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Abstract. So-called hyperaccumulator plants can store heavy metals in quantities a hundred or a thousand times higher 
than typical plants, making hyperaccumulators very useful in phytoremediation and phytomining. Among these, there are 
many serpentinophytes, i.e., plants that grow exclusively on ultramafic rocks, which produce soils with a great proportion 
of heavy metals. Even though there are multiple classifications, the lack of consensus regarding which parameters should 
be used to determine if a plant is a hyperaccumulator and the arbitrariness of established thresholds elicits the need to 
propose more objective criteria. Therefore, this work aims to refine the existing classification. To this end, plant mineral 
composition data from different vegetal species were analyzed using machine learning techniques. Three complementary 
approaches were established. Firstly, plants were classified into three types of soils: dolomite, gypsum, and serpentine. 
Secondly, data about normal and hyperaccumulator plant Ni composition were analyzed with machine learning to find 
differentiated subgroups. Lastly, association studies were carried out using data about the mineral composition and soil type. 
Results in the classification task reached a success rate of over 75%. The clustering of plants by Ni concentration in parts per 
million (ppm) resulted in four groups with cut-off points in 2.25, 100 (accumulators) and 3000 ppm (hyperaccumulators). 
Associations with a confidence level above 90% were found between high Ni levels and serpentine soils, as well as between 
high Ni and Zn levels and the same type of soil. Overall, this work demonstrates the potential of machine learning to analyze 
plant mineral composition data. Finally, after consulting the IUCN’s red list as well as those of countries with high richness 
in hyperaccumulator species, it is evident that a greater effort should be made to establish the conservation status for this 
type of flora.
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Introduction

Nowadays, research on the use of certain organisms 
to eliminate heavy metals and other pollutants is of 
great interest. Due to various factors, both natural 
(geogenic activities) and anthropogenic (mining, 
electroplating, smelting operations, domestic and agro-
allied industries), these compounds are present in soils, 
water or air in concentrations that can be toxic for most 
living beings, including humans (Okereafor et al., 2020)
farmlands, plants, livestock and subsequently humans 
through the food chain. Most of the toxic metal cases 
in Africa and other developing nations are a result of 
industrialization coupled with poor effluent disposal and 
management. Due to widespread mining activities in 
South Africa, pollution is a common site with devastating 
consequences on the health of animals and humans 
likewise. In recent years, talks on toxic metal pollution 
had taken center stage in most scientific symposiums as 
a serious health concern. Very high levels of toxic metals 
have been reported in most parts of South African soils, 

plants, animals and water bodies due to pollution. Toxic 
metals such as Zinc (Zn.

Heavy metals are mostly transition metals that can be 
both essential, such as iron (Fe), zinc (Zn), manganese 
(Mn), copper (Cu), nickel (Ni), molybdenum (Mo), 
and cobalt (Co, nitrogen fixation in legumes), and non-
essential (Marschner, 2016); for example, chrome (Cr), 
cadmium (Cd), mercury (Hg) and lead (Pb). In the 
case of soil, high concentrations of heavy metals may 
be found in the rhizosphere solution, as ions or as part 
of complexes with organic or inorganic compounds 
(Rostami & Azhdarpoor, 2019). However, the heavy 
metal deficit is more common than toxicity, especially 
in crops (Alloway, 2013). Their presence in soils can be 
the result of natural processes such as the weathering 
of parent rocks (Cd, Co, Ni, Pb), high soil acidity (Mn, 
Zn), lack of proper oxygenation, for example, due 
to inundation (Fe, Mn), etc. Moreover, as previously 
stated, heavy metals (Cd, Co, Cr, Cu, Mo, Ni, Pb, Sr, 
Zn) can appear as the result of human activities, such as 
irrigation and land clearing (Shabala, 2013).
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There are three relevant concepts regarding nutrient 
availability in plants: deficit zone, deficiency critical 
concentration, and critical toxicity concentration. In the 
deficit zone, element concentration in the soil hinders 
optimal plant growth. In severe cases, this can lead to 
plant death. The critical deficiency concentration is the 
minimal concentration in a tissue allowing for 90% of 
its maximum yield. Lastly, when element concentration 
is over toxicity critical concentration, the yield is 
reduced >10% compared to the maximum. Toxicity 
critical concentration is considered, in some cases, as 
the threshold concentration for hyperaccumulation 
(Marschner, 2016).

Critical concentrations depend on sample tissue 
and soil solute composition. They can differ among, as 
well as within, species. It probably results from their 
adaptation to ancestral habitats and the development 
of special ecological strategies. The capability of some 
plants to accumulate heavy metals in concentrations 
that are toxic for the majority of living beings has a 
significant genetic component related to the entrance of 
the element into the cell and its subsequent processing 
by the plant, an insight of great use in biotechnology 
(Khan et al., 2015). In the case of soils with long-lasting 
contamination, the strength of the response ranges 
from acclimation mechanisms, consisting of blocking 
entrance and transport of heavy metals inside the plant, 
to tolerance mechanisms, including the aforementioned 
heavy metal detoxification. The complexity and 
abundance of said mechanisms result from the adaptive 
responses’ evolution for hundreds, thousands, or even 
millions of years (Shabala, 2013).

Heavy metals may be found in acid, alkaline, 
saline, sodic and calcareous soils. Endemic plants are 
common among hyperaccumulator species since these 
are closely linked to very unusual substrates, such as 
serpentine. This is a particular type of substrate where 
numerous heavy metal hyperaccumulator species grow. 
Due to their narrow distribution and habitat specificity, 
said endemism presents a high probability of being 
endangered. This circumstance may be aggravated if 
there is also mining activity in their habitats. Therefore, 
these species’ conservation status is also of great interest 
according to the IUCN and national red lists, especially 
those of the countries where these species are frequent.

Hyperaccumulator species are of great interest in 
phytoremediation and phytomining because heavy 
metals, despite being often necessary for plant growth in 
low concentrations, become toxic for non-accumulator 
plants in higher concentrations. The heavy metal whose 
hyperaccumulation is most widely documented is nickel 
since soils, where hyperaccumulator plants are found 
are usually rich in this element (Reeves et al., 2017). In 
low concentrations, nickel acts as a cofactor for some 
plant enzymes; thus its deficit has negative effects on 
plant growth. However, it causes toxicity (seen as 
growth inhibition and photosynthetic activity decay) 
in high concentrations (Reeves et al., 2017; Batool, 
2018). It is important to take into account that, even 
though some hyperaccumulator species are already 
well-known and there are databases for these plants 

(such as the Global Hyperaccumulator Database, GHD: 
http://hyperaccumulators.smi.uq.edu.au/collection/), 
the use of autochthonous species in phytoremediation 
and phytomining must be favored because of 
the risks involved in the introduction of invasive 
species. Moreover, the characterization and study of 
hyperaccumulators allows for further investigation 
about hyperaccumulation-related genes and the use 
of deeper knowledge about these genes in genetic 
engineering, aiming to obtain more efficient plants for 
phytoremediation and phytomining. On the other hand, 
plant productivity is also important in phytoremediation 
because a high productivity could compensate for a 
lower accumulation in contrast to hyperaccumulators 
whose biomass production is low (Al Chami et al., 
2015).

The existence of heavy metal hyperaccumulator plants 
has been known for a long, but the idea of cultivating 
plants to extract soil pollutants (natural phytoextraction) 
is relatively recent (Shah & Daverey, 2020). This 
technique has numerous limitations that prevent it 
from decontaminating soils in a short time. However, 
investigations up until today have had promising results 
(Corzo Remigio et al., 2020)while achieving monetary 
gain. Phytoextraction can be applied to a limited number of 
elements depending on the existence of hyperaccumulator 
plants with suitable characteristics. Although 
phytoextraction has been trialled in experimental settings, 
it requires testing at field scale to assess commercial 
broad-scale potential. Scope: The novelty and purported 
environmental benefits of phytoextraction have attracted 
substantial scientific inquiry. The main limitation of 
phytoextraction with hyperaccumulators is the number 
of suitable plants with a high accumulation capacity for 
a target element. We outline the main considerations 
for applying phytoextraction using selected elemental 
case studies in which key characteristics of the element, 
hyperaccumulation and economic considerations are 
evaluated. Conclusions: The metals cobalt, cadmium, 
thallium and rhenium and the metalloids arsenic and 
selenium are present in many types of minerals wastes, 
especially base metal mining tailings, at concentrations 
amenable for economic phytoextraction. Phytoextraction 
should focus on the most toxic elements (arsenic, 
cadmium, and thallium. Studies about the augmentation 
in productivity for these species and their metal 
accumulation capability should be noted by selecting 
and reproducing improved cultures and optimizing soil 
management practices. Simultaneously, progress in 
understanding soil-plant-microorganism relationships will 
soon allow for the modification of rhizosphere conditions 
for hyperaccumulator plants to increase metal absorption 
and translocation. Kidd et al. (2007) documented clear 
examples of these breakthroughs in numerous works 
about different species in the genus Alyssum, the one that 
includes the greater number of hyperaccumulator species. 
Many of these species are local endemisms. According to 
the GHD, around 100 species (13.9% of the total) are local 
endemisms. Since restricted geographical distribution 
is a threat factor, many hyperaccumulators are likely 
endangered (e.g., Faucon et al., 2010), natural outcrops 
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of copper-rich rocks are colonised by highly original 
plant communities. A number of plant species have been 
proposed as possibly endemic to those sites. Here we 
revise the taxonomic, phytogeographic and conservational 
status of these plants. Methods - Almost all the herbarium 
materials of supposed Cuendemics available in BR and 
BRLU have been revised and all relevant taxonomic 
revisions have been consulted. Literature and herbarium 
data have been supplemented by original observations 
in the field. Conservational status was established using 
IUCN criteria based on current and projected variation of 
population size and number. Key results - Thirty-two taxa 
are identified as strict endemics of Curich soil in Katanga, 
i.e. absolute metallophytes. Twenty-four of these are 
known from one to five localities only. Twenty-three other 
taxa are identified as broad endemics, i.e. with > 75% 
of occurrence on Curich soil. Fifty-seven other names 
formerly used for supposed endemics are rejected either 
for nomenclatural or phytogeographic reasons. A number 
of species formerly regarded as endemics have been 
discovered off copperenriched substrates due to progress 
in the botanical exploration of Katanga. The taxonomic 
value of a number of proposed endemics is still uncertain 
and requires further research. For a number of taxa, local 
geographic distribution still remains insufficiently known. 
The low proportion of endemics (c. 5%). However, this 
information is not present in the GHD.

According to Buscaroli et al. (2017) and Mganga et 
al. (2011), a line transect of 700m long was established 
opposite the gold mine wastes. A total of eight sampling 
points were systematically established each after 
every 100m in that transect. Fifteen plant species 
were sampled; at least one species per sampling point. 
Approximately 5g of the root and shoot portions of the 
plants were separately collected from each plant. Three 
soil samples were also collected at each sampling point 
where vegetations were previously sampled. The soils 
and vegetations were analyzed for heavy metals (copper, 
lead, chromium, zinc, cadmium and nickel, there are 
four criteria to define nickel (and other heavy metal) 
hyperaccumulator plants: 

1.	� Hyperaccumulator plants have a metal content 
equal to or greater than 1000 ppm in their leaves 
(dry weight, DW).

2.	� Hyperaccumulator plants have a mean nickel 
content in their above-ground part (even though 
sometimes the whole plant or different parts are 
used instead) greater than the total mean content of 
said mineral in the soil.

3.	� Hyperaccumulator plants can store a metal quantity 
10-500 times greater than that for “normal” plants.

4.	� Heavy metal level in the shoot (the above-ground 
part of the plant includes stem and leaves) is greater 
than that in the root.

The disadvantage for the first classification lies in 
the fact that, apart from being based on an arbitrary 
limit, it does not establish any nickel concentration 
threshold for plants deficient in this element; it only 
establishes a minimum of 100 ppm for accumulators 

and 1000 ppm for hyperaccumulators (Brooks et al., 
1977). Regarding the other classifications, one of their 
main limitations is the disagreement concerning which 
part of the plant should be used since total element 
concentration is not a real measure of available 
minerals (Buscaroli, 2017).

These problems can be solved by resorting to data 
mining, which is the extraction of implicit, previously 
unknown, and potentially useful information in data 
(Witten et al., 2017). This multidisciplinary field 
combines works in machine learning, statistics, 
pattern recognition, and artificial intelligence (Han & 
Kamber, 2006). Machine learning provides a technical 
framework for data mining (Witten et al., 2017). It is 
used to extract information from raw data in databases 
such as the GHD mentioned above. The process is based 
on abstraction: data are collected, with all their defects, 
and the underlying structure is inferred (Witten et al., 
2017).

Therefore, it is at this level that machine learning 
techniques can be applied: algorithms that are 
commonly used in the scientific sphere may be applied 
to plant heavy metal accumulation data to address this 
problem involving the management of a large amount 
of information. These algorithms can be applied a priori 
independently from the problem to address. Because 
they have already been used to deal with different 
issues, said algorithms offer an objective data analysis 
framework. Consequently, this study aims to evaluate 
the potential of machine learning methods to refine 
existing classifications of plants growing in extreme 
edaphic environments, with a special emphasis on 
serpentine soils. 

Materials and Methods

1. Data sources

It was attempted to look for mineral composition data 
in specialized literature, yet, due to data heterogeneity, 
the Global Hyperaccumulator Database (http://
hyperaccumulators.smi.uq.edu.au/collection/) was 
chosen as the preferential data source. It contains data 
for elements such as cobalt, copper, nickel, manganese, 
selenium or zinc, expressed as parts per million 
(ppm). If there were more than a single concentration 
value for a plant or mineral concentration were 
expressed as an interval, values would be averaged. 
In total, this database contains information about 721 
plant species from all around the world, only two 
of which are found in Spain: Alyssum malacitanum 
and Thlaspi (Noccaea) stenopterum. Besides, other 
published data on the subject were used, consisting 
of mineral composition values for Spanish flora of 
dolomite, serpentine and gypsum soils (Martínez-
Hernández, 2013; Medina-Cazorla, 2015). In total, 
this data source included 96 taxa (Appendix 1), 
mainly distributed throughout Spain in the case of 
gypsum and throughout the Baetic Mountains in the 
case of dolomite or serpentine soils.
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2. Classification according to soil type

To carry out the first analysis, data were used from 
Martínez-Hernández et al. (2013) and Medina-Cazorla 
et al. (2015). Elements Mg, Fe, Mn, K, Cu, Ni, and Zn 
were selected, as well as soil type data for every plant: 
dolomite (D), gypsum (G), or serpentine (S). Only those 
plants with available data for every chosen element 
and the type of soil where they grew were used in the 
analysis; thus when some piece of information was 
lacking, the rest was excluded.

Soil type was used as the target variable for 
prediction. In contrast, the seven mineral composition 
attributes were the variables used to discern to which 
group (D, G, or S) the plant belonged. Therefore, this 
first approach was based on supervised learning. This 
means that the actual classification (the type of soil) 
was known beforehand, in contrast to unsupervised 
learning (Alphy & Sharma, 2020). The most commonly 
used algorithms were applied to these data because the 
aim is to assess machine learning performance when 
applied to this particular problem. To apply machine 
learning algorithms, Weka software, version 3.8.3, 
was used (Witten et al., 2017). Among the different 
available techniques, NaiveBayes (Naïve Bayes, NB), 
SMO (SVM), IBk (kNN), and J48 (C4.5) methods were 
selected to perform the analysis. These methods were 
chosen since they are the predominant state-of-the-
art techniques in these different paradigms: statistical 
(NB), linear models with kernel (SVM), instance-based 
learning (kNN) and decision trees (C4.5) (Rooney et al., 
2004). Naïve Bayes is a statistic classifier that predicts 
the probability of belonging to a certain class. It is based 
on Bayes theorem and on the assumption that the effect 
of one attribute’s value on a specific class is independent 
of the values of other attributes (Witten et al., 2017). 
SVM is an algorithm that uses non-linear mapping to 
convert original data into a higher dimension. In this 
new space, SVM looks for the optimal hyperplane to 
divide data (i.e., the decision limit which separates one 
class from another). The algorithm finds this hyperplane 
by using support vectors (training tuples) and margins 
defined by said vectors (Han & Kamber, 2006; Xue et 
al., 2020). The kNN (k Nearest Neighbours) algorithm 
is based on learning by analogy. It compares test tuples 
to training tuples. N attributes define training tuples; 
thus, each one represents a point in an n-dimensional 
space. When a problem tuple is provided, the classifier 
looks for the nearest training tuples in the n-dimensional 
space (nearest neighbors). Lastly, the problem tuple is 
assigned to the most common class among its nearest 
neighbors (Han & Kamber, 2006). C4.5 is a decision tree 
based on the gain of information. That means that the 
tree ramifies in nodes so that each node has the highest 
possible percentage of data from every class (Quinlan, 
1993).

For each algorithm, two kinds of experiments were 
carried out. Firstly, Weka’s default parameters were 
used in order to obtain preliminary results. Secondly, 
different parameters were chosen to analyze how to 
optimize the method’s predictive capabilities. Supervised 

discretization based on the standard method (Fayyad and 
Irani’s MDL method) was used for NaiveBayes. This 
discretization transforms a range of numeric attributes 
into nominal attributes. For SMO, kernel, the function 
which transforms data into a higher-dimensional space, 
was changed. For IBk, what was optimized was the 
number of nearest neighbors used to calculate distances. 
Lastly, for J48, it was the confidence factor (Witten et al., 
2017). A lower confidence factor results in an increment 
of the error attributed to each tree node. Consequently, 
nodes with a higher error value are discarded and the 
tree is simplified, which is ‘pruned.’ If the confidence 
factor were too high, there would be overfitting (Drazin 
& Montag, 2012)and sifts through to remove statistically 
insignificant nodes. Working from the bottom up, the 
probability (or relative frequency.

3. Clustering

GHD and published data for nickel (Martínez-Hernández, 
2013; Medina-Cazorla, 2015) was used to discuss 
classification for Ni accumulator (between 100 and 1000 
ppm) and hyperaccumulator (> 1000 ppm) plants (Brooks 
et al., 1977). It was compiled in a single file to be inputted 
in Weka. When there were several different data for a 
single species in the GHD or when data were expressed 
as intervals, the average was used. Additionally, before 
applying clustering algorithms, data were transformed 
by the function ln(x+1), were x is the original data, in 
order to correct data exponential distribution. Then, Ni 
data were divided into four clusters: low Ni content, 
normal content, high content (accumulators) and very 
high content (hyperaccumulator), according to Brooks 
et al. (1977). To this end, three algorithms based on 
different principles were applied to validate results: EM 
(Expectation Maximisation), HierarchicalClusterer (HC), 
and SimpleKMeans. EM assigns a probability distribution 
to every instance, which indicates the probability of the 
instance belonging to each cluster (Jung et al., 2014; 
Witten et al., 2017). EM can decide how many clusters 
to use by cross-validation (Witten et al., 2017), yet the 
number was fixed to four in this case, both in EM and 
in the rest of the algorithms used. Although fixing the 
number of clusters introduces statistical bias, this decision 
is justified by the aim of the study, which is not to establish 
a new classification for hyperaccumulator plants, but to 
refine the criteria in Brooks et al. (1977). HC implements 
classic hierarchical clustering agglomerative methods. It 
generates two initial clusters and evaluates whether it is 
worth dividing them again, which results in a hierarchy. 
K-means clustering works so that k initial points are 
chosen to represent the cluster center (centroid). Then, 
every data point is assigned to the nearest initial point, 
and the cluster point mean value becomes the new 
cluster centroid. This iteration is repeated until there are 
no changes (Jung et al., 2014; Witten et al., 2017). Two 
hierarchical clustering methods were used, SINGLE and 
WARD. SINGLE takes into account the minimal distance 
between any pair of data from different clusters, whereas 
WARD progressively merges clusters and computes the 
sum of squares (it begins at zero). The method tries to 
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maintain the growth of the sum of squares as small as 
possible (Witten et al., 2017).

4. Associations among minerals

In this case, published data for Mg, Fe, Mn, K, Cu, Ni and 
Zn and the type of soil where the plant grew (Martínez-
Hernández, 2013; Medina-Cazorla, 2015) were used 
to search for associations between concentrations of 
different minerals or between these concentrations 
and the type of soil. The algorithm used in Weka was 
“Apriori”, which transforms items into association rules 
based on coverage (number of items that fulfill the rules) 
and accuracy, i.e., this number is expressed as a proportion 
of total items (Witten et al., 2017). Accordingly, as there 
was more dolomite than serpentine or gypsum data, pre-
processing was necessary to balance the three categories’ 
influence. To this end, supervised filters “Resample” 
and “SpreadSubsample” were applied. “Resample” 
generates a random subsample using sampling with 
and without replacement. The supervised version was 
chosen because data have a nominal class attribute 
(the type of soil), and this attribute needed to be that 
determining the division of numerical data into discrete 
groups. Class distribution can be maintained or modified. 
“SpreadSubsample” produces a random subsample too, 
and it allows the user to control the frequency difference 
between the most common class and the rarest one. In 
addition, the amount of data to take from the original 
sample can also be specified (Witten et al., 2017). By 
using “Resample”, class weight (distribution) was just 
made equal; in contrast, by using “SpreadSubsample”, 
only 39 data points from every class were taken into 
account (the rest were discarded in the analysis) because 
the class with a lower number of data (serpentine) only 
had them for 39 different species in the file that was 
analysed. Accordingly, class weight also became equal 
for all three classes. In addition, different subsets of 
39 data for dolomite and gypsum were used to assess 
whether the associations found were real, not merely 
resulting from the random data selection.

Lastly, since the algorithm did not work for numeric 
attributes, discretizing data was necessary to divide them 
into intervals. The unsupervised Discretize algorithm 
was used, which divides a range of attributes into a 
predetermined number of groups based on training data 
distribution (Witten et al., 2017). Cluster number was 
fixed to four to match the Ni existing classification, 
where plants were separated according to low, normal, 
high, and very high Ni levels. 

5. Conservation status of hyperaccumulator flora

To gather information on the hyperaccumulator 
species contemplated in this study and to offer a global 
perspective on their threat degree, both the IUCN Red 
List (https://www.iucnredlist.org/) and National Red 
Lists were consulted, especially in the case of countries 
with rich hyperaccumulator flora (Appendix S1) such 
as New Caledonia (Wulff et al., 2013)we have made a 
first-pass quantitative assessment of the distribution of 

Narrow Endemic Species (NES, Cuba (González Torres 
et al., 2016), Turkey (Ekim et al., 1989) or Australia 
(http://anpsa.org.au/atrisk3.html).

Results and Discussion

1. Data sources: comments and gaps

The exploration of existing literature evidenced the 
need for a database to gather plant mineral composition 
data. In databases such as the GHD, there is only 
information about a specific mineral for each species. 
In specialized literature, there was a huge variation 
regarding the minerals which were determined, the part 
of the plant that was analyzed, the type of soil where it 
grew, and, in the case of soil data, whether the mineral 
composition was referred to as total or extractable 
elements (Buscaroli, 2017). The element for which 
there was more information, taking into account that the 
bibliography focused on serpentine plants, was Ni, both 
in specialized literature and in the GHD. This is logical 
because serpentine soils are characterised by their high 
Ni content (Rajakaruna et al., 2009).

Other databases with large amounts of data, such as 
Watanabe et al. (2007), containing information about 
2228 foliar samples from 670 species, barely include 
values for Ni and other heavy metals. As pointed out, 
heterogeneity and the fragmentary nature of available data 
hinder their analysis because there is a lack of analysis for 
plants that are not considered either hyperaccumulator 
or normal. To sum up, the initial information is strongly 
biased despite the efforts to include plants that grow on 
special soils, such as serpentine, even if the species are 
not considered hyperaccumulators.

The literature review also evidenced the lack of 
information regarding a plant’s ability to accumulate 
radionuclides. In this case, information is also insufficient, 
and, for example, plant Sr content data are hardly ever 
available. This mineral is one of the most abundant in 
the earth’s crust, and, concretely, its radioisotope 90Sr, 
a subproduct of the rain following nuclear explosions, 
has a semi-disintegration period of 28.78 years. Said 
radioisotope represents an important health risk because 
it easily replaces bone calcium, hindering its removal. 
In the Chernobyl area, 90Sr contributes significantly 
to radioactive contamination (Guillén et al., 2011). 
Phytoremediation also addresses this important aspect, 
but the approach seems different from that for heavy 
metals (Burger & Lichtscheidl, 2018).

Finally, regarding the information review carried 
out, a small number of works take account of plant 
productivity for different species when evaluating plant 
potential for phytoremediation. Productivity is the 
amount of biomass produced per unit of time (Monson, 
2014). It is relevant since, for example, Amaranthus 
retroflexus (amaranth) is capable of extracting higher 
90Sr levels, although its bioconcentration factor is lower 
than the one for Brassica juncea (Indian mustard) 
or Phaseolus acutifolius (tepary bean), as Wang et 
al. (2017) pointed out. It means that A. retroflexus 
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extracts higher quantities of 90Sr because of its faster 
growth, irrespective of whether the concentration 
of 90Sr is higher in B. juncea or P. acutifolius. As a 
result, A. retroflexus might be a better candidate to be 
used for phytoremediation. Although there are some 
exceptions, such as the one mentioned before, the lack 
of works discussing this is remarkable (Al Chami et 
al., 2015).

2. Classification according to the type of soil

After applying algorithms with default Weka settings 
(Table 1), the percentage of success was 42.36% for 

NaiveBayes, 64.99% for SMO, 75.05% for IBk and 
80.46% for J48. Table 1, which represents confusion 
matrices obtained for every algorithm, correctly 
classified plant data in the central diagonal (in red in the 
first one). Therefore, the success rate is the proportion of 
correct predictions over the total. However, the success 
rate does not determine how good the algorithm’s 
performance has been. It is important to read confusion 
matrices as well, particularly the results for serpentine 
soils. For example, in the case of SMO, 64.80% of 
soil data are dolomite. Consequently, even though the 
success rate is above 50%, the algorithm’s performance 
is poor.

Table 1. Confusion matrices after applying a, NaiveBayes; b, SMO; c, IBk; d, J48 algorithms. Columns indicate the classification 
made by the algorithm, whereas rows correspond to the real classification. Correctly classified instances are those that 
occupy the central diagonal. Abbreviations are: D, dolomite; G, gypsum; S, serpentine.

a) NaiveBayes b) SMO
a b c  classified as a b c  classified as

71 259 5 a = D 333 1 1 a = D
13 129 1 b = G 143 0 0 b = G
12 8 19 c = S 36 0 3 c = S

c) IBk d) J48
a b c  classified as a b c  classified as

279 50 6 a = D 299 31 5 a = D
58 84 1 b = G 58 84 1 b = G
10 4 25 c = S 2 4 33 c = S

In Table 1, as the success rate points out, the NaiveBayes 
classification did not perform well, but it made a distinction 
between serpentine and other groups better than SMO 
because it correctly identified 48.71% of serpentine soil 
data and 90.21% of gypsum soil data; in contrast, SMO 
did not correctly identify any gypsum and only 0.77% 
of serpentine data. Conversely, SMO correctly classified 
99.40% of data from plants that grow on dolomite soils, 
whereas NaiveBayes only has a 21.19% of success rate for 
this kind.

IBk and J48 yielded good results, both regarding success 
rate and confusion matrices. IBk correctly classified 64.10% 
of serpentine data, which is an improvement in comparison 
with NaiveBayes. J48 yielded an even higher success rate, 
84.62% for serpentine soils. For both NaiveBayes and 
J48, the worst success rates were obtained for gypsum 
soils (58.74%). In fact, the best results for plants that grow 
on serpentine soils are those obtained with NaiveBayes. 
However, it must be considered that this classifier assigned 
259 dolomite data to the gypsum class. Because of the above, 
the best results are those obtained with J48, regarding both 
success rate and real ability to discriminate between plants 
depending on soil type.

As results were poor for NaiveBayes and SMO, some 
parameters were modified for all of the classifiers in order 
to achieve improved outcomes. For NaiveBayes, the option 
for supervised discretisation was selected. Thus, a success 
rate of 75.05% was achieved; however, the success rate for 
gypsum soils decreased from 90% to 48.25%. For SMO, 
kernel Puk was used instead of the default one, and a success 

rate of 77.76% was achieved. In this case, the success 
rate for dolomite soils remained high (94.33%), and, in 
turn, success rates for gypsum and serpentine increased. 
In the case of the IBk algorithm, the highest success 
rate (77.37%) was achieved when using a number of 9 
k-nearest neighbors (KNN); however, after optimizing this 
parameter, the success rate for serpentine soils decreased to 
28.21% and the percentage for gypsum decreased as well; 
consequently, even though the success rate increased, there 
was not a real classification improvement. Lastly, the best 
results for J48 were achieved using a confidence factor of 
0.06, which led to a success rate of 81.62%.

As can be deduced from Table 2, for J48 the success 
rate increased and the ability to discern serpentine and 
gypsum soils remained unaffected; in fact, the only 
negative difference is that three serpentine data points were 
classified as dolomite, compared to two before lowering 
the confidence factor. This improvement in the results 
suggests that, by reducing the confidence factor, the effect 
of overfitting has been corrected.

A decision tree (Appendix S2) was obtained after 
applying the J48 algorithm. This tree shows classification 
rules. The number of data correctly classified are to be 
found inside the grey squares to the left, whereas exceptions 
are on the right side of the square. Those parameters which 
determine the first tree forks are the most relevant for the 
classification, whereas those that appear in subsequent 
bifurcations are less relevant. According to Appendix S2, 
the most relevant parameter is Ni concentration, in such 
a way that all serpentine data are associated with high 
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nickel levels, even though these levels are well below 
what is considered as accumulation or hyperaccumulation. 
Although Salmerón-Sánchez et al. (2014) obtained 
similar data for Jurinea pinnata in dolomite (with a foliar 
composition unusually high in Mg) and gypsum (a foliar 
composition unusually high in S), this phenomenon has not 

been reported in serpentine plants because “serpentinomics” 
has only addressed hyperaccumulation to date (Wright 
& Wettberg, 2009). However, some investigations have 
revealed the risks that Ni accumulation in plants, depending 
on soil composition, may pose to human health (Beygi & 
Jalali, 2019).

Table 2. Confusion matrices for a) NaiveBayes with supervised discretisation; b) SMO with Puk kernel; c) IBk with 9 
KNN; d) J48 with a confidence factor of 0.06. Abbreviations are: D, dolomite; G, gypsum; S, serpentine. 
Columns indicate the classification made by the algorithm, whereas rows correspond to the real classification.

a) NaiveBayes a) NaiveBayes
a b c  classified as a b c  classified as

294 29 12 a = D 316 13 6 a = D
73 69 1 b = G 83 59 1 b = G
10 4 25 c = S 8 4 27 c = S

c) IBk d) J48
a b c  classified as a b c  classified as

322 11 2 a = D 304 27 4 a = D
76 67 0 b = G 57 85 1 b = G
22 6 11 c = S 3 3 33 c = S

From a methodological perspective, this second 
analysis also yielded better results with J48, which was 
able to balance the prediction for the three concepts to 
be learned (good performance for dolomite, gypsum, 
and serpentine). Moreover, it has an advantage over 
the other three algorithms: it shows the rules it uses to 
classify (in this case, rules can be found in Appendix S2 
tree).

3. Clustering

Four different clusters were generated after applying the 
EM clustering and SimpleKMeans algorithms. In the 
case of EM, the first cluster (cluster 0 in Figure 1) ranges 
from the minimum Ni value (0.1 ppm) to 2.25 ppm, both 
included. Because plants in this group had the lowest 
Ni content, they were classified as plants with low Ni 
content. The following cluster ranges from 2.27 ppm to 
103.23 ppm, also including both. Plants in this cluster 

(cluster 3 in Figure 1) have been considered normal 
plants regarding their Ni content. The next cluster 
(cluster 2 in Figure 1) comprises a Ni content from 
208.75 to 3080 ppm. Plants in this group are considered 
to have high Ni levels, which makes them accumulators 
by analogy with Brooks et al. (1997) classification, 
according to which accumulator plants were those with 
more than 100 Ni ppm. Since the first datum below 
208.75 ppm is 103.23 Ni ppm, the accumulator plant 
cluster result is close to the criteria established by the 
classification mentioned above. Lastly, the group ranges 
from 3131 ppm to the highest value, 65800 ppm (cluster 
1 in Figure 1) comprises plants that accumulate very 
high nickel levels, namely hyperaccumulator plants for 
this element. In this case, the threshold above which a 
plant may be considered a hyperaccumulator is higher 
for clustering (>3000) than for Brooks’ et al. (1977) 
classification, which proposes a level above 1000 ppm. 
Yet, both are in the same order of magnitude.

Figure 1. ln(x+1) clustering by EM, where x is Ni concentration data expressed in ppm. Four clusters can be observed: 
cluster 0 (blue), cluster 3 (cyan), cluster 2 (green) and cluster 1 (red). Weka gives the number of the cluster; it has no 

biological meaning. Y-axis shows the value of ln(x+1), whereas X-axis shows the number of the instance (the order of 
Ni datum in the original data file, where values were ordered from lowest to highest).
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After applying the SimpleKMeans algorithm, similar 
results were obtained compared to EM: in this case, the 
first cluster, which corresponds to an interval from 0.1 
to 3.7 Ni ppm, has a higher upper limit than that for 
EM. It corresponds to cluster 3 in Figure 2 and, as in 
the previous case, plants in this group were considered 
to contain low Ni levels. The following group, cluster 1 
in Figure 2, contains values from 3.72 to 103.23 ppm; 

consequently, this group’s upper limit is the same as 
that for EM. Cluster 1 comprises plants with normal 
Ni levels. The accumulator plant cluster is cluster 0 in 
Figure 2 which ranges from 208.75 ppm to 3573 ppm. 
Therefore, the upper limit is also slightly higher than the 
one for EM. However, because interval limits are similar 
for both SimpleKMeans and EM, this strengthens 
previously obtained results.

Figure 2. ln(x+1) clustering by SimpleKMeans, where x is Ni concentration data expressed in ppm. 
Four clusters can be observed: cluster 3 (cyan), cluster 1 (red), cluster 0 (blue) and cluster 2 (green). Y-axis 
shows the value of ln(x+1), whereas X-axis shows the number of the instance (the order of Ni datum in the 

original data file, where values were ordered from lowest to highest).

Lastly, the HierarchicalClusterer algorithm was applied. 
In this case, only two groups were obtained when using 
default settings, one from 0.1 ppm to 103.23 ppm (cluster 
3 in Figure 3a) and another one from 380 ppm to 40875 
ppm (cluster 2 in Figure 3a). Even though the turning point 
between the two groups (208.75) matches the result for EM 

and SimpleKMeans, that is to say, the threshold to set apart 
plants with a normal Ni content and hyperaccumulators, 
no more groups are formed because said turning point has 
been assigned as an independent cluster (cluster 1 in Figure 
3a). Likewise, the maximum value was also assigned as a 
differentiated cluster (cluster 3 in Figure 3a).

Figure 3. ln(x+1) clustering by HierarchicalClusterer (x=Ni concentration data expressed in ppm). 
Four clusters are observed: cluster 0 (blue), cluster 1 (red), cluster 2 (green) and cluster 3 (cyan). Y-axis shows 
the value of ln(x+1), whereas X-axis shows the number of the instance (the order of Ni datum in the original 

data file, where values were ordered from lowest to highest).

As there were two clear clusters instead of four, 
several methods were assessed in order to measure 
distance (dissimilarity). By default, Weka uses SINGLE 
method. The best results were attained with the WARD 

method: the first cluster (cluster 0 in Figure 3b), which 
comprises plants with low Ni levels, encloses the range 
from 0.1 to 2.46 ppm. The following cluster (cluster 1 in 
Figure 3b) includes the range from 2.51 to 103.23 ppm, 



9Mota-Merlo, M. & Martos, V. Mediterranean Botany 42, e67609, 2021

which corresponds to plants with normal Ni levels. As 
the figure shows, the turning point between plants with 
normal Ni levels and those with high levels does not vary 
depending on the classifier; in fact, the division between 
these two groups is visible at a glance in data graphs 
(Figures 1-3) because there are few data in the range 
from 103.23 ppm to 380 ppm. The interval for plants 
with high Ni levels encompasses values from 208.75 
ppm to 5113 ppm (cluster 2 in Figure 3b). Therefore, in 
this case, the upper limit is above those obtained before, 
which were around 3000 ppm, but has the same order 
of magnitude as this previous result and Brooks’ et al. 
(1997) classification (1000 ppm).

4. Associations among minerals

By applying “SpreadSubsample”, a correlation was 
identified between intermediate/low Mg levels, high 
Ni levels, and the plant growing on serpentine soils. 

However, this association is not found when using 
“Resample”. In addition, it is not consistent with the 
literature because, even though dolomite, serpentine and 
gypsum soils have a high Mg content, the highest Mg 
levels are found in serpentine soils (Berazain, 1999). 
Both with “SpreadSubsample” and “Resample”, an 
association between high Zn and Ni levels and plants 
growing in serpentine soils is found. This correlation 
is indeed consistent with literature as serpentine soils 
are rich in Ni and in other minerals, among which is 
Zn (Rajkumar et al., 2009; Mohseni et al., 2019). A 
concurrence is also found between the highest Ni levels 
and serpentine soils. It is the most apparent association 
in data after discretizing and equalling variable weights 
(Figure 4). Lastly, there is a relation between the highest 
Mg levels and the highest K levels. Even though cations 
can compete when their concentrations are high, K can 
accumulate elements against concentration gradients 
(Taiz & Zeiger, 2010; Marschner, 2016).

Figure 4. Visualization of Ni data after dividing them into four intervals with a similar number of data per interval 
(127−132), where Resample has equalized the weight for every class. The interval that corresponds to the lowest Ni 

content appears first from the left; intervals are ordered from left to right (Ni content increases to the right). This figure 
shows that, in the interval where nickel levels are the highest, most data correspond to serpentine soils (cyan), whereas 

only a few of them are from dolomite (blue), and the proportion of gypsum soils (red) is even lower.

5. Conservation status of hyperaccumulator flora

The recently created hyper-accumulating plant database 
represents an important advance in the study of this 
type of plant, not only from a scientific but also from an 
applied point of view. This database analysis shows that 
most known hyperaccumulator plants are concentrated 
in 6 or 7 regions of the planet (Prance & Brooks, 1988; 
Mengoni, Schat, & Vangronsveld, 2010). However, 
when these mega-diverse regions for hyperaccumulator 
flora are compared with the distribution of ultramafic 
soils (Echevarria, 2018), and is highly biased towards 
Ni hyperaccumulators. This is mainly due to the 
existence of a reagent paper test that is only specific 
to nickel (based on dimethylglyoxime, it is clear that 
many territories remain to be prospected. It is also 
true that recent research, for example, in Mexico, has 
not detected new hyperaccumulator taxa (Navarrete 
Gutiérrez et al., 2018). On the contrary, the Central 
American zone has found new hyperaccumulator species 
of the genus Psychotria (McCartha et al., 2019). Be that 
as it may, the information about these species on foliar 

contents in Ni and other heavy metals, accumulators, 
or not provides valuable insight that will help establish 
hyperaccumulation thresholds in a more objective way.

A relevant aspect of hyperaccumulator species that 
is not included in the database is related to their threat 
degree. Very few of the database species are listed in 
the IUCN red list (https://www.iucnredlist.org/). Thus, 
none of the European species appear on that list or are 
only considered as DD, which shows that a greater 
effort should be made to ascertain their conservation 
status. This is the case for Alyssum akamasicum and 
A. pintasilvae (Bilz et al., 2011). A review of other 
information sources, such as Cuba’s red list, shows 
that some of these species are seriously endangered. In 
fact, the xeromorphic thickets on the serpentine house, 
together with the montane rainforest (González Torres 
et al., 2016), have the greatest number of threatened 
species, among which more than a hundred are critically 
endangered (CR). Out of the 129 species featured in the 
GHD, 14 appear in the Cuban red list.

Regarding Australia, the GHD features 14 
species, two of which belong to the genus Gossia (G. 
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fragrantissima and G. gonoclada) and are considered EN 
(DSEWPC, 2009). In Turkey, one of the countries with 
the highest number of species in the GHD (Appendix 
1), ten species face some threat degree: 1 CR, 6 EN and 
4 VU. In other countries such as New Caledonia, the 
richest in terms of known hyperaccumulator species 
(Appendix 1), the red list is being updated (http://
endemia.nc/page/la-liste-rouge). However, most species 
listed as hyperaccumulators are endemisms, of which 
Wulff et al. (2013)we have made a first-pass quantitative 
assessment of the distribution of Narrow Endemic 
Species (NES gather 35 narrow endemism present in 1, 
2, or 3 localities. Analyzing data from New Caledonia, 
Cuba, Australia, and Turkey together, the proportion of 
hyperaccumulator flora that is endangered ranges between 
10 and 20%. In New Caledonia, Ni mining affects many 
serpentinicolous plants that are not protected by local 
legislation (Wulff et al., 2013)we have made a first-pass 
quantitative assessment of the distribution of Narrow 
Endemic Species (NES. This datum is relevant to urge 
conservation of these species, and it accords that at least 
14.9% of known hyperaccumulator flora is represented 
by local endemisms (Reeves et al., 2017).

Conclusions

A thorough literature review revealed that available 
foliar composition data are fragmentary and incomplete, 
not suitable for conducting global analyses. Even though 
economics is becoming increasingly important, different 
approaches (agronomical, ecological, functional, 
phytoremediation-focused, etc.) that focus on concrete 
aspects while disregarding others prevail. The case of 
elements with radioactive isotopes, such as Sr, is key 
to advancing the field of phytoremediation, taking 
into account the relevance of the last nuclear accidents 
(Chernobyl, Fukushima), with an almost global influence 
scope.

Machine learning algorithms are useful tools to 
analyze mineral composition data, as this first approach 
to the problem has proven. However, databases 
compiling multivariate plant composition data, as well as 
soil type, are needed in order to carry out more complex 
analyses. Analysing mineral content, soil type and plant 
nutritional strategies (hyperaccumulator, accumulator 
or normal) will elicit interesting results, given that 
there are certain types of soil, such as serpentine, where 
there is a higher proportion of hyperaccumulator plants. 
Therefore, confirming whether these associations are 
found in plants is interesting since soil mineral content 
affects plant mineral composition and, as this work 
has proven, plants can be classified according to their 
mineral composition depending on the soil where they 
grow.

On another note, a binary classification into accumulator 
and non-accumulator plants based only on plant mineral 
composition has its limitations; for example, it does not 
consider the effect of soil mineral content. The prevailing 
classification, which defines accumulators as plants which 
contain more than 100 Ni ppm and hyperaccumulators as 

plants which contain more than 1000 Ni ppm, is consistent 
with results obtained in this work, although said results 
suggest that a higher limit (3000-5000 Ni ppm) should be 
established to define hyperaccumulator plants. However, 
because the number of clusters was fixed according to 
the existing classification, optimizing it is the next step 
to devise a new classification or further refine established 
ones.

The appliance of machine learning techniques to 
multivariate plant mineral composition data, taking 
into account all three aspects (classification, clustering, 
and association) combined could provide relevant 
information which is not explicit in the dataset, and 
also improve hyperaccumulator plant classification, 
not only taking account of leaf mineral content, but 
also the criteria established by the four definitions of 
a hyperaccumulator, both for Ni and other relevant 
minerals. Thus, more hyperaccumulator plants could 
be identified to be used in phytoremediation and 
phytomining, with consequent biotechnological impact.

Information on the threat degree of hyperaccumulator 
species is incomplete even in territories that have been 
widely studied from a botanical point of view, such as 
Europe. Although this information is not available, the 
fact that this type of flora is often associated with very 
restricted habitats and territories suggests that they are 
endangered species in many cases. According to the 
authors’ estimations, at least 10% of these plants are 
endangered. The applications that hyperaccumulators 
may have in phytoremediation or even in the research on 
other aspects of plant nutrition encourage greater efforts 
to evaluate their conservation status.
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Appendix 1. �List of species present in Martínez-Hernández (2013) and Medina-Cazorla (2015) plant mineral 
composition data.

Abies pinsapo Boiss. Jurinea humilis (Desf.) DC.
Alyssum gadorense P. Küpfer Jurinea pinnata (Lag. ex Pers.) DC
Alyssum serpyllifolium Desf. Krascheninnikovia ceratoides (L.) Gueldenst
Andryala agardhii Haens. & Boiss. Lavandula lanata Boiss.
Anthyllis cytisoides L. Lavandula latifolia Medik. 
Anthyllis tejedensis Boiss. subsp. plumosa (Cullen ex E. 
Domínguez) Benedí

Leontodon boryi Boiss. ex DC.

Anthyllis montana L. Lepidium subulatum L.
Anthyllis tejedensis Boiss Leucanthemopsis pallida subsp. spathulifolia (J.

Gay) Heywood
Anthyllis terniflora (Lag.) Pau Lomelosia pulsatilloides (Boiss.) Greuter & Burdet subsp. 

pulsatilloides 
Anthyllis vulneraria L.  Ononis tridentata L subsp. tridentata
Arctostaphylos uva-ursi (L.) Spreng Ononis tridentata subsp. angustifolia (Lange) Devesa & 

G. López
Boleum asperum Desv. Ononis tridentata L. subsp. crassifolia (Dufour ex Boiss.) 

Nyman
Brassica repanda (Willd.) DC. Ononis tridentata f. edentula (Webb ex Willk.) Irj.
Centaurea bombycina Boiss. subsp. bombycina Pinus halepensis Miller
Centaurea granatensis DC Pinus nigra Arnold
Centaurea hyssopifolia Vahl.  Pinus pinaster Aiton
Cistus albidus L.  Pinus sylvestris L.
Cistus clusii Dunal in DC. Pterocephalus spathulatus (Lag.) Coult.
Cistus populifolius L. Quercus faginea Lam. subsp. faginea
Cistus salvifolius L.  Quercus rotundifolia Lam
Convolvulus boissieri Steud. Rosmarinus eriocalyx Jordan & Fourr.
Coris hispanica Lange Rosmarinus officinalis L.
Dittrichia viscosa (L.) Greuter  Rothmaleria granatensis (DC.) Font Quer
Echium albicans Lag. & Rodr. subsp. albicans Salvia lavandulifolia Vahl.
Erica scoparia L Santolina elegans DC
Erodium boissieri Cosson Satureja montana subsp. montana
Glandora nitida (Ern) D.C. Thomas Scorzonera albicans Cosson
Globularia spinosa L. Sedum album L.
Gypsophila bermejoi G. López Sedum sediforme (Jacq.) Pau 
Gypsophila struthium L. subsp. hispanica (Willk.) G. 
López 

Sideritis spinulosa Barnades ex Asso subsp. spinulosa

Gypsophila struthium L. subsp. struthium Sideritis incana subsp. virgata (Desf.) Malag.
Halimium atriplicifolium (Lam.) Spach. subsp. 
atriplicifolium

Staehelina baetica DC

Hedysarum boveanum Bunge ex Basiner subsp. 
palentinum Valdés

Teucrium balthazaris Sennen

Helianthemum alypoides Losa & Rivas Goday Teucrium carolipaui Vicioso subsp. fontqueri (Sennen) Rivas 
Mart.

Helianthemum apenninum subsp. stoechadifolium (Brot.) 
Samp

Teucrium lepicephalum Pau

Helianthemum canum (L.) Hornem Teucrium libanitis Schreb.
Helianthemum marifolium subsp. conquense Borja & 
Rivas Goday ex G. López

Teucrium pumilum Loefl. ex L. Cent.

Helianthemum pannosum Boiss Teucrium turredanum Losa & Rivas Goday
Helianthemum raynaudii Ortega Oliv., Romero García & 
C. Morales

Thymelaea tartonraira (L.) All. subsp. valentina (Pau) O. 
Bolòs & Vigo

Helianthemum squamatum (L.) Dum. Cours. Thymus funkii Coss. subsp. sabulicola 
(Coss.) R. Morales
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Helianthemum syriacum (Jacq.) Dum. Cours. Thymus granatensis Boiss. 
subsp. granatensis

Helictotrichon filifolium (Lag.) Henrard. subsp. filifolium Thymus granatensis Boiss. subsp. micranthus (Willk.) O. 
Bolòs & Vigo

Helianthemum viscidulum Boiss Thymus lacaitae Pau 
Herniaria fruticosa L. Thymus mastichina L.
Hypericum ericoides L. Trisetum velutinum Boiss. 
Hippocrepis squamata (Cav.) Coss. Vella pseudocytisus L. subsp. pseudocytisus
Hormathophylla lapeyrousiana (Jord.) P. Küpfer Ziziphora hispanica L.
Jacobaea auricula (Bourg. ex Coss.) Pelser Jurinea humilis (Desf.) DC.
Jasione crispa (Pourr.) Samp. subsp. segurensis Mota, C. 
Díaz, Gómez Merc. & F. Valle

Jurinea pinnata (Lag. ex Pers.) DC


