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Abstract. With the continued and relentless growth in dataset sizes in
recent times, feature or attribute selection has become a necessary step
in tackling the resultant intractability. Indeed, as the number of dimen-
sions increases, the number of corresponding data instances required in
order to generate accurate models increases exponentially. Fuzzy-rough
set-based feature selection techniques offer great flexibility when dealing
with real-valued and noisy data; however, most of the current approaches
focus on the supervised domain where the data object labels are known.
Very little work has been carried out using fuzzy-rough sets in the areas
of unsupervised or semi-supervised learning. This paper proposes a novel
approach for semi-supervised fuzzy-rough feature selection where the
object labels in the data may only be partially present. The approach
also has the appealing property that any generated subsets are also valid
(super)reducts when the whole dataset is labelled. The experimental eval-
uation demonstrates that the proposed approach can generate stable and
valid subsets even when up to 90 % of the data object labels are missing.

Keywords: Fuzzy-rough sets - Feature selection : Semi-supervised
learning

1 Introduction

Supervised learning operates on labelled data and attempts to learn the under-
lying functional relationships in that data. It is the most common paradigm in
machine learning and is concerned with the learning of classifiers which can accu-
rately reflect the predictive regularities of the underlying model from the feature
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186 R. Jensen et al.

values and decision class labels. For unsupervised learning, on the other hand,
there are no decision class labels and the task is to construct or reconstruct class
information from some inherent structure in the data. These techniques attempt
to find groups in the data such that objects in the same group are similar to each
other in some way and those in different groups are dissimilar. The notion of
similarity is however subjective and as such, unsupervised learning approaches
are forced to make assumptions about groupings as well as the number of groups
into which data objects belong. The semi-supervised learning (SSL) paradigm
lies between that of supervised learning and unsupervised learning. It is typically
employed when some (but not all) of the data is labelled. The primary aim of
SSL is to try to utilise both labelled and unlabelled data and it has therefore
attracted much interest due to the abundance of unlabelled data which is avail-
able for many real-world problems. The main obstacle for traditional learning
methods is that they cannot utilise unlabelled data for knowledge discovery. This
has led to a growth in the number of SSL approaches.

Rough sets [7] and fuzzy-rough sets [3] have recently enjoyed much attention
particularly for the task of feature selection (FS), due to their domain inde-
pendence and, in the case of fuzzy-rough sets, the additional ability to handle
real-valued data. The vast majority of work carried out in the areas of rough
sets and fuzzy-rough sets has been focused on supervised learning approaches,
i.e. where all of the class labels are known. There has been very little work in the
area of unsupervised learning for fuzzy-rough sets and even less still for semi-
supervised learning. The motivation for a fuzzy-rough based semi-supervised
feature selection approach is based on the success of the supervised approaches
[5,6] and the fact that the subsets produced by the proposed approaches are also
shown to be valid (super)reducts for fully labelled data.

The remainder of the paper is structured as follows. In Sect. 2, the prelim-
inaries for fuzzy-rough set theory and FS are covered. In Sect. 3, the proposed
approach for semi-supervised fuzzy-rough set FS is presented. Section4 details
an experimental evaluation of the technique, where its performance is assessed
through the random removal of class labels from a number of benchmark datasets
and using non-parametric statistical analysis. Finally, in Sect. 5, the paper is con-
cluded and some directions for future work are suggested.

2 Rough and Fuzzy-Rough Set Theory

In rough set analysis [7], data is represented as an information system (X,A),
where X = {z1,...,z,} and A = {a1,...,a,,} are finite, non-empty sets of
objects and features, respectively. Each a € A corresponds to a mapping from
X to V,, which is the value set of a over X. For every subset B of A, the
B-indiscernibility relation! Rp is defined as

Rp = {(z,y) € X*|(Ya € B)(a(z) = a(y))}. (1)

Clearly, Rp is an equivalence relation. Its equivalence classes [z]r, can be used
to approximate concepts, i.e., subsets of the universe X. Given A C X, its lower

! When B = {a}, i.e., B is a singleton, R, is written rather than Ryay.
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and upper approximation w.r.t. Rp are respectively defined as

RplA = {z € X |[z]r, C A} (2)
RpTA = {LL‘EXHLL’]RBHA#@}. (3)

An element z belongs to the lower approximation if it belongs to A and all
other instances in its equivalence class do so as well. It belongs to the upper
approximation when it does not necessarily belong to A itself, but there is at
least one element in its equivalent class that does.

A decision system (X, AU{d}) is a special kind of information system, used
in the context of classification. Attribute d (d ¢ A) is called the decision feature.
Its equivalence classes [z]gr, (or [z];) are called decision classes. Given B C A,
the B-positive region POSp contains those objects from X for which the values
of B allow to predict the decision class unequivocally. This can be modeled using
the lower approximation (2), i.e.,

POSB = U RBHm]Rd- (4)
zeX

Indeed, if z € POSp, it means that whenever an object has the same values as
x for the features in B, it will also belong to the same decision class as z. The
predictive ability w.r.t. d of the features in B is measured by the following value
(degree of dependency of d on B):

POS
B = ||X|m~ (5)

(X, AU {d}) is called consistent if v4 = 1. A subset B of A is called a decision
reduct if it satisfies POSp = POS 4, i.e., B preserves the decision making power
of A, and moreover it cannot be further reduced, i.e., there exists no proper sub-
set B’ of B such that POSp: = POS 4. When the latter constraint is removed,
i.e. B is not necessarily minimal, this is then termed a decision superreduct.

Fuzzy-rough set theory extends the above notions. A subset B of A can be
defined using the fuzzy B-indiscernibility relation:

RB(xvy) = T(Ra(xay»? (6)

in which 7 represents a t-norm?. It can easily be seen that if only qualitative
features (possibly originating from discretisation) are used, then the traditional
concept of the B-indiscernibility relation is recovered. For the lower and upper
approximation of a fuzzy set A in X by means of a fuzzy tolerance relation R,
the definitions proposed in [8] are adopted and defined, for all z in X,

(RlA)(z) = yig)f( Z(R(x,y), A(y)) (7)
(R1A)(2) = sup T(R(x,y), A(y)). (8)

2 A t-norm 7 is an increasing, commutative, associative [0,1]?> — [0, 1] mapping sat-
isfying 7 (z,1) = z for z in [0, 1].
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Here, T is an implicator®>. When d is crisp, the fuzzy positive region can be
defined as follows [2]:
POSp(z) = (Rpl[z]a)(z). (9)

Using the Lukasiewicz implicator ((Va, b € [0,1])(Z(a,b) = min(1 —a+b, 1)),
it is found for each data instance z € X:
(Rp | [z]a)()
= yig)f(I (Re(z,y), [z]a(y))

= min| inf Z(Rp(z,y), [$]d(y))7yé?£dI(RB(may)v [z]a(y))]

y€(z]a

POSE(z)

= min| inf Z(Rp(z,y),1), él[lf] I(Rp(z,y),0)]
Yelxia

yElz]a
= min| inf min(l — Rp(z,y) +1,1), inf min(1 — Rp(z,y)+0,1)]

it v lala
=min[l, inf (1 - Rp(z,y))]
y¢[zla
= inf (1- Rp(z,y)). 10)
y¢[zla

From this, an increasing [0, 1]-valued measure to gauge the degree of dependency
of a subset of features on another subset of features can be defined. For FS, it
is useful to phrase this in terms of the dependency of the decision feature on a
subset of the conditional features:

> POSp(x)
_ |POSB|  zex

= = . 11
B |X| |X| ( )

This measure is used in the fuzzy-rough FS method (FRFS) of [5]. This technique
is a hill-climbing algorithm to determine a (super)reduct B C A. It initialises B
as an empty set and iteratively adds the attribute a € A\ B that leads to the
largest increase in the value (11). The algorithm halts when v = 4.

3 Semi-Supervised Fuzzy-Rough Feature Selection

One of the primary motivating factors for semi-supervised approaches is the
abundance of unlabelled data. Indeed, it is often expensive and time-consuming
for domain experts to label data and this is where semi-supervised techniques
can take advantage of small amounts of labelled data and (larger) amounts of
unlabelled data in order to learn about the underlying predictive regularities.
Using the definitions described in Sect. 2, the original FRFS approach can be
altered to handle both labelled and unlabelled data. Consider a feature subset
B C A, the membership degree to the positive region is computed as defined in

3 An implicator T is a [0,1]> — [0,1] mapping that is decreasing in its first and
increasing in its second argument, satisfying Z(0,0) = Z(0,1) = Z(1,1) = 1 and
7(1,0) = 0.
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Sect. 2. For the semi-supervised paradigm, some data instances in X are missing.
Each of these data instances is considered to belong to its own decision class,
which contains only that data instance. This impacts the calculation of the
positive region (10).

Theorem 1. Let L be a set of labelled instances and U a set of unlabelled
instances, with L N U = @ and L U U = X. The membership degree of an
instance x € X to the positive region in the system can be defined as:

inf (1 — Rp(x,y)) ifeelU

ssl _ y#
POSE (x) = inf  (1-Rp(z,y) ifzel,
ye(U Ueo([x]})

where [z]5 denotes the set of labelled instances with the same decision value as
x and co(-) is the complement operator.

Proof. First consider x € U. Its decision class contains only z, implying that
(10) immediately simplifies to

POS! (@) = inf (1 - Ro(a.y))

Now assume z € L. The decision class of x consists of all labelled instances
y with d(z) = d(y). All unlabelled instances are not part of it, as they each
belong to their own, distinct classes. In (10), the infimum is therefore taken over
U U co([z]}), i.e.,

POSf’BSZ(x) = inf (1 —-Rp(z,y)).
ye(U Uco([z]5))

O
When L # () and unlabelled data is considered, the dependency degree is

defined as
> POSy(x)

ssl _ xeX
B

Ry

Theorem 2. For every B C A, 715331 <7B.

Proof. In general, given a function f and sets S and T with S C T,
inf < inf
@) <l (o)

always holds, as the infimum on the left-hand side is taken over a larger set.
Consider x € X. In the semi-supervised paradigm, either x € U or x € L
holds. In the first case, it can be found that:

POS!(x) = inf (1 — Ro(r,)
= inf 1— Rp(x,
ye(BL,) 1~ Re(@y)
< inf (1-Rp(z,y)) (12)
yeeo(fala)

él[lf] (1 - Rp(z,y)) = POSp(x)
Y&ITla
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where [z]4 is determined within the fully labelled system. Step (12) holds since
co([z]q) C (X \ {z}). Secondly, if z € L, then

POS“’l inf 1— Rp(x,y
(@) = <UUco<[x15>>( 5(®:9))

< inf (1—-Rp(x,y)) (13)
y€co([z]a)
= inf (1 - Rp(z,y)) = POSp(x)
y¢[zla
where [z]; is determined within the fully labelled data. Step (13) holds since
co([x]a) € (U U co([z]%)). Indeed, every data instance y € co([z]4) remains
either labelled in the semi-supervised paradigm (y € co([x]})) or has no label
(y € U). It can therefore be concluded that

(Vz € X)(POSE' (x) < POSE(x)). (14)

Finally, it can be found that:

> POSE\(x > POSp(z

ssl _ 7EX (19 sex .
7B X = X B

a

This dependency measure can be used in the same way as the original def-
inition as a basis for guiding the search toward optimal subsets. The modified
greedy hillclimbing search method ssFRFS is presented in Algorithm 1. The
algorithm iteratively adds the best feature (based on v**!) to the current subset
until the maximal value is attained for the dataset. At this point, the subset is
a (super)reduct, because Theorem 2 shows that maximizing v** implies maxi-
mizing v as well.

4 Experimental Evaluation

This section details the experiments conducted and the results obtained for the
novel ssFRFS approach. The proposed method was applied to 12 benchmark
datasets of different sizes. The results presented here relate to the performance
in terms of quality of subsets obtained: classification accuracy and subset size.
The effect of the random removal of 10-90 % of the class labels from the datasets
on the proposed approach is also assessed.

4.1 Experimental Setup

The 12 different benchmark datasets are drawn from [4]. The class labels are
randomly removed from 10 %, 30 %, 50 %, 70 % and 90 % of the labelled data
for each dataset in order to simulate the semi-supervised problem domain.
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Algorithm 1. The ssFRFS algorithm

input : A, the set of all conditional features
output: B, the reduct

B —{}; e =0

while 7;2l, # 7% do

T—B

foreach a € (A\ B) do
if ygﬁ{a} > 75 then

LTHBu{a}

ssl  __ _ssl
Voest = VT

N O ks W

®

%B<—T

9 return B

ssFRFS is compared with the original fuzzy-rough feature selection using a
greedy hill-climbing search [5] and applied to the original, fully-labelled data. For
all approaches, the Lukasiewicz t-norm (max(z +y — 1,0)) and the Lukasiewicz
fuzzy implicator (min(l —z +y, 1)) are adopted to implement the fuzzy connec-
tives in (7) and (8).

For the generation of classification results, two different classifier learners
have been employed: the rule-based classifier JRip [1] and a nearest-neighbour
classifier IBk (with k& = 3). Five stratified randomisations of 10-fold cross-
validation were employed in generating the classification results. It is important
to point out here that FS is performed as part of the cross-validation and each
fold results in a new selection of features. For the comparison of ssFRF'S in terms
of model performance, average classification accuracy is used. In addition, a non-
parametric Wilcoxon test is performed [10] (significance level v = 0.05) in order
to evaluate whether any differences in performance are statistically significant.
In particular, FRFS is compared with ssFRFS, in order to verify whether the
presence of unlabelled data implies a reduction in performance.

4.2 Results

The results of the experimental evaluation are shown in Tables1, 2 and 3. The
results in Table1 show that the approach achieves a reduction in the subset
sizes for almost all cases, with a few small notable exceptions of the australian
and glass datasets when the number of missing labels is greater than 70 %. The
segment dataset also shows a similar pattern starting at 30 %. It should be noted
however that the corresponding level of reduction using FRFS with no missing
labels is very small - only a single feature, so this is expected to some degree.
Tables2 and 3 detail the classification results for the JRip and IBk classi-
fier learners respectively. Examining these results, it is clear that even for those
cases with high levels of label removal, ssFRFS can still return comparable clas-
sification accuracies to the case where no labels have been removed. Clearly, it
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Table 1. Average subset size in terms of original number of features.
Dataset No. of features | No. of objects | FRF'S | Missing class labels
10% |30% 50 % 70% 90 %
Australian | 14 690 12.90 |13.12 13.70 |13.96 |14.00* | 14.00*
Cleveland |13 303 7.64 | 832 9.20 9.78 |10.08 |10.24
Ecoli 7 336 6.00 | 6.00 6.00 6.00 6.00 6.00
Glass 9 214 9.00 | 8.84| 8.92 8.98 | 9.00* 9.00*
Heart 13 270 7.06 7.96 | 8.90 9.72 |10.14 |10.32
Tonosphere | 34 351 7.04 1 12.42]16.18 |17.32 |18.48 |18.60
Olitos 25 120 5.00 5.10 | 5.44 5.74 5.86 5.94
Segment 18 2310 16.00 | 17.98 | 18.00* | 18.00* | 18.00* | 18.00*
Vehicle 18 946 8.42 9.74111.04 |11.46 |11.70 |11.84
Water2 38 390 6.00 | 6.46 | 6.92 7.00 7.04 7.10
Water3 38 390 6.00 | 6.26| 6.94 7.00 7.02 7.00
Wine 13 178 8.42 5.80| 6.34 6.56 6.74 6.80
2denotes that no reduction took place
Table 2. Classification accuracy using JRip
Dataset Unred | FRFS | Missing class labels
10% 130% [50% | 70% |90 %
Australian | 85.16 |85.16 |84.87|85.13|85.10|85.1 | 85.16
Cleveland 54.23 | 54.48 | 54.34 | 55.10 | 54.63 | 54.69 | 54.42
Ecoli 82.26 | 81.13 |81.13|81.1381.13 |81.13 | 81.13
Glass 67.17 |67.17 | 66.41 | 66.99 | 66.54 | 67.17 | 67.17
Heart 72.96 | 74.15 | 74.37 | 74.67 | 75.04 | 75.04 | 75.93
Tonosphere |87.57 | 87.74 |85.13|86.52|85.39 | 86.96 | 86.61
Olitos 68.50 | 62.83 |59.83|59.8363.67 | 62.00 | 61.67
Segment 95.31 1 95.11 |95.31]95.28 | 95.28 | 95.28 | 95.28
Vehicle 68.65 | 63.50 | 65.7265.58 | 66.58 | 66.10 | 67.07
2-completed | 82.15 | 83.28 | 82.97 | 83.08 | 82.56 | 81.54 | 82.67
3-completed | 82.72 | 81.23 | 79.79 | 79.85 | 78.36 | 77.64 | 78.72
Wine 93.54 |91.46 |89.44 87.08 | 87.01 | 86.91 | 87.31

would be unrealistic to expect that this approach would be able to maintain
the robustness of the fully supervised data (no missing labels). After all, there
is much discriminative information encoded in class labels, but overall ssFRFS
performs well. There is a small decrease in performance when compared to the
unreduced data, but the statistical analysis in Tables4 and 5 shows that no sig-
nificant differences are observed when the results are compared with the fully
supervised approach, regardless of the level of missing labels.
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Table 3. Classification accuracy using IBk

Dataset Unred | FRFS | Missing class labels

10% 130% [50% [ 70% |90 %
Australian | 81.62 |79.57 |79.39|80.81|81.2281.62  81.62
Cleveland | 55.11 49.24 |51.93|53.08 | 55.23 | 56.51 | 56.78
Ecoli 80.78 | 80.49 | 80.49 | 80.49 | 80.49 | 80.49 | 80.49
Glass 70.68 | 70.68 | 70.40|70.49|70.49 | 70.68 | 70.68
Heart 7711 |72.96 |75.19|75.11|76.89 | 78.52 | 78.89
Tonosphere |85.30 |86.43 |84.52|85.22|84.43 | 85.57 | 84.52
Olitos 76.33 | 63.67 | 63.3363.33 | 64.17|64.00 | 63.17
Segment 97.13 |97.57 97.13/97.13|97.13 |97.13 | 97.13
Vehicle 70.00 | 63.24 | 64.82|66.22|66.05 | 66.64 | 67.06
2-completed | 85.03 | 83.59 |81.23|80.31|79.90|79.95| 78.77
3-completed | 80.77 | 78.56 |76.92|76.36 | 76.46 | 73.64 | 74.72
Wine 95.07 | 95.41 | 92.56 | 92.47 | 92.48 | 92.05 | 91.48

Table 4. Comparison of FRFS with ssFRFS for 1Bk

FRFS-+IBk (0 %)

R+

R

P-value

ssFRFS+IBk (10 %)
ssFRFS+IBk (30 %)
ssFRFS+IBk (50 %)
ssFRFS+IBk (70 %)
ssFRFS+IBk (90 %)

43.0
35.0
31.0
36.5
40.5

23.0
31.0
35.0
41.5
37.5

> 0.2
> 0.2
> 0.2
> 0.2
> 0.2

FRFS+JRip (0%)

R+

R

P-value

ssFRFS+JRip (10 %)
ssFRFS+JRip (30 %)
ssFRFS+JRip (50 %)
ssFRFS+JRip (70 %)

ssFRFS+JRip (90 %)

52.0
44.0
38.0
41.5
42.5

14.0
22.0
28.0
24.5
23.5

> 0.2
> 0.2
> 0.2
> 0.2

0.10156

Table 5. Comparison of FRFS with ssFRFS for JRip

193
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5 Conclusion

This paper has presented a new approach to feature selection for semi-supervised
data. One of the primary motivations behind the development of the approach
was to propose a means of carrying out FS when some of the data class labels
are missing. Indeed, there is no bound on the number of labelled data objects
required and even if all labels are missing, the approach will still return a valid
fuzzy-rough (super)reduct. This appealing property means that no consideration
needs to be given to any tunable parameters in order to account for differing
levels of supervision of the data. Indeed the experimental evaluation has demon-
strated that the approach is particularly useful even with high levels of missing
labels.

The ideas described in this paper offer some new directions for further
development. In particular, other supervised fuzzy-rough approaches could be
extended in a similar way to that proposed in this paper, including the fuzzy
discernibility matrix-based approaches described in [5]. Also, the idea of object
weighting could be incorporated [9], where objects with missing labels are con-
sidered to be less important in the calculations when compared to those that are
labelled.

The basic semi-supervised concepts could be further generalised to the situa-
tion where both conditional and decision features may be missing from the data.
This could form the basis for a number of approaches for performing feature
selection on sparse data. For the work described here, the fuzzy connectives and
similarities are the same as those used for the typical supervised approaches,
but it would be interesting to investigate the influence of different choices in this
regard.
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