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Abstract: The construction of daily electricity consumption profiles is a common practice for user
characterization and segmentation tasks. As in any data analysis project, to obtain these load profiles,
a stage of data preparation is necessary. This article explores to what extent does the selection of
the data preparation technique impacts load profiling. The techniques discussed are used in the
following tasks: standardization, construction of data, dimensionality reduction and data enrichment.
The analysis reveals a great incidence of the data preparation on the result. The need to make the data
preparation process explicit in each report is identified. In particular, it is highlighted that the most
usual default standardization process, column standardization, is not adequate in the preparation of
energy consumption profiles.

Keywords: energy profiling; data preparation; data visualization; enrichment of energy data

1. Introduction

The study of electrical energy consumption is a prolific field. The need to predict
demand has been its main driver throughout the history of power systems. However,
in recent years other applications have appeared, that require new ways of analyzing
consumption. The clearest example is in the Demand Management sector, where it is
necessary a better understanding of the users behaviors in order to design strategies that
modify those behaviors.

This fact, together with the availability of more precise and frequent measurements of
consumption, has promoted the development of research and applications with the purpose
of characterizing the user’s consumption, either for prediction or classification purposes. In
the near future, in those Smart Grids that use the Internet of Things paradigm, it is expected
that more sophisticated characterization tasks will be needed; demand response programs
will be possible to offer not just to users but to sets of users at an appliance level [1].

Consumptions can be analyzed as data series on different time scales. Based on the
sampling scale of the available measurements, measurements are sometimes grouped
on hourly, daily, weekly, monthly or annual scales, depending on the type of analysis
to be carried out. However, when we want to understand the behaviors that explain
consumption, it is useful to get a daily visualization of such consumption. In other words,
it is useful to study the variability of consumption throughout the 24 h of the day. To do
this, the consumption of the same day is organized in load curves. Each curve is an ordered
series of pairs of data (Time, Consumption) in a day.

From a procedural point of view, we start from a measurement record of the type
[DATE, HOUR, POWER] that must be cleaned and processed to generate a data table such
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as Table 1, in which each row is a load curve. It is usual to use a time resolution of one hour,
with 24 slots, although it is not mandatory. Table 1 can be represented by the array X:

X =




X1,1 X1,2 · · · X1,m
X2,1 X2,2 · · · X2,m

...
Xn,1 Xn,2 · · · Xn,m


 (1)

Table 1. Measurements organized by days and hours.

DAY
HOUR

00 01 02 · · · 22 23

1 X(1, 00) X(1, 01) X(1, 02) · · · X(1, 22) X(1, 23)

2 X(2, 00) X(2, 01) X(2, 02) · · · X(2, 22) X(2, 23)

...
...

n X(n, 00) X(n, 01) X(n, 02) · · · X(n, 22) X(n, 23)

Load profiling can be understood as the search of similarities in a set of load curves. If
the curves come from different users, load profiling is the search of groups of consumers
with similar energy consumption patterns (similar load curves). If the curves come from
the same user, load profiling is the search of groups of days in which the user has similar
energy consumption patterns.

As in any data analysis project, to obtain the load profiles a stage of data preparation
is necessary. Some of the usual tasks at this stage are record selection, data cleaning,
missing data imputation, outliers detection, data standardization, data construction, and
enrichment with other sources [2]. Data preparation and data visualization are two tasks
that go hand in hand with one another. Visualization guides preparation and preparation
allows visualization. However, most papers do not report the details of the data preparation
stage, while subsequent stages are often well documented. In addition, there is a lack of
information in the literature regarding the analysis of the effect that the application of one
or another form of preprocessing can have on the final results.

This article addresses precisely that issue. Our research question has been stated as: to
what extent does the selection of the data preparation technique impacts load profiling?

2. Literature Review

Load profiling was defined in [3] by the International Energy Agency (IEA) as “the
study of the consumption habits of consumers to estimate the amount of power they use at
various times of the day and for which they are billed”. It has been a key instrument in
technical and economic analysis of power systems, distribution systems, electricity markets
and demand response programs. However, this definition is not of practical use today, due
to the changes that have been occurring in the last two decades. In fact, as stated in [4], we
do not need to estimate the amount of power because we can measure it and consumers not
just use energy but some of them also produce and storage it. Another interesting change is
the appearance of small local energy markets in which the diversity of consumption habits
are quit different than in large markets. According to [4], load profiling should follow nine
principles that guide the procedure, some of them are related with the preparation of data
and the others with the modeling itself.

To get an idea of the importance of load profiling, consider the eDream project of the
European Commission (eDream—enabling new Demand REsponse Advanced, Market ori-
ented and Secure technologies, solutions and business models). In [5], the authors describe
“the techniques and methodologies for extracting load and generation profiles of prosumers
and for dividing the prosumers portfolio in clusters”. This document is one of the deliv-
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erables of the project, because load profiling is conceived as a key component to enable
effective demand response programs, a necessary condition to enable new energy markets.

A recent example of load profiling is found in [6], in which the consumption profiles of
university buildings are studied by applying a decomposition with wavelets, to differentiate
high and low frequency variations. In [7], the average load profiles for different months
and years are analyzed, as a visualization strategy of the long-term dynamics of demand
in Spain. Ref. [8] proposes a strategy that combines clustering by k-means and feature
extraction by random forest to classify the consumption of residential users. Load profiling is
not just useful to analyze energy consumptions, but also to study the grid itself; for example,
in [9], the performance of a distributed energy management system is evaluated making a
comparison of the load profile in some points of the network with and without the system.
Some works use synthetic load profiles (i.e., not obtained from real data); in [10], a proposal
of comparative measures is made, that are expected to indicate the representativeness or
similarity between synthetic and measured electricity load profile data.

A systematic review about data preprocessing methods used in load profiling can be
found in [11]. It is based on published documents between 2010 and 2021 and available
in IEEE Xplore and ScienceDirect databases. The authors found that previous reviews
focused on techniques used in collecting and applying smart meter data, but not in data
preprocessing (for example, in [12,13]). Moreover, they found that many technical works
of literature are silent about the techniques used in critical tasks as data cleaning. They
decided to study three types of preprocessing tasks: (1) missing data treatment (2) outlier
detection and (3) data normalization.

Only few studies make explicit reference to data preparation. For example, in [14], an
empirical study is carried out on the effect of data preparation on wind energy forecasting;
specifically, the effect of including or not including the available data that is outside the
range of use of the searched model is studied, and it is concluded that the decision strongly
affects the performance of the obtained model. In [15], a procedure for preparing data
from municipal buildings is proposed; the main purpose is to make comparable data
from buildings with different conditions of thermal suitability and meters that record
monthly consumption of electricity, natural gas, heat, among others. Ref. [16] proposes a
consumption prediction method that combines a data preparation stage with the use of
the Long Short-Term Memory (LSTM) technique; as part of the data preparation process,
features are standardized using a MaxMin scaler. The data are treated as time series data,
without building daily consumption profiles. In [17], the effect of temperature and relative
humidity on the peak load is analyzed, as well as the effect of some disturbances on load
profiling; in the data preparation stage, the data of the public holidays are removed from
the dataset.

It is well known that the selection of the data preparation techniques may impact
the results in any data analysis project [18–20]. However, there is a gap in the literature
regarding its impact on load profiling.

3. Methodology

To address our research question, we consider four data preparation tasks:

• standardization;
• construction of data;
• dimensionality reduction;
• data enrichment.

Each task can be performed with different techniques. We organized our experiments
in two stages: in stage 1, we conducted similar experiments in order to compare the
techniques of the same task; in stage 2, we compare all the techniques of all the tasks in a
single experiment.

The experiments in stage 1 have the same procedure. Consider a specific task T that
can be conducted using p different techniques over the raw dataset D; in such conditions,
the steps in our experiments are the following:
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1. From the raw dataset D, the daily load profile are constructed.
2. We execute task T with all the techniques and obtain new datasets D1,D1, · · · ,D1 p.
3. We classify the data of every data set into three categories, using the k-means algorithm

(k = 3).
4. We compare and visualize the classifications and discuss the results.

We use a classification problem to compare the techniques because load profiling is a
classification of load curves problem. We use the k-means algorithm due to its popularity
and simplicity. In total, five experiments have been developed in stage 1, because the data
enrichment task was analyzed in two scenarios.

In stage 2 we conduct an experiment using all the classifications obtained in stage 1. We
estimate the possible changes in the income of a utility when implementing a fee scheme of
the type Time Of Use (TOU). As the estimation is based on the classification, this experiment
allow us to see the data preparation effect on this specific application.

The rest of this article is organized as follows: Sections 4–7 are dedicated to stage 1,
Section 8 to stage 2 and Section 9 to the conclusions. All the experiments have been
conducted using the standard libraries of python for data processing and visualization
(pandas, numpy, matplotlib).

Dataset

We have used in this paper real measurements of the energy consumption of a univer-
sity campus (Campus Bogotá, Universidad Nacional de Colombia). The data set has the
hourly electricity consumption of the whole campus of 779 days between 2016 and 2019.
Figure 1 shows the average profile (average power consumption for every hour) and the
corresponding box plot.

From the average profile we notice a low and almost flat behavior in the first 6 h, and
a concave profile with a peak around midday. From the box plot we notice that dispersion
changes throughout the day, and it is very high also around midday.
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Figure 1. Average profile and corresponding box plots in kWh. Blue: mean. Orange: median.

4. Task 1. Standardization

Standardization is a process that transform original numeric data in some equivalent
data within a new interval. It is a change of scale, usually conducted in order to make
two or more variables numerically comparable. The most popular techniques use affine
transformations over every single variable with different effects:

• Standar scaling: the new data set has media = 0.0 and variance = 1.0
• MaxMin scaling: the new data set has min = 0.0 and max = 1.0

However, other techniques may be applied over matrix X of Equation (1). In this
paper we use the following options, based on the MaxMin scaler:

1. Matrix standarization: here we choose the extreme values of the whole matrix X to
define the scaler. Every term Xi,j in X is transformed into:

Xm
i,j =

Xi,j −mn
mx−mn

mn = min
i,j

(Xi,j) mx = max
i,j

(Xi,j) (2)
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2. Standardization by columns: every column has an independent standardization. For
every column we chose their own extreme values to define the scaler. Every term Xi,j
in X is transformed into:

Xc
i,j =

Xi,j −mnj

mxj −mnj
mnj = min

j
(Xi,j) mxj = max

j
(Xi,j) (3)

3. Standardization by rows: remember that every column in X has the information of
the energy consumption of every hour. Therefore, their sum is the daily consumption
and we can obtain the fraction of the daily consumption for every hour:

X̃i,j =
Xi,j

Si
Si =

m

∑
j=1

Xi,j (4)

A more natural standardization can be obtained if we compare that fraction with the
average consumption, in other words, with the fraction of a flat profile:

X̃r
i,j =

Xi,j/Si

1/m

X̃r
i,j =

Xi,j

X̄i
X̄i =

1
m ∑m

j=1 Xi,j
(5)

Values of X̃r
i,j lie within the interval [0, m]. It is very unusual to get the maximum

value 1/m, because it is only possible for a singleton profile, a profile with all the
consumptions equal to zero except in an hour. Even that it is not impossible, it is more
usual that X̃r

i,j is around 1/m.
In order to get a new set of values within the interval [0, 1] an additional standardiza-
tion by columns is done:

Xr
i,j =

X̃r
i,j −mnj

mxj −mnj
mnj = min

j
(X̃r

i,j) mxj = max
j

(X̃r
i,j) (6)

4. Extended standardization by rows: the standardization by rows allows the comparison
of the shapes of the profiles. However, the information of the daily consumption is lost.
If we need to keep this information, in order to compare low and high consumptions,
we can add one column to X including the column vector X̄ that contains the daily
consumption and their standardized version:

X̄ =




X̄1
X̄2
...

X̄n


 X̄rx =




X̄rx
1

X̄rx
2
...

X̄rx
n


 (7)

where
X̄i = 1

m ∑m
j=1 Xi,j

X̄rx
i =

X̄i −mn
mx−mn

mn = mini(X̄i) mx = maxi(X̄i)

(8)

The new matrix being:
Xrx =

[
X f X̄

]
(9)

4.1. Experiment 1

We have applied the standardization explained in Section 4 to our dataset. Figure 2
shows the average profiles for the resulting dataset obtained with each technique. As the
two standardization by rows (extended and not extended) are the same we have just plot
one of them. It is clear that the techniques are not equivalent. To visualize the effect of the
additional column of the extended standardization by rows, we have plotted in Figure 3
the histogram of the of daily consumption, before and after standardization.
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Figure 2. Average profiles of the standardized records.
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Figure 3. Histogram of daily consumption, before and after the extended standardization by rows.

To illustrate the effect that standardizations can have on the classification process,
the k-means clustering algorithm (with k = 3) has been applied to each of the normalized
data sets. After performing the clustering, the prototype profiles of each cluster have been
built in the original space. The result is shown in the Figure 4 where it is clear that each
standardization leads to a different result.
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Figure 4. Averege profiles for three different standardizations.
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The effect is not only observed in the prototypes of the clusters, but also in the resulting
classification. To quantify this impact, we have calculated how many classifications coincide
in each standardization pair. With these values, the heatmap shown in Figure 5 has
been built.

Matrix By columns By rowsExtended by rows

Matrix

By columns

By rows

Extended by rows

1

0.7 1

0.97 0.68 1

0.55 0.79 0.54 1 0.6

0.7
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0.9
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Figure 5. Heatmap of classification coincidences for different standardizations.

The effect on the optimal number of groups for each standardization has also been
explored. The Figure 6 shows the elbow curves taken to the interval [0, 1] with each case.
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Figure 6. Elbow curves for different standardizations.

4.2. Discussion

• Matrix standardization produces exactly the same classification results as applying
k-means to the original data. This fact makes sense, because that standardization maps
all the data with the same maximum and minimum values.

• Standardization by columns is problematic. By treating each column independently,
it breaks the link between adjacent consumptions on the same day and therefore
distorts the profiles. This fact is of special relevance because many machine learning
tools use this technique by default. In general, the implementation of standardization
routines has been carried out under the premise that each column of the dataset is an
independent feature of the others and therefore it makes sense to make independent
standardizations. This premise is not true in the case of a matrix such as X in the
Equation (1) because they are consumptions of the same day.

• Standardization by rows preserves the shape of consumption profiles and is therefore
suitable for those applications where the goal is to identify the shape of the profiles.
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• In the heatmap of Figure 5 a high coincidence is observed between the classifications
obtained between the matrix and by row standardizations. This fact suggests that
both standardizations preserve very well the shape of the profiles.

• The effect on the prototypes of expanding the information on the standardization by
rows with the information on the average consumption is very interesting. When
comparing the three profiles of each of the two standardizations by rows, it is observed
how the profile of lower consumption is better delineated, describing what can be a
fundamentally nocturnal consumption (typical of public lighting, for example.)

• In Figure 6, it can be seen that the curve corresponding to the expanded standardiza-
tion by rows is below the others and its shape suggests that the optimal number of
groups is greater. This fact allows us to affirm that the extended standardization by
rows seems to reveal more differences between the profiles, which is to be expected,
since in addition to the shape of the profile it contains information on the volume
of consumption.

5. Task 2. Construction of Data

Construction of data is the computation of new features that replace the original
attributes [2]. This task is usually based on knowledge of the meaning of the original data
as well as the new calculated data, and is guided by the application objectives. As some
applications of the load profiling are related with the shape of the profiles, we propose here
to calculate numerical indicators that describe geometric properties of each of them and
build a new dataset with them. We use the following geometric indicators:





Sum : Si = ∑m
j=1 Xi,j

Mean : X̄i =
1
m

Si

Peak value : mxi = maxj(Xi,j)

Standard deviation : σi =

√√√√ 1
m

m

∑
j=1

(Xi,j − X̄i)
2

Kurtosis : gi =

√√√√ 1
mσ4

i

m

∑
j=1

(Xi,j − X̄i)
4

(10)

When using these indicators it is important to take into account some considerations:

• Sum Si and mean X̄i contain the same information and are therefore redundant.
• Peak value mxi is especially useful in certain applications where it is important to study

extreme behaviors; such is the case of network congestion analysis or transmission
line overheating studies.

• Standard deviation σi and the kurtosis gi are two different indicators of the shape.
σi is used to measure how different the profile is from that of a homogeneous (flat)
consumption, while gi measures how much the values are concentrated around the
same time.

• It is usual to use (gi − 3) instead of gi, because the value of 3 corresponds to that of a
normal distribution. In this way, the sign of (gi − 3) allows us to tell if the profile is
more or less concentrated than that of a normal curve.

These are not the only possible indicators, of course. The number of peaks, the center
of gravity, and in general any shape parameter can also be used.

5.1. Experiment 2

For each of the daily profiles, the following indicators has been computed: (a) Mean
(b) Peak (c) Standard deviation (d) Kurtosis.

Figure 7 shows the histogram of the indicators. To explore possible correlations
between them, the paired point clouds shown in Figure 8.
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The k-means algorithm has been applied with k = 3 for each indicator separately and
for each possible combination of 2, 3 or 4 indicators. The results are shown in the Figure 9.
The heatmap of the Figure 10 has also been constructed, which shows the coincidences in
the classification between each pair of cases. The elbow curve has also been constructed for
each of the cases studied, as shown in the Figure 11.
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Figure 9. Cluster prototypes for each combination of geometric indicators. Each color represents a
single cluster.
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Figure 10. Heatmap of classification coincidences between clustering of each combination of geomet-
ric indicators.
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5.2. Discussion

• The histograms in Figure 7 show that kurtosis is unimodal, while the other 3 indicators
are bimodal. This fact suggests that kurtosis is an inadequate geometric indicator
for the data studied. This statement is also supported by the heatmap in Figure 10,
where a very different behavior of this indicator is observed, compared to the others.
Kurtosis end skewness have been used as indicators in the analysis of electricity
markets [21–23]. However, their descriptive power of load profile features remains as
a research topic.

• The point clouds in the Figure 8 show that through the geometric indicators hidden
structures can be discovered in the data. A pair of indicators, such as the mean and
the standard deviation, allow you to visualize data clusters.

• The point clouds also reveal that the shape of the clusters is not simple, and therefore
suggests that the clustering method used (k-means with the euclidean distance) is
not the most appropriate. In this exercise we have decided not to change the method
to keep the focus on the preparation and visualization of the data and not on its
subsequent processing.

• Most of the prototype profiles shown in Figure 9 are similar to those in Figure 4, in
particular those of standardization by rows. The great exception corresponds to those
obtained with kurtosis.

• It is important to consider the advantage of applying processing techniques on a space
of dimension 2 or 3, instead of one of dimension 24. It is possible to identify, at least,
two great advantages: (a) reduction of processing requirements and (b) reduction of
the number of data required for a given statistical significance.

6. Task 2. Dimensionality Reduction (PCA)

Matrix X in Equation (1) is a set of points in a space of dimension 24. The use of geo-
metric indicators allows to analyze the profiles in spaces of much smaller dimensions with
good results. In this section we apply the well-known technique of Principal Component
Analysis (PCA) with the same purpose of reducing the dimensionality of the problem.
There are other energy consumption problems in which PCA has been successfully used;
for example, to improve the performance of non-intrusive load monitoring methods [24].

6.1. Experiment 3

To explore the number of dimensions to which the original set could be reduced, we
have plotted in Figure 12 the fraction of the variance explained as a function of the number
of extracted components. It is observed that very few components (3, for example) manage
to explain a large amount of the variance of the original data set.
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Figure 12. Fraction of the variance explained with PCA.
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We have applied PCA and applied k-means with sets of 1, 2, 3, 6, 9 and 12 components.
Figure 13 shows the profiles of the obtained prototypes (in the original space). The heatmap
of the Figure 14 has been constructed with the coincidences in the classifications obtained.
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Figure 13. Cluster prototypes for PCA. Each color represents a single cluster.

1 2 3 6 9 12

1
2

3
6

9
12

1

0.98 1

0.97 0.99 1

0.97 0.98 0.99 1

0.97 0.98 0.99 1 1

0.97 0.98 0.99 1 1 1
0.970

0.975

0.980

0.985

0.990

0.995

1.000
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6.2. Discussion

• Figures 13 and 14 show the potential of the PCA technique. A single dimension is
enough to achieve results comparable to those obtained in the previous sections.

• The fact that it is feasible to reduce the information of the 24 time slots to very few
dimensions gives mathematical meaning to the study of daily consumption profiles,
instead of treating them as independent readings.

7. Task 4. Data Enrichment

Data enrichment is the integration of data that is not in our dataset but in other sources.
It is usual for energy consumption measurements to be recorded with instruments that
simultaneously measure other physical variables. In this section, we enrich our dataset
with some of those variables and analyze the effect of incorporating them. To do this, we
are going to assume two different scenarios, in a three-wire, three-phase system

• Scenario A: active, reactive and apparent power measurements are available.
• Scenario B: In addition to the above measurements, there are current and line voltage

measurements.

7.1. Experiment 4. Scenario A

Denoting P, Q and S the measured three-phase active, reactive and apparent power; it
is possible to calculate the three-phase power factor PF as:

PF =
P
S
=

√
S2 −Q2

S

Figure 15 shows the mean profile and the box plot for each of the variables P, Q, S
and FP. It is observed that the apparent power follows a profile very similar to that of the
active power (which is entirely expected in a system such as the one measured), while the
power factor and the reactive power present a very different behavior.
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Figure 15. Average profile and box plots of the extended variables in Scenario A. Blue: mean.
Orange: median.

To explore the information of the four variables, the histograms (Figure 16) and the
point clouds between each pair of variables (Figure 17) have been constructed. As the
expansion of the information has been carried out on hourly readings, before constructing
the Table 1, a color code has been used in the point clouds to indicate the hour of the day to
which each corresponds. one of them.
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Figure 16. Histograms of the extended variables in Scenario A.



Energies 2022, 15, 7557 16 of 30

Figure 17. Correlograms of the extended variables in Scenario A. Each color represents the hour of
the day.

By applying k-means to each variable separately, the profiles shown in the Figure 18
have been obtained. To compare the effect of each of these variables, the labeling matches
for each pair of variables have been computed. The result is displayed in Table 2. Due
to the fact that when using k-means the resulting labeling order is random and that each
workspace is different, what must be analyzed is how dispersed the data are in each matrix.

Table 2. Coincidence table between classifications obtained with the extended variables in Scenario A.

P S Q PF

P



252 0 0
0 313 0
0 0 214







0 0 252
313 0 0

2 212 0







74 0 178
91 221 1

157 12 45







117 1 134
34 103 176
70 3 141




S



0 313 2
0 0 212

252 0 0







315 0 0
0 212 0
0 0 252







92 222 1
156 11 45
74 0 178







34 103 178
70 3 139

117 1 134




Q



74 91 157
0 221 12

178 1 45







92 156 74
222 11 0

1 45 178







322 0 0
0 233 0
0 0 224







59 57 206
14 46 173
148 4 72




PF



117 34 70
1 103 3

134 176 141







34 70 117
103 3 1
178 139 134







59 14 148
57 46 4

206 173 72







221 0 0
0 107 0
0 0 451
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Figure 18. Prototype clusters obtained with the extended variables in Scenario A. Each color repre-
sents a single cluster.

Using a metric based on the number of zeros in each table, the information shown
in the Table 3 has been constructed. What this table reflects is that when using each of
the extended variables, different classifications are obtained; or what is the same, that
each of the variables contains information that allows a different classification. The most
similar variables are P and S, which makes sense since these are generally loads with a
high power factor.

Table 3. Dispersion table in the coincidences. Scenario A.

P S Q PF

P



252 0 0
0 313 0
0 0 214
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7.2. Experiment 5. Scenario B

Denoting

• VAB, VBC, VCA the three measured line voltages
• IA, IB, IC the three measured line currents

It is possible to calculate the unbalance of voltages and currents as follows:

δI =
max(|I − Im|

Im
Im = (IA + IB + IC)/3

δV =
max(|V −Vm|

Vm
Im = (VAB + VBC + VCA)/3

(11)

It is also possible to obtain the phasor values of the line currents and voltages and
build a model of the consumer as an unbalanced three-phase load in Delta connection (see
Appendix A). We denote these quantities as follows:

• Voltage line phasors: VAB, VBC, VCA.
• Current line phasors: IA, IB, IC.
• Current phase phasors: IAB, IBC, ICA.
• Phase impedance: ZAB, ZBC, ZCA.

Each of the 12 complex magnitudes in the previous list can be represented in rectangular
form (real part and imaginary part) or in polar form (magnitude and angle). For that reason,
it is possible to calculate 4 numerical values for each of the 12 magnitudes (48 in total).

In this experiment, it was decided to build a data table with the following variables:

• P: the measured three-phase active power;
• Q: the measured three-phase reactive power;
• δV: the voltage unbalance;
• δI: the current unbalance;
• Ẑm: the average angle of phase impedances.

Figure 19 shows the average profile and the box plot for each of the variables P, Q, δV
δI and Ẑm.
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Figure 19. Average profile and box plots of the extended variables in Scenario B. Blue: mean. Orange:
median.

To explore the information of the five variables, the histograms (Figure 20) and the
point clouds between each pair of variables (Figure 21) have been constructed. As in
scenario A, a color code has also been used to indicate the time of day to which each
point corresponds.
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Figure 20. Histograms of the extended variables in Scenario B.
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Figure 21. Correlograms of the extended variables in Scenario B. Each color represents the hour of
the day.

By applying k-means to each variable separately, the profiles shown in the Figure 22
were obtained. To compare the effect of each of these variables, the labeling matches for
each pair of variables have been computed. The result is shown in the Table 4, as well as
the measure of dispersion shown in the Table 5. We notice that variables of scenario B are
even more independent of each other than those of scenario A.

Table 4. Coincidence table between classifications. Scenario B.

P Q ANG dIL dVL

P



248 0 0
0 315 0
0 0 216







0 175 73
221 1 93
12 48 156







118 130 0
186 31 98
130 83 3







1 63 184
173 70 72

4 71 141







99 115 34
74 143 98
66 119 31




Q



0 221 12
175 1 48
73 93 156







233 0 0
0 224 0
0 0 322







187 5 41
47 173 4
200 66 56







120 52 61
2 69 153

56 83 183







55 104 74
85 109 30
99 164 59




ANG



118 186 130
130 31 83

0 98 3







187 47 200
5 173 66
41 4 56







434 0 0
0 244 0
0 0 101







102 113 219
8 71 165
68 20 13







140 205 89
86 123 35
13 49 39




dIL



1 173 4
63 70 71

184 72 141







120 2 56
52 69 83
61 153 183







102 8 68
113 71 20
219 165 13







178 0 0
0 204 0
0 0 397







29 85 64
69 101 34
141 191 65




dVL



99 74 66
115 143 119
34 98 31







55 85 99
104 109 164
74 30 59







140 86 13
205 123 49
89 35 39







29 69 141
85 101 191
64 34 65







239 0 0
0 377 0
0 0 163
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Figure 22. Prototype clusters obtained with the extended variables in Scenario B. Each color represents
a single cluster.

Table 5. Dispersion table in the coincidences obtained with the extended variables in Scenario B.

P Q ANG dIL dVL

P 1.00 0.17 0.17 0.00 0.00
Q 0.17 1.00 0.00 0.00 0.00
ANG 0.17 0.00 1.00 0.00 0.00
ILD 0.00 0.00 0.00 1.00 0.00
VLD 0.00 0.00 0.00 0.00 1.00

7.3. Discussion

As expected, the incorporation of new information allow better analyzes of consump-
tion. The purpose of this experiment has been to illustrate how the additional measurements
that are often available along with consumption records can be used to enrich the profiles.
However, the type of additional information that may be useful depends both on the type
of problem addressed and the origin of the measurements. It is not the same if all the
records correspond to the same user, as if they correspond to a set of them.

Some common examples that help describe the context in which the consumptions are
made are

• For a single user: day of the week, day of the year, business day or holiday, and
weather conditions. As an illustration, the Figure 23 shows the incidence of the day of
the year and the day of the week in the daily energy consumption, for the dataset of
this article.
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• For several users in the same geographic location: Economic activity, financial capacity.
• For several users in different places: climate and weather conditions.

Moreover, the importance of measurements other than energy consumption is under-
estimated. The unbalance of the grid and the harmonic distortion are easy to know with
most of the common smart meters. It is well known that both phenomena, unbalance and
distortion, have direct incidence over the grid energy efficiency [25–27]. The enrichment of
the data set may be useful if we want to design, for example, investment incentives for users
in order to solve power quality issues [28,29] or locate Distribution Static Compensators
(DSTATCOM) [30].
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Figure 23. Incidence of the day of the year and the day of the week in energy consumption. 1 = Monday,
2 = Tuesday, etc.

8. Experiment 6. Analysis of a Fee Scheme

In order to assess the possible effect of each of the data preparation techniques studied,
an application will be used to analyze a fee scheme of the type Time Of Use (TOU).

To do this, we are going to assume that each of the daily consumption records of the
dataset corresponds to the average profile of a user of a certain company (a utility). The
company is interested in analyzing the effects that a change from a flat-rate scheme to a
TOU-type scheme could have on its income. To do this, perform the following procedure:

1. The average consumption profile is obtained, that is, the profile shown on the left of
the Figure 1.

2. Based on the average profile, a TOU-type rate scheme is designed. The procedure is
explained in the Section 8.1.

3. The users are classified based on their profiles in two types:

(a) A: Users with a variable consumption throughout the 24 h of the day.
(b) B: Users with a constant consumption throughout the 24 h of the day.

4. ∆op is calculated, the relative change that would happen in its collection if each user
selects the fee scheme (Flat or TOU) that suits him best.

5. ∆cl is calculated, the relative change that would occur in its collection if each user is
assigned the rate scheme according to the classification of the step 3.

The above analysis will depend on the results of the classification process of step 3
and this, in turn, will depend on the data preparation process. This analysis is performed
in Section 8.2.
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8.1. Design of the Fee Scheme

For the construction of the TOU fee scheme, we use the ideas formulated in [31] and
that we reproduce below. The purpose is to obtain a fee scheme f = [ f1, f2, · · · , fN ], where
fi is the fee charged for energy consumption in the day slot i. In this exercise hourly slots
are assumed, and therefore N = 24.

It is established as an additional condition that the daily cost of energy for a given
consumption profile must be C, equal to what would correspond to a certain known flat
rate, that is, for a consumption profile p = [p1, p2, · · · , pN ]:

C =
N

∑
i=1

fi pi (12)

To do this, we start from a prototype fee scheme f̄ = [ f̄1, f̄2, · · · f̄N ] that defines the
desired shape of f . The operation to obtain f from f̄ is an affine scaling:

fi = fmin +

(
f̄i − f̄min

f̄max − f̄min

)
( fmax − fmin)

where the subscripts max and min identify the maximum and minimum values of the schemes.
Under these conditions, it is shown in [31] that (12) is satisfied if and only if

fmin =
C

Pp + (γ− 1)Pv
fmax = γ fmin (13)

with γ a design factor and

Pp =
N

∑
i=1

pi Pv =
N

∑
i=1

(
f̄i − f̄min

f̄max − f̄min

)
pi

On the other hand, for the construction of the prototype scheme f̄ from the profile p,
the following procedure was followed:

f̄i =





0.0 si 0.0 ≤ p̄i < 0.2
0.1 si 0.2 ≤ p̄i < 0.8
1.0 si 0.8 ≤ p̄i < 1.0

p̄i =
pi − pmin

pmax − pmin
i = 1, 2, · · · , N (14)

Using a flat fee of arbitrary value 100, a design factor γ = 4, and the average profile of
our dataset, the fee scheme obtained shown in Figure 24.
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Figure 24. Fee schemes.
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8.2. Results and Analysis

To analyze the effect of data preparation, we have analyzed the following cases

• No preparation. The grouping has been conducted on the original dataset.
• The four standardization options presented in the Section 4.
• All the possible combinations of geometric indicators presented in the Section 5. In

total there are 15 combinations.
• Dimensionality reduction by PCA, with 1, 2 and 3 components.
• Expanded information with each of the indicators presented in the Sections 7.1 and 7.2.

The above listing generates 29 ways to prepare the data before performing the classifi-
cation process of step 3.

The total income will be the sum of the individual incomes Rk corresponding to the
M users:

R =
M

∑
k=1

Rk

and Rk will depend on the consumption of the individual k and the rate f that is applied

Rk =
N

∑
i=1

fi pi,k

We define:

Rp: Income using a flat-fee for all the users.
Rop: Income using the fee that best fits for every user.
Rcl : Income using the fee chosen according with the user classification.

The fee assignment for the calculation ofRcl has been carried out as follows:

• For type A users: TOU fee.
• For type B users: flat fee.

The relative changes ∆op y ∆cl in steps 4 and 5 are obtained as:

∆op =
Rop −Rp

Rp
∆cl =

Rcl −Rp

Rp

Figure 25 shows the relative changes ∆op and ∆cl for each of the analyzed cases. ∆op
is independent of the classification process and is therefore useful as a reference value to
compare the effect of different data preparation processes.
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Figure 25. Relative changes of the income.
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In Figure 25, it can be seen that if the users are free to select the fee scheme, the total
income would decrease (it is the value of the extreme left, −0.0267 for the data of the
experiment). On the other hand, if the allocation of schemes is made according to the result
of the classification, the income would increase. This higher value is what is expected to be
an economic incentive for the user to modify their consumption patterns and allow for a
flatter curve.

The incentive is strongly affected by the data preparation process. In particular, it
is observed how the use of the geometric indicator DEV (Standard Deviation) achieves
a better value, while KURTOSIS (Kurtosis) has the poorest performance. This is not
surprising, because the Standard Deviation is a very good measure of ‘how flat’ the profile
is, and therefore it is a very good indicator of the expected impact of the TOU fee scheme.
Curiously, the simultaneous use of these two indicators (DEV-KURTOSIS) also has a very
good performance.

9. Conclusions

It is evident that the preparation of the data affects the final result of the analysis. This
is why the data preparation process should be made explicit in each report and not be
ignored as a matter of little added value. It is particularly important to note that the most
common default standardization process, standardization by columns, is not suitable for
preparing energy consumption profiles, because it distorts the shape of load curves. We
emphasize that there is a strong relation between columns.

Principal Component Analysis has been shown to be particularly efficient with our
dataset and should always be considered. However, if some kind of interpretability of
the intermediate results is required, some geometric characteristics such as the mean and
standard deviation are a good alternative. These two options, when working in low-
dimensional spaces, are attractive for the preparation of massive data.

On the other hand, the enrichment of the data with information from other measure-
ments, or with external data that explains the context of these measurements, is an area of
work that has yet to be standardized. An effort by the academic community that facilitates
the comparability of the multiple investigations carried out would be convenient for the
development of Energy Data Science.

Although in the experiment on the analysis of a fee scheme a good performance was
obtained for a certain type of data preparation (the use of the standard deviation), this
result does not imply that it is our suggestion of use: quite the contrary. What we are stating
is that the best data preparation process will depend on each application, and possibly
on each dataset; therefore, we want to emphasize the need to report it properly in each
academic communication.
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Appendix A. Obtaining Phasors from Line Values in Three-Phase Delta Systems

Appendix A.1. Problem Statement

In the system of Figure A1 we have the following measurements:

• Line voltage magnitudes: VAB, VBC, VCA.
• Line current magnitudes: IA, IB, IC.
• Total three-phase active power consumed by the load: P3φ.
• Total three-phase active repower consumed by the load: Q3φ.
• Total three-phase active apparent consumed by the load: S3φ.

We need to compute:

1. Line voltage phasors: VAB, VBC, VCA.
2. Line current phasors: IA, IB, IC.
3. Phase current phasors: IAB, IBC, ICA.
4. Phase impedances: ZAB, ZBC, ZCA.
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If the triangle is made up of three phasors, as in the Figure A3, the angles of interest
are not the internal angles of the triangle, but the angles with respect to a reference. For
convenience for the present analysis, we adopt as reference the direction of the phasor XA,
that is, in radians:Version September 7, 2022 submitted to Energies 27 of 29
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Equation (A2) allows us to obtain the relative angles of the phasors of a three-phase
system, from their measurements. They are relative to the angle of one of the phasors. Only
when the angle of one of the phasors is known is it possible to obtain the absolute angles of
the three phasors, using Equation (A3).

Appendix A.3. Phase Currents

Figure A4 shows the phase currents. We notice:




IA = IAB − ICA
IB = IBC − IAB
IC = ICA − IBC

(A4)

Substracting pairs of equations of Equation (A4) we get:




IA − IB = 2IAB − IBC − ICA
IB − IC = 2IBC − ICA − IAB
IC − IA = 2ICA − IAB − IBC

(A5)

But the three phase currents ar a three-phase system and then:

IAB + IBC + ICA = 0
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and therefore 



IA − IB = 3IAB
IB − IC = 3IBC
IC − IA = 3ICA

(A6)





IAB = (IA − IB)/3
IBC = (IB − IC)/3
ICA = (IC − IA)/3

(A7)
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Because the conjugate of a complex is another complex with the same magnitude and
angle of opposite sign, the previous expression becomes:

S̃3φ = (VABI∗AB + VBCI∗BC + VCAI∗CA )× 1 -α
(A11)

The result of the parentheses in the equation A11 is the original triphasic complex 422

power. Therefore, the relations between the two powers, their magnitudes and angles are 423

as follows: 424





S̃3φ = S3φ × 1 -α

|S̃3φ| = |S3φ|

ˆ̃S3φ = Ŝ3φ − α
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Appendix A.4. Phase Power

Three-phase complex power is the sum of the three per-phase complex power:

S3φ = SAB + SBC + SCA

S3φ = VABI∗AB + VBCI∗BC + VCAI∗CA

(A8)

How does it changes when we add α to the phase angles of the three currents? Suppose
three phase currents:





ĨAB = |IAB| ÎAB + α = IAB × 1 α

ĨBC = |IBC| ÎBC + α = IBC × 1 α

ĨCA = |ICA| ÎCA + α = ICA × 1 α

(A9)

The new three-phase complex power is:

S̃3φ = VABĨ∗AB + VBC Ĩ∗BC + VCAĨ∗CA (A10)

Because the conjugate of a complex is another complex with the same magnitude and
angle of opposite sign, the previous expression becomes:

S̃3φ = (VABI∗AB + VBCI∗BC + VCAI∗CA )× 1 -α (A11)

The result of the parentheses in the Equation (A11) is the original triphasic complex
power. Therefore, the relations between the two powers, their magnitudes and angles are
as follows: 




S̃3φ = S3φ × 1 -α

|S̃3φ| = |S3φ|

ˆ̃S3φ = Ŝ3φ − α

(A12)
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Appendix A.5. Summary

To solve the problem stated in Appendix A.1, the following procedure can be applied:

1. Select VAB as reference phasor. Therefore V̂AB = 0.
2. Compute the angles ˆVBC and ˆVCA using Equation (A3) and the measurements VAB,

VBC, VCA.
3. Built the line voltage phasors VAB, VBC, VCA. Magnitudes are taken from the mea-

surements, and angles fron the previous step.
4. Obtain the relative angles of the line currents using Equation (A2) and the measure-

ments IA, IB, IC.
5. Built the line current out of phase phasors. Magnitudes are taken from the measure-

ments, and angles fron the previous step. They are out of phase because at this step we
do not know their phase from the refernce phasor VAB.

6. Obtain the out of phase phase currents using Equation (A7).
7. Compute the out of phase three-phase complex power using Equation (A10).
8. Compute the actual three-phase complex power using the measurements:

S3φ = P3φ + jQ3φ

9. Compute the angle alpha using the angle Equation (A12).

α = Ŝ3φ − ˆ̃S3φ

10. Built the actual phase current phasors, by substrating α to each angle of the out of phase
phasors.

11. Compute the line current phasors using Equation (A4).
12. Compute phase impedances using the phase voltage and current phasors:

ZAB = VAB/IAB
ZBC = VBC/ICA
ZCA = VBC/ICA

.
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