
Research Article
A Software Tool for Assisting Experimentation in
Dynamic Environments

Pavel Novoa-Hernández,1 Carlos Cruz Corona,2 and David A. Pelta2

1Department of Mathematics, University of Holguı́n, Avenue XX Aniversario S/N, 80100 Holguin, Cuba
2Department of Computer Science and Artificial Intelligence, Center for Research in Information and
Communication Technologies (CITIC-UGR), University of Granada, Periodista Daniel Saucedo Aranda S/N,
18071 Granada, Spain

Correspondence should be addressed to Pavel Novoa-Hernández; pavel@decsai.ugr.es

Received 13 January 2015; Revised 26 March 2015; Accepted 3 April 2015

Academic Editor: T. Warren Liao

Copyright © 2015 Pavel Novoa-Hernández et al.This is an open access article distributed under the Creative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

In real world, many optimization problems are dynamic, which means that their model elements vary with time. These
problems have received increasing attention over time, especially from the viewpoint of metaheuristics methods. In this context,
experimentation is a crucial task because of the stochastic nature of both algorithms and problems. Currently, there are several
technologieswhosemethods, problems, and performancemeasures can be implemented.However, inmost of them, certain features
that make the experimentation process easy are not present. Examples of such features are the statistical analysis of the results and a
graphical user interface (GUI) that allows an easy management of the experimentation process. Bearing in mind these limitations,
in the present work, we present DynOptLab, a software tool for experimental analysis in dynamic environments. DynOptLab has
two main components: (1) an object-oriented framework to facilitate the implementation of new proposals and (2) a graphical
user interface for the experiment management and the statistical analysis of the results. With the aim of verifying the benefits of
DynOptLab’s main features, a typical case study on experimentation in dynamic environments was carried out.

1. Introduction

Several decision-making scenarios can be modeled as opti-
mization problems. Among them, a special class is the known
dynamic optimization problems (DOPs), which are charac-
terized by the presence of certain time-varying elements of
the mathematical model (e.g., objective function and search
space). Because of the complexity involved in these problems,
the application of metaheuristics methods has gained an
increasing interest in the last decade [1–3].

In this context, as in other similar fields, experimentation
plays an important role if one takes into account the stochas-
tic nature of metaheuristics and DOPs. In fact, most of the
existing results reported about experimentation in dynamic
environments rely on metaheuristics solving artificial DOPs
[4–8]. However, experimentation in dynamic environments
is a hard task.Generally, it requires not only a solid knowledge
of computer programming but also an effective control of the
experiment factors.Thus, such work can be tedious and error

prone due to the large number of parameters to control by the
researcher.

Although there are several technologies that help in
the implementation of algorithms, problems, and perfor-
mance measures, generally they require a great effort by the
researcher in regard to simulation of the experiments and
the processing of the results. This latter aspect is frequently
carried out through descriptive and inference statistics. In
the context of dynamic environments, there is no evidence of
technology that fulfills those requirements at the same time.

Bearing in mind these limitations, in this work, we
propose DynOptLab, a free noncommercial tool for exper-
imental analysis in dynamic environments. DynOptLab is
composed of two main elements: (1) an object-oriented
framework for implementing algorithms, problems, and per-
formance measures and (2) a graphical user interface (GUI)
for the management of the computational experiments. In
particular, DynOptLab’s GUI also includes a module to
perform statistical analysis of the results.

Hindawi Publishing Corporation
Applied Computational Intelligence and So Computing
Volume 2015, Article ID 302172, 12 pages
http://dx.doi.org/10.1155/2015/302172



2 Applied Computational Intelligence and Soft Computing

In order to better describe our proposal, the rest of the
paper is organized as follows. Section 2 gives the necessary
background on experimentation in dynamic environments.
Section 3 describes the proposed tool through its main com-
ponents and features. Further, with the aim of verifying the
benefits of our proposal, a typical case study on experimen-
tation in dynamic environments is presented in Section 4.
Finally, Section 5 outlines the conclusion and future works.

2. Experimental Analysis in
Dynamic Environments

A dynamic optimization problem is formally defined as
follows. Being Ω(𝑡) ⊆ R𝑛 the search space, the goal is

min𝑓(𝑡) (𝑥) , (1)

where 𝑥 ∈ Ω and 𝑡 represents the time. In experimentation,
it is usual to assume 𝑡 as a discrete magnitude (𝑡 ∈ N),
being associated to the objective function evaluations. As the
cautious reader can observe, each element of the model is
marked by 𝑡,meaning that in every time 𝑡 a different objective
function or search space could appear. So, the goal of an
algorithm in solving DOPs is to find the best solution as fast
as possible, before the arrival of a new change.

There are different criteria to measure the algorithm
performance in dynamic environments. Most of the existing
measures are based on the absolute error, in terms of the
function values, of the best solution attained by the algorithm
and the current optimum of the problem. For example, [9]
proposed the offline error, which is the average of the absolute
error during the run. Alternatively, [10] employed the same
measure but considered only the previous time instant before
the change. Other studies, such as [11, 12], have proposed
measures based on different aspects of the algorithm (e.g.,
adaptability, distance to the optimum, and stability).

Similar to performance measures, in literature, there are
several artificial DOPs, which are crucial in the study and
comparison of the algorithms in dynamic environments. In
this context, two popular problem generators are the problem
generators Moving Peaks Benchmark (MPB) [9] and the
Generalized Dynamic Benchmark Generator (GDBG) [10,
13]. Those generators allow for obtaining multiple problem
instances according to the selected parameter setting (e.g., by
varying the objective function, the change frequency, and the
change type).

Once a computational experiment ends, the results, in
terms of the performance measures, are used to analyze the
algorithm at hand. Often, to statistically process the results
is recommended. Using descriptive statistics is the common
way to do so [5, 14–16]. However, if the study involves
more complex analysis (e.g., algorithms comparison), then
statistical tests are necessary [17–22]. In that sense, [23]
suggested using nonparametric tests for conducting such
analysis. The main reason for this suggestion is that the
normality assumption of data is frequently violated or simply
hard to verify because the available data is not enough.

Table 1: Comparison among some available technologies for exper-
imentation in dynamic environments.

Technology Visualization of
the results?

Statistical
tests?

EvolvingObjects No No
EASEA Yes No
GUIDE Yes No
CILib No No
GAUL No No
Apache Commons Math No Yes
MATLAB Optimization Toolbox Yes No

The interested reader in the topic of experimentation
in dynamic environments is referred to the works of [1–
3], which contain more details on algorithms, problems,
performance measures, and experimentation in dynamic
environments. In addition, the website Intelligent Strategies in
Uncertain andDynamic Environments (http://www.dynamic-
optimization.org/) contains useful references on this topic.

2.1. RelatedTechnologies. Currently, there aremany technolo-
gies that can be employed by researchers for experimentation
in dynamic environments.Most of them are software libraries
or application frameworks, which have been conceived for
stationary optimization. In what follows we review some of
these available technologies, which can at least allow for

(1) implementing problems, algorithms, and perfor-
mance measures in continuous domain,

(2) executing computational experiments,
(3) displaying the experimental results through a graphi-

cal user interface (GUI),
(4) performing statistical tests for algorithm comparison.

Table 1 shows some technologies that include the first
two requirements above. Regarding the other requirements,
one sees that EvolvingObjects [24] do not fulfill them.
However, this C++ framework is extremely efficient and easy
to extend in the implementation of problems, methods, and
measures [25]. Additionally, there are projects such as EASEA
(http://easea.unistra.fr/easea/index.php/EASEA platform) or
GUIDE (https://gforge.inria.fr/projects/guide) that propose
graphical user interfaces to better interact with EvolvingOb-
jects. Despite this, none of them process statistically the
results.

Similarly, CILib (http://www.cilib.net/) is a software
library that does not fulfill requirements (3) and (4).However,
it is very efficient in experiment execution and currently
includes an implementation of theMoving Peaks Benchmark.
It is important to highlight that CILib is implemented in Java.

On the other hand, the GAUL (http://gaul.sourceforge
.net/index.php) library, implemented over C and C++ lan-
guages, is devoted to the optimization by evolutionary algo-
rithms (e.g., genetic algorithms). GAUL contains several
examples already implemented, supporting the execution
of experiments over different processors through the MPI



Applied Computational Intelligence and Soft Computing 3

technologies. However, as far as we know, no software exists
which includes a GUI for this library.

In the last years, an important project has been developed
by the Apache Software Foundation related to mathematics.
This project, named Commons Math, is a software library
implemented in Java. Commons Math provides multiple
mathematical features, including the optimization by meta-
heuristics and statistical tests. Despite this, it does not have
GUI and some important statistical tests, that is, those
suggested in [23] to properly analyze the experiment results.

Another relevant technology in this context is the Opti-
mization Toolbox from MATLAB (http://www.mathworks
.com/products/matlab/). This toolbox offers a GUI, several
commands, and in-built functions, which makes experi-
mentation with optimization problems easy. MATLAB also
provides statistical tests which are included in the Statistics
Toolbox. Some of the suggested nonparametric tests are
included in this toolbox (e.g., Friedman andWilcoxon tests).
Nevertheless, it is worth noting that both, MATLAB and the
mentioned toolboxes, are nonfree software.

Summarizing this section, one can see that there aremany
alternatives in the selection of technologies for experimen-
tation in dynamic environments. However, most of these
technologies do not fulfill all the requirements stated at
the beginning of this section. Of course, a solution to this
issue could be to properly extend some of those frameworks
(e.g., EvolvingObjects or CILib). Unfortunately, it generally
requires (1) an in-depth knowledge on the framework at hand
in order to extend it and (2) agreeing with the employed
software license. For these reasons, we have developed
DynOptLab from scratch, with aim of adding some extra
features, as we shall explain in the next section.

3. Technical Aspects of DynOptLab

Theproposed tool, DynOptLab (DynamicOptimization Lab-
oratory), was programmed on Java technology, which is an
efficient, high-level, and multiplatform language developed
by Sun Microsystems (Oracle Corporation) (http://www
.oracle.com/us/sun/). As was mentioned before, DynOptLab
consists of (1) a framework for the creation of problems, algo-
rithms, and performance measures and (2) a GUI to manage
execution of the experiments.Thus, the final user (researcher)
only needs to focus on programming the proposals, and if a
good generalization is achieved, then it is possible to set them
through the GUI. Both components are explained in what
follows.

3.1. Framework. An object-oriented framework (OOF) is a
reusable design of a system that describes how this sys-
tem should be decomposed in a set of interacting objects.
Different from software architectures, an OOF is expressed
by a programming language, and it is based on a specific
problem domain [26]. Basically, an OFF is composed of
two main elements: hot spots and frozen spots. The hot
spots represent extensible code through abstract classes or
interfaces. Frozen spots are features that the final user cannot
change. These features define the logic of the problem, in

our case, experimentation in dynamic environments. In that
sense, our aim with the proposed framework is to provide
the researchers with the facilities of adding new problems,
algorithms, and performance measures. The class diagram
in Figure 1 depicts the proposed framework. Note that we
highlighted the hot spots of our framework in bold. In what
follows, we will explain the main details of each of these
entities.

Algorithm Interface. This interface represents an algorithm to
be executed in the given experiment, and it allows for the
inclusion of new algorithms to the framework, that is, by
its implementation. It contains the init() and iterate()
methods, which are designed to set the initial state of the
algorithm and to perform a single iteration, respectively.
In turn, these methods are called by the Experiment
class for controlling the algorithm execution. Besides, it
also includes a ProblemDefinition instance as formal
description of the optimization problem to solve. This
instance is provided by the Experiment class through the
method setProblem(). Finally, methods setSeed() and
generationSize() allow for setting the random seed by
the algorithm during the run and obtaining its number of
function evaluations per iteration. The latter is important
information required by the Experiment class in order
to properly call the performance measures based on the
algorithm iteration.

ProblemDefinition Interface. This interface represents a basic
definition of an optimization problem. Consequently, it
provides the necessary information to the Algorithm inter-
face: a method for evaluating a solution in the objective
function, the search space dimension, the maximum and
minimum coordinates of the search space, and whether it is
a minimization problem or not. In this way it hides sensible
information and methods related to the dynamic problem
(represented by the DynamicOptimizationProblem inter-
face), for instance, the optimum value and location methods
for governing the dynamic of the problem, among others.

DynamicOptimizationProblem Interface. It represents a
dynamic optimization problem and includes not only the
corresponding problem definition but also specific methods
for controlling the environment dynamics. By implementing
it, the researcher can add new DOPs to the framework. It
contains the important methods init() and change(),
which are both called by the Experiment class. The first
one aims to initialize (reset), at the beginning of every run,
the state of the problem, while the second one allows for
changing the problem (e.g., by making the transition from
𝑓
(𝑡) to 𝑓(𝑡+1)).

Measure Interface. This interface represents a specific
performance measure to assess the algorithm in a given
problem. It also allows the researcher to add new measures
to the framework. Concrete classes that implement this
interface can record the algorithm performance on several
runs. This can be done since the Experiment class
notifies them through the notifyMe() method, by taking



4 Applied Computational Intelligence and Soft Computing

<<interface>>
<<interface>>

<<interface>>

<<interface>>

<<interface>>
<<interface>>

Measure

<<enumeration>>
<<enumeration>>

Measure::
ReportType

RUN
SERIES

Measure::MeasurementTime
SPECIFIC
EVERY_EVALUATION
EVERY_GENERATION
BEFORE_CHANGE_EVAL
BEFORE_CHANGE_GEN

IExperiment
IExperimentObserver

Simulator

Runnable

{leaf}

+ addExperimentObserver() : void
+ experimentEnded() : void

+ getExperimentBuilder() : ExperimentBuilder
+ experimentEnded() : void

+ getMaxThreads() : int
+ getObserver() : ISimulatorObserver
+ run() : void
+ SetExperimentBuilder() : void
+ setMaxThreads() : void
+ setObserver() : void
+ start() : void

<<interface>>
ISimulatorObserver

+ experimentEnded() : void
+ SimulationEnded() : void

+ getId() : int
+ getMeasures() : List<Measure>
+ setAlgorithm() : void
+ setId() : void
+ setMeasures() : void
+ setNumberChanges() : void
+ setNumberRuns() : void
+ setProblem() : void
+ setSeed() : void
+ start() : void

∼experimentBuilder

Experiment

+ addExperimentObserver() : void
+ eval() : double
+ getId() : int

+ run() : void
+ setAlgorithm() : void
+ setId() : void
+ setMeasures() : void
+ setNumberChanges() : void
+ setNumberRuns() : void
+ setProblem() : void
+ setSeed() : void
+ start() : void

+ getMeasures() : List<Measure>

∼algorithm

∼observer

+ savePath: String = “EXP”

ExperimentBuilder

+ generalPath: String

+ createExperiments() : ArrayList<IExperiment>

+ getMeasureCreator() : MeasureIntanceCreator
+ getNumRuns() : int

+ getSeed() : int
+ saveExperimentResults() : void
+ saveExperiments() : void
+ saveExperimentSettings() : void
+ setAlgCreator() : void
+ setMeasureCreator() : void
+ setNumChanges() : void
+ setNumRuns() : void
+ setProbCreator() : void
+ setSeed() : void

+ getProbCreator() : EntityInstanceCreator<DynamicOptimizationProblem, ProblemEntity>

+ getAlgCreator() : EntityInstanceCreator<Algorithm, AlgorithmEntity>

Runnable∼experimentObserver

Algorithm
+ generationSize() : int
+ init() : void
+ iterate() : void
+ setProblem() : void
+ setSeed() : void

BestSolutionInformer
DynamicsInformer

DynamicOptimizationProblem

+ change() : void
+ getProblemDefinition() : ProblemDefinition
+ init() : void

ProblemDefinition
+ evaluate() : double
+ getDimension() : int
+ getMaxCoords() : List<Double>
+ getMinCoords() : List<Double>
+ isMinProblem() : boolean

+ endRun() : void
+ getData() : double
+ getMeasurementTime() : MeasurementTime
+ getReportType() : ReportType
+ getRunsData() : ArrayList<Double>
+ getSerieData() : ArrayList<Double>
+ initRun() : void
+ notifyMe() : void
+ setAggregationFunction() : void
+ setMeasurementTime() : void
+ setReportType() : void

Figure 1: Class diagram corresponding to the framework of DynOptLab. Classes in bold are the framework hot spots. Some methods and
attributes are excluded for a better understanding.



Applied Computational Intelligence and Soft Computing 5

into account their measurement time and report type.
These two options can be defined by the enumeration
structures MeasurementTime and ReportType, respec-
tively. Note that there are two possibilities regarding the
measurement time, RUN or SERIES. In the first one, the
measure records the required values during the run and
aggregates according to the function stated through the
setAggregationFunction(), while, in the second case,
the values are collected as time series. On the other hand,
the MeasurementTime enumeration can be one of five
types: SPECIFIC (defined by the user), EVERY
EVALUATION (every single evaluation), EVERY GENERATION
(every single generation), BEFORE CHANGE EVAL (in the last
function evaluation before the change), and BEFORE
CHANGE GEN (before the last algorithm iteration before
the change). In addition, this interface defines several
methods for interacting with the Experiment and
ExperimentBuilder classes. For instance, initRun() and
endRun() are used by the Experiment class to inform the
measure of the starting and ending of a run. As a
consequence, the Measure instance can perform specific
tasks related to the computation of the measure itself (i.e.,
to initialize and/or to aggregate certain variables). On the
other hand, get methods provide useful information for
the ExperimentBuilder for saving the generated data of
the measure in files.

Experiment Class. This class implements the IExperiment
interface, and its major goal is to control the execution of
single instances of problem and algorithm. It receives through
the sets methods the following inputs: an Algorithm
instance, a DynamicOptimizationProblem instance, the
number of runs to perform, an initial random seed,
the number of changes for the environment, and a set
of Measures instances. Note that since the IExperiment
interface extends the Runnable interface, the Experiment
class must implement the method run(). As a result, it
becomes an independent execution unit, which can be
exploited by the Simulator class, with the aim of paralleliz-
ing the execution of multiple experiments.

Simulator Class. The main objective of this class is the
execution of multiple experiment units, that is, pairs of
problem-algorithm. It can be done either sequentially or
in parallel. The latter is an effective strategy to cope with
the computational complexity involved by exploiting the
technology of modern computer processors. Specifically,
the Experiment class is related to this class through the
design pattern Observer [27], which is a typical scheme for
event-based models. Accordingly, when an experiment ends,
it informs the Simulator class. In this case, the Simulator
class removes the experiment from its queue and creates a
new thread for executing a new experiment. It is also worth
pointing out that the Simulator class communicates with
DynOptLab’s GUI in two different forms: one through the
ExperimentBuilder class, which provides the experiment set
to be executed, and a second one through the design pattern
Observer, which is presented by the implementation of the
interface ISimulationObserver at a certain class of the GUI.

ExperimentBuilder Class. This class has two major goals,
to build multiple Experiment instances and to save the
related results in files. The first task is done through
the createExperiments() method, while the second one
is done through the savemethods.Note that the experiment
results are saved together with the corresponding settings.
Finally, through the gets and sets methods, this class
interacts with the Simulator class and DynOptLab’s GUI.

In spite of the above technical aspects, the researcher
only needs to interact with interfaces related to algorithms,
problems, and measures. The framework also allows the
parameter setting of algorithms, problems, and measures,
during the run of the application. This online assignation
of parameters is possible thanks to the library SimpleXML
(http://www.simplexml.sourceforge.net/). More details on
this feature are given in what follows.

3.2. Graphical User Interface. The GUI of DynOptLab
is very simple and intuitive. It was developed on the
library SWT (Standard Widget Toolkit) from the Eclipse
(http://www.eclipse.org/) project. SWT provides a set of
visual components (widgets) for building GUI in Java. The
objective of selecting SWT is to achieve a similar native aspect
in different platforms (e.g., Microsoft Windows and Linux).

DynOptLab’s main window is composed of five tabs, as is
shown in Figure 2. Specifically, these tabs correspond to the
modules Problems, Algorithms, Measures, Experiments, and
Results. The first three tabs are devoted to the management
of problems, algorithms, and measures. As was mentioned
before, this process is carried out thanks to the library
SimpleXML. Specifically, each class representing a problem,
algorithm, or measure is associated with an XML file that
contains the parameters subject to variation. These parame-
ters represent class attributes, which are declared as annotated
attributes, according to the SimpleXML technology. In this
way, the researcher can externally interact with the compiled
code, by setting several values for each attribute (parameter)
to study. Hence, different instances of the same problem or
algorithm can be obtained.

All the XML files have simple and similar structure; that
is, they contain (1) a short name, (2) a detailed description, (3)
the full name of the implement class, and (4) the parameter
settings, represented as lists of values. In the particular case
of performance measures, the XML file also includes the
measurement time, the aggregation function, and the report
type. The next sections explain these and other specific
features of DynOptLab.

3.2.1. Management of Problems, Algorithms, and Measures.
One of the main features of DynOptLab is the management
of factors and response variables of the experiments. In
our case, the experiment factors are the parameters that
define problems and algorithms, while the response variables
are the performance measures [28]. So, the management of
problems, algorithms, and measures can be made through
the corresponding tabs: Problems, Algorithms, andMeasures,
which have a very similar structure. For instance, Figure 2
shows the tab corresponding to problems. Note that the



6 Applied Computational Intelligence and Soft Computing

Figure 2: Problems tab, for the selection and configuration of the problems in DynOptLab.

interface is divided into two main zones. On the left zone,
there is a list of the available classes (e.g., those corresponding
to XML files). This list allows the user to select of a particular
class. Once the class is selected, the right zone shows the
parameters that can be subject to variation of the class. It
is important to remark that the list of classes is filled from
the XML files present in the folders algorithms, problems, and
measures. In turn, such folders are on the same route of the
main application. On the other hand, parameters of the right
zone can be set as a single value or as a list of values separated
by comma (see parameters peakFunction, changeFrequency,
and vlength in Figure 2).

It is worth observing that this feature of setting several
values for each parameter allows for obtaining multiple
instances of problems and algorithms. So, the development of
multifactorial experiments is possible. For instance, if a given
problem has two parameters that are set with 𝑛 and𝑚 values,
respectively, then the number of instances derived from the
combination of these values is 𝑛 ⋅ 𝑚.

3.2.2. Management of the Experiments Execution. Once the
problems, algorithms, and measures are selected, the next
step is to manage the experiments execution. To this end,
the user can use the Experiments tab of DynOptLab’s main
window (Figure 3). This interface offers a summary of the
number of problems, algorithms, and measures selected.
Observe that the field named Problem-algorithm pairs shows
the number of single experiments to be executed.

Additionally, the Experiments tab allows setting (1) the
initial random seeds, (2) the number of environment changes,
(3) the number of runs (executions) for every pair problem-
algorithm, and (4) the number of threads to parallel execute
the pairs. As was explained in Section 3.1, such a setting
is sent to Simulator class, which is responsible for the
experiments execution.

To start the simulation, the user has to click the button
Run experiments. After that, the bottom panel shows the
current state of the simulation, including the final message
Experiments completed!. Each finished experiment (pair of
problem-algorithm) is automatically saved in terms of the
used performance measures.

3.2.3. Visualization and Statistical Analysis of the Results.
The results of the experiments (from the Experiments tab)
are automatically summarized in the Results tab (Figure 4).
Besides, in this tab, it is possible to load results from previous
executions, that is, by selecting the option Load other results.

With the aim of organizing the display and analysis better,
theResults tab is divided into four subtabs:Experiment results,
Comparison, Statistical analysis, and Post-hoc analysis. The
first one, shown in Figure 4, is devoted to displaying the
results of a given problem-algorithm pair. If the user selects
an element on the list located in the left zone, then the
Experiment results tab will show the results of the performed
runs. From Figure 4, it is possible to observe that these
results are shown for a particular measure. Additionally, at
the bottom zone of the tab, there is a descriptive summary of
the results.

Despite the benefits of this descriptive summary, it is
usually interesting to compare several algorithms in certain
problems. To this end, DynOptLab allows for multiple com-
parisons based on the loaded experiments from the left zone.
At the bottom of this left zone, the buttonMake a comparison
is responsible for conducting the comparison. This button is
enabled only in the case of selecting two ormore experiments.
This feature is depicted in Figure 5.

Similar to the Experiment results tab, in the Comparison
tab, the user can select the performance measure and the
descriptive statistics to show the results. These results are



Applied Computational Intelligence and Soft Computing 7

Figure 3: Experiments tab, devoted to the management of the experiments.

Figure 4: Results tab, which visualizes and allows for statistically processing the results of the experiments.

visualized in a table in the central zone of the tab. Further-
more, at the bottom of this tab, the user has two options: to
proceed with a statistical analysis and to export the table data.
In the latter, the data can be saved in three popular formats:
as a Latex table, as a CSV file, and as a simple text file.

Regarding the statistical analysis, DynOptLab provides
two nonparametric, statistical tests using as input the data in
the comparison table. Friedman and Iman-Davenport tests,
which are devoted to detecting general differences among
all algorithms, have been specifically included. The results
of the tests are visualized by the Statistical analysis tab (see
Figure 6).This interface is divided into three zones. In the top

zone, a table shows the average ranks of the algorithms from
the Friedman test. These ranks are also visualized through
a bar chart in the middle zone. Finally, additional results
of the tests are listed in the bottom zone. In that sense, we
have included specific information of the tests (i.e., statistics,
degree of freedom, and 𝑝 value).

Inside the Statistical analysis tab, the user can proceed
with a post hoc analysis, in the case of obtaining 𝑝 values
lower than 0.05 (significance level) fromFriedman and Iman-
Davenport tests. Specifically, the results of the post hoc
tests are handled by the Post-hoc analysis tab (Figure 7).
Following the suggestions of [23], DynOptLab incorporates



8 Applied Computational Intelligence and Soft Computing

Figure 5: Comparison tab, which shows the comparison among several algorithms.

Figure 6: Statistical analysis tab, devoted to the Friedman and Iman-Davenport statistical tests.

nonparametric tests, such as Holm, Bonferroni, Hocheberg,
and Nemenyi. So, two different analyses are possible from
DynOptLab, one for comparing the best algorithmagainst the
rest and a second one for performing pairwise comparisons
among the algorithms. In both cases, the related 𝑝 values
are listed through tables, and it is also possible to show the
adjusted 𝑝 values. These adjusted 𝑝 values are more reliable
than their unadjusted counterparts. Formore details, the user
is referred to [23].

4. A Case Study

With the aim of seeing DynOptLab in action, in this section,
we will use it for handling a typical experimental study in
dynamic environments. This case study has been illustrated
by the figures we used. So, in what follows we only comment
on the specific details of the figures that are related to our
case study. Essentially, we want to analyze the performance
of four algorithms: mQSO [29], mQDE [8], mSQDE [8], and



Applied Computational Intelligence and Soft Computing 9

Figure 7: Post-hoc analysis tab, devoted to performing post hoc tests.

mSQDE-i [8]. As a test bed, we selected the Moving Peaks
Benchmark (MPB) [9], which is a popular test bed in dynamic
environments. Specially, we considered several instances of
MPB’s scenario 2 by varying three factors: the peak function
(peakFunction), the shift severity (vlength), and the change
frequency (changeFrequency). The considered values are the
following:

(i) peakFunction = {𝑐𝑜𝑛𝑒, 𝑠𝑝ℎ𝑒𝑟𝑒};
(ii) vlength = {1.0, 5.0, 10.0};
(iii) changeFrequency = {1000, 5000, 10000}.

As was mentioned before, the presence of several values
in a problem (or algorithm) is interpreted by DynOptLab as
combination of factors. Hence, the above parameter setting
leads to 18 different problem instances, which together with
the 4 algorithmswe considered give 72 experiments (i.e., pairs
of problem-algorithm to be executed).

For assessing the algorithm performance, we rely on the
best error before the changemeasure [5, 8, 10], where the lower
it is, the better the algorithm is. In general, we planned 20 runs
for every pair of problem-algorithm, and we assumed that all
the problem instances change 50 times.

To see how DynOptLab can handle this design of
experiments, consider first the class diagram of Figure 8.
This diagram shows how to extend the DynOptLab frame-
work, in order to include the considered problems, algo-
rithms, and performance measures. For the sake of sim-
plicity, we only show the mQSO algorithm in the diagram.
Regarding the performance measure, the diagram shows
the BestFitnessError class, because this measure is the
core of the best error before the change, as we will show
further on.

DynOptLab’s interfaces related to the configuration of
the experiment are shown in Figures 3, 9, and 10. In this

regard, one sees how the parameter values are set to the
problem and how multiple algorithms (the four we consid-
ered) can be selected at the same time. Furthermore, from
Figure 10, we can see how the class BestFitnessError can
be transformed into the best error before the change, that is,
by selecting BEFORE A CHANGE EVAL as measurement time.
Similarly, Figure 3 illustrates the configuration and execution
experiments. Once the execution is finished, the results are
loaded by DynOptLab as is shown in Figure 4. By selecting
all the experiments from the left zone of the Results tab, it
is possible to perform the algorithms comparison depicted
in Figure 5. In turn, such a comparison can be statistically
analyzed through the nonparametric test from the Statistical
analysis tab. See, for example, that the best rank is obtained
by algorithm mSQDE-i, followed by mQSO. This can be
easily seen from the corresponding bar chart. It is important
to note that the presence of 𝑝 values lower than 0.05 from
Friedman and Iman-Davenport tests indicates that significant
difference exists at group level. In order to detectwhich pair of
algorithms are really different, the user can rely on the infor-
mation given by the Post-hoc analysis tab. In this case, see, for
instance, that the best algorithm (mSQDE-i) is significantly
better than mSQDE and mQDE, while it is not different with
respect to mQSO. These conclusions are observed with the
help of symbol ∗, which indicates that the null hypothesis is
rejected. Of course, this null hypothesis states that the behav-
iors of the algorithms involved are the same. Similar informa-
tion can be obtained from the multiple comparison carried
out in the bottom zone of the Post-hoc analysis tab (Figure 7).

5. Conclusions and Future Works

In this work, we proposed DynOptLab, a free and noncom-
mercial tool for experimental analysis in dynamic environ-
ments. This tool provides not only a framework to easily



10 Applied Computational Intelligence and Soft Computing

+ endRun() : void

<<interface>>

<<interface>>

<<interface>>

<<interface>>
Measure

+ getData() : double
+ getMeasurementTime() : MeasurementTime
+ getReportType() : ReportType
+ getRunsData() : ArrayList<Double>
+ getSerieData() : ArrayList<Double>
+ initRun() : void
+ notifyMe(DynamicOptimizationProblem, Algorithm) : void

+ notifyMe(DynamicOptimizationProblem, Algorithm) : void

+ setAggregationFunction(AggregationFunction) : void
+ setMeasurementTime(MeasurementTime) : void
+ setReportType(ReportType) : void

+ endRun() : void
+ getData() : double
+ getMeasurementTime() : MeasurementTime
+ getReportType() : ReportType
+ getRunsData() : ArrayList<Double>
+ getSerieData() : ArrayList<Double>
+ initRun() : void
+ setAggregationFunction(AggregationFunction) : void
+ setMeasurementTime(MeasurementTime) : void
+ setReportType(ReportType) : void

measures::AbstractMeasure

measures::BestFitness

pso::mQSO

+ antiConvergence: boolean
+ c: double = 1.496
+ conventionalSize: int
+ pSize: int
+ quantumSize: int
+ rCloud: double
+ realCloud: double
+ w: double = 0.729

+ generationSize() : int
+ getBestSolution() : RealSolution
+ getComparator() : FitnessComparator
+ getPopulations() : List<Swarm>
+ getProblemDefinition() : ProblemDefinition
+ getRand() : Random
+ getRExcl() : double
+ init() : void
+ iterate() : void
+ setProblem(ProblemDefinition) : void
+ setSeed(int) : void

ProblemDefinition
+ evaluate(List<Double>) : double
+ getDimension() : int
+ getMaxCoords() : List<Double>
+ getMinCoords() : List<Double>
+ isMinProblem() : boolean

Algorithm

BestSolutionInformer
DynamicsInformer

+ generationSize() : int
+ init() : void
+ iterate() : void
+ setProblem(ProblemDefinition) : void
+ setSeed(int) : void

DynamicOptimizationProblem

+ change() : void
+ getProblemDefinition() : ProblemDefinition
+ init() : void

mpb::MovingPeaks

+ changeFrequency: int = 5000
+ lambda: double = 0.0
+ maxHeight: double = 70.0
+ maxWidth: double = 12.0
+ minHeight: double = 30.0
+ minWidth: double = 1.0
+ numPeaks: int = 10
+ sevHeight: double = 7.0
+ sevWidth: double = 1.0
+ stdHeight: double = 50.0
+ stdWidth: double = 0.0
+ vlength: double = 1.0

+ change() : void
+ eval(List<Double>) : double
+ getBestSolution() : RealSolution
+ getChangeFrequency() : int
+ getProblemDefinition() : ProblemDefinition
+ init() : void
+ toString() : String

Figure 8: Example of how to extend DynOptLab’s framework.

Figure 9: Selection and configuration of the algorithms in DynOptLab.



Applied Computational Intelligence and Soft Computing 11

Figure 10: Selection and configuration of performance measures in
DynOptLab.

include new problems, algorithms, and performance mea-
sures, but also a graphic user interface to efficiently manage
experiments and to statistically analyze the results.

The main features of DynOptLab were observed through
the study of a typical case in the context of experimentation
in dynamic environments. In that sense, DynOptLab can
efficiently handle the considered design of the experiment.

Despite this progress, we believe that this is a first step to
obtain a better tool. Our future work will be devoted to the
inclusion of other problems and algorithms, with the aim of
obtaining a frameworkwith the state-of-the-art exponents on
the subject.

DynOptLab is currently available at the website of the
Models of Decision and Optimization (MODO) Research
Group, specifically at the following URL: http://modo.ugr.es/
DynOptLab/.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

P. Novoa-Hernández has the support of a postdoctoral
scholarship from the Eureka SD project (Erasmus Mundus
Action 2) coordinated by the University of Oldenburg,
Germany. C. Cruz Corona and D. A. Pelta acknowledge
support from Projects TIN2011-27696-C02-01, Spanish Min-
istry of Economy and Competitiveness, P11-TIC-8001 from
the Andalusian Government (including FEDER funds from
the European Union), and GENIL-PYR-2014-9 Project from
University of Granada.

References

[1] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments—a survey,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 3, pp. 303–317, 2005.

[2] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in
dynamic environments: a survey on problems, methods and
measures,” Soft Computing, vol. 15, no. 7, pp. 1427–1448, 2011.

[3] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic
optimization: a survey of the state of the art,” Swarm and
Evolutionary Computation, vol. 6, pp. 1–24, 2012.

[4] D. Pelta, C. Cruz, and J. L. Verdegay, “Simple control rules
in a cooperative system for dynamic optimisation problems,”
International Journal of General Systems, vol. 38, no. 7, pp. 701–
717, 2009.

[5] J. Brest, “Constrained real-parameter optimization with e-
self-adaptive differential evolution,” in Constraint-Handling in
Evolutionary Optimization, E. Mezura-Montes, Ed., vol. 198
of Studies in Computational Intelligence, pp. 73–93, Springer,
Berlin, Germany, 2009.

[6] M. C. du Plessis and A. P. Engelbrecht, “Using competitive
population evaluation in a differential evolution algorithm
for dynamic environments,” European Journal of Operational
Research, vol. 218, no. 1, pp. 7–20, 2012.

[7] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, “Effi-
cient multi-swarm PSO algorithms for dynamic environments,”
Memetic Computing, vol. 3, no. 3, pp. 163–174, 2011.

[8] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, “Self-
adaptive, multipopulation differential evolution in dynamic
environments,” Soft Computing, vol. 17, no. 10, pp. 1861–1881,
2013.

[9] J. Branke, “Memory enhanced evolutionary algorithms for
changing optimization problems,” in Proceedings of the Congress
on Evolutionary Computation, P. J. Angeline, Z.Michalewicz,M.
Schoenauer, X. Yao, and A. Zalzala, Eds., vol. 3, pp. 1875–1882,
IEEE Press, Washington, DC, USA, 1999.

[10] C. Li and S. Yang, “Fast multi-swarm optimization for dynamic
optimization problems,” in Proceedings of the 4th International
Conference on Natural Computation (ICNC ’08), pp. 624–628,
October 2008.

[11] K. Weicker, “Performance measures for dynamic environ-
ments,” in Parallel Problem Solving from Nature—PPSN VII, J.
J. M. Guervós, P. Adamidis, H.-G. Beyer, H.-P. Schwefel, and
J.-L. Fernández-Villacañas, Eds., vol. 2439 of Lecture Notes in
Computer Science, pp. 64–73, Springer, Berlin, Germany, 2002.

[12] E. Alba and B. Sarasola, “Measuring fitness degradation in
dynamic optimization problems,” in Applications of Evolution-
ary Computation, C. di Chio, S. Cagnoni, C. Cotta et al., Eds.,
vol. 6024 of Lecture Notes in Computer Science, pp. 572–581,
Springer, Berlin, Germany, 2010.

[13] C. Li, S. Yang, T. T. Nguyen et al., “Benchmark generator
for cec’2009 competition on dynamic optimization,” Tech.
Rep., Department of Computer Science, University of Leicester,
Leicester, UK, 2008.

[14] C. Li and S. Yang, “A generalized approach to construct
benchmark problems for dynamic optimization,” in Simulated
Evolution and Learning, vol. 5361 of Lecture Notes in Computer
Science, pp. 391–400, Springer, Berlin, Germany, 2008.

[15] C. Li and S. Yang, “A clustering particle swarm optimizer for
dynamic optimization,” in Proceedings of the 11th IEEE Congress
on Evolutionary Computation (CEC ’09), pp. 439–446, IEEE
Press, Piscataway, NJ, USA, May 2009.

[16] C.-K. Au and H.-F. Leung, “An empirical comparison of CMA-
ES in dynamic environments,” in Parallel Problem Solving from
Nature—PPSN XII, C. Coello, V. Cutello, K. Deb, S. Forrest,
G. Nicosia, and M. Pavone, Eds., vol. 7491 of Lecture Notes in
Computer Science, pp. 529–538, Springer, Berlin,Germany, 2012.



12 Applied Computational Intelligence and Soft Computing

[17] S. Yang, “Associative memory scheme for genetic algorithms
in dynamic environments,” in Applications of Evolutionary
Computing, F. Rothlauf, J. Branke, S. Cagnoni et al., Eds.,
vol. 3907 of Lecture Notes in Computer Science, pp. 788–799,
Springer, Berlin, Germany, 2006.

[18] C. M. Fernandes, C. F. Lima, and A. C. Rosa, “UMDAs
for dynamic optimization problems,” in Proceedings of the
10th Annual Genetic and Evolutionary Computation Conference
(GECCO ’08), pp. 399–406, July 2008.

[19] W. Du and B. Li, “Multi-strategy ensemble particle swarm
optimization for dynamic optimization,” Information Sciences,
vol. 178, no. 15, pp. 3096–3109, 2008.

[20] S. Yang, H. Cheng, and F. Wang, “Genetic algorithms with
immigrants and memory schemes for dynamic shortest path
routing problems in mobile ad hoc networks,” IEEE Transac-
tions on Systems, Man and Cybernetics Part C: Applications and
Reviews, vol. 40, no. 1, pp. 52–63, 2010.

[21] P. Novoa-Hernández, D. Pelta, and C. Corona, “Improvement
strategies for multi-swarm PSO in dynamic environments,”
in Proceedings of the 2nd International Workshop on Nature
Inspired Cooperative Strategies for Optimization (NICSO ’10),
November 2010, J. González, D. Pelta, C. Cruz, G. Terrazas,
and N. Krasnogor, Eds., pp. 371–383, Springer, Berlin, Germany,
2010.

[22] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, “Self-
adaptation in dynamic environments—a survey and open
issues,” International Journal of Bio-Inspired Computation. In
press.

[23] S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on
the use of non-parametric tests for analyzing the evolutionary
algorithms’ behaviour: a case study on the CEC’2005 Special
Session on Real Parameter Optimization,” Journal of Heuristics,
vol. 15, no. 6, pp. 617–644, 2009.

[24] M. Keijzer, J. Merelo, G. Romero, andM. Schoenauer, “Evolving
objects: a general purpose evolutionary computation library,”
Artificial Evolution, vol. 23, no. 10, pp. 829–888, 2002.

[25] E.G. Talbi,Metaheuristics: FromDesign to Implementation, John
Wiley & Sons, 2009.

[26] M. Fayad, D. Schmidt, and R. Johnson, “Application frame-
works,” in Building Application Frameworks: Object-Oriented
Foundations of Framework Design, p. 638, John Wiley & Sons,
1st edition, 1999.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Pearson
Education, 1995.

[28] T. Bartz-Beielstein, Experimental Research in Evolutionary
Computation: The New Experimentalism, Springer, Berlin, Ger-
many, 2006.

[29] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 4, pp. 459–472, 2006.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


