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Abstract: Lane detection is an essential module for the safe navigation of autonomous vehicles (AVs).
Estimating the vehicle’s position and trajectory on the road is critical; however, several environmental
variables can affect this task. State-of-the-art lane detection methods utilize convolutional neural
networks (CNNs) as feature extractors to obtain relevant features through training using multiple
kernel layers. It makes them vulnerable to any statistical change in the input data or noise affecting
the spatial characteristics. In this paper, we compare six different CNN architectures to analyze
the effect of various adverse conditions, including harsh weather, illumination variations, and
shadows/occlusions, on lane detection. Among all the aforementioned adverse conditions, harsh
weather in general and snowy night conditions particularly affect the performance by a large margin.
The average detection accuracy of the networks decreased by 75.2%, and the root mean square error
(RMSE) increased by 301.1%. Overall, the results show a noticeable drop in the networks’ accuracy
for all adverse conditions because the features’ stochastic distributions change for each state.

Keywords: autonomous vehicles; benchmark; lane detection; pre-trained networks; transfer learning

1. Introduction

Recent progress in electric vehicles, telecommunications, machine learning, tracking
technologies, and robotics have opened opportunities for deploying autonomous vehicles
(AVs) on urban roads and highways.

Current green automotive policies seek to reduce greenhouse gas emissions to zero.
This has led to electric vehicles becoming the standard platform for AV development [1,2].
Many countries, such as Canada and the United States, have aimed for electric, hybrid,
or hydrogen-powered vehicles to dominate the market by 2035 [3].

Unfortunately, AVs face particular problems, including high energy consumption,
navigation system performance, and road safety. Any inadequate motion execution on the
road may lead to an accident and increase energy consumption.

The different sensors needed, such as light detection and ranging (LiDAR) or radar,
and the processing of the different data, are responsible for the high energy consumption
of AVs. This reduces the autonomy of the vehicles considerably. One proposed solution is
to use a single type of sensor, namely a camera [4].

Regarding the navigation system, any unknown element on the road will make it
challenging to recognize the driving area, causing the system to fail. This is because it relies
heavily on visual perception to interpret the surrounding environment.

Although lane departure warning/prevention (LDW/LDP) systems can prevent
297,000 lane departure accidents annually, the accident rate due to this is still very high.
In 2015, the United States recorded 13,000 fatalities due to unintentional lane departure [5].
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For any autonomous navigation module, two challenges must be tackled: (i) the
perception of the environment, specifically the road markers and signs, and (ii) the planning
and execution of an appropriate motion for driving the vehicle safely to a given destination.

Different external variables cause visual conditions to be less than ideal, thus affecting
the perception of road markings and signs. Variables such as weather (snow, fog, rain),
time of day, and lighting changes increase the detection complexity [6,7].

In the meteorological context of countries where winter involves snow, people and
AVs have difficulty perceiving and recognizing road markings and signs due to snowfall
and ice accumulation. Drivers must rely on their intuition and memory of the road to
maintain proper lanes because they cannot differentiate road markings whose color is
diminished by snow [8]. AVs do not have specific skills for driving in snow. They use
camera-based techniques, so their performance decreases significantly when the lane is not
easily visible.

Researchers should strive to optimize AVs’ systems, such as navigation and driver
assistance, and ensure they function correctly without affecting the vehicle’s autonomy.

This paper provides an experimental analysis of the effects of several challenging
environmental driving conditions on the performance of regression-based neural networks
applied to lane recognition. A benchmark of six commonly used architectures (alexNet,
resNet-18, resNet-50, squeezeNet, VGG16, and NASNet) is performed, using their perfor-
mances under normal environmental conditions as a reference.

We have observed how much the accuracy rate of these algorithms in predicting lane
lines decreases as the conditions of the road scenario vary. These challenging conditions
include snow, different times of day, and shaded areas.

The contributions of our paper can be summarized as follows:

• In many lane recognition studies, it is assumed that deep learning algorithms can
perform well in scenarios with some degree of similarity to the training scenario.
Experimentally, this work is intended to verify and demonstrate that the performance
of these algorithms is limited. The networks are mainly based on feature extraction
from the inputs and statistical dependencies, so they will not adapt well if there are
changes or noise in these data.

• As it is unknown to what extent snow accumulation on the road makes lane prediction
difficult, we wanted to delve deeper into this scenario. Three scenarios with different
amounts of snow on the lane, in both day and night, are included among the test
conditions. Future work may use the limitations encountered to develop an approach
to combat them.

The rest of the paper is arranged as follows. Section 2 reviews the background of lane
detection methods. Section 3 presents our experiment with six deep learning algorithms.
The study’s results are displayed in Section 4, and the discussion is in Section 5. Section 6
consists of the conclusions and future work.

2. Related Work

The lane detection system is one of the AVs’ perception modules, essential to ensure
safe navigation. In recent years, different methods have been proposed and developed
for lane detection and prediction [9]. We can find different surveys of vision-based lane
recognition systems and advances in this area and LDW systems.

Narote et al. [10] addressed the different modules of the vision-based lane recognition
systems in their survey, such as video capture, lane modeling, feature extraction, and lane
tracking. Tang et al. [7] also included optimization strategies for these methods, which
aimed to obtain good performance with a smaller dataset or to avoid post-processing.
Ghani et al. [11] reviewed different lane detection algorithms, considering weather condi-
tions such as fog, haze, or rain. Additionally, they proposed a new contour angle method for
lane marker classification. Xing et al. [12] focused on and analyzed systems in detail, which
included information on methodologies that integrate such lane recognition algorithms
with sensors or other systems. They analyzed a lane detection framework based on the
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ACP (artificial society, computational experiments, and parallel execution) theory, which
consists of constructing parallel virtual scenarios for model training. They highlighted that
it is a possible way to solve generalization problems.

Specifically to recognize the driving zone, researchers use both traditional and deep
learning-based methods. Among the former is geometric modeling of traffic lines [7,13],
which uses information such as color, texture, edges, and gradient. Energy minimization
modeling has also been used.

Jung and Bae [14] presented a prototype for real-time road lane detection using data
acquired through a 3D LiDAR sensor and for the automatic generation of lane-level maps.
The authors initially distinguished traffic signal points on the ground from LiDAR data.
They used an expectation-maximization method to detect parallel lines and update the
3D line parameters as a vehicle moved forward. Finally, they built a lane-level digital
map from these parameters and a GPS (global positioning system)/ins (inertial navigation
system) sensor.

Many deep learning-based algorithms have been used in the field of lane detection.
These include the early CNN-based method, encoder–decoder CNNs [15,16], fully convo-
lutional neural networks (FCNs), or combinations of CNNs and recurrent neural networks
(RNNs) [9,17]. Likewise, generative adversarial networks (GANs) have been shown to be
suitable for expressing complex line shapes [7,18].

According to Tang et al. [7], the lane detection task can be approached from three per-
spectives. The first approach is classification-based methods, which use prior information
to obtain the lane position or discriminate the road boundary type [19,20]. The second
approach consists of object detection-based methods where feature points for each lane
segment and coordinate regression are used [21,22]. The third perspective encompasses
segmentation-based methods [15,18,23–25], which classify the pixels of an input image into
individual classes. All of these use feature extractors via learning.

With the victory of the AlexNet network in the ImageNet Large-Scale Visual Recogni-
tion Challenge (ILSVRC) in 2012, deep learning, especially CNNs, have gained significant
momentum. This has become a promising tool in several application fields, including lane
marking detection [7], where they have effectively improved the accuracy and robustness
of this task [26].

Neven et al. [15] proposed the LaneNet fast lane detection algorithm, which can
identify a variable number of lanes, thus allowing to deal with lane changing. The authors
employed an instance segmentation method that can be trained end-to-end, where each
lane forms its instance. They also proposed using a learned perspective transformation to
the parameterize of the segmented lane instances, thus obtaining a solid lane adjustment
against road plane changes.

Some strategies have been addressed to optimize deep learning methods by avoiding
post-processing or obtaining good performance using fewer data. One of these strategies is
using pre-trained models and configuring and adapting them according to the problem of in-
terest. There are two approaches: transfer learning and knowledge distillation methods [7,27].
These take advantage of the pre-trained layers of the original model, using the first layers to
recognize the most generic features [28]. Subsequent layers are kept or removed or new ones
are added depending on the problem to be addressed and the expected results [27].

In the study of Kim and Park [16], they presented a sequential transfer learning method
for the ego-lane estimation that considers all the information of an input image during
training. This method consists of the SegNet network, an end-to-end deep encoder–decoder
architecture built on region segmentation. The authors reported direction estimation
accuracies with augmented test data between 66% and 69% for a single transfer learning
network and direction accuracies between 76% and 81% for a sequential transfer learning
network. In [29], Zhang et al. developed an adaptive learning algorithm for lane features
using KITTI and Caltech datasets. They built a two-stage learning network based on the
YOLO v3 (You Only Look Once, v3) algorithm, whose parameters were modified to suit
lane detection. For the KITTI dataset, the authors reported accuracies of 79.26%, and for
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the Caltech dataset, 81.75%. Other lane detection algorithms such as Fast RCNN or sliding
window & CNN evidenced accuracies of 49.87% and 68.98%, respectively, for the KITTI
dataset. Hou et al. [30] used the self-attention distillation (SAD) method, which they
incorporated into a CNN for lane detection. This method consists of a model learning from
itself by continuously improving without additional labels or supervision. The authors
validated the method using three road lane databases: TuSimple, CULane, and BDD100K.
They use ENet, ResNet-18, and ResNet-34 architectures, obtaining accuracies of 92.69%,
92.84%, and 93.02%, respectively. Hou et al. found that the performance of the ENet–
SAD model was good, with an accuracy of 96.64%, surpassing the existing algorithms,
while being faster and requiring fewer parameters. Transfer learning has shown great
promise as it helps decrease training time, reduce computations, and make training more
efficient [27,28].

Table 1 presents a summary of some CNN-based lane detection methods based on the
network, the dataset used, and the metrics selected for evaluating the methods.

Table 1. Summary of some CNN-based lane detection methods.

Author Method Dataset Metrics

Nehemiah [31] AlexNet Author does not indicate Mini-batch loss: 0.0678
Mini-batch RMSE: 0.37

Ekşi and Gökmen [32] AlexNet TuSimple IoU 1: 0.8463
Ekşi and Gökmen [32] VGG16 TuSimple IoU: 0.87786

Kim and Park [16] VGG16-based Own dataset Accuracy: 81%
Ekşi and Gökmen [32] VGG19 TuSimple IoU: 0.89115

Hou et al. [30] ResNet-18 TuSimple, CULane, BDD100k Accuracy: 96.02% (TuSimple)
31.10% (BDD100k)

Ekşi and Gökmen [32] ResNet-50 TuSimple IoU: 0.8957
Dongdong Yang et al. [33] SqueezeNet Own dataset Accuracy: 94.46%

Zhang et al. [29] YOLO v3 (squeezeNet-based) KITTI Caltech Accuracy: 79.26% (KITTI)
81.75% (Caltech)

Minoot7 [34] PINet Tusimple Accuracy: 85.1%
1 Intersection over union (IoU).

Concerning other deep learning models, the RNN networks, composed of loops,
are used to analyze time series data, e.g., for speech recognition, language recognition,
or handwriting. These present the problem of long-term dependency, where they cannot
remember information for long periods. However, a type of these networks can deal with
this problem, the long short-term memory (LSTM) [35] network. In the literature, we can
find studies that have used these networks for lane detection; however, they are combined
with others techniques, such as CNNs, which are used as feature extractors.

Zou et al. [9] developed a deep hybrid architecture for lane recognition. This combines
a CNN for abstracting information from each frame of a driving scene, and an RNN, for lane
line prediction based on the features extracted by the CNN. This method proved to be
adequate, outperforming other methods used for lane detection, even in difficult situations.
Kortli et al. [36] proposed a real-time lane detection system based on a CNN encoder–
decoder network and an LSTM network. The encoder extracts the features and reduces the
dimensionality, the decoder maps those features, and the LSTM network processes the data
to improve the detection rate. The study showed a good performance with 96.36% accuracy.
Wu et al. [37] presented an approach that uses a gradient map to emphasize lane features
such as edges or color differences instead of using RGB images as inputs. This approach
was used to train a CNN network based on VGG-16, observing an increase in accuracy
and a reduction in training and inference time as compared to networks trained with RGB
images. Similarly, an LSTM network was trained with the gradient map as an input to
improve the detection of obscured lanes due to occlusions or varying lighting conditions.
The above showed better performance than the CNN network alone.
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Transformers are architectures that adopt the attention mechanism, focusing on specific
parts of an input based on the importance [38]. They accept sequential input data but do
not always process them in order, reducing training time due to parallelization. These
models are often used in language and image processing, where they have obtained similar
results to CNNs [39].

There is not yet much research in lane detection that rely on transformers; however,
the study of Liu et al. [40] stands out. They use transformers to predict the polynomial
parameters of a lane shape model using a self-attenuation mechanism to focus on the long
and thin structures of the lanes and the global context. This research yielded good accuracy
results when testing the model on the TuSimple dataset (96.18%), while being fast and light
in size. It also demonstrated good adaptability to scenarios with nighttime conditions or
with occluded parts; however, it does not address complex lane detection tasks. Likewise,
in [41], Han et al. developed the Laneformer transformer-based architecture and adapted
it to lane detection. This better captures the lane shape characteristics and the global
semantic context of the series of points defining the lanes using a row and column self-
attenuation mechanism. Unlike [40], this model predicts the points in each lane to adapt to
more complex scenarios. The architecture included a ResNet-50 backbone to extract basic
features. This was evaluated on the CULane and TuSimple datasets, performing well in
both normal environmental conditions and night or glare scenarios.

Among other lane detection methods is the algorithm proposed by Cao et al. [26]. This
study covers road environments with poor illumination, winding roads, and background
interference, including highway, mountain, and tunnel roads. Using the random sample
consensus algorithm, the authors obtained an aerial view of the road and fit the lane line
curves based on the third-order B-spline curve model. The method obtained a 98.42%
detection accuracy.

Despite the research, there is still little work on lane recognition on winter roads, both
day and night, and little research evaluating the performance of neural networks applied
to such situations. Some works cover different lighting conditions, and others focus on
fog or rain; however, the conditions covered in this work have not been addressed to a
large extent.

3. Benchmarking Design

The benchmarking was developed to analyze the impact of different environmental
driving conditions on the performance of the most widely used backbones CNNs in deep
learning-based lane detection methods. Quantitative and qualitative analysis is performed
to review this impact comprehensively.

This section describes the design of the different training and testing experiments
performed. The selected dataset and the challenging driving environment conditions are
covered in the first instance. We continue with selecting the evaluated networks and their
training parameters and end with the study’s metrics.

3.1. Dataset

Two road datasets have been used for this study. The first one is the TuSimple
dataset [42] which includes mild weather conditions and was used to train the networks.
The second is a locally captured dataset consisting of images with challenging weather
conditions, such as snow or night road. This dataset was used to test the performance of
the previously trained architectures. Figure 1 shows the datasets used in this study with
the different environmental situations of interest.

3.1.1. Good Weather Conditions Dataset

We used the open-access TuSimple dataset [42] for training the networks. This has a
set of video clips with a total of 6408 images of U.S. roads with resolutions of 1280 × 720.
The database includes good and average weather conditions, different traffic conditions,
and roads with two or more lanes. The images corresponding to the last frame of each clip
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have annotated lane marking (current lane, left, and right) indicating the position through
x and y values concerning the point of origin of the image.

For this study, it was decided to use a set of 3500 images from the selected dataset,
dividing it into 70% training data and 30% test data.

Figure 1. Environmental driving conditions datasets. TuSimple dataset: (a) Daytime road under
normal conditions. Our own dataset: (b) Daytime road with snow, (c) nighttime road under normal
conditions, (d) nighttime road with snow and (e) road with occluded areas. Source: [42].

3.1.2. Challenging Environmental Conditions Dataset

A locally captured dataset was included to evaluate the performance of the trained net-
works against harsh environmental conditions. The setup consisted of a GoPro HERO5 Black
camera mounted on the hood of the Kia Soul EV from the Université du Québec à Trois-Rivières.
The dimensions of the images captured with this system are 1920 × 1080 pixels.

3.1.3. Image Preprocessing

The selected images were adjusted to the network architectures’ input layer size.
This change was made to avoid the high computational cost and reduce the training time
involved in processing images with huge resolutions [32]. Similarly, by reducing the images’
size, the networks can see key features in the initial layers, which would otherwise be
learned at the network’s end [43]. The input image resolutions were set at 227 by 227, 224
by 224, and 331 by 331, depending on the network.

The approaches generally used to resize input images to neural networks are border
pixel cropping, and downsampling using interpolation. However, the former implies losing
features or patterns in border areas, and the latter implies deformations of parts or patterns
in the image [44]. For our study, we consider two points before determining which image
resizing approach to choose.

The data used in our study have an original size of 1920 × 1080 for the challenging
environmental conditions dataset and 1280 × 720 for the TuSimple dataset. This size
is significant in relation to the size of the input layer of the evaluated networks. If we
consider cropping the original picture, the resulting image will be insufficient, as it will
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only include a small part of the street. Regions with important road and environmental
features necessary for the network to predict lane locations will be lost.

We considered methods based on object detection by labeling regression feature points
for each lane segment, so it is essential to have a global view of the road. By resizing the
images by downsampling, they could be deformed by changing the aspect ratios. Despite
this, the images still have a complete picture of the road so that the network can predict
the position and curvature of the lane boundaries. Additionally, by having a view of the
environment, the networks may be able to use other static features, such as buildings,
to delimit the lane. By resizing the picture by cropping, one does not have an overall
view of the road. The resized image would only show a small segment of the lane, and its
coordinates with respect to the road could not be predicted. This small segment could
even be occluded in challenging environmental conditions, with the network not having
sufficient features to extract.

Considering the images’ original size and our study’s encompassing a regression
problem where the network predicts the lane coordinates, we resized the images by down-
sampling using a bicubic interpolation method. This is because it is less risky to deform
image features than to lose them [44]. Likewise, by resizing the images by downsampling,
it was observed that the pictures do not lose the details needed to delimit the road lane.

We labeled the images using the Ground Truth Labeler app [45] from the MATLAB
Automated Driving System Toolbox™ [46] along with the “Lane Boundary Detector” algo-
rithm. In the images, the ego-lane was defined by polylines formed by seven points each.
Considering that not all coordinates in X for the labels were at the same height, to facilitate
training we decided to recalculate these values for fixed Y values by calculating the lane
line coefficients of a second-order polynomial. Figure 2 shows a diagram describing the
labeling procedure underwent [47].

Figure 2. Labeling procedure description. Source: [42,45].

As an essential part, we had to convert the dataset into a 4D matrix to process the
images in the networks using MATLAB correctly.

3.2. Challenging Driving Environment Conditions

Some factors related to the driving environment may affect lane detection performance
and even more so if algorithms are designed and tested for a specific situation. It is necessary
to know and evaluate such variation in performance, as well as the more significant number of
influencing factors, to improve the inclusion and robustness of the lane recognition algorithm
as well as the stability and reliability of detection under various conditions [12,26].

We address four particularly challenging environmental situations for AVs and hu-
mans, which are listed below. The networks were tested on 100 images in each situation,
and lane prediction was evaluated against ground truth labels. This was to explore as to
what extent the performance of the evaluated networks differed from their performance on
daytime roads under normal environmental conditions.

• Nighttime road under normal conditions.
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• Daytime road with snow. We explore two situations: daytime road with light snow
and daytime road with moderate snow.

• Nighttime road with snow.
• Road with occluded areas.

3.3. Pre-Trained Networks

The deep learning-based methods were chosen based on the work’s objectives of
evaluating their performance in similar scenarios to the training scenario but different in
terms of climate and illumination. Thus, we took pre-existing and pre-trained networks
and adapted and fine-tuned them to detect lane boundaries.

We decided to evaluate CNNs, considering that all learning-based methods somehow
use feature extractors. Another reason for this choice is the high detection accuracy of this
type of networks [48]. That makes CNNs among the most famous and employed algorithms
in computer vision, including for identifying lane boundaries [20,49]. In particular, we
considered methods based on object detection by labeling regression feature points for each
lane segment.

Currently, there are several pre-existing networks such as AlexNet, GoogLeNet,
VGG, ResNet, Inception, and MobileNet, among others [50]. Most of these architectures
were pre-trained using the ImageNet database [51] used at ILSVRC [52]. According to
Canziani et al. [53], different variables can be considered when choosing between these
networks. These variables include accuracy, memory footprint, parameters, operation
count, inference time, and power consumption. Based on this, the following networks were
selected for this study: AlexNet, SqueezeNet, ResNet-18, ResNet-50, VGG16, and NASNet.
These are described below.

In general, for the fine-tuned networks, we replaced only the last layers of the models,
adjusting them to our data, and kept the previous layers unchanged. The final two fully
connected layers, or one as the case may be, were replaced with others of appropriate
size according to the outputs for each training image. The last of these was assigned
28 responses based on the x and y coordinates of the seven points on each lane line per
image. We substituted the final rectified linear unit (ReLU) with a new ReLU as a non-linear
activation function [54]. We removed the last dropout layer to avoid poor inference time
performance [55]. According to Rasmussen [55] and Allohvk [56], the dropout layer does
not work well for a task whose output represents an absolute quantity, as in our case. It
works better with relative values, such as the softmax classification. Finally, we replaced
the softmax and the classification layer with a regression layer to predict the coordinates of
the road lane line points. To better understand the modifications made to the networks, we
include diagrams of both the original and the new structure throughout this subsection.
The fine-tuned layers are highlighted in red in the original architecture.

3.3.1. AlexNet

Considering the variables of speed, accuracy, and size of the networks, we initially
decided to use AlexNet, a popular CNN. AlexNet is one of the fastest networks and has
a reasonable accuracy rate. This allowed us to quickly iterate and test different settings
regarding data preprocessing and training parameters [50] to select the most suitable
configuration for the experiment.

AlexNet has eight depth layers, five convolutional layers, and three fully connected
layers [57]. The network has an image input size of 227 by 227 [58] and is a suitable feature
extractor [31]. Because this is a classification network, its structure was modified to convert
it into a regression network to predict the coordinates of the road lane line points. The last
two fully connected layers were replaced with others of appropriate size according to the
outputs for each training image [31], 28 responses. We substituted the last rectified linear
unit (ReLU) with a new one, removed the last dropout layer, and replaced the softmax and
the classification layer with a regression layer. Figure 3 (left) summarizes (a) the original
AlexNet architecture along with (b) the architecture with new additional layers.
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3.3.2. SqueezeNet

A network with a smaller size on disk but equivalent accuracy to AlexNet was also
assessed. Thus, we selected SqueezeNet, considering its advantages, such as faster training
time, lower overhead, and ease of fitting into the computer memory. SqueezeNet is a
CNN with eighteen depth layers, which performs similarly to AlexNet but with fewer
parameters, fifty times less [59,60]. It was released in 2016 by DeepScale, the University of
California, Berkeley, and Stanford University.

We changed the SqueezeNet architecture to make it a regression network, as with
AlexNet. Figure 3 (right) summarizes (a) the original SqueezeNet architecture along with
(b) the modifications made it. Two fully connected layers and a ReLU layer were added.
A regression layer replaced the final two layers. The image input size is 227 by 227 [61].

Figure 3. CNN architectures of AlexNet (left): (a) original, (b) modified; and SqueezeNet (right):
(a) original, (b) modified. Source: [62–64].

3.3.3. ResNet

We also decided to include a network whose accuracy is superior to that of AlexNet
and SqueezeNet in the benchmarking. Considering the computational cost, a low training
time was also included in our selection criteria [50]. Thus, the ResNet-18 and ResNet-50
networks, whose accuracy–training time ratio met our requirements, were selected.

ResNet is a residual network proposed by Kaiming et al. [65] in 2015, the year it
won the ILSVRC. It was the first to allow training with profound networks by controlling
the vanishing gradient problem by omitting one or more layers while presenting good
performance [66]. Unlike VGG, ResNet retains its good performance despite removing
some layers [67]. Its representation capability has enabled its use in image classification,
object detection, and face recognition. There is the ResNet-18 network of eighteen layers
deep, the ResNet-50 of fifty layers deep, and ResNet-152 of one hundred and fifty-two
layers deep, among others. The deeper the network, the greater the accuracy in more
complex tasks.

As ResNet-18 and ResNet-50 are classification networks similar to the previous ones,
their architecture had to be modified to adapt them to regression networks. In Figure 4,
we summarize (a) the original ResNet-18 architecture and (b) the modified architecture.
We removed the last fully connected layer and added another fully connected layer with
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28 responses according to the coordinates of the seven points of each of the lane lines per
image. In the end, the classification layer was changed to a regression layer. The network
has an image input size of 224 by 224 [68].

Figure 4. ResNet-18 architecture: (a) original, (b) modified. Source: [62,69].

3.3.4. VGG16

We also chose to evaluate the VGG network and identify whether and to what extent
it outperforms the other architectures. Overall, the performance of VGG is better than the
other networks, despite being one of the architectures with higher computational cost and
having a more significant number of parameters [7].

There are different VGG network configurations; however, VGG16 has the best perfor-
mance when tested with the ImageNet dataset. VGG16 is a convolutional neural network
with a depth sixteen layers and an image input size of 224 by 224 proposed by Karen
Simonyan and Andrew Zisserman [70]. It obtained 92.7% test accuracy on ILSVRC in 2014,
becoming one of the most famous architectures [71].

To adapt this network to our problem, we performed the same procedure as the
previous ones. The last fully connected layer was replaced with one of an appropriate size
and the classification layer was replaced with a regression layer. Figure 5 (left) summarizes
(a) the original VGG16 architecture along with (b) the modifications and additions we made.

3.3.5. NASNet

Finally, it was decided to evaluate the neural architecture search network (NASNet)
performance in the different environmental scenarios. This is because it has one of the
best performance accuracies. NASNet has achieved state-of-the-art results with lower
complexity (less FLOPS), fewer parameters, and smaller models than similar networks.
This CNN has surpassed DenseNet, Inception, MobileNetV1, and ShuffleNet V1 [72].

NASNet is a machine learning model proposed by Zoph et al. [73] in 2018 using the
neural architecture search framework with reinforcement learning [74] and redesigning the
search space. It obtained 82.7% top-1 prediction accuracy on ImageNet, being 1.2% better
than some of the best architectures [73].
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The network has an image input size of 33 by 331 [50]. This consists of normal
layers and reductions layers and is not composed of a linear sequence of modules [75–77].
We adapt NASNetLarge’s architecture to the lane detection problem by eliminating the
last fully connected layer and replacing the classification layers with a regression one.
In Figure 5 (right), we summarize (a) the original NASNetLarge architecture and (b) the
modified architecture.

Figure 5. CNN architectures of VGG16 (left): (a) original, (b) modified; and NASNetLarge (right):
(a) original, (b) modified. Source: [62,73,78,79].

3.4. Training Parameters

The selection of hyperparameters is essential, as they influence a network’s training
outcome, giving it a higher or lower response accuracy. We evaluated different possibilities
with the MATLAB Experiment Manager application [80] for choosing the hyperparameters.
We swept through a range of values defined based on related research (number of epochs,
learning rate, batch size, and solver) until we obtained the optimal training options for
each network.

ADAM’s optimizer was adopted as a solver to update the network parameters. How-
ever, with the stochastic gradient descent with momentum (SGDM) optimizer, the perfor-
mance of the networks was also good, except for SqueezeNet. Similarly, a learning rate
was defined, considering that it should be neither too low nor too high. In the first case,
the training would take too much time, while in the second, it may diverge or not have
an optimal result [81]. Thus, we selected an initial learning rate of 0.0001. According to
Jiang et al. [54], the decay of the learning rate every few epochs during training reduces the
magnitude of the parameter updates. Initially, it was decided to test this gradual decrease
for our networks’ training, with a learning rate drop factor of 0.8 every 20 epochs, as in
the research of Jiang et al. [54]. However, the accuracy of these with respect to the values
of the networks with a constant learning rate did not differ much. We opted to use the
constant learning rate schedule for subsequent training, which resulted in higher accuracy
in a shorter time.

For selecting a range of optimal values of the mini-batch size, it was considered
that these should be moderate values: neither too large to avoid poor generalization or
stagnation at a local minimum nor too small to prevent slow convergence of the model
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due to noisy and fluctuating estimates [82–84]. Generally, powers of two are used for the
mini-batch size because these usually offer better execution time when using GPUs [85]
and are easy to represent in computer memory. Despite this, it is possible to select different
sizes. According to the study of Bierhance [85], using powers of two for mini-batch size is
not advantageous in all training situations. Because behavior tends to vary from one data
set to another and from one model to another, it is advisable to try different mini-batch
sizes. It is recommended to measure the effect of each of these on the accuracy, training
time, and memory consumption of the model until an optimal value is found [84,85]. To
propagate all our data through the network in an exact proportion, avoiding a mini-batch
with fewer samples or discarding the remaining samples [86,87], we opted to choose
a mini-batch size at which our dataset size (2450 data) is divisible. A value of 10 was
selected, which showed promising results in terms of convergence, accuracy, training time,
and computational cost. For the choice of the other mini-batch values, the fact that the
GPU memory limits the range of possible values for the mini-batch size it was taken into
account. The hyperparameter selection tests showed that as the neural network’s size grows,
the maximum mini-batch size that can be executed on a single GPU becomes smaller [83].
The networks which mostly evidenced this behavior were VGG16 and NASNETLarge.
For mini-batch values above 32, both networks yielded GPU memory errors, so it was
decided to train them with the CPU. However, NASNetLarge again presented memory
errors. Based on this, and to obtain results for all the networks evaluated, we selected a
slightly lower mini-batch value, thus opting for a size of 27. Finally, to see if most networks
performed better with a mini-batch size greater than 27 and 32 but smaller than 64, due to
the memory issues of larger networks, a value of 45 was selected for both GPU and CPU,
with which the networks performed well.

Table 2 presents some experiment results regarding prediction accuracy and RMSE
for different values of mini-batch size and epochs. As can be seen, most of the networks
performed best with a mini-batch size of 10 and 50 epochs. However, when the mini-
batch size was 45, it was observed that the performance of some networks, as was the
case for AlexNet, SqueezeNet, and VGG16, declined with 50 epochs with respect to their
performance with 30 epochs under the same hyperparameters due to model overfitting.
The validation error increased significantly at a certain point in the training [88]. Model
overfitting means that the model performs very well on the training set but not on the test
set, thus having high variance. The model memorized irrelevant information within the
training set, such as all specific details, noise, or random fluctuations, losing the ability to
generalize and perform appropriately in scenarios with unseen data [89,90].

One way to solve overfitting when the number of epochs is high is early stopping,
interrupting the training before it starts learning unnecessary information. This option
can be accomplished by monitoring the model’s accuracy on the validation data; however,
it must be ensured to obtain the optimal point between underfitting and overfitting [91].
Other techniques include increasing the amount of training data, reducing the complexity
of the model, or selecting the best features and excluding unnecessary ones [90].

The training of NASNet with a mini-batch size of 45 at 30 and 50 epochs was not
possible due to the computer’s memory limitations. We used a computer equipped with an
Intel(R) Core(TM) i7-12700H 2.70GHz, 16GB RAM, and an NVIDIA(R) GeForce RTX(TM)
3070 Ti 8GB GDDR6.
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Table 2. Experiment results for hyperparameter selection.

AlexNet ResNet-18 ResNet-50 SqueezeNet VGG16 NASNet

Mini-batch 27 Epochs 10 Solver sgdm

Accuracy 75.44% 84.66% 83.78% 56.61% 56.71% 20.23%
RMSE 22.5 20.06 20.41 29.16 27.49 70.74

Mini-batch 45 Epochs 30 Solver sgdm

Accuracy 85.22% 90.02% 91.26% 57% 85.91% -
RMSE 18.32 19.08 19.2 30.1 18.36 -

Mini-batch 45 Epochs 50 Solver sgdm

Accuracy 1.18% 90.37% 92.07% 50.18% 0% -
RMSE 141.6 19.25 18.95 34.31 2.8 × 1011 -

Mini-batch 10 Epochs 50 Solver adam

Accuracy 89.94% 90.76% 91.1% 86.93% 90.46% 92.35%
RMSE 19.35 20.69 18.85 18.53 18.97 26.02

3.5. Metrics

The metrics for evaluating the research results are essential and allow us to understand
how precise and accurate the prediction is [92]. In terms of accuracy [93], lane following
is a system that requires greater accuracy in real-time due to its significant impact on the
driving safety of vehicles in real environments [26]. It allows for the modification and
correction of the driving trajectory together with the steering system [93].

To evaluate the results of our study, we decided to use mixed methods, i.e., quantitative
and qualitative indices.

According to the literature, for the quantitative evaluation, we calculated the training
and test accuracies of the networks using the standard evaluation metrics of the TuSimple
Lane Detection Challenge [40,42]. Because this is a regression model, the predicted values
are not precisely equal to the expected values, so a threshold must be defined. Thus,
for accuracy calculation, we obtained the degree of similarity of the network predictions
and the target coordinates by calculating the prediction error and considered values within
an acceptable margin of error to be correctly predicted points [94]. For the calculation of
the accuracy of our study, we used the following equation [42].

accuracy =
∑images

CPimage
GTimage

Nimages
, (1)

where CPimage is the number of points correctly predicted for a given image, GTimage is
the number of ground-truth points in the given image and Nimages is the total number of
test images.

Similarly, considering that a regression model’s performance should be reported as an
error, we calculated one of the most common regression metrics in machine learning for
performance evaluation and reporting, the RMSE [94]. The following equation presents the
formula for calculating RMSE [92].

RMSE =

√
∑N

i=1(Actuali − Predictedi)2

Nimages
, (2)

where Predictedi is the predicted value, and Actuali is the expected value.
Concerning the qualitative indices, we also decided to inspect the prediction results

visually. For that, the predicted lane lines were plotted and compared with the ground
truth labels, thus having a complete approximation of the study by visually appreciating
the results.
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4. Results

This section presents the qualitative and quantitative results of the experiment based
on the selected metrics. The results of the trained networks under normal daytime con-
ditions are described, along with the evaluation results of the networks under harsh
environmental driving conditions. We present the detection accuracy and RMSE values
for the predicted lane line point coordinates as quantitative results. As for the qualitative
results, the lanes predicted by each network are plotted on the road image.

4.1. Initial Testing of Trained Networks under Good Weather Conditions

Thirty percent of the dataset, i.e., 1050 images, was used for the initial evaluation of the
performance of the different trained networks in good weather conditions. On these images,
the lane was predicted, and the detection accuracy and RMSE value were calculated.

Regarding the prediction accuracy, we observed that NASNet was the best performing
network, obtaining a test accuracy of 92.35%. Very close to these results, and above
90% of test accuracy, were the values of ResNet-50, with 91.1%, ResNet-18, with 90.76%,
and VGG16, with 90.46%. In the case of AlexNet and SqueezeNet, the difference with
the other networks’ accuracy did not exceed 6%, obtaining values of 89.94% and 86.93%,
respectively.

In Figure 6, we presented a comparison of the different evaluated networks, with a
mini-batch size of 10 at 50 epochs, plotting prediction accuracy versus training time using
the GPU NVIDIA(R) GeForce RTX(TM) 3070 Ti.

Figure 6. Network prediction accuracy vs. training time using GPU (NVIDIA(R) GeForce RTX(TM)
3070 Ti) for a mini-batch size of 10 at 50 epochs. Source: [50].

Regarding the RMSE, SqueezeNet resulted in the lowest value, outperforming ResNet-
50 by 1.7%, VGG16 by 2.4%, AlexNet by 4.4%, ResNet-18 by 11.7%, and NASNet by 40.4%.

For qualitative evaluation, we plotted the lanes predicted by each network to assess
how close these are to the ground truth. Figure 7 shows the lanes predicted by the top
performing network, NASNet, along with the ground truth labels. It was evident that the
prediction follows the trajectory of the actual lanes, being very close to each other.

Figure 7. Ground truth labels and predicted lanes for test images using NASNet (mini-batch size of
10 at 50 epochs). Source: [42,95].
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Comparing the predictions of the different networks, we observe in Figure 8 that
the points predicted by ResNet-50, VGG16, and NASNet are the closest to the ground
truth. Concerning the predictions of AlexNet, ResNet-18, and SqueezeNet, it is observed
that the lanes do not vary much from each other. However, for the image in column two,
the prediction differs by a medium degree from the ground truth, with SqueezeNet being
the furthest from the actual lane. It is unclear which of the two networks, AlexNet or
ResNet-18, performs better than the other.

Figure 8. Lanes predicted for some test images by (a) AlexNet, (b) ResNet-18, (c) ResNet-50,
(d) SqueezeNet, (e) VGG16 and (f) NASNet. Source: [42,95].

4.2. Challenging Driving Environment Conditions Results

Because not all networks presented the highest performance with the same combina-
tion of hyperparameters, we relied on their convergence for evaluating and comparing
performance in different challenging environmental scenarios. Thus, from the hyperparam-
eter selection experiment, we selected the model from each of them that proved to be the
best in terms of accuracy and RMSE value. Regarding training time, our study observed
that 50 epochs, each with 245 iterations, for a total of 12,250 iterations, was sufficient time for
all networks. At that point, the validation error had stabilized around the minimum value
with a minor update, and the model had not been overfitted [82,88,96,97]. In Table 3, we
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present the accuracy results obtained for the challenging driving environmental conditions,
and in Table 4, the RMSE results.

Table 3. Accuracy results obtained for the challenging driving environmental conditions.

Environmental Driving Condition AlexNet ResNet-18 ResNet-50 SqueezeNet VGG16 NASNet

Daytime road under normal conditions 84.64% 89.07% 90.61% 85.96% 90.07% 92.07%
Night road in normal conditions 51.43% 49.46% 52% 49.86% 48.57% 40.39%
Daytime road with light snow 66.57% 68.25% 60.11% 64.18% 66.71% 63.11%
Daytime road with moderate snow 62.89% 67.04% 56.71% 63.57% 64.71% 60.82%
Night road with snow 11.96% 15.93% 14% 13.71% 15.50% 13.07%
Road with occluded areas 37.18% 39.46% 37.64% 28.36% 30.68% 23.39%

Table 4. RMSE results obtained for the challenging driving environmental conditions.

Environmental Driving Condition AlexNet ResNet-18 ResNet-50 SqueezeNet VGG16 NASNet

Daytime road under normal conditions 17.43 19.98 19.45 19.45 18.15 25.9
Night road in normal conditions 47.27 49.02 53.62 48.3 50.72 70.43
Daytime road with light snow 30.71 35.75 41.28 31.4 35.33 52.42
Daytime road with moderate snow 31.62 36.87 43.43 34.31 38.31 51.11
Night road with snow 71.19 76.84 74.69 75.38 74.79 111.39
Road with occluded areas 55.02 57.29 55.01 67.23 66.53 99.38

4.2.1. Daytime Road under Normal Conditions

Concerning the predicted lanes plot on the road images under normal conditions, we
observed that these are the ones that most closely resemble the ground truth, as shown in
Figure 9. Some exceptions include the images in the first column corresponding to AlexNet,
ResNet-50, and SqueezeNet. Of the images evaluated, the predictions of NASNet and
ResNet-18 for this situation are the closest to the ground truth, whose performances are
very similar.

At first glance, it is unclear which is the best performing network among ResNet-18,
ResNet-50, NASNet, and VGG16. However, from the calculated accuracy presented in
Table 3, it was observed that NASNet was the best performer with 92.07% accuracy, closely
followed by ResNet-50 with 90.61% and VGG16 with 90.07%. ResNet-18 achieved an
accuracy of 89.07%. Regarding the RMSE values, Table 4, the AlexNet network outperforms
VGG16 by 4.13%, ResNet-50 and SqueezeNet by 11.59%, ResNet-18 by 14.63%, and NASNet
by 48.59%. The values obtained for this situation are close to those obtained from the
training and initial testing of the selected networks. This is because the daytime road
scenario under normal conditions resembles the training scenario of the networks.
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Figure 9. Lane prediction (yellow/magenta) and ground truth (cyan/blue) for daytime road images
under normal conditions using (a) AlexNet, (b) ResNet-18, (c) ResNet-50, (d) SqueezeNet, (e) VGG16,
and (f) NASNet. Source: [42,95].

4.2.2. Night Road in Normal Conditions

Of the situations evaluated and the six trained networks, the road situation at night
under normal conditions ranked fourth in terms of the highest accuracy and lowest RMSE
values. ResNet-50 and AlexNet presented prediction values closer to the ground truth,
as corroborated by the accuracy calculation (Table 3) with 52% and 51.43%, respectively.
NASNet had the lowest accuracy percentage, 40.39%, despite being the best performer
under normal conditions. In terms of RMSE, AlexNet outperforms SqueezeNet by 2.18%,
ResNet-18 by 3.7%, VGG16 by 7.3%, ResNet-50 by 13.4%, and NASNet by 49%.

From visual inspection, it can be observed that the networks did not have good results
predicting the lanes. They present an intermediate performance compared to the other
conditions, as observed in Figure 10.

When comparing the performance of the networks under normal nighttime road
conditions with normal daytime conditions, we observed an average decrease of 40.1%
in accuracy. AlexNet had the slightest difference (33.21%) and NASNet the greatest
(51.68%) from the value under normal conditions. We note an average increase of 165.3% in
RMSE. VGG16 increased the most, with a 179% difference, and ResNet-18 the least, with a
145% difference.

The change in lighting and the shadows created on the road makes it difficult for
networks to perform well in this situation.
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Figure 10. Nighttime lane prediction (yellow/magenta) and ground truth (cyan/blue) under nor-
mal conditions using (a) AlexNet, (b) ResNet-18, (c) ResNet-50, (d) SqueezeNet, (e) VGG16, and
(f) NASNet. Source: [95].

4.2.3. Daytime Road with Light and Moderate Snow

The CNNs in the snowy daytime road scenarios performed better than in the other
challenging situations. Their behavior was the closest to the performance in normal
daytime conditions.

The network’s performance on the road with light snow was the second best concern-
ing accuracy, with values of 68.25% for ResNet-18, 66.71% for VGG16, 66.57% for AlexNet,
64.18% for SqueezeNet, 63.11% for NASNet and 60.11% for ResNet-50. Comparing this
situation with normal road conditions, the decrease in network accuracy was the smallest,
with an average decrease of 23.91%. AlexNet presented the slightest difference, 18.07%,
and ResNet-50 the largest, 30.5%.

Closely following the performance of the light snow condition is that of the moderate
snow situation. ResNet-18 again took first place with 67.04% accuracy. It is followed by
VGG16, SqueezeNet, AlexNet, and NASNet, with 64.71%, 63.57%, 62.89%, and 60.82%,
respectively. Contrary to the other situations, except for light snow, ResNet-50 ranked
last with 56.71%. By comparing this situation with normal road conditions, we noticed
an average decrease of 26.1% in the accuracy of the networks. Similar to the light snow
situation, AlexNet presented the smallest difference, with 21.75%, and ResNet-50 the largest,
with 33.9%.
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In contrast to the conditions described above, the ResNet-18 network had the best
accuracy for these two daytime snow situations, and the ResNet-50 network had the
lowest value.

Regarding the RMSE values, the prediction for the daytime road with light snow
was the second lowest value, with AlexNet outperforming SqueezeNet by 2.2%, VGG16
by 15%, ResNet-18 by 16.4%, ResNet-50 by 34.4% and NASNet by 70.7%. The moderate
snow condition RMSE value followed that of the light snow condition, with AlexNet again
beating SqueezeNet by 8.5%, ResNet-18 by 16.6%, VGG16 by 21.2%, ResNet-50 by 37.3%,
and NASNet by 61.6%. The average increase in RMSE of the light snow and moderate
snow conditions to normal daytime road conditions was 87.6% and 95.7%, respectively,
the lowest increases of all conditions evaluated.

From visual inspection, it can be observed that the networks have less trouble identi-
fying lane lines for the light snow situation (Figure 11) compared to the moderate snow
situation (Figure 12). This difference is due to the low lane visibility caused by the increased
snow on the road. In both situations, the coordinates of the predicted points differ barely
from the ground truth. However, we note that the networks confuse the proper lane lines
with some false lines created by the accumulation of ice and snow on the road. Despite this
confusion, we note that these points try to follow the shape of the lanes.

Figure 11. Predicted lanes (yellow/magenta) and ground truth (cyan/blue) for daytime road with
light snow using (a) AlexNet, (b) ResNet-18, (c) ResNet-50, (d) SqueezeNet, (e) VGG16, and (f)
NASNet. Source: [95].
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Figure 12. Predicted lanes (yellow/magenta) and ground truth (cyan/blue) for daytime road with
moderate snow using (a) AlexNet, (b) ResNet-18, (c) ResNet-50, (d) SqueezeNet, (e) VGG16, and
(f) NASNet. Source: [95].

4.2.4. Night Road with Snow

Of the challenging conditions evaluated, the snowy night road had the lowest perfor-
mance in both accuracy and RMSE values. There was a significant decrease in performance
compared to normal driving conditions, with 75.2% less accuracy on average and a signifi-
cant increase in RMSE of 301.12%, the highest of all situations evaluated.

Assessing networks’ performance under this condition, AlexNet was the worst per-
former in terms of accuracy with a value of 11.96%. NASNet followed closely with 13.07%,
as did SqueezeNet with 13.71%. The accuracy values of ResNet-18 and VGG16 differ
by 0.43%, with the former being the highest performing for this condition. Contrary to
the accuracy results, AlexNet outperformed the other networks, having a lower RMSE
than ResNet-50, VGG16, SqueezeNet, ResNet-18, and NASNet by 4.9%, 5%, 5.89%, 7.9%,
and 56.5% respectively.

We observe in the images if the predicted lanes and ground truth in Figure 13 that
the networks confuse the proper lane with the fictitious lines created by snow and ice on
the road. The existing lane lines have poor visibility as these same elements cover them.
This behavior is the same as that on the daytime road in moderate snow. Nevertheless, it is
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noted in most images that the predicted points follow the shape of the lane even if their
coordinates are far from the true ones, as in the conditions described above.

Figure 13. Predicted lanes (yellow/magenta) and ground truth (cyan/blue) for the nighttime snowy
road using (a) AlexNet, (b) ResNet-18, (c) ResNet-50, (d) SqueezeNet, (e) VGG16, and (f) NASNet.
Source: [95].

The performance of the networks decreases drastically with the combination of illumi-
nation changes, decreased contrast, poor lane visibility due to snow and ice accumulation,
and the creation of false lines on the road. The above is because these deep learning
methods cannot adequately adjust to these situations outside the training set because the
stochastic distributions of their features changes.

4.2.5. Road with Occluded Areas

The performance regarding quantitative and qualitative variables evaluated for the
road with occluded areas was also among the lowest. This can be seen in Figure 14,
in Tables 3 and 4.
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Figure 14. Predicted lanes (yellow-magenta) and ground truth (cyan-blue) for the road with occluded
areas using (a) AlexNet, (b) ResNet-18, (c) ResNet-50, (d) SqueezeNet, (e) VGG16 and (f) NASNet.
Source: [95].

In many of the images evaluated, we observe that the coordinates of the predicted
points of the lanes with continuous white lines are closer to the ground truth. This can be
seen in the images of the second and third columns of Figure 14, where the points are closer
to the right lane. The preceding might suggest that the networks better detect lane lines
that are white and continuous. However, this is not the case in situations such as daytime
roads under normal conditions. In these, the networks make good predictions for lanes
with dashed white lines or solid yellow lines.

Regarding accuracy and RMSE values, the networks generally did not perform well.
They showed a decrease in the accuracy percentage of 55.95% compared to the values
achieved with the normal daytime images. The RMSE results increased significantly
by 230.2%. Comparing the networks individually, ResNet-18 had the highest accuracy
percentage with a value of 39.46%. It outperformed ResNet-50 by 1.82%, AlexNet by
2.28%, VGG16 by 8.78%, SqueezeNet by 11.1%, and NASNet by 16.07%. In terms of RMSE,
ResNet-50 and AlexNet surpassed ResNet-18 by 4.1%, VGG16 by 20.9%, SqueezeNet by
22.2%, and NASNet by 80.7%.
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Analogous to the snowy road scenarios, for this situation the networks confused the
right lane lines with false lines created by the shadows of elements close to the road or by
defects on the pavement.

5. Discussion

With this work, we experimentally analyze the extent to which different challenging
environmental driving conditions affect the performance of deep learning methods. We
compare the performance of six varied and commonly used network architectures in lane
detection. For reference, the different methods were applied to normal daytime driving
conditions and compared with the performance obtained under challenging situations.

From a broad point of view, it is observed that the networks could not transfer the
performance obtained under normal daytime conditions to the other situations. They
showed a performance decrease, with a significant drop in the accuracy percentage and an
increase in the RMSE for all cases.

Tables 5 and 6 show this decay in terms of accuracy and RMSE values for each situation
and each network evaluated. The least challenging situation for the architectures was the
daytime situation with light snow, followed closely by the daytime situation with moderate
snow, although the percentages decrease were 23.9% and 26.11%, respectively. As for
the RMSE values, the increases presented for these situations were 87.64% and 95.67%,
respectively. The road with occluded areas and the night road with snow were the most
challenging for the networks. They presented drops in prediction accuracy of 55.95% and
75.18%, respectively, and increases in the RMSE value of 230.19% and 301.12%, respectively.
This behavior can be seen in Figure 15.

Table 5. Percentage decrease in the accuracy of networks under challenging conditions with respect
to values obtained under normal daytime conditions.

Environmental Driving Condition AlexNet ResNet-18 ResNet-50 SqueezeNet VGG16 NASNet

Night road in normal conditions 33.21 39.61 38.61 36.1 41.5 51.58
Daytime road with light snow 18.07 20.82 30.5 21.78 23.36 28.96
Daytime road with moderate snow 21.75 22.03 33.9 22.39 25.36 31.25
Night road with snow 72.68 73.14 76.9 74.78 74.57 79
Road with occluded areas 47.46 49.61 52.97 57.6 59.39 68.68

Table 6. Percentage increase in the RMSE value of the networks under challenging conditions with
respect to values obtained under normal daytime conditions.

Environmental Driving Condition AlexNet ResNet-18 ResNet-50 SqueezeNet VGG16 NASNet

Night road in normal conditions 171.2 145.35 175.68 148.33 179.45 171.93
Daytime road with light snow 76.19 78.9 112.24 61.44 94.66 102.39
Daytime road with moderate snow 81.41 84.5 123.29 76.4 111.07 97.34
Night road with snow 308.43 284.58 284.01 287.56 312.07 330.08
Road with occluded areas 215.66 186.7 182.83 245.7 266.56 283.71

The network that was least affected by all situations was AlexNet, with a minor dif-
ference in accuracy percentages. Although the differences in RMSE values concerning
their performance under normal conditions were not the lowest, AlexNet was the network
that obtained the lowest RMSE values in each situation, as shown in Table 4. The net-
works that suffered the most in all situations were NASNet and ResNet-50, in contrast to
their performance in normal daytime conditions, where they obtained the best prediction
accuracy results.
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Figure 15. Percentage decrease in networks’ accuracy under challenging conditions with respect to
values obtained under normal daytime conditions.

As for the punctual performance of the networks with each challenging situation, we
note that ResNet-18 had the best percentage of prediction accuracy. NASNet and ResNet-50
had the lowest percentages.

The fact that the performance of the networks under normal daytime conditions could
not be satisfactorily transferred to slightly different situations from the training scenarios
demonstrates a generalization problem.

Lane non-visibility, illumination changes, false lane lines, and road contrast variations
modify the images’ features and add noise. This change in the features modifies the
stochastic feature distributions, making them different from the distributions of the features
corresponding to normal daytime driving conditions. This difference causes a decrease in
the performance of deep learning methods and a drastic reduction in accuracy.

Generally speaking, it is said that the performance of all deep learning-based methods
decreases, regardless of their nature (segmentation, regression, classification), because they
use feature extractors. Any statistical change in the input data or noise affecting the
spatial features will make them vulnerable. It is essential to consider these various road
conditions when training the networks to improve the robustness and inclusiveness of the
lane detection methods, thus avoiding a decrease in network performance.

In the broader context of autonomous navigation, this drop in performance accuracy
impacts both vehicle safety and energy consumption. The vehicle can become a potential
obstacle and cause severe road accidents if it cannot detect the lane. The car will not be
able to stay in it and may steer away [98]. Likewise, it will not be able to change lanes
properly. Any improper planning and execution of movement on the road can lead to an
accident, such as a rollover accident or collision with another vehicle, a stationary object,
or pedestrians [99]. Similarly, the energy budget will be affected by causing the navigation
system to move the vehicle back to its correct lane. It is better to try to stay in the lane
than to try to return after leaving it. Significant effort must be made to optimize these
autonomous driving components and ensure their correct operation in different driving
conditions for these energy and safety reasons.

Finding alternative ways to help mitigate performance degradation in challenging
environments is essential. In the study by Boisclair et al. [100], the fusion of different
image modalities into a single network is proposed as a solution to the performance
degradation of neural networks under adverse weather conditions such as snowfall or
rainfall. The authors adopt a parallel multimodal network that receives any image modality.
The authors indicate that depth images, which do not need color information, or thermal
photos, which are not affected by precipitation or fog, show good performance. In the article
of Sattar and Mo [101], image overlay and alignment are used to find the lane position on
roads where the lane is not fully visible. It uses vehicle position information and camera
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orientation to locate and access alternative images of the visible road and attempt detection
on one of these. This research uses feature-based matching to find the corresponding image
feature points between the evaluated image and the visual database image most closely
resembles it. From the common regions found, pixel-based matching was used to enhance
the alignment. In the work of Sajeed et al. [98], a geographic information system (GIS) and
an inertial navigation system are incorporated to locate the vehicle on the road without
relying on the visibility of the lane markers. This overcomes the limitations of the vision
camera, the LiDAR, and the GPS. The OpenStreetMap (OSM) map database was used to
obtain the geospatial data on street attributes and geometry. The authors extracted road
segments with geographic latitude–longitude points located at the center of the road.

Other possible solutions to the decrease in lane detection accuracy under challenging
conditions are proposed in the future work section, considering the above alternatives.

6. Conclusions and Future Work

In this paper, we presented an experimental analysis of the impact of several chal-
lenging environmental driving conditions on the performance of regression-based neural
networks for lane detection. Six varied and commonly used architectures (alexNet, resNet-
18, resNet-50, squeezeNet, VGG16, and NASNet) were compared under challenging and
normal environmental conditions.

Based on the evaluation and analysis of the benchmark, we found that all net-
works failed to extend the performance achieved successfully under normal conditions.
The daytime snowy road conditions affected performance to a lesser extent than the oth-
ers. The nighttime snowy road affected it the most. The accuracy percentage decreased
considerably in all cases, and the RMSE increased drastically.

Overall, we confirm that scenarios where road conditions have little or no similar-
ity to what has been previously learned pose challenges for deep learning algorithms.
The stochastic distributions of the environment features vary with the presence of different
factors such as noise, snow, or shadows, preventing networks from adapting adequately, as
they base their predictions on the extraction of static features and dependencies.

In future work, it is proposed to include different sets of road images under various
environmental conditions in training deep learning-based methods. The above is formu-
lated to test if the networks can delimit the driving area by matching the common static
features of the environment between similar images, such as trees or buildings. With this,
we will try to solve the generalization problem and make our methods more stable and
reliable. Likewise, a fusion of sensors (radar, thermal camera, visible camera, and LiDAR)
is proposed to complement the previous point, thus having more information about the
environment and finding more common static features with greater reliability. Another
suggested option is to generate lane lines virtually by applying augmented reality to road
images under adverse conditions. Visual and geolocation information from road images in
visible and non-visible situations would be used to infer where the lane is located on roads
with snow accumulation. The visual information encompasses the static reference features
in the environment, which could be extracted using the encoding portion of an autoencoder.
Additionally, using the approach of Sajeed et al. [98], the position of the lane lines could
be inferred, and a virtual lane could be generated. Geographic latitude–longitude points
located at the center of the road, extracted from the OSM database, would be used.
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ILSVRC ImageNet Large-Scale Visual Recognition Challenge
INS Inertial navigation system
IoU Intersection over Union
LDP Lane departure prevention
LDW Lane departure warning
LiDAR Light Detection and Ranging
LSTM Long short-term memory
ReLU Rectified Linear Unit
RMSE Root mean square error
RNNs Recurrent neural networks
SAD Self Attention Distillation
SGDM Stochastic gradient descent with momentum
YOLO You Only Look Once

References
1. Lederman, J.; Bronston, S. Biden Plan Seeks to Jumpstart Rollout of Electric Vehicle Charging Stations. 2021. Available on-

line: https://www.nbcnews.com/politics/white-house/biden-administration-releasing-strategy-building-u-s-electric-vehicle-
charging-n1285813 (accessed on 15 December 2021).

2. Motavalli, J. Every Automaker’s EV Plans through 2035 and beyond, 2021. Available online: https://www.forbes.com/wheels/
news/automaker-ev-plans/ (accessed on 15 December 2021).

3. Ratzlaff, B. Canada Aiming to Shift to All Zero-Emission Electric Vehicles by 2035: Federal Government. 2021. Available online:
https://globalnews.ca/news/8039066/canada-zero-emission-electric-vehicles/ (accessed on 15 December 2021).

4. Ministerio de Energía de Chile. Vehículos de Conducción Autónoma, 2021. Available online: https://energia.gob.cl/
electromovilidad/modelos-de-negocios/conduccion-autonoma-para-vehiculos-electricos (accessed on 14 December 2021).

5. Penmetsa, P.; Hudnall, M.; Nambisan, S. Potential safety benefits of lane departure prevention technology. IATSS Res. 2019,
43, 21–26. [CrossRef]

6. Mohammed, A.S.; Amamou, A.; Ayevide, F.K.; Kelouwani, S.; Agbossou, K.; Zioui, N. The Perception System of Intelligent
Ground Vehicles in All Weather Conditions: A Systematic Literature Review. Sensors 2020, 20, 6532. [CrossRef] [PubMed]

7. Tang, J.; Li, S.; Liu, P. A review of lane detection methods based on deep learning. Pattern Recognit. 2021, 111, 107623. [CrossRef]
8. Alam, M.Z.; Boisclair, J.; Kelouwani, S. Learning Light fields for improved lane detection. 2021, Unpublished results.
9. Zou, Q.; Jiang, H.; Dai, Q.; Yue, Y.; Chen, L.; Wang, Q. Robust Lane Detection From Continuous Driving Scenes Using Deep

Neural Networks. IEEE Trans. Veh. Technol. 2020, 69, 41–54. [CrossRef]
10. Narote, S.P.; Bhujbal, P.N.; Narote, A.S.; Dhane, D.M. A review of recent advances in lane detection and departure warning

system. Pattern Recognit. 2018, 73, 216–234. [CrossRef]
11. Ghani, H.A.; Besar, R.; Sani, Z.M.; Kamaruddin, M.N.; Syahali, S.; Daud, A.M.; Martin, A. Advances in lane marking detection

algorithms for all-weather conditions. Int. J. Electr. Comput. Eng. 2021, 11, 3365–3373. [CrossRef]
12. Xing, Y.; Lv, C.; Chen, L.; Wang, H.; Wang, H.; Cao, D.; Velenis, E.; Wang, F.Y. Advances in Vision-Based Lane Detection:

Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision. IEEE/CAA J. Autom. Sin. 2018, 5, 645–661.
[CrossRef]

https://www.nbcnews.com/politics/white-house/biden-administration-releasing-strategy-building-u-s-electric-vehicle-charging-n1285813
https://www.nbcnews.com/politics/white-house/biden-administration-releasing-strategy-building-u-s-electric-vehicle-charging-n1285813
https://www.forbes.com/wheels/news/automaker-ev-plans/
https://www.forbes.com/wheels/news/automaker-ev-plans/
https://globalnews.ca/news/8039066/canada-zero-emission-electric-vehicles/
https://energia.gob.cl/electromovilidad/modelos-de-negocios/conduccion-autonoma-para-vehiculos-electricos
https://energia.gob.cl/electromovilidad/modelos-de-negocios/conduccion-autonoma-para-vehiculos-electricos
http://doi.org/10.1016/j.iatssr.2018.08.002
http://dx.doi.org/10.3390/s20226532
http://www.ncbi.nlm.nih.gov/pubmed/33203155
http://dx.doi.org/10.1016/j.patcog.2020.107623
http://dx.doi.org/10.1109/TVT.2019.2949603
http://dx.doi.org/10.1016/j.patcog.2017.08.014
http://dx.doi.org/10.11591/ijece.v11i4.pp3365-3373
http://dx.doi.org/10.1109/JAS.2018.7511063


World Electr. Veh. J. 2022, 13, 191 27 of 30

13. Aly, M. Real time detection of lane markers in urban streets. In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium,
Eindhoven, The Netherlands, 4–6 June 2008; pp. 7–12. [CrossRef]

14. Jung, J.; Bae, S.H. Real-Time Road Lane Detection in Urban Areas Using LiDAR Data. Electronics 2018, 7, 276. [CrossRef]
15. Neven, D.; Brabandere, B.D.; Georgoulis, S.; Proesmans, M.; Gool, L.V. Towards End-to-End Lane Detection: An Instance

Segmentation Approach. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 26–30 June 2018;
pp. 286–291. [CrossRef]

16. Kim, J.; Park, C. End-to-end ego lane estimation based on sequential transfer learning for self-driving cars. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017;
pp. 30–38.

17. Li, J.; Mei, X.; Prokhorov, D.; Tao, D. Deep Neural Network for Structural Prediction and Lane Detection in Traffic Scene. IEEE
Trans. Neural Networks Learn. Syst. 2017, 28, 690–703. [CrossRef]

18. Ko, Y.; Lee, Y.; Azam, S.; Munir, F.; Jeon, M.; Pedrycz, W. Key Points Estimation and Point Instance Segmentation Approach for
Lane Detection. IEEE Trans. Intell. Transp. Syst. 2020, 1–10. [CrossRef]

19. Ali, A.A.; Hussein, H.A. Real-time lane markings recognition based on seed-fill algorithm. In Proceedings of the International
Conference on Information and Communication Technology, Kuala Lumpur, Malaysia, 24–26 July 2019; pp. 190–195.

20. Pizzati, F.; Allodi, M.; Barrera, A.; García, F. Lane Detection and Classification Using Cascaded CNNs. In Proceedings of the
Computer Aided Systems Theory—EUROCAST 2019, Las Palmas de Gran Canaria, Spain, 17–22 February 2019; Moreno-Díaz, R.,
Pichler, F., Quesada-Arencibia, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 95–103. [CrossRef]

21. Khairdoost, N.; Beauchemin, S.S.; Bauer, M.A. Road Lane Detection and Classification in Urban and Suburban Areas based on
CNNs. In Proceedings of the VISIGRAPP (5: VISAPP), Online Streaming, 8–10 February 2021; pp. 450–457.

22. Chougule, S.; Koznek, N.; Ismail, A.; Adam, G.; Narayan, V.; Schulze, M. Reliable multilane detection and classification by
utilizing CNN as a regression network. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops,
Munich, Germany, 8–14 September 2018.

23. Ding, L.; Zhang, H.; Xiao, J.; Shu, C.; Lu, S. A lane detection method based on semantic segmentation. Comput. Model. Eng. Sci.
2020, 122, 1039–1053. [CrossRef]

24. Lu, S.; Luo, Z.; Gao, F.; Liu, M.; Chang, K.; Piao, C. A Fast and Robust Lane Detection Method Based on Semantic Segmentation
and Optical Flow Estimation. Sensors 2021, 21, 400. [CrossRef] [PubMed]

25. Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial As Deep: Spatial CNN for Traffic Scene Understanding. In Proceedings of the
AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

26. Cao, J.; Song, C.; Song, S.; Xiao, F.; Peng, S. Lane detection algorithm for intelligent vehicles in complex road conditions and
dynamic environments. Sensors 2019, 19, 3166. [CrossRef] [PubMed]

27. ViewNext. El Transfer Learning y las Redes Convolucionales. 2020. Available online: https://www.viewnext.com/transfer-
learning-y-redes-convolucionales/ (accessed on 10 April 2021).

28. Costa, P. Transfer Learning ¿qué es y Para Que Sirve? 2019. Available online: https://pochocosta.com/podcast/transfer-
learning-que-es-y-para-que-sirve/ (accessed on 10 April 2021).

29. Zhang, X.; Yang, W.; Tang, X.; Liu, J. A Fast Learning Method for Accurate and Robust Lane Detection Using Two-Stage Feature
Extraction with YOLO v3. Sensors 2018, 18, 4308. [CrossRef]

30. Hou, Y.; Ma, Z.; Liu, C.; Loy, C.C. Learning Lightweight Lane Detection CNNs by Self Attention Distillation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 1013–1021.
[CrossRef]

31. Nehemiah, A. Deep Learning for Automated Driving (Part 2)—Lane Detection, 2017. Available online: https://blogs.mathworks.
com/deep-learning/2017/11/17/deep-learning-for-automated-driving-part-2-lane-detection/ (accessed on 15 April 2021).
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