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Abstract: This paper presents the first review of noise models in classification covering both label and
attribute noise. Their study reveals the lack of a unified nomenclature in this field. In order to address
this problem, a tripartite nomenclature based on the structural analysis of existing noise models is
proposed. Additionally, a revision of their current taxonomies is carried out, which are combined
and updated to better reflect the nature of any model. Finally, a categorization of noise models is
proposed from a practical point of view depending on the characteristics of noise and the study
purpose. These contributions provide a variety of models to introduce noise, their characteristics
according to the proposed taxonomy and a unified way of naming them, which will facilitate their
identification and study, as well as the reproducibility of future research.
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1. Introduction

Human nature and limitations of measurement tools mean that the data that real-
world applications rely on often contain, to a greater or lesser extent, errors or noise [1–3].
In classification [4,5], it can affect both output class labels [6,7] and input attributes [8,9]
in the form of corruptions in the corresponding values. Learning from noisy data implies
that classifiers are less accurate and more complex, since errors may be modeled [10,11].
These facts have caused the study of noisy data to have an important rise in current data
science research [12–14]. In this context, since noise in real-world data is normally not
quantifiable and its characteristics are unknown, noise models [15,16] have been proposed
to introduce errors into them in a controlled way. They allow conclusions to be drawn from
experimentation based on the type of noise, its frequency and characteristics [17].

In the current literature on noisy data in classification, there are no reviews on noise
introduction models dealing with both label and attribute noise. On the other hand, there
are two main proposals of taxonomies for noise models [18,19]. The first one, proposed
by Frénay and Verleysen [18], can be used to categorize label noise models depending on
whether they use class or attribute information to decide which samples are mislabeled.
The second one, proposed by Nettleton et al. [19], divided noise models considering the
affected variables, the distribution of the errors and their magnitude. Note that, despite the
introduction of these taxonomies, these works mainly focused on different aspects of noisy
data, such as noise preprocessing or robustness of algorithms.

This paper provides a review of relevant noise models for classification data, paying
special attention to recent works found in the specialized literature [15,20,21]. A total of
72 noise models will be presented, considering schemes to introduce label noise [22,23]
but also attribute noise [24,25] and both in combination [26,27], which tend to receive
less attention in research works. The revision of the literature on noisy data shows some
ambiguity in the terminology related to noise models and that there is no unified criteria
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for naming them [28–30]. In this regard, one might ask: is it possible to characterize the
operation of noise models in such a way that it allows to define an approach to name
and categorize them? For this, as a consequence of the study of existing noise models,
their structure will be analyzed, reaching conclusions about the components that allow
their characterization. Then, a tripartite nomenclature will be proposed to name both
existing and future models in a descriptive way, referring to their main components. This
nomenclature will ease their identification, avoiding terminological differences among
works and the need to provide complete descriptions each time they are used; this will
also help simplify the reproducibility of the experiments carried out. Additionally, the
current taxonomies [18,19] will be revised and adapted according to relevant characteristics
of existing noise models. This will result in a single expanded taxonomy to better reflect the
nature of each noise model and its different components, allowing them to be categorized
regardless of the type of noise they introduce. Finally, noise models will also be classified
into different groups according to the characteristics of the noise to be studied and the
available knowledge of the problem domain. All these aspects add practical value to this
paper since it offers a wide range of alternatives as a basis for research, describing and
suggesting noise models based on the needs and objective of the study. In summary, the
main contributions of this work are the following:

1. Presentation of the first review of noise models for classification, including label noise,
attribute noise and both in combination.

2. Analysis of the structure of noise models, which is usually overlooked in the literature,
identifying the fundamental components that allow their characterization.

3. Detection of the absence and lack of uniformity in the nomenclature of noise models
in the literature.

4. Proposal of nomenclature to name noise models in a descriptive way, referring to their
main structural components.

5. Unification of existing taxonomies in the literature and updates to better reflect the
types of noise models and their characteristics.

6. Categorization of noise models from a practical point of view, depending on the
characteristics of noise and the available knowledge of the problem domain.

The rest of this paper is organized as follows. Section 2 provides the background on
the current terminology and taxonomies of noise models. Sections 3 and 4 present the
proposed nomenclature and taxonomy, respectively. Then, Sections 5 and 6 introduce the
label and attribute noise models, organizing them from a practical point of view. Finally,
Section 7 concludes this work and offers ideas about future research.

2. Background

This section focuses on the current state of terminology and taxonomies of noise
models in classification. Section 2.1 highlights the difficulties and discrepancies in the
nomenclature of noise models. Then, Section 2.2 describes the taxonomies to categorize
them.

2.1. Need for a Unified Nomenclature

Nomenclature can be defined as the set of principles and rules that are applied for the
unequivocal and distinctive naming of a series of related elements. In any discipline, it is
of crucial importance for scientific advancement and to allow researchers to communicate
unambiguously about them. Nevertheless, an in-depth study of the literature on noisy
data reflects that there is no unified criterion for naming noise models due to two main
causes [28,29,31]:

1. Many models are not assigned an identifying name,
2. There are discrepancies when naming known models.

The first and very frequent cause of a lack of nomenclature is that, in fact, most of the
noise models used in the literature are only described, and a name is not usually associated



Mathematics 2022, 10, 3736 3 of 20

with them [32,33]. This situation occurs both with models traditionally used [31,32,34] and
recent proposals [33,35], among other examples [36,37].

The second cause involves discrepancies in the name of the noise models, as well as
in the terminology related to them [28,29]. In order to delve into this aspect, the notation
compiled in Table 1 is used, which is also employed in the remainder of this work. Let D be
a classification dataset composed by n samples xi (i ∈ {1, . . . , n}), m input attributes vj (j ∈
{1, . . . , m}) and one output class v0 taking one among c possible labels in L = {l1, . . . , lc}.
The value of the variable vj, either input or output, in the sample xi is denoted as xi,j.

Table 1. Notation used.

Notation Description Notation Description

D Original dataset to be corrupted with noise. vj j-th attribute (j ∈ {1, . . . , m}) in dataset D.

n Number of samples contained in dataset D. max(vj) Maximum value of the j-th attribute (j ≥ 1).

m Number of attributes contained in dataset D. min(vj) Minimum value of the j-th attribute (j ≥ 1).

c Number of class labels contained in dataset D. mean(vj) Mean value of the j-th attribute (j ≥ 1).

xi i-th sample (i ∈ {1, . . . , n}) in dataset D. median(vj) Median value of the j-th attribute (j ≥ 1).

S Set of indices of samples {1, . . . , n} in D. var(vj) Variance value of the j-th attribute (j ≥ 1).

v0 Output class corresponding to dataset D. xi,j Original value of j-th variable vj in sample xi .

L Set of class labels {l1, . . . , lc} in dataset D. x̄i,j Noisy value of j-th variable vj in sample xi .

lk k-th output class label (k ∈ {1, . . . , c}) in L. Z Set of indices of variables {0, . . . , m} in D.

πk Proportion of samples with class label lk in D. ρ Noise level in [0, 1] used by the noise model.

As an example of ambiguous nomenclature, consider one of the most widely used
noise models [38], in which the label of each sample xi,0 can be corrupted to a different
label x̄i,0 ∈ L \ xi,0, with ρ/(c − 1) being the probability of choice of each class label
and ρ being known as the noise level [6] in the dataset. This simple noise model is
referred to in different ways in the literature, such as symmetric [28,39,40], uniform [29,41,42]
or random [30,43]. Some of these terms, such as symmetric and uniform, are also used to
designate other different models, such as that in which the label of each sample xi,0 can be
corrupted to any class label x̄i,0 ∈ L, being the probability of each alternative ρ/c [44–46].

Other commonly used terms with discrepancies are asymmetric and class-conditional,
which sometimes are used to mention a different noise level for each class [43,47,48].
Both terms, along with other ones such as flip-random, are also used to refer to different
probabilities among classes when choosing the noisy label for a sample [45,49,50]. They
are also used to indicate different noise models [51,52]. For example, asymmetric or pair
noise [51,53,54], along with other names [29,45], are used to designate the model in which
each class label li can be corrupted to any other prefixed label lj ∈ L \ li. Simultaneously,
these terms are also used to refer to the noise model consisting of corrupting the label li to
the next label lj, j = i + 1 mod c, when an order between class labels is assumed [52,55,56].
Finally, note that the term asymmetric has also been used in binary classification to indicate
that one class can change to the other but not vice versa [22,57] and even to designate the
fact that noise levels in the training and field data are different [58].

The concept non-uniform is also presented in several contexts [59,60]. It is used to iden-
tify models in which the probability of noise of each sample xi depends on its attributes xi,j
(j ≥ 1) [59,61,62] but also to mention different probabilities of noise for each class [60,63].
This terminological ambiguity is a consequence, among other aspects, of the existence of a
dichotomy between those studies that use terms such as symmetric/uniform and asymmet-
ric/class-conditional referring to the probability that each class contains noise [43,47,48] and
those referring to, when noise for a certain class occurs, the probability of choosing each
label [52,64,65]. The aforementioned facts make the terminology related to noise models not
unique throughout the literature: different models are known by the same name, whereas
different names design the same model depending on the research work, which can lead to
confusing scenarios.
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2.2. Current Taxonomies

There exist two main proposals of taxonomies for noise models [18,19]. The most
recent one [18], although originally proposed to categorize label noise from a statistical
point of view, can be translated into models that introduce this type of noise. Thus, it
considers a single dimension to classify label noise models, which are divided into three
types depending on the information used to determine if a sample is mislabeled:

1. Noisy completely at random (NCAR). These are the simplest models to introduce noise.
In NCAR models, the probability of mislabeling a sample does not depend on the
information in classes or attributes [38].

2. Noisy at random (NAR). In NAR models, the mislabeling probability of a sample xi
depends on its class label xi,0. This type of model allows considering a different noise
level for each of the classes in the dataset. NAR is usually modeled by means of the
transition matrix [56] (Equation (1)), where ρij (i, j ∈ {1, . . . , c}) is the probability of a
sample with label li to be mislabeled as lj:

T =


ρ11 ρ12 · · · ρ1c
ρ21 ρ22 · · · ρ2c

...
...

...
...

ρc1 ρc2 · · · ρcc

 (1)

3. Noisy not at random (NNAR). These use both the information in class labels xi,0 and
attribute values xi,j (j ≥ 1) to determine mislabeled samples. They constitute a more
realistic scenario consisting of mislabeling samples in specific areas, such as decision
boundaries, where classes share similar characteristics [22].

Note that these categories were also used to show the dependency of the sample’s
noisy label on the original label (in NCAR and NAR) or on the label and attribute values
(in NNAR). In contrast to the previous taxonomy for label noise models, the work in [19]
proposed another one for any type of noise (label and attributes) based on three dimensions:

1. Affected variables. This divides the noise models according to whether they introduce
label noise, attribute noise or their combination.

2. Error distribution. This classifies the models by considering whether the introduced
errors follow some known probability distribution, such as Gaussian.

3. Magnitude of errors. This divides the models according to whether the magnitude
of the generated errors is relative to the values of each sample or to the minimum,
maximum or standard deviation of each variable.

3. A New Unified Nomenclature for Noise Models

Due to the lack of a unified terminology for noise models, this section presents a
procedure for naming them with a twofold objective: (i) assigning an unequivocal name to
each noise model and (ii) being as descriptive as possible, providing information on the
noise introduction process.

The analysis of existing noise models, as well as the dichotomy in research works
when naming noise models discussed in Section 2.1, reveal that they have three main
components that allow them to be described (see Figure 1):

1. Noise type. It is a characteristic that indicates the variables affected by the noise model.
Thus, any noise model introduces noise into class labels [15,23,66], attribute values
[25,67,68] or both in combination [26,27].

2. Selection procedure. Let S = {1, . . . , n} be the set of indices of samples and Z =
{0, . . . , m} be the set of indices of variables (output class label and input attributes)
in a dataset D to be corrupted. The selection procedure creates a set of pairs P ⊆
S × Z = {(s, z) | s ∈ S and z ∈ Z} with the values to be altered. An element
(s, z) ∈ P indicates that the variable vz in the sample xs (that is, the value xs,z) must



Mathematics 2022, 10, 3736 5 of 20

be corrupted. Note that z = 0 for label noise models, z ≥ 1 for attribute noise models
and z ≥ 0 for combined noise models.
The set P can be seen as the indices s ∈ S of the samples to corrupt for each variable
vz (z ∈ Z) in which noise is introduced. There are multiple ways to select such
samples [20,69,70]. For example, all samples can have the same probability of being
chosen [38,71], a different probability can be defined for the samples according to their
class label [20,72], the probability of choosing a sample can depend on its proximity
to the decision boundaries [69,70,73], the samples in a certain area of the domain
can be altered [16,74] or even all the samples in the dataset can be selected to be
corrupted [67].

3. Disruption procedure. Given the set P indicating the samples s ∈ S to be corrupted for
each noisy variable vz (z ∈ Z), this procedure allows altering their original values xs,z
by changing them to new noisy ones x̄s,z. As in the case of the selection procedure,
there are different alternatives to modify the original values by the disruption proce-
dure [24,71,75]. For example, a new value within the domain can be chosen including
the original value [26,76] or excluding it [38,77], a default value can be chosen de-
pendently from the original value [75,78,79] or independently [71,72], additive noise
following a Gaussian distribution can be considered [17,67], among others [80,81].

Figure 1. Structure and components of noise models.

Based on these three components, a tripartite nomenclature for noise models is pro-
posed. Each part is formed by an identifier that evokes a characteristic of each of the
previous components. Table 2 shows examples of identifiers defined for each component, to-
gether with their description and a research work using it. In those terms traditionally used
in the literature where there are discrepancies (such as symmetric [28,39], asymmetric [51,53]
or uniform [41,42]), one of their most used meanings has been adopted.

Table 2. Examples of identifiers defined for the nomenclature of noise models.

Component Identifier Description Ref.
label Noise affects the class labels xi,0 of some of the samples xi (i ∈ {1, . . . , n}) in the dataset. [22]
attribute Noise affects the attribute values xi,j (j ∈ {1, . . . , m}) of some samples xi (i ∈ {1, . . . , n}). [78]Type
combined Noise affects the labels and attributes xi,j (j ∈ {0, . . . , m}) of some samples xi (i ∈ {1, . . . , n}). [26]
symmetric Samples in all classes {l1, . . . , lc} or attributes {v1, . . . , vm} have equal probability of noise. [38]
asymmetric Samples in each class {l1, . . . , lc} or attribute {v1, . . . , vm} have a different probability of noise. [20]
unconditional Noise unconditionally affects all samples xi (i = 1, . . . , n) in the dataset to be corrupted. [67]
majority-class Random choice of samples from the majority class within the dataset to be corrupted. [21]
Gaussian A Gaussian distribution determines noise probabilities using distances to decision boundaries. [22]
Gamma A Gamma distribution determines noise probabilities using distances to decision boundaries. [70]

Selection

one-dimensional Given c intervals [ak , bk ] for vj (j ≥ 1), samples xi with xi,0 = lk and xi,j ∈ [ak , bk ] are corrupted. [74]
uniform The noisy value is randomly chosen within the domain of the variable excluding the original value. [38]
completely-uniform The noisy value is randomly chosen within the domain of the variable including the original value. [44]
default Original clean values are replaced by a fixed noisy value within the domain of the variable to corrupt. [71]
Gaussian A random value following a zero-mean Gaussian distribution is added to the original attribute value. [17]
natural-distribution A random value with probability proportional to the original distribution replaces the original value. [72]
unit-simplex The probability of choosing each value as noisy is determined by a k-dimensional unit-simplex. [46]

Disruption

bidirectional Given a pair of values (a, b) for a variable vj, samples with xi,j = a change it to b and vice versa. [33]

Once the identifier of each part is determined, the name of the model is formed from
the type of noise it introduces, concatenating each part as follows:

model name = {selection}+ {disruption}+ {type}+ noise

In order to facilitate recognition of the name of the noise model, it should be written
in italics and with its first letter capitalized. Evoking the characteristics of each noise model
makes the proposed nomenclature easier to remember. At the same time, the existence of
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noise models with the same selection, disruption or type names indicates that they are closely
related to each other. The proposal for applying this nomenclature to the noise models
considered in this work, together with their corresponding references, is found in Table 3.
Note that, in some specific cases, there may be slight differences between the nomenclature
and the exact noise model applied in the corresponding paper. This is mainly due to the
fact that some works use noise models with specific configurations to achieve particular
objectives and, in these cases, a name representing the model in a more general way is
proposed. For example, in [78], some specific attributes of interest to the dataset used are
chosen to corrupt. However, to provide a general name to this noise model, the identifier
symmetric has been used for its selection procedure, referring to the fact that all attributes
can be corrupted to the same degree. Other examples are the models used in [82], which
introduce errors in binary attributes. In this case, even though the identifier bidirectional
in Table 2 could be used for the disruption process, the identifier uniform has been chosen
considering that these models can also be applied to attributes with more than two values.
Thus, the above approach can be employed to increase consistency when naming new
models so that the specific application can be separated from the noise model used.

Table 3. List of noise models and references.

Noise Model Ref. Noise Model Ref.
Label noise models
Asymmetric default label noise [72] PMD-based confidence label noise [83]
Asymmetric sparse label noise [84] Quadrant-based uniform label noise [62]
Asymmetric uniform label noise [20] Score-based confidence label noise [85]
Attribute-mean uniform label noise [86] Sigmoid-bounded uniform label noise [43]
Clustering-based voting label noise [81] Small-margin borderline label noise [87]
Exponential borderline label noise [69] Smudge-based completely-uniform label noise [88]
Exponential/smudge completely-uniform label noise [76] Symmetric adjacent label noise [89]
Fraud bidirectional label noise [35] Symmetric center-based label noise [90]
Gamma borderline label noise [70] Symmetric completely-uniform label noise [44]
Gaussian borderline label noise [22] Symmetric confusion label noise [63]
Gaussian-level uniform label noise [61] Symmetric default label noise [71]
Gaussian-mixture borderline label noise [22] Symmetric diametrical label noise [72]
Hubness-proportional uniform label noise [16] Symmetric double-default label noise [91]
IR-stable bidirectional label noise [33] Symmetric double-random label noise [80]
Laplace borderline label noise [73] Symmetric exchange label noise [66]
Large-margin uniform label noise [87] Symmetric hierarchical label noise [23]
Majority-class unidirectional label noise [21] Symmetric hierarchical/next-class label noise [79]
Minority-driven bidirectional label noise [92] Symmetric natural-distribution label noise [72]
Minority-proportional uniform label noise [93] Symmetric nearest-neighbor label noise [41]
Misclassification prediction label noise [81] Symmetric next-class label noise [75]
Multiple-class unidirectional label noise [81] Symmetric non-uniform label noise [94]
Neighborwise borderline label noise [15] Symmetric optimistic label noise [72]
Non-linearwise borderline label noise [15] Symmetric pessimistic label noise [72]
One-dimensional uniform label noise [74] Symmetric uniform label noise [38]
Open-set ID/nearest-neighbor label noise [41] Symmetric unit-simplex label noise [46]
Open-set ID/uniform label noise [41] Uneven-Gaussian borderline label noise [73]
Pairwise bidirectional label noise [95] Uneven-Laplace borderline label noise [73]
Attribute noise models
Asymmetric interval-based attribute noise [58] Symmetric scaled-Gaussian attribute noise [25]
Asymmetric uniform attribute noise [82] Symmetric uniform attribute noise [77]
Boundary/dependent Gaussian attribute noise [68] Symmetric/dependent Gaussian attribute noise [67]
Importance interval-based attribute noise [58] Symmetric/dependent Gaussian-image attribute noise [96]
Symmetric completely-uniform attribute noise [26] Symmetric/dependent random-pixel attribute noise [96]
Symmetric end-directed attribute noise [78] Symmetric/dependent uniform attribute noise [82]
Symmetric Gaussian attribute noise [17] Unconditional fixed-width attribute noise [97]
Symmetric interval-based attribute noise [58] Unconditional vp-Gaussian attribute noise [67]
Combined noise models
Symmetric completely-uniform combined noise [26] Unconditional/symmetric Gaussian/uniform combined noise [27]

As an example of the naming process, consider the noise model in which each sample
has the same probability of noise and can be mislabeled with any class label other than the
original [38]. Since the model introduces noise into class labels, its type identifier is label.
The selection of samples to modify considers the same probability for all of them, so this
identifier takes the value symmetric. Finally, since the disruption process chooses the noisy
label following a uniform distribution excluding the original value, its identifier takes the
value uniform. Therefore, the name of this noise introduction model is Symmetric uniform
label noise.

As discussed above, it should be noted that although many of the noise models
originally lacked a distinctive name, others were specifically named [46,71,82]. Some
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examples among label noise models are Symmetric default label noise (originally called
background flip noise [71]), Symmetric unit-simplex label noise (called random label flip noise [46]),
Symmetric double-random label noise (called flip2 noise [80]) or Symmetric hierarchical label noise
(called hierarchical corruption [23]). Among attribute noise models, Asymmetric uniform
attribute noise (originally called asymmetric independent attribute noise [82]) or Symmetric
Gaussian attribute noise (called Gaussian attribute noise [17]) can be mentioned.

4. Proposal for an Extended Taxonomy of Noise Models

Even though the current taxonomies of noise models [18,19] fulfill the purpose for
which they were designed, the analysis of existing models shows the need not only to
consider them as a whole but also to modify them appropriately to better reflect the nature
of any model. The taxonomy proposed by Frénay and Verleysen [18] allows classifying
label noise models based on the information source (class and attributes) used to determine
which samples are mislabeled. It is interesting to extend this idea to attribute noise models,
as well as simultaneously consider other dimensions proposed by Nettleton et al. [19]. This
joint taxonomy can be expanded to include other dimensions derived from the structure
of noise models shown in Figure 1, which allow the development of a more detailed and
descriptive categorization. Thus, the following dimensions are proposed to form part of
the final taxonomy, each one described in a separate section:

• Noise type (Section 4.1). This classifies the models based on the introduction of label
noise, attribute noise or both.

• Selection source (Section 4.2). This categorizes the models according to the information
sources (class and/or attributes) used by the selection procedure.

• Disruption source (Section 4.3). This is similar to the selection source but aimed at the
disruption procedure.

• Selection distribution (Section 4.4). The main probability distribution, if any, underlying
the selection procedure.

• Disruption distribution (Section 4.5). The main probability distribution related to the
disruption procedure.

Since the taxonomy defined by the dimensions above is based on previous approaches
[18,19], these provide similar categorization results in those cases where they are comparable.
For example, the taxonomy in [18], which is designed for label noise, could be compared to
the selection source dimension if label noise models were considered. Similarly, this occurs
with the noise type dimension, which was previously used in [19]. This fact, along with
the appropriate extensions that are detailed throughout this section, make the proposed
taxonomy adapt to previous versions and incorporate features to better reflect the variability
of noise models and their characteristics.

4.1. Noise Type

This dimension is essential to divide the models between those introducing label
noise [15,22], attribute noise [8,78] or their combination [26,27]. The most representative
models within each noise type (label, attributes and combined) are Symmetric uniform label
noise [38], Symmetric uniform attribute noise [77] and Symmetric completely-uniform combined
noise [26], respectively. These models allow noise to be studied in a generic way since they
introduce random errors and do not require knowing the domain of the problem addressed
or making assumptions about the data. Both the selection of samples to be corrupted
and their noisy values (in class labels or attributes) are carried out considering that the
alternatives have the same probability of being chosen [31,98]. In addition, they allow the
percentage of errors in the dataset to be controlled by means of a noise level, facilitating
the analysis of the consequences of noise as the number of errors in the data increases [77].
These characteristics make them some of the most widely used models [15,24,44].

The analysis of the 72 models in Table 3 with respect to the noise type shows that a
high percentage (75%) is focused on label noise. Attribute noise models represent 22.2%,
whereas combined noise models are 2.8%. These frequencies are consistent with the limited
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number of works involving attribute noise [78,82]. This fact is due to the greater complexity
that is usually associated with the identification and treatment of errors in attribute values
compared to those in class labels [8].

4.2. Selection Source

This dimension will allow the models to be divided according to the information
sources (classes and/or attributes) used by the selection procedure. It is inspired by the
taxonomy proposed in [18], properly adapted to categorize all the models and types of
noise. Thus, the analysis of existing noise models shows that the categorization in [18]
should be expanded because there are label noise models [62,86] whose selection procedure
uses only attribute information (and not class information), which had not been previously
contemplated. For example, Quadrant-based uniform label noise [62] allows determining the
probability of mislabeling samples in four different regions of the domain based on the
values of two attributes. Following the naming style in [18], the selection source of this new
type of noise models is denoted as noisy partially at random (NPAR). On the other hand, it is
necessary to update this dimension to cover attribute noise [58,78], making it valid for any
model regardless of the type of noise addressed. Thus, the selection source finally divides
the noise models, either label or attribute noise, into the following categories:

1. Noisy completely at random (NCAR). These are models that do not consider the informa-
tion of labels or attributes to select the noisy samples. For example, Symmetric uniform
label noise [38] corrupts the class labels in the dataset assigning to each sample the
same probability ρ of being altered, whereas Unconditional vp-Gaussian attribute noise
[67] corrupts all the samples.

2. Noisy at random (NAR). These are models whose selection procedure uses the same
information source as the noise type they introduce. Therefore, NAR label [33,35] and
attribute [58,82] noise models, respectively, use class information (xi,0) and attribute
information (xi,j or vj with j ≥ 1) to determine the samples xi to corrupt. For example,
Asymmetric uniform label noise [20] and Asymmetric uniform attribute noise [82] consider
a different noise probability for each class label {l1, . . . , lc} and attribute {v1, . . . , vm},
respectively.

3. Noisy partially at random (NPAR). These are models whose selection procedure uses the
opposite information source to the noise type they introduce. Examples of this type
of selection source are found in Attribute-mean uniform label noise [86], which gives a
higher probability of corrupting the samples whose attributes are closer to the mean
values, or in the aforementioned Quadrant-based uniform label noise [62].

4. Noisy not at random (NNAR). The selection procedure of these models uses class and
attribute information to determine the noisy samples. For example, Neighborwise
borderline label noise [15] determines the samples to corrupt by computing a noise
score for each sample as a function of its distances to its nearest neighbors (using the
information from attributes) of the same and different class (using the information
from class labels).

Note that, in contrast to [18], the categories in this dimension do not indicate, for
example, the dependency of a specific noisy label on the original label or attributes. These
relations have been reflected through a new dimension (see Section 4.3) since the selection
procedure (which selects the values in the dataset to corrupt) and disruption procedure
(which chooses the noisy values for the selected data) do not necessarily use the same
information sources for their purpose.

4.3. Disruption Source

Since the disruption process is different from the selection process, models can also
be classified according to the information sources used to choose the noisy values. Thus,
analogously to the selection source, models can be divided into the following categories
according to the information sources used by the disruption procedure:
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1. Disruption completely at random (DCAR). These are models whose disruption procedure
does not use information from class labels or attribute values. For example, Symmetric
default label noise [71] always chooses the same class label as the noisy value regardless
of the class and attribute values of each sample, whereas Symmetric completely-uniform
label noise [44] chooses the value of the noisy label uniformly among all the possibilities
in the domain.

2. Disruption at random (DAR). These are models whose disruption procedure uses only
the same information source as the noise type they introduce. For example, Symmetric
adjacent label noise [89] chooses one of the classes adjacent to that of the sample to
corrupt, whereas Symmetric Gaussian attribute noise [17] adds another one to the value
of the original attribute that follows a zero-mean Gaussian distribution.

3. Disruption partially at random (DPAR). These are models whose disruption procedure
uses the opposite information source to the noise type they introduce. Even though
this characteristic is not usually considered in the literature, it is interesting to define
it for potential noise models.

4. Disruption not at random (DNAR). These are models whose disruption procedure uses class
and attribute information. For example, in Symmetric nearest-neighbor label noise [41],
the noisy label for each sample is taken from its closest sample of a different class.
Therefore, it uses class and attribute information to determine the new noisy labels.

4.4. Selection Distribution

This dimension refers to the categorization of noise models based on the main prob-
ability distribution on which the selection procedure is based. In this context, a great
variety of probability distributions can be distinguished, such as multivariate Bernoulli
(in Symmetric uniform label noise [38]), Gaussian (in Gaussian-level uniform label noise [61]),
exponential (in Exponential/smudge completely-uniform label noise [76]), Laplace (in Laplace
borderline label noise [73]) or gamma (in Gamma borderline label noise [70]). Other models
introduce noise in all samples of the dataset unconditionally [67]. Among them, the most
used is the multivariate Bernoulli distribution, from which it is interesting to distinguish
the following subcategories for the selection distribution:

• Symmetric [44,71]. Each sample follows a Bernoulli distribution of parameter ρ to be
corrupted. Thus, a multivariate Bernoulli distribution of parameter ρ on {0, 1}n is
followed by the n samples of all the classes/attributes (according to the type of noise
introduced), which therefore have the same probability of being selected.

• Asymmetric [20,82]. A total of k different multivariate Bernoulli distributions of pa-
rameters ρ1, . . . , ρk are applied separately to the samples of each class (k = c) or
attribute (k = m) depending on the type of noise introduced. Therefore, samples of
each class/attribute have a different probability of being corrupted.

4.5. Disruption Distribution

This dimension refers to the main probability distribution associated with the disrup-
tion process. As in the case of the selection distribution, there are multiple alternatives
for the disruption distribution [38,71,72]. For example, the new noisy value can be chosen
following a uniform distribution, including the original value [44] or excluding it [38],
following the natural distribution of values in the original data [72], using an additive
zero-mean Gaussian distribution [17], choosing the new value uniformly within a given
interval [58] or choosing a default value [71], among others [41,80]. Note that this dimen-
sion can also consider models with a deterministic choice of noisy values [33,95].

5. Label Noise Models

Label noise [99–101] occurs when the samples in the dataset are labeled with wrong
classes. In real-world data, label noise can proceed from several sources [43,69,102]. Thus,
human mistakes due to weariness, routine or quick examination of each case, as well as
the imprecise information or subjectivity during the labeling process can produce this type
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of noise [102]. Additionally, automated approaches to collect labeled data, such as data
mining on social media and search engines, inevitably involve label noise [43]. Label noise
models [70,87,92] are designed to simulate these real-world labeling errors. Depending on
the characteristics of the noise and the application to be studied, the following main groups
of label noise models are considered:

(1) Unrestricted label noise [38,44]. The objective of these models is to introduce label
noise that affects all classes equally so that they allow the noise problem to be studied in a
generalized way. The most widely used models in this group are Symmetric uniform label
noise [38] and Symmetric completely-uniform label noise [44], which belong to the DAR and DCAR
disruption procedures, respectively. Another option to consider is Symmetric unit-simplex
label noise [46], in which the probability of choosing each of the class labels as noisy by the
disruption procedure is based on a k-dimensional unit-simplex (k = c− 1).

(2) Borderline label noise [15,69]. These models represent common scenarios in real-
world applications, where mislabeled samples are more likely to occur near the decision
boundaries [22,70]. Garcia et al. [15] proposed two borderline label noise models: Non-
linearwise borderline label noise, in which a noise metric for each sample is based on its
distance to the decision limit induced by SVM [103], and Neighborwise borderline label noise,
which calculates a noise measure N(xi) for each sample xi based on the distances to its
closest samples:

N(xi) =
d(xi, xj = NN(xi) | xj,0 = xi,0)

d(xi, xk = NN(xi) | xk,0 6= xi,0)
(2)

with NN(xi) being the nearest neighbor of xi and d(xi, xj) the Euclidean distance between
the samples xi and xj. Similarly, Small-margin borderline label noise [87] trains a logistic
regression classifier [104] and selects to corrupt a percentage of the correctly classified
samples closest to the decision boundary.

Other models are also based on the distances of the samples to the decision boundaries,
which are then used to estimate the probability that each sample is mislabeled, employing
different probability density functions (PDF) [69,73]. For example, once the distance di of a
sample xi to the decision boundary is computed, Gaussian borderline label noise [22] uses the
PDF of a Gaussian distribution N (µ, σ2) to assign its noise probability P(xi), which could
also be adapted for samples of different classes:

P(xi) = f (di; µ, σ2) =
1

σ
√

2π
e−

1
2 (

di−µ
σ )2

(3)

Other PDFs that have been used are that of the exponential distribution (in Exponential
borderline label noise [69]), the gamma distribution (in Gamma borderline label noise [70]) or
the Laplace distribution (in Laplace borderline label noise [73]). In some of these models, such
as Uneven-Laplace borderline label noise and Uneven-Gaussian borderline label noise [73], noise
probability affects samples unequally depending on which side of the decision boundary
they are on.

There are also noise models that are not based on distances to the decision boundaries
but on predictions of some classifier to determine borderline samples [81,85]. For example,
Misclassification prediction label noise [81] selects incorrectly classified samples by a multi-
layer preceptron to be corrupted using their predicted labels. Score-based confidence label
noise [85] calculates a noise score N(xi) for each sample xi based on the outputs Sq (q ∈
{1, . . . , Q}) of a Deep Neural Network (DNN) [105] at Q different epochs:

N(xi) = max
k 6=xi,0

Si,k S =
∑Q

q=1 Sq

Q
∈ Rn×c (4)

Finally, ρ% of samples with the highest noise scores are chosen to be corrupted
with the more reliable different labels offered by DNN. Note that some of the previous
models [69,70,73] were proposed for binary datasets and, therefore, the identifier bidirec-
tional in Table 2 could be used for their disruption process. However, they have been
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assigned the identifier borderline considering their potential use in multi-class problems,
where the disruption procedure could follow a strategy coherent with this type of noise
and choose any label as noisy, such as the majority label among the closest samples with a
label different from that of the sample to be modified.

(3) Label noise in other domain areas [16,62]. In addition to noise in class boundaries,
models have been proposed to introduce label noise in other regions of the dataset [16,74,86].
Thus, One-dimensional uniform label noise [74] and Quadrant-based uniform label noise [62]
allow the practitioner to focus on specific areas of the domain based on the values of one
and two variables of interest, respectively. Other examples in this group are Attribute-mean
uniform label noise [86], which makes samples closer to attribute mean values more likely
to be mislabeled, and Large-margin uniform label noise [87], which mislabels a percentage
of the correctly classified samples that are farthest from the decision boundaries. Hubness-
proportional uniform label noise [16] gives samples closer to hubs in the dataset a higher
chance of being corrupted. Thus, n · ρ samples are chosen to be mislabeled, with each
sample xi having a probability P(xi) of being selected:

P(xi) =
Nk(xi)

n · k (5)

with Nk(xi) being the hubness of xi, that is, the number of times that xi is among the k
nearest-neighbors of any other sample.

(4) Label noise based on synthetic attributes [76,88]. Other models may consider additional
attributes in the dataset to make noise dependent on them. For example, Exponential/smudge
completely-uniform label noise [76] uses a new attribute vm+1 with values uniformly dis-
tributed in [0, 1] to determine the error probability of each sample P(xi) employing an
exponential function of parameter λ:

P(xi) = λe−λs(1−xi,m+1) (6)

with s being a user parameter to scale the attribute vm+1. On the other hand, Smudge-based
completely-uniform label noise [88] uses a specific feature in the data to indicate the presence
of label noise. This can be achieved, for example, by assigning a certain value to existing or
new attributes of mislabeled samples.

(5) Label noise using default values [71,91]. This type of label noise typically occurs when
the true class cannot be determined for certain samples and a default value is assigned to
them (for example, the value other). Thus, whenever noise in a sample occurs, its label is
incorrectly assigned to a previously established class. In order to introduce it, Symmetric
default label noise [71] and Asymmetric default label noise [72] can be used. Instead of a single
default class, Symmetric double-default label noise [91] randomly chooses one of two possible
default classes.

(6) Label noise assuming order among classes [75,89]. In some data science applications,
classes have a natural order relation [89]. For example, a reader can use the labels {bad,
good, excellent} for a book review. There are several label noise models considering this
peculiarity [75,89]. Symmetric next-class label noise [75] mislabels a sample of class li to the
next label lj (with j = i + 1 mod c), whereas Symmetric adjacent label noise [89] randomly
picks one of the classes adjacent to li as noisy. Prati et al. [72] proposed several label noise
models in this scenario. For example, Symmetric diametrical label noise makes distant classes
more likely to be chosen as noisy. An alternative to defining the probabilities ρi,j of a sample
with label li to be mislabeled as lj is:

ρi,j =
|i− j|

∑c
k=1 |i− k| (7)

Other models are Symmetric optimistic label noise (in which labels higher than that of
the noisy sample are more likely to be chosen by the disruption procedure) or Symmetric
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pessimistic label noise (which gives a higher probability of choice to labels lower than that of
the sample).

(7) Label noise in out-of-distribution classes [41]. Sometimes the set of labels used in
a classification problem is not complete and some of them are not considered. This fact
implies that the samples of the classes that are ignored (out-of-distribution, OOD) are
mislabeled with the labels that were finally preserved (in-distribution, ID). The simplest
model in this group is Open-set ID/uniform label noise [41], which chooses a random label
among ID classes for samples of OOD classes. Another example of this type of model
is Open-set ID/nearest-neighbor label noise [41], which is similar to the previous one, but it
chooses the label from the closest sample of the ID classes.

(8) Label noise in binary classification [33,92]. Binary classification, in which c = 2,
is common in certain applications, such as medical datasets [106] (where healthy and
unhealthy patients are commonly distinguished) or fraud detection [35]. Even though other
label noise models can be applied to this type of data, there are some that are specifically
designed for them. One of the most studied problems in binary classification is that of class
imbalance [107], in which one of the classes has fewer samples than the other. In order
to introduce label noise in these problems while keeping the number of samples in both
classes, IR-stable bidirectional label noise [33] has been proposed. Minority-driven bidirectional
label noise [92] allows controlling both the total number of corrupted samples nc by means
of the noise level ρ, as well as the number of those samples in the minority class (nm) and
the majority class (nM) by means of the parameter η ∈ (0, 1):

nc = 2 · ρ · |Sm|; nm = η · nc; nM = (1− η) · nc; (8)

with |Sm| being the number of samples in the minority class. Finally, in the context of fraud
detection, Fraud bidirectional label noise [35] has been used, which introduces noise mainly in
the minority class and, to a much lesser extent, in the majority class. Specifically, when the
number of majority samples is high enough, it introduces nc noisy samples in the dataset:

nc = ρ · |Sm|+ µ · ρ (9)

with µ ∈ R being a parameter to control the number of majority of noisy samples, ρ · |Sm|
the amount of minority samples corrupted and µ · ρ the relatively small amount of majority
samples corrupted.

(9) Label noise between pairs of classes [21,95]. It is common for each of the classes to
be more prone to being confused with another [81]. These models simulate this scenario,
but they usually require some knowledge or assumptions about the problem since the
practitioner commonly decides which classes are confused with each other. They all tend
to work in a similar way [21,84]. Let li and lj be two classes. Then, ρ% of the samples of li
are randomly selected and labeled as lj.

In Majority-class unidirectional label noise, which can be applied to both binary [21] and
multi-class [24] data, li is the majority class and lj is usually the second majority class. Multiple-
class unidirectional label noise [81] is similar but allows defining multiple pairs of classes (li, lj)
for the valid transitions in the dataset. Finally, Pairwise bidirectional label noise [95] considers
that noise can occur in both directions (from li to lj and from lj to li), whereas Asymmetric
sparse label noise [84] requires determining a different noise level for each of the classes.

(10) Label noise with class hierarchy [23,79]. In certain applications, the set of labels can
be grouped into different superclasses [79]. For example, when classifying the following
animals in a certain region {wolf, goat, snake, lizard}, the first two belong to the superclass
mammal, whereas the last two belong to the superclass reptile. In this type of problem,
mislabeling between labels of the same superclass is the most natural scenario, and noise
between labels of different superclasses usually does not occur [91]. In this context, in
Symmetric hierarchical label noise [23], the samples can be randomly mislabeled as belonging
to any class within the corresponding superclass. Similarly, when classes are ordered,
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Symmetric hierarchical/next-class label noise [79] chooses the next class within its superclass as
the new noisy label.

(11) Choosing noisy labels in the disruption procedure [90,94]. In addition to class labels be-
ing chosen uniformly within the domain (as in those models with identifiers uniform [16,38]
and completely-uniform [44,76] for the disruption procedure), there are other noise models
that allow more alternatives to select the new noisy labels [72,94]. For example, Symmetric
non-uniform label noise [94] considers different probabilities in the disruption procedure to
choose each noisy label according to the original class. On the other hand, in Symmetric
natural-distribution label noise [72], when noise for a certain class occurs, another class with a
probability proportional to the original class distribution replaces it:

ρi,j =
πj

1− πi
· ρ (10)

with πi being the class proportion of li. In Symmetric nearest-neighbor label noise [41], the
noisy label for each sample is taken from its closest sample of a different class. Symmetric
confusion label noise [63] considers that the probability of choosing each noisy label given the
original one is based on a normalized confusion matrix obtained from the dataset. Finally,
in Symmetric center-based label noise [90], closer classes li/lj, with i 6= j, are more likely to
be confused:

ρi,j =

√
1/di,j

∑k 6=i
√

1/di,k
· ρ (11)

with di,j being the distance between the centers of classes li and lj.
(12) Different noise levels in different classes [20,93]. These models are suitable in those

applications where certain classes are more prone to errors than others. Some of these mod-
els adopt the asymmetric version (with NAR selection procedure and different noise levels
in each class) of the models mentioned above, such as Asymmetric uniform label noise [20]
or Asymmetric default label noise [72]. Another example is Minority-proportional uniform label
noise [93], which considers a noise level ρi in each class li based on the number of samples
it has relative to the minority class:

ρi =
πm

πi
· ρ | πm, πi ∈ (0, 1) (12)

with πm being the proportion of samples in the minority class, πi the proportion of samples
in the class li and ∑c

k=1 πk = 1. Note that the expression πm/πi accompanying ρ in
Equation (12) is in the interval [0, 1], so the final noise ρi is also in [0, 1]. Similarly, this
situation occurs in Equations (10)–(11), where the factor accompanying ρ is in [0, 1].

6. Attribute Noise Models

Attribute noise [68,78] involves errors in the attribute values of the samples in a dataset.
Even though it may have a human cause, its origin is usually related to instrumental
measurement errors (for example, in sensor devices), limitations in the transmission media
and so on [8]. In order to represent the variety of scenarios in which errors in attributes can
occur, different models for their introduction have been used [25,67,96]. Thus, depending
on the type of noise and the application to be studied, attribute noise models in the literature
can be grouped into the following main types:

(1) Unrestricted attribute noise [24,77]. These models are appropriate if restrictions
in the noise introduction process are not relevant. They allow studying attribute noise
in a generic way, introducing errors affecting any part of the domain [24]. Under these
premises, the most recommended models are Symmetric uniform attribute noise [77] and
Symmetric completely-uniform attribute noise (note that the latter comes from considering only
the attribute noise introduction process of the model proposed in [26]). Considering a noise
level ρ, both independently introduce the same amount of errors n · ρ in each attribute and
randomly select noisy values following a uniform distribution within the attribute domain.
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The main difference is that the former excludes the original value xi,j as noisy. Thus, for a
numeric attribute vj, a noisy value x̄i,j satisfies the following expression:

x̄i,j ∼ U [min(vj), max(vj)] | x̄i,j 6= xi,j (13)

whereas the completely-uniform alternative can choose the original value xi,j as noisy.
(2) Attribute noise in specific domain areas [68,78]. These models are suitable for appli-

cations where attribute noise is known to affect certain parts of the domain. For example,
Symmetric end-directed attribute noise [78] can be used to introduce extreme noise affecting the
limits of the domain. For each attribute value xi,j to be corrupted, the following procedure
is applied to determine its noisy value x̄i,j:

• if xi,j < median(vj), x̄i,j = max(vj) + k;
• if xi,j > median(vj), x̄i,j = min(vj)− k;
• if xi,j = median(vj), one of the above options is chosen;

with k = s ·max(vj) and s ∈ (0, 1). Another example is Boundary/dependent Gaussian attribute
noise [68], which was originally proposed to simulate an outlier effect in the data. It corrupts
a percentage of the samples close to the decision boundary in a classification problem by
introducing additive noise into the original values using a zero-mean Gaussian distribution.

(3) Attribute noise simulating small errors [17,58]. In these cases, errors are desired to be
introduced in attribute values with a controlled variation, generally small, with respect
to the original value. These models are useful in applications where measurement tools
can generate minor inaccuracies in their operation. Thus, Symmetric Gaussian attribute
noise [17] makes smaller errors more likely to be introduced. It corrupts each attribute vj
(j ∈ {1, . . . , m}) by adding random errors ε that follow a Gaussian distribution:

x̄i,j = xi,j + ε | ε ∼ N (0, k2(max(vj)−min(vj))
2) (14)

with k ∈ (0, 1]. Another way to introduce this type of error is by choosing the noisy values
following a uniform distribution within a bounded area close to the original value [58,97].
For example, Symmetric interval-based attribute noise [58] selects the noisy value from one
of the intervals adjacent to that of the original value after dividing the attribute using
an equal-height histogram. Based on a model originally used in the context of active
learning [97], Unconditional fixed-width attribute noise sets a margin E around the original
value xi,j to uniformly select the erroneous value:

x̄i,j = xi,j + ε | ε ∼ U [−E, E] (15)

In contrast to attribute noise using a zero-mean Gaussian distribution, which gives
more probability to errors close to the original value, these models [58,97] give the same
probability to all errors within the stated intervals.

(4) Attribute noise affecting all samples [67]. In certain applications, for example, when
attribute values are obtained by a faulty automatic procedure, all samples may experience
errors. Therefore, the probability of error for each sample xi is P(xi) = 1. In these cases,
models such as Unconditional vp-Gaussian attribute noise [67] (which considers an additive
zero-mean Gaussian noise with variance proportional to the variance of the attribute to
corrupt) or the aforementioned Unconditional fixed-width attribute noise, among others, can
be used. For a given attribute vj, these models satisfy:

(s, j) ∈ P , ∀s ∈ {1, . . . , n} (16)

with P being the set of pairs with the values to be altered created by the selection procedure.
(5) Dependent attribute noise [68,82]. The selection process in attribute noise models is

commonly applied for each attribute independently [77] so the samples that are corrupted
in each attribute are usually different. In certain situations, when noise in a sample occurs,
it affects all its attribute values simultaneously [82]. This type of noise is introduced by
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models such as Symmetric/dependent uniform attribute noise [82] (which randomly chooses
noisy values within the domain) or Boundary/dependent Gaussian attribute noise [68] (which
uses an additive Gaussian noise in samples close to decision boundaries).

(6) Attribute noise in image classification [96,108]. Even though other attribute noise
models can be used in dealing with image classification [109], there are some schemes
designed for this application considering that these problems have their attributes in the
same domain (the value of the pixels). For example, in Symmetric/dependent Gaussian-
image attribute noise [96], each image is replaced with random values following a Gaussian
distribution with the same mean and variance as the original image distribution. Another
example is Symmetric/dependent random-pixel attribute noise [96], in which the pixels of each
image are shuffled using independent random permutations.

(7) Different noise levels in different attributes [58,82]. These models may require knowl-
edge of the domain of the problem addressed since they usually need to specify a different
noise level for each of the attributes. Once the noise levels have been determined, the dis-
ruption process can randomly choose values within the domain, as in Asymmetric uniform
attribute noise [82], or restricted to an area close to the original attribute value, as in Asym-
metric interval-based attribute noise [58]. A special case of this type of model is Importance
interval-based attribute noise [58], in which different noise levels are assigned to attributes
based on their information gain.

7. Conclusions and Future Directions

In this work, a review of noise models in classification has been presented. The
analysis of the literature has shown the lack of a unified terminology in this field, for
which a tripartite nomenclature has been proposed to name noise models. Additionally, the
current taxonomies for noise models [18,19] have been revised, combined and expanded,
resulting in a single taxonomy that encompasses both label and attribute noise models.
Finally, the noise models have been grouped from a pragmatic point of view, according to
the possible application and the type of noise to be studied.

The proposed taxonomy helps to deepen the knowledge of noise models and their
characteristics. It is easy to interpret as it uses concepts from the field of noisy data in classi-
fication. The categorization is mainly based on the information sources of all classification
problems (class labels and attributes), as well as on the fundamental components of noise
models. From these main aspects, the different dimensions are coherently defined. Thus,
noise models can be classified in each of such dimensions. The dimensions of noise type,
selection source and disruption source can be easily identified according to the information
sources involved. This fact also occurs with the selection distribution and the disruption
distribution, even though for those models using several distributions simultaneously, it
may be useful to define a category considering them together. Finally, note that the dimen-
sions defined in the proposed taxonomy can also be applied to future models. Three of
them (noise type, selection source and disruption source) are based on the aforementioned
information sources in the classification. Since such sources are present in all classification
datasets, these dimensions and their categories can be used in the future. New noise models
can also use the rest of the dimensions (selection distribution and disruption distribution),
although considering distributions not used until now will imply the appearance of new
categories in them.

It is important to note that most of the existing models have been developed to
introduce label noise [21,22,38]. The number of attribute noise models [77,78] is more
limited, and the number of models combining label and attribute noise [26,27] is even
smaller. This fact clearly shows that label noise is being widely studied in the literature,
whereas attribute noise receives less recognition [8]. Therefore, it is necessary to pay more
attention to this type of noise and develop new models for its introduction in a controlled
way since it is frequent but often overlooked in classification problems [58,78].

Furthermore, in relation to attribute noise, other models closer to the noise produced
in real-world datasets can be studied. Thus, even though there are different models intro-
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ducing realistic label noise (for example, those focusing on borderline label noise [69,73]),
these types of models are scarcer in attribute noise. On the other hand, most attribute noise
models consider the same noise level in each attribute [17,77]. The exception could be asym-
metric models [58,82], which allow defining a noise level in each attribute. Nevertheless,
they may require knowledge of the problem to determine the noise level of each attribute
and which of them are more or less altered. In order to overcome this problem, models
based on the scheme employed in [110] (which was used for unsupervised problems) could
be designed. It defines a single noise level, avoiding the difficulty of having multiple noise
levels, and this is applied to all attributes using a salt-and-pepper procedure [110].

The separation of the selection and disruption procedures in each noise model also
allows the creation of new models that combine the selection of a given model and the
disruption of another. Finally, despite the large number of noise models proposed in
the literature, there is a line for model design that has not yet been sufficiently explored,
consisting of the imitation of real-world datasets with noisy values. This requires further
study of datasets in which errors can be identified [111,112]. The design of new models
could be based on the similarity they achieve by imitating the errors in these data. In this
way, it will be possible to approximate the errors that usually occur in real-world datasets,
which can be an important aspect in the design of noise models.
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