent in experimentally inoculated 
leaves. More precisely, visual estimation is carried out by 
assigning a value to the severity of symptoms or sporulation 
perceived by the human eye. It requires a considerable time 
and can be subjective, i.e., influenced by the operator’s 
ability to discriminate the disease symptoms/pathogen 
sporulation and associated with errors (Bock  et  al.,  2010). 
The application of new sensing technologies gives the 
opportunity to remove the inconsistencies linked to the 
operator-based visual assessment and to improve the speed, 
accuracy, reproducibility and versatility of the disease 
assessment in several crops (Bock et al., 2020). 

The application of new and emerging technologies has 
allowed the development of automatic and semi-automatic 
methods for plant disease assessment. Visualisation of 
the plant infections at different symptomatic stages can be 
achieved using several sensing technologies such as computer 
vision (Barbedo, 2013, 2014), hyperspectral imaging 
(Lowe  et  al.,  2017), thermography (Stoll  et  al.,  2008) and 
chlorophyll fluorescence (Cséfalvay et al.,  2009). Methods 
based on the chlorophyll fluorescence, hyperspectral, 
and thermal images require expensive equipment and 
sophisticated analysis methods. In contrast, computer vision 
can be applied to RGB images that can be acquired using 
a large number of very accessible, economically-friendly 
devices (Lin et al., 2019). 

Several reports have shown the usefulness of image analysis 
for the objective assessment of disease severity in different 
plant–pathogen interactions, including grapevine (Barbedo, 
2014; Barbedo, 2018b; Bock et al., 2008; Boso et al., 2004; 

Corkidi et al., 2006; Stoll et al., 2008; Tucker et al., 2001; 
Wijekoon et al., 2008). Moreover, the assessment of disease 
severity throughout image analysis allows one to obtain high-
throughput phenotyping data in a non-destructive and simple 
way and could offer new opportunities for a more precise 
evaluation of plant-pathogen interaction in leaf disc bioassays 
(Peressotti  et  al.,  2011). Diseased visible symptoms can 
be assessed and distinguished from the infected area using 
computer vision techniques (Barbedo, 2013; Barbedo, 2014; 
Stewart and McDonald, 2014). Infected area segmentation 
has witnessed various algorithms, such as the segmentation 
of infected pixels based on grey levels (Price et al., 1993). 
Segmentation is used for partitioning the image to find 
regions of interest and it aims to separate the region having 
abnormalities. Images with disease spots on the leaves are 
considered and converted into a binary image separating 
background and leaf pixels. Leaf pixels are also divided into 
the diseased area and the rest of the leaf. Once the total disease 
area and total leaf area are known, the severity of the disease 
is estimated by calculating the percentage of the infected 
region (number of diseased pixels) over the entire leaf region 
(Mukherjee, 2020). All image analysis studies reported in 
the literature that are based on automatic or semi-automatic 
methods for the assessment of the disease severity have in 
common that digital evaluation is performed by detecting 
pixels with special features that define each particular 
disease symptom (Bock  et  al.,  2010; Bock  et  al.,  2020). 
Image segmentation is one of the most utilised techniques 
to classify the infected area from the entire plant organ 
region. Grey levels and histograms of intensities have been 
used for image segmentation (Barbedo, 2014; Camargo and 
Smith, 2009). According to some works (Barbedo,  2013; 
Zhang  et  al.,  2020), thresholding can be a useful tool 
for segmenting images, detecting disease symptoms and 
quantifying disease infection in plants. 

Fuzzy logic can be combined with computer vision 
techniques to extract information that humans could perceive 
from regions of interest in images. Recently, this approach 
has been suggested to evaluate plant diseases (Mukherjee, 
2020; Sibiya and Sumbwanyambe, 2019) and enhance image 
segmentation to locate diseased areas (Sekulska-Nalewajko 
and Goclawski, 2011). The application of a fuzzy threshold 
in segmentation has been suggested to improve disease 
quantification algorithms (Nagi and Tripathy, 2020; Nagi and 
Tripathy, 2021). These works pointed to the diversity of the 
use of fuzzy logic and the closeness of the results provided 
by the fuzzy logic to the expert’s evaluation.

The aim of this work was to develop and validate a new 
method to automatically assess the severity of downy mildew 
disease in grapevine leaves by combining fuzzy logic and 
computer vision techniques.

MATERIALS AND METHODS

For the evaluation of the severity of downy mildew disease in 
grapevine leaves under laboratory conditions, a new method 
was developed combining computer vision techniques 
with fuzzy logic. The process is summarised in Figure 1.  
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The first stage of the process was the preparation of the plant 
material and the RGB image acquisition. The second stage 
involved the use of computer vision techniques to find leaf 
discs in the image and to highlight the disease severity in each 
leaf disc. Finally, for validation, the downy mildew severity 
obtained from the sporulation located in each image was 
compared against the scores obtained by a visual assessment 
performed by experts. 

1. Plant material and image acquisition
Leaf discs from grapevine plants were inoculated with a 
suspension of Plasmopara viticola sporangia and placed 
in Petri dishes with the abaxial side up. Leaf discs were 
imaged using a digital camera under laboratory conditions.  
Two different leaf grapevine data sets were used. 

1.1. Set-1: Cabernet-Sauvignon
Plant preparation and image acquisition were carried out 
in April 2019 at the University of Milan (Milan, Italy).  
Fifty grapevine plants (cv. Cabernet-Sauvignon, 
Vitis  vinifera  L.) were grown in 5 L pots filled with 
commercial mixture peat (perlite and vermiculite) in a 
climate chamber at 23 ± 2 °C and 80 % relative air humidity. 
The photoperiod was 16 h of artificial light. During growth, 
plants were drip-watered regularly. Between one and three 
leaves (the third to the fifth leaf from the apex of the shoot) 
from each plant were excised, rinsed with distilled water 
and dried with filter paper. Leaf discs of 25 mm diameter 
were excised by a corkborer and placed in Petri dishes with 
the abaxial side up on wetted filter paper. Eight leaf discs 
were placed inside each Petri dish. Leaf discs were then 
sprayed with 1 mL of a P. viticola sporangia suspension  
(5 × 104 sporangia mL-1) (Toffolatti et al., 2016). The isolate of  
P. viticola was obtained from naturally infected plants 
and was maintained on a susceptible variety weekly.  
The inoculated plates were incubated in a humid chamber at 
23 ± 2 °C, 12:12 photoperiod.

RGB images with a resolution of 4 megapixels 
(2272 × 1704 pixels) were taken with an Olympus u-miniD, 
Stylus V digital camera (Olympus Imaging Corp., Tokyo, Japan) 
with a Vario-Tessar FE 12 mm lens under indoor conditions. 

Images were taken from 3 to 9 days after inoculation under 
laboratory conditions. A total of 14 Petri dishes and 109 leaf 
discs (between five and eight discs per dish) were imaged in 
this set.  

1.1. Set-2: Tempranillo
Plant preparation and image acquisition occurred in November 
2019 at the University of La Rioja (Logroño, Spain).  
Fifty grapevine plants (cv. Tempranillo, Vitis vinifera  L.) 
were grown in 5 L pots filled with commercial mixture peat 
(perlite and vermiculite) in a climate chamber at 23 ± 2 °C 
and 80 % relative air humidity. The photoperiod was 16 h of 
artificial light. During growth, plants were watered regularly. 
Between one and three leaves from each plant were excised, 
rinsed with distilled water and dried with filter paper. Leaf 
discs of 15 mm diameter were excised with a corkborer and 
placed in Petri dishes with the abaxial side up on wetted filter 
paper. Nine leaf discs per placed in each Petri dish. Leaf discs 
were sprayed with 1 mL of a suspension of 5 × 104 sporangia 
mL-1 onto the abaxial leaf surface. The isolate of P. viticola 
was obtained from naturally infected plants showing downy 
mildew symptoms. The Petri dishes with infected leaf discs 
were maintained in a humid chamber at 23 ± 2 °C for 9 days.

RGB images with a resolution of 24 megapixels 
(6000  ×  4000  pixels) were taken with a Sony alpha 7-II 
digital mirrorless camera (Sony Corp., Tokyo, Japan) with 
a Vario-Tessar FE 24–70 mm lens under indoor conditions. 
Images were taken from 4 to 9 days after inoculation under 
laboratory conditions. A total of 29 Petri dishes and 261 leaf 
discs (nine discs per dish) were imaged in this set. 

2. Computer vision algorithm for downy 
mildew assessment
The new computer vision algorithm for assessing downy 
mildew in grapevine leaves consisted of four main 
steps: i) Leaf disc location in the Petri dishes, ii) image 
pre‑processing  iii) segmentation of pre-processed images 
to separate the pixels representing downy mildew infection 
from the rest and iv) estimation of downy mildew severity 
for each leaf disc.

FIGURE 1. Diagram of the methodology followed for the development of a method to assess the downy mildew 
severity on grapevine leaves. Grapevine leaf discs were prepared and imaged with an RGB (red, green and blue) 
camera. Leaf discs were evaluated by computer vision and fuzzy logic techniques. Finally, these evaluations were 
compared with an expert visual assessment for validation. 
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2.1. Leaf disc location on Petri dishes
Each leaf disc of the Petri dishes was located using Hough’s 
transform (Yuen  et  al.,  1990), obtaining the location of its 
centre on the image and its radius. This method segmented the 
discs ignoring the background and the Petri dish, regardless 
of potential differences in disc sizes.

To achieve this disc localisation, a preliminary step was 
required involving common colour correction (Figure 2). 
Likewise, the images belonging to Set-2 were adapted so that 
the approximate diameter of the discs was similar to those of 
Set-1 (from 400 pixels in diameter to 264 pixels), resizing the 
images in this set from 6000 × 4000 pixels to 3960 × 2640 
pixels. Then, the colour space was changed from RGB to HLS 
to separate the colour (hue), lightness and saturation of each 
image and to use the saturation values to highlight the leaf 
discs from the rest of the image, avoiding the identification 
of the Petri dish due to its circular shape (Figure 2b). This 
HLS image was then smoothed with the median filter used in 
the initial stage of the mean shift segmentation (Comaniciu 
and Meer, 2002) and with the median blur filter to reduce 
image noise (Figure 2c). Finally, the saturation component 
of the blurred images was used for the localisation of the 
leaf discs with the Hough Transform from the OpenCV 
4.5.1.48 library applying the Hough gradient method, with a 
minimum distance of 190 pixels between detected centres, an 
upper threshold of 100 for the internal Canny edge detector, 
a minimum radius to be detected of 115 pixels, a maximum 
radius to be detected of 145 pixels and an inverse ratio of 

the resolution of 1 (Figure 2d). Furthermore, the threshold 
for centre detection was automatically searched (varying the 
threshold between 11 and 25) to find eight circles in each 
image from Set-1 and nine circles in each image from Set-2.

In most cases, leaf discs were not represented by a perfect 
circle, so the Hough Transform had problems detecting the 
borders of the discs with full accuracy, as seen in Figure 2. 
To improve this detection, a radius reduction of 20 pixels 
was applied, discarding part of the background close to the 
borders that could be detected as part of the sporulation. 

2.2. Image pre-processing
Image pre-processing was carried out to achieve the best 
possible differentiation between P. viticola sporulation and 
the rest of the leaf. Based on the images in the HLS colour 
space used for the disc location, the saturation channel of 
these images was selected to find the pixels that represented 
pathogen sporulation. Then, a median blur filter with a kernel 
of 3 × 3 pixels was used in the image that represented the 
saturation component to blur the image. Finally, Contrast 
Limited Adaptive Histogram Equalization (CLAHE; 
Pizer  et  al.,  1987) was applied to improve the histogram 
contrast of all images, preventing some images from having 
significantly high or low lighting.

2.3. Segmentation of pre-processed images 
To obtain a clear separation of the pixels corresponding to  
P. viticola sporulation and those representing the rest of the leaf, 
one independent image was prepared for each leaf disc (Figure 3a).  

FIGURE 2. Disc location steps: transforming the colour space from the original RGB (red, green and blue) image (a) 
to hue, lightness, saturation (HLS), applying the median filter of the mean shift segmentation (b), applying the median 
blur filter to the saturation component of the HLS colour space (c) and locating the discs using the Hough’s Transform 
(d). The located discs are highlighted with a green circumference (d).

FIGURE 3. Segmentation of a grapevine leaf disc. Original leaf disc (a), pre-processed image (grayscale) using the 
saturation component of hue, lightness, saturation (HLS) colour space (b), the segmentation obtained after applying 
the multi-threshold variant of the Otsu method (c) and histogram created with the saturation component and separated 
with segmentation (d). The separation of the red, blue and green regions (c) was made with the Otsu method.
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A pre-processed image of each leaf disc was obtained by 
the segmentation of each leaf disc with the same height and 
width as the disc diameter (Figure 3b).

Segmentation of pre-processed disc images was carried out 
using a threshold that separated the pixels between pathogen 
sporulation and the rest of the leaf in each disc (Figure 3c). 
Since leaves exhibited different saturation values, the multi-
threshold variant of the Otsu method (Liao et al., 2001) was 
applied to leaf disc images to obtain a precise segmentation, 
which allowed several thresholds to be found to divide an 
image based on the histogram of the image (Figure 3d). For 
each image, three thresholds were found, which separated 
background pixels (previously labelled with the value zero 
to focus the analysis on the localised discs), P. viticola 
sporulation, light areas of the leaf and darker areas of the leaf 
(Figure 3). Considering that the second threshold separated 
the pathogen sporulation from the rest of the leaf, this 
threshold was used to select the most appropriate threshold 
for all discs. 

A crisp threshold (Cui et al., 2010; Gutiérrez et al., 2021), 
dividing the pixels of the discs into disease infection and the 
rest of the leaf using a fixed value, was used. Furthermore, 
a fuzzy threshold based on Nagi and Tripathy (2020), 
assigning a degree of infection to the pixels depending on 
the value of the pixels using membership functions within 
a range, was also used due to the variability of saturation 
values that represent the sporulation. For this purpose, the 
distribution of the thresholds obtained from all the discs was 
used to select three representative threshold ranges: from 
the first quartile to the median (th1, between 92 and 103), 
from the first quartile to the third quartile (interquartile range, 
th2, between 92 and 119) and from the minimum to the third 
quartile (th3, between 58 and 119).

The degree of downy mildew infection was then evaluated 
by assigning a membership value to each pixel of the 
leaf disc image according to its saturation value. The 
membership value using the fuzzy threshold was calculated 
with some of the best-known membership functions in 
fuzzy logic (Robinson, 2003; Sambariya and Prasad, 2017; 
Warner et al., 2019): gaussian, S-shape, sigmoidal, trapezoidal 
and generalised bell. For each disc image, each pixel (p) was 
evaluated with one of the threshold ranges obtained with the 
Otsu method, according to the application of the membership 
function (Ross, 2005). Therefore, with fuzzy thresholding, 
the values of the pixels with infection vary between zero and 
one (the likelihood of a pixel corresponding to infection). 
In the case of crisp thresholding, the mask resulting from 
the thresholding represents the pixels with downy mildew 
infection as ones and the rest as zeros. 

Due to the similarity between leaf nerves and sporulation 
saturation values, nerves were mistakenly detected as part of 
the infection. To reduce the negative impact of this detection, 
the shape of each region labelled as part of the infection was 
analysed on each disc to ignore areas that were similar to lines 
representing leaf nerves. Nerves were defined as regions with 
an eccentricity greater than 0.95 to exclude regions similar 
to circumferences; a minor axis length less than 20  pixels 
to account for shapes with a small width; and a major 
axis length greater than 5 pixels, to discard small regions. 
Besides, to give greater importance to the pixels detected 
as downy mildew infection, the morphological operation of 
dilation with a structuring element of a size of 5 × 5 pixels 
was applied (Figure 4), thus joining and enlarging small areas 
of pixels labelled as sporulation, which in the human eye 
would be detected as single areas, instead of separate areas 
that would result in much less severity.

FIGURE 4. Processing of infection mask extracted from the disc image (a). The infection mask represents its regions 
with different colours (b), lines detected as nerves (c) and the final mask ignoring nerves and applying dilation 
morphology transformation (d).

2.4. Downy mildew severity calculation
After obtaining a mask for each leaf disc (with the values of 
the pixels between 0 and 1), the sporulation was evaluated, 
and the severity was computed. Once the discs were located 
in each Petri dish image and the mask with the degree of 
infection of the pixels was obtained, the infection severity (s) 
in each disc was calculated considering the percentage of 
infection represented by the value of its pixels, according to 
the following equation:

(10)

where vi represents the pixel value according to the degree 
of downy mildew infection detected by the membership 
function and n represents the total number of pixels assigned 
to the area of the disc which, depending on the radius obtained 
automatically by the Hough Transform, follows the equation 

.
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3. Visual rating and validation
A visual rating of downy mildew severity was performed to 
validate the infection values yielded by the method developed 
using computer vision and fuzzy logic. Downy mildew 
severity in all leaf disc images was visually evaluated by 
eleven experts. Each panellist evaluated each leaf disc using 
a 0–100 scale (Bock et al., 2010), reflecting the percentage of 
downy mildew infection over the total leaf surface.

Prior to the visual evaluation of all leaf discs, the panellists 
were intensively trained. During the training, each panellist 
was provided with a downy mildew assessment scale 
composed of 20 leaf disc RGB images, covering a range of 
infection between 0 % and 100 %. Once the panellist got 
familiar with the scale, a training set of 36 leaf discs was 
provided together with a self-evaluation spreadsheet. Should 
the difference between the infection rating given by the 
panellist and that provided by the method differ more than 
15 %, then re-training of the panellist was carried out. Only 
when the average difference between the panellist’s ratings 
and those yielded by the method was lower than 15 % then 
the panellist could start the evaluation of the leaf discs 
involved in the modelling. 

During the visual inspection and rating of the leaf discs, each 
panellist assessed 370 leaf discs in two different sessions 
to avoid fatigue. To compare the infection ratings provided 
by the experts with those obtained by the new method, a 
value representative of all panellists was used. For this 
purpose, the evaluations of each disc were analysed using the 
interquartile range (IQR), the first quartile (Q1) and the third 
quartile (Q3) from the distribution of these evaluations to 
discard the extreme outliers (Chandola et al., 2009). Values 
outside the range between  and 
were considered outliers. Once the extreme values of the 
evaluations were discarded, the average evaluation of each 
disc was considered as a representative value of the panellist 
visual rating.

The downy mildew severity values for each leaf disc 
obtained by the computer vision method were then compared 
with the average expert visual evaluation values (reference 
method). A simple linear regression model was applied to 
approximate the values obtained with the new method to the 
experts’ assessment. The determination coefficient (R2) and 
root mean square error (RMSE) were computed to compare 
the values obtained with the linear regression model and the 
expert assessment using 10-fold cross-validation. 

Moreover, infection ratings were also analysed discretely, 
taking into account severity as levels (Nagi and Tripathy, 
2020). To do this, different levels of infection severity 
were defined: low, including ratings between 0 and 25 %; 
middle, comprising severity values between 26 and 50 %; 
and high, including severity ratings between 51 and 100 %. 
Some examples of these assignments and the number of discs 
of each level available in each set can be seen in Table 1. 
The severity levels were compared using the accuracy, F1 
score, recall and precision metrics. The definitions of these 
classification metrics are the following:

where TX in accuracy metric reflects the number of discs 
correctly classified with level x, representing x as L for the 
low level, M for the middle level and H for the high level, and 
N represents the number of discs evaluated. The last three 
metrics were used on each of the levels independently and 
their mean values were considered, with TP (true positives) 
being the number of hits for that level, FP (false positives) 
refers to the number of discs misclassified as that level, and 
FN (false negatives) corresponds to the number of discs 
misclassified as another level. A confusion matrix was also 
built to determine the number of discs correctly classified or 
designated as another level of severity.

RESULTS AND DISCUSSION

The method developed provided information for each leaf 
disc in the Petri dish image (Figure 5), where the areas 
detected as infection (with blue values if the sporulation has a 
low intensity and pinker colours if the sporulation has a high 
intensity) and the percentage of infection calculated from the 
sporulation can be seen. This way, for each disc, the disease 
severity was evaluated through the evaluation of the level 
of downy mildew sporulation. Crisp thresholding (Figure 
5b) detected the clearest pathogen sporulation. On the other 
hand, fuzzy thresholding also detected less clear sporulation, 
giving different values for areas of clear sporulation and 
areas of more intense sporulation when calculating severity 
(Figure 5c). Fuzzy logic allowed to provide an assessment of 
the severity of downy mildew close to the experts, treating 
regions with lower symptom intensity differently from 
others with higher symptom intensity. This is reflected in the 
visualisation of the symptoms (Figure 5c,f), where the mask 
representing the infection not only indicates the infected 
area but also provides visual information on the intensity of 
the symptoms in each part of the infected area. Apart from 
that, as seen in other works (Barbedo, 2014), when using 
pixel values to detect disease, it was necessary to discard 
leaf nerves that could be detected as having similar values 
to disease symptoms. This was achieved by the algorithm 
analysing the shape of the regions detected as sporulation, 
making these nerves minimally influential in the estimation 
of disease severity. 

Comparing the evaluation of the discs calculated by the new 
method with the visual evaluation provided by eleven trained 
experts (summarised in Figure 6), a positive linear relationship 
was observed in all the cases, reaching an R2 value of 0.88 
using a fuzzy threshold to segment all the discs (Figure 6e,f) 
and an R2 of 0.84 for individual sets (Figure  6a–d).  
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TABLE 1. Examples of grapevine leaf discs showing downy mildew sporulation, severity level, percentage of downy 
mildew sporulation and number of leaf discs for each dataset.

Grapevine leaf discs Downy mildew  
severity level

Percentage of downy  
mildew sporulation (%)

Number of leaf discs

Dataset 1 Dataset 2 All

Low 0–25 30 214 244

Middle 26–50 34 39 73

High 51–100 45 8 53

All 0–100 109 261 370

FIGURE 5. Original Petri dishes (a,d) with downy mildew estimation in each grapevine leaf disc using crisp (b,e) and 
fuzzy threshold (using the s-shape membership function) (c,f) in Set-1 (a–c) and Set-2 (d–f) were showed.
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Despite the similarity of the results between the use of a crisp 
or fuzzy threshold, in all the graphs, it can be seen in Figure 
6 that the evaluations calculated with the fuzzy threshold are 
more similar to the experts’ evaluation. Although images 
from the two datasets presented differences in image capture, 
infection conditions and grapevine variety, the similar 
results from the same method in the two sets suggest that the 
developed method is consistent and robust against significant 
changes in image acquisition. This is also reflected in the 
comparison of the linear relationships using all the discs and 
those of each set individually, where using all the discs gives 
better results. Figure 6 also shows that the infection values 
provided by the method showed small differences with the 
experts’ evaluation (mostly by slightly underestimating the 
disease incidence), so a linear regression was used to adapt them.

Adapting the severity estimation provided by the method to 
the experts’ evaluation with linear regression, the proposed 
algorithm was evaluated using a 10-fold cross-validation, 
and the results are presented in Tables 2, 3 and 4, comparing 
severity values and levels. To see how P. viticola sporulation 
was best reflected by image saturation values, six types 
of thresholds and three ranges of saturation values were 
combined. Saturation ranges were estimated by applying the 
multi-threshold variant of the Otsu method to discs where 
sporulation differed from the rest of the leaf, considering the 
good performance of this method for separating the main 
areas of the images (Lin et al., 2019).

The results provided for both sets together (Table 2) indicate 
that the ranges chosen to separate sporulation from the rest of 
the leaf achieved a severity estimate similar to that provided by the 

FIGURE 6. The linear relationship between downy mildew severity, evaluated using computer vision techniques, and 
expert visual assessment. Computer vision evaluations performed by crisp threshold (a,c,e) and fuzzy threshold using 
the s-shape membership function (b,d,f) in Set-1 (a,b), Set-2 (c,d) and both datasets jointly (e,f) are shown. The dashed 
lines indicate a perfect linear relationship and the continuous lines indicate the real linear relationship.
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experts, with a minimum R2 value of 0.85 and a maximum 
RMSE value of 8.42 %, reaching an R2 score of 0.87 and an 
RMSE of 7.61 % with a fuzzy threshold, using the s-shape 
membership function (in the range between the saturation 
value 92 and 103). The classification of leaf discs into three 
severity levels provided by the method and the carried out by 
the experts exhibited a good degree of coincidence, obtaining 
an accuracy of 86 %, an F1 score of 0.79, a precision of 
0.83 and a recall of 0.76 with a fuzzy threshold, using the 
sigmoid membership function (in the range between the 
saturation value 58 and 119). The human evaluation of the 
level of infection in leaves can become a delicate work 

yielding very significant differences between assessments. 
This has been previously exposed by (Mukherjee, 2020), 
where fuzzy logic was used to achieve an appraisal that 
mimicked the subjectivity of the experts. The high accuracy 
values in the present work reflect the correct classification of 
most of the discs from the low level of infection, which has 
significantly more discs than the two other levels (as it can 
be shown in Table 1). This is particularly relevant as human 
inspection may disregard low levels of severity depending 
on the visual capability and acuity of each individual, 
which will not be overlooked by the method developed.

Threshold Regression Classification

Name Range Type R2 RMSE (%) Accuracy F1-score Precision Recall

th1

98 Crisp 0.87 7.62 0.86 0.77 0.79 0.76

92-103

Gaussian 0.87 7.65 0.86 0.78 0.80 0.76

S-shape 0.87 7.61 0.86 0.78 0.80 0.76

Sigmoidal 0.87 7.66 0.86 0.78 0.80 0.76

Trapezoidal 0.87 7.63 0.86 0.78 0.80 0.76

Generalized Bell 0.87 7.65 0.86 0.78 0.80 0.76

th2

106 Crisp 0.86 7.93 0.85 0.75 0.76 0.74

92-119

Gaussian 0.85 8.23 0.83 0.73 0.73 0.73

S-shape 0.86 7.94 0.84 0.75 0.76 0.74

Sigmoidal 0.86 7.92 0.85 0.76 0.76 0.75

Trapezoidal 0.86 7.99 0.84 0.74 0.75 0.74

Generalized Bell 0.86 7.97 0.84 0.75 0.76 0.75

th3

89 Crisp 0.85 8.42 0.86 0.78 0.82 0.76

58-119

Gaussian 0.86 8.13 0.85 0.76 0.78 0.74

S-shape 0.85 8.35 0.86 0.78 0.81 0.75

Sigmoidal 0.85 8.38 0.86 0.79 0.83 0.76

Trapezoidal 0.85 8.38 0.85 0.76 0.79 0.74

Generalized Bell 0.85 8.26 0.86 0.78 0.81 0.75

TABLE 2. Regression (RMSE, R2) and classification (accuracy, F1-score, precision, recall) results of the 10-fold cross-
validation, comparing the expert visual assessment and the computer vision downy mildew estimation adapted with 
a linear regression model using different thresholds and membership functions in both datasets jointly. The value 
used for the crisp threshold is the mean of the range assigned to the threshold (th1: threshold 1; th2: threshold 2 and  
th3: threshold 3). 

TABLE 3. Regression (RMSE, R2) and classification (accuracy, F1-score, precision, recall) results, comparing the 
expert visual assessment and the computer vision estimation of downy mildew using the crisp and fuzzy threshold 
(th1: threshold 1 and th3: threshold 3) with the s-shape and the sigmoid membership functions in both datasets.

Dataset
Threshold Regression Classification

Name Range Type R2 RMSE (%) Accuracy F1-score Precision Recall

Set-1

th1
98 Crisp 0.84 11.12 0.77 0.77 0.79 0.76

92–103 S-Shape 0.84 11.05 0.79 0.79 0.80 0.78

th3
89 Crisp 0.81 11.79 0.83 0.83 0.83 0.83

58–119 Sigmoidal 0.81 11.67 0.83 0.84 0.84 0.84

Set-2

th1
98 Crisp 0.84 5.54 0.89 0.52 0.55 0.51

92-103 S-shape 0.84 5.58 0.89 0.51 0.54 0.49

th3
89 Crisp 0.76 6.51 0.88 0.50 0.52 0.48

58–119 Sigmoidal 0.76 6.53 0.88 0.50 0.52 0.49
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Overall, the obtained results seem to indicate that the method 
developed offers improved performance in regression 
and classification using the fuzzy threshold, which allows 
yielding a quantitative estimation of the severity of infection 
close to that of the experts. 

Considering the best performing thresholds in regression and 
classification and their equivalent crisp thresholds, the two 
different datasets were analysed individually (Tables 3 and 
4). Table 3 shows the individual regression and classification 
results, displaying a large difference between the two 
datasets, especially in the classification results. Set-1 showed 
high levels of classification accuracy (77–83 %), while Set-2 
was characterised by a high level of accuracy (88–89 %) but 
low F1 score, precision and recall scores (close to 0.50, Table 
3). The number of discs correctly classified or classified as 
other levels can be seen in detail in Table 4, along with the 
confusion matrices associated with the methods that used the 
best performing thresholds (results split by datasets). In Set-
1, the infection levels are correctly classified in most cases, 
in contrast to Set-2, where the classification is notable for 
the correct classification of the low severity level (correctly 
classifying 99 %), with most medium severity discs being 
classified as having low severity (51–54 %) and 75 % of high 
severity discs being classified as having medium severity. This 
occurs as the variability of the data was low, and the classification 
focused on lower severities due to this unbalance. As can be seen 
in Figure 6a,b, Set-1 contained severities varying between 0 
and 100, making its estimation results more representative. 

This new method has been developed using two large and 
different datasets: Leaves from two grapevine varieties and 
with image acquisition carried out under different indoor 
conditions (operators, artificial illumination and digital 

cameras). The new method was validated by expert visual 
assessment, as eleven trained experts evaluated each leaf 
disc from both datasets using a reference method in plant 
pathology. The strong relation between the expert visual 
assessments and the downy mildew severity computed by the 
algorithm suggests that fuzzy logic could assist adequately 
for automated disease evaluation very close to expert human 
assessment.

The developed method could be applied in numerous 
studies for the phenotypization of P. viticola traits, such as 
fungicide resistance and fitness (Corio-Costet  et  al.,  2011; 
Massi et al., 2021; Toffolatti et al., 2015) or the evaluation 
of pathogen resistance in grapevine (Bellin  et  al.,  2009; 
Possamai  et  al.,  2020; Toffolatti  et  al.,  2012) and efficacy 
of antifungal compounds (Colombo  et  al.,  2020). The 
performance of the method could be improved in the future 
by trying to solve the errors due to the detection of nerves in 
the leaves, water droplets or light reflections by performing 
a segmentation with deep learning, which has been shown to 
have a high accuracy in similar problems (Lin et al., 2019). 
The effective application of deep learning requires a large 
and varied dataset (Barbedo, 2018a, 2018b), so to perform 
this type of segmentation and avoid overfitting more varied 
images of leaf discs would be needed, using different 
illumination, leaf discs with different sizes, different 
grapevine varieties, and, especially, leaf discs with severity 
percentages between 0 and 100 % and avoiding an imbalance 
of severity levels. 

The main advantages of the new method are the following:  
Objective, quantifiable, rapid, automated and trained 
personnel is not required. The outcomes of this work agree 
with previous studies in demonstrating that the use of RGB 

Dataset Threshold type True class based on  
visual assessment Discs by class

Predicted class Discs  
correctly 
classified Low Middle High

Set-1

Crisp (89)

Low 30 27 (90 %) 3 (10 %) 0 (0 %)

90 (83 %)Middle 34 1 (3 %) 27 (79 %) 6 (18 %)

High 45 3 (7 %) 6 (13 %) 36 (80 %)

Sigmoidal (58-
119)

Low 30 27 (90 %) 3 (10 %) 0 (0 %)

91 (83 %)Middle 34 1 (3 %) 28 (82 %) 5 (15 %)

High 45 2 (4 %) 7 (16 %) 36 (80 %)

Set-2

Crisp (89)

Low 214 211 (99 %) 3 (1 %) 0 (0 %)

229 (88 %)Middle 39 21 (54 %) 18 (46 %) 0 (0 %)

High 8 2 (25 %) 6 (75 %) 0 (0 %)

Sigmoidal (58-
119)

Low 214 210 (98 %) 4 (2 %) 0 (0 %)

229 (88 %)Middle 39 20 (51 %) 19 (49 %) 0 (0 %)

High 8 2 (25 %) 6 (75 %) 0 (0 %)

TABLE 4. Confusion matrix for downy mildew estimation in three severity classes using the crisp and the fuzzy 
thresholds (with the sigmoid membership function) for Sets 1 and 2. The percentage of the discs from the true class 
(based on the expert visual assessment) represented in the prediction is included next to the number of discs. A 
summary of the discs correctly classified is included in the last column.
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images with computer vision techniques for the estimation 
of disease severity in plants provides advantages over 
expert estimation (Mukherjee, 2020; Nagi and Tripathy, 
2020; Peressotti  et  al.,  2011) as the latter involves some 
degree of subjectivity and require trained experts. In the 
same way, RGB and computer vision approaches could be 
preferred over the utilisation of other types of images, such 
as hyperspectral images (Bock  et  al.,  2020), due to the 
lower cost of equipment and operator expertise required in 
the former, as well as the speed with which information is 
obtained from the plant images once the method is developed 
(Bock  et  al.,  2020). With our new method, it is possible 
to estimate the disease severity of 6131 discs per hour, as 
opposed to manual assessment, where each trained expert 
assesses approximately 185 discs per hour. This implies an 
improvement in time compared to the expert evaluation, 
which, together with the objectivity that allows having the 
same method to analyse all leaf discs, and the automation of 
the evaluation, achieves an accurate and useful method for 
the evaluation of downy mildew in grapevine leaves.

This new method can be applied to other crops and plant 
diseases in agriculture, collecting leaves from the field and 
taking images with a digital camera under indoor conditions 
with artificial illumination. Fuzzy logic could help to treat 
differently the colours of the spots that represent the symptoms 
in grapevine leaves. Recently, Gutiérrez et  al.  (2021) used 
computer vision and deep learning to differentiate downy 
mildew and other pests using images taken under day-light 
conditions in commercial vineyards. These results suggest 
that the developed method can be applied to leaf images 
taken in both field and laboratory conditions.

In this work, computer vision and fuzzy logic techniques 
have enabled the estimation of the severity of downy 
mildew in the leaves of different grapevine varieties under 
laboratory conditions with high performance, automatically 
and objectively. Fuzzy logic has been commonly used in 
agricultural applications (when compared to other computer 
vision and machine learning approaches), but these results 
point out that it can be a powerful tool either as a core 
component or included in a larger automated identification 
system, opening several ways of applying fuzzy logic to 
more agricultural-themed solutions involving computing or 
electronics. The next steps would involve the adaptation of 
this method to be applied in the estimation of downy mildew 
or other fungal diseases, such as powdery mildew or botrytis, 
in field conditions, grapevines or in other crops. Improved 
monitoring of crop disease incidence at early stages would 
contribute to better tracking the infection and actively 
reacting (either through spraying or another strategy) in a 
more optimised way.

CONCLUSIONS

A new method, based on the combined application of 
computer vision and fuzzy logic, has been developed and 
validated for the automated evaluation of downy mildew 
severity in grapevine leaves. Fuzzy logic contributed to 

the assessment of disease severity according to sporulation 
intensities and provided a detailed visualisation of the 
different sporulation intensities. The estimation of downy 
mildew severity provided by this new method was strongly 
related to the visual assessment of the infection percentage 
rated by eleven trained experts. However, the new method 
was objective, cheap and fast enough to be automated and 
serve as decision support in the control of fungal crop 
diseases, such as downy mildew.

The developed method demonstrated its effectiveness with 
images of different grapevine varieties taken under different 
conditions, achieving an estimate of downy mildew severity 
similar to that provided by experts. This demonstrates 
the robustness of the method, based on fuzzy logic, and 
its possible application to other grapevine diseases or its 
adaptation to analyse leaves collected in the field.
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