
Received 12 November 2013

Accepted 27 August 2014

Overview of the SLAVE learning algorithm: A review of its evolution and
prospects

David Garcı́a, Antonio González, Raúl Pérez

Departamento de Ciencias de la Computación e Inteligencia Artificial, University of Granada,
18071-Granada, Spain

E-mail: {A.Gonzalez,Raul Perez,Dgarcia}@decsai.ugr.es

Abstract

Inductive learning has been—and still is—one of the most important methods that can be applied in
classification problems. Knowledge is usually represented using rules that establish relationships between
the problem variables. SLAVE (Structural Learning Algorithm in a Vague Environment) was one of the
first fuzzy-rule learning algorithms, and since its first implementation in 1994 it has been frequently
used to benchmark new algorithms. Over time, the algorithm has undergone several modifications, and
identifying the different versions developed is not an easy task. In this work we present a study of the
evolution of the SLAVE algorithm from 1996 to date, marking the most important landmarks as definitive
versions. In order to add these final versions to the KEEL platform, Java implementations have been
developed. Finally, we describe the parameters used and the results obtained in the experimental study.

Keywords: Classification problems, Feature selection, Fuzzy rules, Genetic algorithms

1. Introduction

In the field of knowledge acquisition through au-

tomatic learning, one of the main methods used is

the inductive learning, which tries to extract the

most important information of a system from a set

of variables1,2. The extracted knowledge is usually

represented using rules that establish the relation-

ship between the input variables. For some prob-

lems, the information can be handled in a more flex-

ible way through the discretization of the domains

associated to these input variables using linguistic

labels. In these cases, the use of fuzzy rules to rep-

resent knowledge has proven to be a good solution.

SLAVE (Structural Learning Algorithm in a

Vague Environment) was first proposed in 19943 and

later developed in 19964 with the goal of extracting

a set a fuzzy rules to represent a problem. At that

time there were not many algorithms for fuzzy rule

learning available. The only relevant proposals were

those of Wang and Mendel5 and Jang6, published

two years and one year earlier respectively. Both al-

gorithms were focused mainly on control rule learn-

ing (regression problems), where fuzzy modeling

had proven to be useful, so they were not designed

specifically for classification problems. Although

these proposals used different methodologies, they

had in common the Mamdani rule model. The main

drawback of these proposals was the limitation in

the number of variables they could handle. When

working with more than five variables, the response

time becomes unmanageable.

Probably the origin of SLAVE lies to a large ex-

tent on the weaknesses of these proposals and the

International Journal of Computational Intelligence Systems, Vol. 7, No. 6 (December 2014), 1194-1221

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1194

D. Garcı́a, A. González and R. Pérez

lack of a fuzzy rule learning proposal for classifi-

cation problems. When SLAVE was developed, the

main objective was to build a fuzzy rule learning al-

gorithm targeting classification problems, featuring

a performance similar to that provided by the clas-

sical learning algorithms, and able to manage prob-

lems involving many variables, missing data, etc.

Thus, SLAVE was based on an efficient clas-

sical learning technique called sequential covering

strategy7. This strategy reduces the problem of

learning a disjunctive set of rules to a sequence of

simpler problems, each requiring the learning of a

single conjunctive rule. Each rule is searched us-

ing a genetic algorithm. Therefore, SLAVE uses

the Iterative Rule Learning Approach8. Moreover,

SLAVE uses the DNF (Disjunctive Normal Form)

rule model1. This rule model improves the in-

terpretability and simplicity of the knowledge ob-

tained, and allows eliminating irrelevant variables

in a simple way. Finally, in order to extract the

best rule representing the set of examples, an exten-

sion of the classical conditions of completeness and

consistency1 was proposed.

Since its development, the original implementa-

tion of the algorithm underwent frequent changes,

and the resulting algorithms were not considered

new versions. After some years, it was hard to tell

where was the end of one version and the begin-

ning of the next one. So, the first and the main ob-

jective of this study is to describe the evolution of

SLAVE between years 1994 and 2001∗, setting the

main landmarks that define the development of the

algorithm. This study also considers the latest ver-

sion of SLAVE, called NSLV10 (New SLaVe).

As SLAVE is frequently used in several com-

parisons† and referenced in other works (e.g.
12,13,14,15,16,17,18,19), we wanted to make the differ-

ent versions publicly available, a task that required

translating the original code of each recognized ver-

sion and the code of NSLV from C++ to Java, and

also adding the resulting implementations to the

KEEL platform20.

During this historical review process we were

able to identify three major versions of SLAVE,

which will be called SLAVE, SLAVE2, and NSLV
in this paper. The following sections describe

these algorithms and their differences. Section five

contains the experimental results obtained using

the algorithms mentioned above. Section six dis-

cusses some steps we are developing for the SLAVE

methodology. Finally, Section seven presents the

conclusions drawn from the results described in this

study.

2. SLAVE

SLAVE is a fuzzy rule learning algorithm based on

the use of a sequential covering strategy7. A pro-

totypical description of this family of algorithms is

shown below:

SEQUENTIAL-COVERING (Y,X,E,Learned-rules)

• Learned-rules← {}
• Rule← LEARN-ONE-RULE (Y, X, E)

• while PERFORMANCE (Rule,E) > 0, do

• Learned-rules← Learned-rules + Rule

• E← E-examples correctly classified by Rule

• Rule← LEARN-ONE-RULE (Y, X, E)

• Learned-rules← sort Learned-rules according to PER-

FORMANCE (Rule,E) over Examples

• return Learned-rules

where Y is the target attribute, X is the attribute set,

E is the set of examples and Learned-rules is the

output of the procedure containing the final set of

rules. PERFORMANCE is a procedure that mea-

sures the contribution caused by the inclusion of the

last rule in the rule base. It measures the increase

in the degree of completeness that causes the last

learned rule over the set of examples E.

To describe the implementation of this strategy

in SLAVE, we must first define the type of rule and

the process used to implement the LEARN-ONE-

RULE procedure, together with other details that we

mention below.

∗In year 2001, a major modification of the learning algorithm 9 was published.
†For example, paper 11, with 234 citations in Google Scholar, 156 in Scopus, and 124 in Web of Knowledge so far.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1195

Overview of the SLAVE learning algorithm

2.1. The DNF rule model

A very well known extension of a simple rule is the

DNF rule, in which each input variable takes as pos-

sible values a set of linguistic terms whose members

are joined by a disjunctive operator. On the other

hand, the output variable uses a common linguistic

variable with a single associated value. SLAVE em-

ploys a fuzzy extension of the DNF rule model:

IF X1 is A1 and X2 is A2 and . . .and Xn is An

THEN Y is B with weight w

where X1, . . . , Xn are the attributes, A = (A1, . . . , An)

are the values taken for each attribute, each Ai is a

subset of Di, the fuzzy domain of Xi, Y is the conse-

quent variable and B is the value of the consequent

variable. We denote this rule as RB(A)RB(A)RB(A). Finally, w is

a measure of the weight associated to the rule.

This rule model has been used in SLAVE to learn

the structure of a rule, since when a variable takes

all possible fuzzy values of its domain, it is not rel-

evant for the consequent and therefore can be re-

moved from the rule. Moreover, the DNF fuzzy rule

model allows compacting the set of rules and makes

it more interpretable.

Fig. 1. Fuzzy domains for variables X1 and X2.

A specific example of a DNF fuzzy rule is

IF X1 is {Low or Medium or High}
and X2 is {Medium or High}
THEN Y is 2 with weight w

where the fuzzy domains of X1 and X2 are described

in Figure 1, and Y takes its values in a discrete do-

main with class in the set {1, 2, 3}. Since X1 takes

all the possible values of its domain, the previous

rule is equivalent to:

IF X2 is {Medium or High}

THEN Y is 2 with weight w

Moreover, the label {Medium or High} can be inter-

preted as the convex hull of both labels 4,21.

2.2. The LEARN-ONE-RULE function

SLAVE uses a genetic algorithm (GA) to implement

the LEARN-ONE-RULE function. The input of this

GA is a target attribute, representing the consequent

variable, the complete set of antecedent variables

and the set of examples, and the output is a single

rule. In SLAVE, function LEARN-ONE-RULE is

called following a particular order. It sets a specific

value of the consequent class and this procedure it-

erates until all the rules needed for describing this

class are obtained; then another class is selected and

the process is repeated.

One of the main components of the LEARN-

ONE-RULE is the criterion to extract a single rule.

The main idea is to extract the rule that offers the

best representation of the set of examples. The best

rule criterion is related to an extension of the classi-

cal conditions of completeness and consistency. In

order to propose a fuzzy version of these concepts

we first need a way to decide whether an example

is positive or negative for a rule, and a way to count

the number of examples in both cases.

2.2.1. Positive and negative examples

The way to calculate the number of positive and neg-

ative examples for a rule RB(A) in SLAVE changed

over the years. The first approximation for calculat-

ing the number of positive and negative examples3

was based on a possibility measure. Thus, let a and

b be two fuzzy sets in a common referential set U ,

and * a t-norm. The compatibility between a and b
was defined by the function:

σ(a,b) = supx∈U{μa(x)∗μb(x)} (1)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1196

D. Garcı́a, A. González and R. Pérez

where μr(s) is the degree of membership of value s
to the fuzzy set r.

In order to calculate the compatibility between

two sets of fuzzy sets, let us consider Dom1 and

Dom2, two domains consisting of fuzzy sets in a

common referential set U , and C1 ⊆Dom1 and C2 ⊆
Dom2, two sets of fuzzy sets. In this case, the com-

patibility between both sets follows this formula:

σ(C1,C2) = supa∈C1
supb∈C2

σ(a,b). (2)

Considering these expressions it was possible to

define the following measure of possibility:

Poss(Ai|ei) =
σ(ei,Ai)

σ(ei,Di)
(3)

representing the adaptation between the i-th

component of the example and the fuzzy set Ai,

where E = (e1,e2, . . . ,en) is an example, Ai ⊆ Di is

the value of variable Xi, and Di is the domain of this

variable. This concept is critical to the interpretation

of two adjacent fuzzy sets as the convex hull of both.

From these definitions we could obtain two adap-

tation concepts, one for the antecedent part and an-

other for the consequent part:

• Adaptation between the example and the an-

tecedent of RB(A):

U(e,A) = ∗i=1...nPoss(Ai|ei). (4)

• Adaptation between the example and the conse-

quent of RB(A):

U(e,B) =
σ(class(e),B)
σ(class(e),F)

(5)

where e is an example, class(e) represents the con-

sequent of the example, and * is a t-norm.

Using the previous concepts we can define the set

of positive and negative examples for rule RB(A):

E+(RB(A)) = {(e,U(e,A)∗U(e,B))|e ∈ E} (6)

E−(RB(A)) = {(e,U(e,A)∗U(e,B))|e ∈ E}. (7)

where B is the set of all the fuzzy values of Di, ex-

cept B. Finally, the number of positive examples

and the number of negative examples for fuzzy rule

RB(A) are:

n+E (RB(A)) = |E+(RB(A))| (8)

and

n−E (RB(A)) = |E−(RB(A))| (9)

respectively, where |.| is the cardinality of a fuzzy

subset.

2.2.2. Completeness and consistency

Completeness and consistency are two conditions

typically used to extract rules. The completeness

condition states that every example of some class

must satisfy some rule from this class. On the other

hand, the consistency condition states that if an ex-

ample satisfies a description of some class, then it

cannot be a member of a training set of any other

class. Both conditions provide the logical founda-

tion of algorithms for concept learning from exam-

ples.

From the classical definitions of completeness

and consistency1, the following two extensions were

defined in21. Given an example set E, the degree of

completeness of a rule RB(A) is:

Λ(RB(A),E) =
n+E (RB(A))

nEB

(10)

where

nEB = ∑
e∈E

U(e,B) (11)

is the number of examples of class B in the training

set.

In relation to consistency, we propose a soft ex-

tension of this measure by allowing some noise in

the rules. Thus, to define the soft consistency degree

we use the following set:

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1197

Overview of the SLAVE learning algorithm

�k
E = {RB(A)|n−E (RB(A))< kn+E (RB(A))} (12)

with

�0
E = {RB(A)|n−E (RB(A)) = 0} (13)

which represents the set of rules having a number

of negative examples strictly less than a percentage

(that depends on k) of the positive examples, and be-

ing

�= P(D1)×P(D2)× . . .×P(Dn)×F (14)

where P(χ) denotes the set of subsets of χ , Di is the

domain of antecedent variables, and F is the domain

of the consequent variable.

Thus, the degree to which a rule R = RB(A) sat-

isfies the soft consistency condition is:

Γk1k2
(R,E) =

⎧⎪⎪⎨
⎪⎪⎩

1 if R ∈�k1
E

k2n+E (R)−n−E (R)
n+E (R)(k2−k1)

if R ∈ (�k2
E −�k1

E)

0 otherwise

(15)

where k1,k2 ∈ [0,1] and k1 < k2, and n−E (R), n+E (R)
are the number of positive and negative examples for

rule R, respectively.

This definition uses two parameters: k1 is the

lower bound of the noise threshold, and k2 is the

upper bound. The above formula gives degree 1 to

rules in�k1
E , that is, rules having an admissible num-

ber of negative examples (measured as a percentage

in k1 of the number of positive examples). It gives

degree 0 to rules out of �k2
E , that is, rules having an

excessive number of negative examples (measured

as a percentage in k2 of the number of positive ex-

amples). If k1 < k2 then�k1
E ⊆�k2

E , so a linear vari-

ation is assigned to rules between both extremes.

After an experimental study, and from the pub-

lication of 11, the values for k1 and k2 were set to

k1 = 0 and k2 = 1. In this case, the above expression

is equivalent to:

Γ0,1(RB(A),E) =
n+E (RB(A))−n−E (RB(A))

n+E (RB(A))
. (16)

The criterion to select the best rule given a set of

examples in SLAVE is finally

Λ(RB(A),E)×Γ0,1(RB(A),E) =

=
n+E (RB(A))−n−E (RB(A))

nEB

. (17)

2.2.3. λ -covering concept

The adaptation between an example and a rule

should not be a crisp concept when working with

fuzzy information. In this way, an example has a

degree of adaptation to a fuzzy rule. An important

task is to know the minimum degree of adaptation

that should exist between an example and a rule for

considering that the example satisfies the rule. In or-

der to solve this problem, SLAVE uses a parameter

called λ ∈ [0,1]. The meaning of λ is exactly the

minimum adaptation required to consider that the

example is covered by the rule. λ is an input param-

eter of the learning algorithm, and it plays an impor-

tant role in the design of the algorithm. Low val-

ues of λ imply a low requirement for adaptation be-

tween examples and rules, and this fact has two con-

sequences: The first one is that the system searches

a small number of very general rules, and the sec-

ond one is that there is probably too much overlap

among rules competing for classifying, which often

leads to less predictability. On the other hand, val-

ues of λ very close to 1 tend to force a very ”crisp”

rule behavior in relation to examples, which results

in a greater number of more specific rules.

The concept of λ -covering is used for the re-

moval of examples correctly classified in the sequen-

tial covering algorithm and in the termination condi-

tion.

From the work published in 3 and after an exper-

imental study, the value of this parameter was set to

λ = 0.8.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1198

D. Garcı́a, A. González and R. Pérez

2.3. The genetic algorithm used in SLAVE

SLAVE, using the above criterion for selecting the

best rule, employs a genetic algorithm to implement

the LEARN-ONE-RULE function. Next we will de-

scribe the main components that define the behavior

of the genetic algorithm.

2.3.1. Representation of a population element

Related to the genetic representation, SLAVE uses a

binary codification. If the database has n antecedent

variables

X1, . . . ,Xn

each having an associated fuzzy domain Di with mi

components, the antecedent of a rule is any element

of

P(D1)× . . .×P(Dn),

and it is encoded as a vector of m1 + . . .+mn zero-

one components. The value of each component

(m1 + . . .+mr−1 + s) is 1 if the s-th element in do-

main Dr is a value of variable Xr, and 0 otherwise.

In order to better understand the representation,

let us consider the following example:

Fig. 2. Domains of variables X1, X2 and X3.

Example 1 Let us assume that we have three vari-
ables X1, X2, and X3, such that their associated fuzzy
domains are

D1 = {A11,A12,A13}

D2 = {A21,A22,A23,A24,A25}

D3 = {A31,A32}.

These domains are represented in Figure 2. In
this case, a vector 1100010111 represents the fol-
lowing antecedent:

X1 is {A11,A12}, X2 is {A23,A25} and X3 is {A31,A32}.

Since X3 takes all possible values from domain D3,
the antecedent is equivalent to:

X1 is {A11,A12} and X2 is {A23,A25}.

2.3.2. Generation of the initial population

The generation of the initial population is an impor-

tant aspect in the process of getting antecedents with

a high possibility of guiding the search process to-

ward good solutions. The procedure used in SLAVE

consists in randomly taking a subset of examples

among those with the current consequent that have

not been eliminated yet. For each of these examples,

the most specific antecedent with the highest adap-

tation to the example is selected.

The procedure for selecting the initial population

is similar to the one used in AQ algorithms22, as the

generation of the initial antecedent for a class uses

examples of this class in the training set as a starting

point, and the genetic process can be considered as a

generalization process over the chosen antecedents.

Example 2 Let X1, X2, and X3 be variables with the
associated domain shown in Figure 2, and let (r1,
r2, r3) be the randomly selected example from the
training set for a class. The most specific antecedent
that best represents it would be:

X1 is A13 and X2 is A23 and X3 is A31

with the binary representation 0010010010.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1199

Overview of the SLAVE learning algorithm

2.3.3. Evaluation function

The main purpose of the function LEARN-ONE-

RULE is to find the best rule verifying the complete-

ness and consistency conditions to the highest pos-

sible degree, and for this task we use a genetic algo-

rithm. According to that, given a rule R and a set of

training examples E, we define the fitness function

of the genetic algorithm in the following way:

f itness(R,E) = Λ(R,E)×Γ0,1(R,E) (18)

where Γ0,1(R,E) is the degree to which the rule R
satisfies the soft consistency condition and Λ(R,E)
is its degree of completeness, previously defined.

The combination of these two values provides

rules that are simultaneously complete and consis-

tent to the highest degree. Furthermore, we use the

product t-norm, as the combination through this op-

erator is very interactive compared to other propos-

als.

2.3.4. Genetic operators

The following genetic operators are used in SLAVE

to generate new populations:

• Selection operator
This is a selection model that sorts the elements

in the population using its fitness valuation and

assigns a probability selection to each position in

the population.

• Crossover operator over two points
This type of crossover establishes two cutoff

points between two elements in the population

and exchanges the central segment, like the one

shown in Figure 3.

Fig. 3. Crossover operator over two points.

• Mutation operator
In the genetic algorithm used in SLAVE, this op-

erator changes one gene of an element in the pop-

ulation with a certain probability.

• Generalization operator
This operator tries to clarify the rules returned by

the learning algorithm and make them more un-

derstandable, and only acts over those variables

that have an associated ordered domain. We say

that an antecedent variable with an associated or-

dered domain is stable if there is a single contin-

uous sequence of 1-values in the binary represen-

tation of its value. We say that a variable is un-

stable if there are several continuous sequences of

1-values in the binary representation of its value.

Taking all this into account, the generalization op-

erator tries to obtain stable variables by removing

their unstable regions. The behavior is shown be-

low (Figure 5).

Fig. 4. Generalization operator.

2.3.5. Termination condition

The implementation of this condition is necessary to

distinguish between a class that has at least one rule

and a class that does not. The idea is to make a more

exhaustive search when we want to find the first rule

of a class, and relax this search process when we al-

ready have some rules for a class.

The genetic algorithm returns the best rule for the

last population if one of the following conditions is

verified:

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1200

D. Garcı́a, A. González and R. Pérez

• The number of iterations is greater than a fixed

limit.

• The fitness function of the best rule in the popu-

lation does not increase the value during at least

a fixed number of iterations and there are some

other rules for the class we are working with.

• No rules with this value of the consequent have

been obtained before, but the fitness function does

not increase the value during a fixed number of it-

erations and the current best rule λ -covers at least

one example from the training set.

2.4. Other components of SLAVE

2.4.1. The role of PERFORMANCE

The sequential covering previously described uses a

PERFORMANCE(Rule,E) function. In SLAVE this

function is related to the concept of completeness.

Specifically, when a new rule is added to the set of

learned rules, the completeness of the set increases.

When there is a non-zero increase, the new rule is

considered useful and relevant. The rule is added

to the set of learned rules and the algorithm starts a

new iteration.

2.4.2. Removing examples

Another important aspect of the sequential cover-

ing is the removal of examples correctly classified

by the learned rule. In each iteration, SLAVE re-

moves the examples that were λ -covered by the last

learned rule (i.e., the examples considered as suffi-

ciently well classified).

2.4.3. Inference Model

SLAVE uses a typical fuzzy inference mecha-

nism for classification: The winner rule. This

model has a simple description. Let Rules =
{RB1

(A1), . . . ,RBq(Aq)} be the set of rules and e an

example. The inference engine assigns to the ex-

amples the class B j related to the associated rule

RB j(A j) verifying

U(e,A j)� max
0�i�q

{U(e,Ai)}. (19)

When working with rules, it may occur that two

or more rules describing different concepts can be

applied to the same input system. In this case, it is

necessary to establish a way to decide which of the

possible rules should be applied.

The conflict resolution mechanism used in this

version is based on rules confidence. This confi-

dence degree is calculated taking into account the

behavior of each rule over the training set, and it is

related to their prediction capability. Thus, we de-

fine the weight of a rule as a value in [0, 1] that mea-

sures the relation between the examples correctly

represented over the training set and the total set of

examples covered.

Let E be a set of examples and RB(A) a rule. We

can define the weight of rule RB(A) as:

ωE(RB(A)) =
n+E (RB(A))+1

n+E (RB(A))+n−E (RB(A))+1
. (20)

Therefore, the two criteria taken into account to

break the tie between two rules are (in the order of

appearance):

• The rule with higher weight.

• The rule that was learned first.

2.5. Main advantages and disadvantages of
SLAVE

The first advantage of SLAVE is that it works with

DNF rules, which are widespread in the field of clas-

sical machine learning (since they have a greater

ability to represent information than the typical rules

used in the soft computing field), and keeps the in-

terpretability of the linguistic rules.

In the area of fuzzy sets, SLAVE also incorpo-

rates feature selection, an important concept that

was already used in classical learning. In particu-

lar, SLAVE defines an embedded feature selection, a

very useful characteristic for tackling problems with

high dimensionality in the number of attributes.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1201

Overview of the SLAVE learning algorithm

Finally, SLAVE was defined assuming that the

rule learning can be performed independently for

each class. This independence allows us to imple-

ment SLAVE in a parallel way for each class of

the consequence variable. Obviously, this results in

an improved response time of the algorithm when

working with multi-processor computers.

The two main disadvantages of the method are:

• While it addresses the issue of the partial rele-

vance of input attributes, the mechanism to de-

tect the irrelevance of an attribute is relatively

weak for two reasons. The first one is that the

fitness function does not encourage the detection

of irrelevant variables, and the second one is that

the mechanism to eliminate irrelevant variables is

slow and requires increasing the cycles of the ge-

netic algorithm to converge towards a solution.

• The dependence on the λ parameter. This parame-

ter is essential for the algorithm, since it is related

to both the number of rules needed to describe a

concept and the classification ability of the knowl-

edge acquired. Additionally, this parameter is not

easy to estimate a priori, since it depends on the

distribution of the examples in the training set.

3. SLAVE2

SLAVE211,23,24 was developed with the objective of

improving the behavior of SLAVE when working

with high dimensional data and also with the idea of

improving the interpretability of the rules obtained

during the learning process. To achieve this, it in-

troduces three fundamental changes with respect to

SLAVE:

1. A new criterion to penalize examples.

2. A new codification of the individuals in the

population.

3. A new evaluation function.

These changes are aimed to correct the problems

identified in SLAVE. The first one reduces the de-

pendence on the λ -covering parameter. The second

change will allow us to establish a more efficient

mechanism to eliminate irrelevant variables and thus

to be able to work with databases with a large num-

ber of variables. Finally, the third change is moti-

vated by the idea of giving priority to the most sim-

ple and interpretable rules.

3.1. First change: A new criterion to penalize
examples

SLAVE was not able to appropriately consider the

interaction between the rule that was just being

learned and the rules already learned. The cause of

this problem is that the degree of interaction among

rules of different classes is determined by the value

of the parameter λ previously described. Let us

remember that the value of parameter λ is fixed

throughout the process.

The main idea implemented in SLAVE2 to fix

this problem was to provide some flexibility in the

use of the λ -covering parameter. Thus, to consider

that an example is covered by a rule not only re-

quires having an adaptation value for the rule higher

than parameter λ (SLAVE), it also requires that the

adaptation value of a rule with the correct class ex-

ceeds the adaptation value for rules of other classes

(SLAVE2).

So, the key idea is that now an example has a

certain degree of positiveness (negativeness) only if

that degree is enough to correctly (incorrectly) clas-

sify the example. In this sense, it is necessary to

modify the criterion for penalizing examples: On

each stage of the sequential covering strategy, once

the first class is learned, the penalization criterion is

adapted for each particular example.

The formal description of this penalization

model11 uses the following values. Let λ+
Rules(e)

be the best adaptation between example e and the

learned rules that have the same class as the exam-

ple, and λ−Rules(e) the best adaptation between exam-

ple e and the learned rules that have a different class:

λ+
Rules(e) = max{U(e,A)∗U(e,B)|∀RB(A) ∈ Rules

and Class(e) = B} (21)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1202

D. Garcı́a, A. González and R. Pérez

λ−Rules(e) = max{U(e,A)∗U(e,B)|∀RB(A) ∈ Rules

and Class(e) �= B}. (22)

From these expressions, we can write new defi-

nitions for the number of positive and negative ex-

amples of a rule RB(A):

n+E (RB(A)) = |{(e,U(e,A)∗U(e,B))}| such that

λ−Rules(e)> λ+
Rules(e) and

U(e,A)∗U(e,B)> λ+
rules(e) (23)

n−E (RB(A)) = |{(e,U(e,A)∗U(e,B))}| such that

λ+
Rules(e)> λ−rules(e) and

U(e,A)∗U(e,B)> λ+
rules(e) (24)

where Rules is a set of rules previously learned, and

U(e,A), U(e,B) are the adaptation values between

example e and the antecedent A or the consequent B
respectively, which were previously defined.

So, an example e of the training set E is positive

for a new rule RB(A) if e was incorrectly classified

before selecting RB(A) and it can be correctly clas-

sified using this rule. In the same sense, an example

is negative for a rule if the example was correctly

classified and the inclusion of the rule misclassifies

it.

Now, during the learning process of a certain

class B, the examples removed from the training set

E are those e ∈ E that satisfy

Class(e) = B and

λ+
Rules(e)� λ and

λ+
Rules(e)> λ−Rules(e) (25)

That is, those examples that are correctly classified

for class B and their best match for the rules of their

class is equal to, or greater than, λ .

3.2. Second change: A new rule codification for
the genetic algorithm

The genetic algorithm used in SLAVE can obviously

eliminate irrelevant variables. However, the genetic

representation of the information used by SLAVE

makes more difficult to eliminate a variable than to

add it, and the system might take a long time to find

a good solution. Consequently, if we want to im-

prove the detection of irrelevant variables, we first

need to change the genetic representation. So, our

goal consists in obtaining a better representation of

the genetic solutions to make a feature selection for

each possible rule. The idea is to include informa-

tion associated to each antecedent variable in order

to discover whether the variable should be consid-

ered as part of the antecedent of the rule or not.

In this way, the second change of SLAVE was a

new codification of rules23. This new codification

implemented in SLAVE2 tries to improve the capac-

ity for detecting irrelevant attributes. The idea is to

expand the representation with a new level to codify

the variables in the rule. Now each individual con-

sists of two substructures or levels, one codifying the

values and the other one codifying the variables.

Therefore, a genetic algorithm with two levels

maintains two different representations: One for de-

termining the subset of relevant variables associated

to a particular class (the variable level) and another

one (the value level) to find the best variable-value

assignation for that class. On each representation,

a process of genetic co-evolution is applied, where

each level has its own genetic operators, but the

goodness of the solution is calculated by consider-

ing the collaboration between both levels of the in-

dividual.

Thus, the variable level codifies the variables

from the initial set that are considered to be relevant

for inclusion in the rule. This information is modi-

fied during the evolutionary process. The value level

codifies the particular values not only for the vari-

ables considered relevant, but also for those consid-

ered irrelevant, being the latter not considered when

calculating the goodness of the rules.

The separation of these learning tasks (variable

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1203

Overview of the SLAVE learning algorithm

learning and value learning) has proven to be very

efficient for problems involving a large number of

variables. When the genetic algorithm obtains the

best description for a concept, it can select a sub-

set of variables and start the search process using

this information. Moreover, during the evolution-

ary process, the subsets of selected variables can be

changed with the inclusion of new variables or the

removal of some of the variables that were initially

selected.

The genetic algorithm has a single population, a

single selection criterion and a single fitness func-

tion, but it works in a different way for each com-

ponent of the chromosome through different genetic

operators.

The next section briefly describes the main com-

ponents of the genetic algorithm.

3.2.1. Representation of a population element

The representation of an individual in the genetic

population is encoded using two structures (see Fig-

ure 6): One codifies the relevance of the vari-

ables and the other codifies the variable-value as-

signments. With this decomposition, the GA repre-

sentation has a complex chromosome composed of

two structures: A variable chromosome and a value

chromosome. This division allows us to clearly dis-

tinguish between the two different tasks that are si-

multaneously carried out by the genetic algorithm

(search for the appropriate variables and search for

the appropriate value assignment), and we can asso-

ciate and apply the most appropriate set of genetic

operators on each structure.

Fig. 5. Representation of a population individual in

SLAVE2.

Let us suppose there are n possible antecedent

variables X1, . . . ,Xn, each with an associated fuzzy

domain Di containing mi components. In order

to find the best rule, SLAVE2 fixes a class and

then searches for the best antecedent for this class.

Therefore, the genetic code must contain informa-

tion about the relevant variables of the rule and also

information about the values of these variables:

• A variable chromosome.

• A value chromosome.

The variable chromosome codifies the rele-

vant/irrelevant variables for the particular rule. It

uses a real code with n+ 1 components, in which

the i-th element of the j-th chromosome τC(X
j

i) (i =
1, . . . ,n) contains a real value between 0 and 1, rep-

resenting the relevance degree of the i-th variable

with respect to class C, that is, a number indicat-

ing the possibility of being a member of the relevant

variable set for a rule. The n+1 value, named Tj, is

a real value between 0 and 1 representing an activa-

tion threshold associated to the j-th chromosome. A

variable Xi will be considered as a component of the

rule antecedent for a particular class if τC(X
j

i)� Tj.

Otherwise, the variable will be considered irrelevant

for the rule. The next subsection explains how to ob-

tain these values for the first population. The genetic

algorithm will change these initial values in order to

obtain a better estimation of them.

The value chromosome codifies any elements of

P(D1)× . . .×P(Dn) and it is exactly the same one

used in SLAVE.

Example 3 Let us suppose that we have three vari-
ables, X1, X2, and X3; the fuzzy domain associated
with each one is shown in Figure 2. In this case,
m1 = 3, m2 = 5, and m3 = 2. Let us consider that
the relevance degrees for class C of a population in-
dividual are:

τC(X1) = 0.5, τC(X2) = 0.7, τC(X3) = 0.1

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1204

D. Garcı́a, A. González and R. Pérez

Fig. 6. Combination variable-value for an individual.

If the combination variable-value for both chro-
mosomes is defined by Figure 7 and we take the
value 0.6 as the threshold, the antecedent represen-
tation would be:

X2 is {A21,A22,A23}

since

• (110) represents {A11,A12}, but X1 is not included
in the antecedent since it is not activated in the
variable chromosome (0.5 � 0.6).

• (11100) represents {A21,A22,A23} and is included
in the antecedent since X2 is activated in the vari-
able chromosome (0.7 � 0.6).

• (01) represents {A32}, but X3 is not included in the
antecedent since it is not activated in the variable
chromosome (0.1 � 0.6).

Obviously, changing the threshold also changes
the current description of the antecedent.

3.2.2. Generation of the initial population

The initial population is generated following a pro-

cedure similar to that used in SLAVE for the chro-

mosome value. Thus, each value chromosome is

obtained by randomly selecting examples from the

class that must be learned and assigning the most

specific antecedent that better covers it. This an-

tecedent is made up of only one label for each an-

tecedent variable and the selected label is the one

that gives the highest degree of membership for each

component in the example. If we consider the do-

mains and variables given in Figure 2, the generated

chromosome would be

(001)(00100)(10)

and would correspond to the following antecedent:

X1 is A13 and X2 is A23 and X3 is A31.

On the other hand, the variable chromosome is

built up by using an information function τC for each

variable with respect to the fixed class on the train-

ing examples. The value τC(X) is calculated using

the following expression:

τC(X) =
I(X ,Y =C)

H(X ,Y =C)
(26)

where the information measure I for variables X, Y

is given by the following expression:

I(X ,Y) = ∑
x

∑
y

p(x,y) log2

(
p(x,y)

p(x)p(y)

)
(27)

where x and y are specific values of variables X and

Y, C is a fixed class of the consequent variable, and

H(X ,Y) = ∑
x

∑
y

p(x,y) log2 p(x,y) (28)

is the Shannon entropy over two variables, where p
is a probability measure.

The value τC(X) measures the degree of depen-

dence or independence between variable X and the

value C of the consequent variable. It can be inter-

preted as the relevance value of each variable X with

respect to class C 23.

When using linguistic variables, it is necessary to

define the calculation of this value through the defi-

nition of the probability of X when taking a value ai

on its domain {a1,a2, . . . ,as}:

p(X = ai) =
1

m

m

∑
j=1

(
μai(e j)

∑s
t=1 μat (e j)

)
(29)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1205

Overview of the SLAVE learning algorithm

where m is the number of examples from the train-

ing set E, e j is an example from E, and μw is the

membership function of the fuzzy set w.

In this formula it is assumed that all the examples

are crisp. The bi-dimensional probability is simi-

lar to the previous formula, but requires combining

the information on two variables using a t-norm (de-

noted by the symbol *).

p(X = ai,Y = b j) =
1

m

m

∑
j=1

(μai(ek)∗μb j(ek)

∑t,h μat (ek)∗μbh(ek)

)

(30)

where the domain of variable Y is {b1,b2, . . . ,br}
and the t-norm is defined by a∗b = min{a,b}.

Moreover, we need to define an initial value for

the activation threshold. Tj takes a random value in

the following interval:

[mini τC(X
j

i), maxi τC(X
j

i)].

Both τC(X
j

i) and Tj are affected by the genetic

operators during the evolution of the genetic algo-

rithm. Therefore, the initial relevance degree, calcu-

lated using the above mentioned formulas, is modi-

fied during the evolution process until it reaches an

appropriate value.

3.2.3. Genetic operators

As a consequence of the two levels used to cod-

ify each individual in the population, one with real

codification (variable chromosome) and the other

one with binary codification (value chromosome),

it was necessary to use different genetic operators

for each structure. Taking into account the ones

used in SLAVE, the value level inherited them as it

uses the same codification. As for the variable level,

after some experimental tests the genetic operators

that performed better were the uniform mutation, the

crossover, and the selection operators. In summary,

the genetic operators employed for both levels were:

• Variable level:

1. Real uniform mutation.

2. Crossover operator over two points.

• Value level:

1. Binary uniform mutation.

2. Crossover operator over two points.

3. Generalization operator.

It is important to note that we also made some

tests using the BLXα crossover operator at the vari-

able level, but it showed no improvement over the

results obtained using the two-point crossover oper-

ator.

3.3. Third change: A new evaluation function
based on the simplicity criteria

As mentioned above, the fitness function in SLAVE

combines the completeness and consistency mea-

sures using a product operator. This fitness function

has proven to be very useful for learning on different

kinds of problems4,25,26. However, with this heuris-

tic criterion, many different rules can have the same

evaluation function value. The SLAVE genetic algo-

rithm randomly selects one of these rules. SLAVE2

includes a new multicriteria method to discriminate

among these rules, instead of using random selec-

tion. Among the best rules, the algorithm prefers

those which are simpler and more understandable.

This new criterion was included to achieve two

different goals:

• To improve the comprehension of the acquired

knowledge.

• To obtain a set of rules with a higher degree of

accuracy over unseen examples.

The following definitions, proposed in 24, will be

useful to introduce new concepts in order to formal-

ize these ideas.

Definition 1 Let RB(A) be a rule with antecedent
A = (A1, . . . ,An) and Ai ∈ P(Di). A variable Xi, with
i= 1, . . . ,n, is considered to be irrelevant in this rule
if Ai = Di. The number of irrelevant variables of a
rule will be denoted as i(RB(A)).

This definition is based on the treatment of rules

used in SLAVE, where the disjunction of adjacent

values is taken as the convex hull of the fuzzy labels
4,21.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1206

D. Garcı́a, A. González and R. Pérez

This definition allows us to propose the concept

of rule simplicity: A rule is simpler than other if it

has a lower number of relevant variables. Therefore,

the following definition is proposed.

Definition 2 Let RB(A) be a rule. The simplicity de-
gree in variables of this rule is:

svar(RB(A)) =
i(RB(A))

n
(31)

where n is the number of possible antecedent vari-
ables.

The second concept is presented through the fol-

lowing example.

Example 4 Let X2 be a variable with an associ-
ated ordered domain D2 (see Figure 2). Let A =
{A23,A24,A25} and A′ = {A23,A25} be two possible
values for X2. The first value is equivalent to ”X2

is greater than or equal to A23”, using the adap-
tation concept of SLAVE21, whereas the second one
does not have a similar interpretation. If both values
are equally appropriate for describing the value of a
variable, it is preferred the first one since it is easier
to understand. The tie situation is generated by the
lack of examples covered by label A24. The prefer-
ence of the second antecedent is directly related to
the generalization principle applied when there is a
lack of information.

Let us consider the definition of stable value:

Definition 3 Given a specific value Ai ∈ P(Di) for
variable Xi, we say that Ai is stable if and only if Ai

is composed of a unique sequence of adjacent values
of Di.

Definition 4 Let RB(A) be a rule with A =
(A1, . . . ,An) and Ai ∈ P(Di). We define e(RB(A)) as
the number of Xi variables required to make Di an
ordered domain and to make Ai or Ai a stable value.

The use of the complementary in the previous

definition is justified since a unique sequence of ad-

jacent values in the complementary corresponds to

a simple description as NOT A, with A being a sta-

ble value. By using this concept, we can define the

concept of simplicity regarding the values of a rule.

Definition 5 Let RB(A) be a rule. We define the sim-
plicity degree in values of a rule as:

sval(RB(A)) =
1+ e(RB(A))

1+ p
(32)

where p � n is the number of variables with an as-
sociated ordered domain.

With all these elements, we can define a multi-

criteria fitness function (consisting of three compo-

nents) for rule R24:

f itness(R,E) =

= (Λ(R,E)×Γ01(R,E),svar(R),sval(R)). (33)

Finally, the selection of the best rule responds to

a multi-criteria evaluation function guided by a lex-

icographical order; that is, the initial criterion (con-

sistency and completeness) is maintained. In case

of a tie situation, the simplicity criterion in variables

is used; if the tie situation remains, then we appeal

to the simplicity criterion in values. Thus, the lexi-

cographical order uses (max, max, max) as the op-

timization criteria. That is, to maximize on the first

component, then on the second component in case of

tie, and finally to maximize on the last component in

case of a new tie situation.

Example 5 Let us suppose we have three variables
X1, X2, and X3 with domain D1, D2, and D3 respec-
tively (see Figure 2). Let us consider a fixed conse-
quent B and three possible antecedents:

A = ({A11,A13},{A23,A25},{A31})

A′ = ({A11,A12,A13},{A23,A24,A25},{A31})
A′′ = ({A11,A12,A13},{A23,A25},{A31})

with the same value of (consistency × complete-
ness).

In this case, the fitness function uses the previous
concepts to decide the best antecedent:

• Antecedent A corresponds to

X1 is {A11,A13} and X2 is {A23,A25} and

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1207

Overview of the SLAVE learning algorithm

and X3 is {A31}
with values svar(RB(A)) = 0 and sval(RB(A) =
3
4
), since {A11,A13} is equivalent to NOT (A12).

• Antecedent A′ corresponds to

X1 is {A11,A12,A13} and X2 is {A23,A24,A25} and

and X3 is {A31}
with values svar(RB(A)) = 1

3
and sval(RB(A)) =

1.

• Antecedent A′′ corresponds to

X1 is {A11,A12,A13} and X2 is {A23,A25} and

and X3 is {A31}
with values svar(RB(A)) = 1

3
and sval(RB(A)) =

1
2
.

Then, the best choice would be antecedent A′, as
it complies with:

f itness(A)� f itness(A′′)� f itness(A′).

3.4. Inference model of SLAVE2

Apart from the previously described changes,

SLAVE2 includes a modification in the inference

mechanism related to the rule weight. In SLAVE,

the weight of the rule is used as a secondary crite-

rion for solving conflicts in order to select the winner

rule (see Section 2.4.3). However, SLAVE2 uses the

classical inference mechanism of the winner rule,

but in contrast with SLAVE, the weight of each rule

plays a relevant role in this process. A simple de-

scription of this new inference process is shown. Let

us consider:

Rules = {RB1
(A1), . . . ,RBq(Aq)}

the set of rules, Ω = {ω1, . . . ,ωq} the weight associ-

ated to each rule, and e an example. The examples

are assigned the class B j of the rule RB j(A j) verify-

ing

j = argmax0�i�q{U(e,Ai)∗ωi}. (34)

In a similar way to SLAVE, the conflict reso-

lution mechanism used keeps the two criteria men-

tioned above to break possible ties among the rules,

that is,

• The rule with higher weight.

• The rule that was first learned.

3.5. Main advantages and disadvantages of
SLAVE2

SLAVE2 provides two important advantages with

respect to SLAVE. The first one is related to a lower

dependency on the λ parameter. This fact causes an

increment in the collaboration/competition among

rules during the learning process. So, the rules se-

lected previously in the iterative strategy are used to

guide the search mechanism and allow reducing in-

appropriate interactions on the knowledge obtained.

The second advantage is a significant improvement

of the embedded feature selection, allowing the al-

gorithm to obtain simpler and more general rule sets.

On the other hand, reduce the dependency on the

λ parameter presents a computational inconvenient,

since the algorithm does not admit a parallel ver-

sion. Another important problem is that the algo-

rithm maintains a strong bias caused by the need to

learn the rules in a particular order. This order is

associated with the choice, probably arbitrary, of a

class before another.

4. NSLV

A simple way to describe NSLV10 would be to say

that it is exactly the same as SLAVE2, but with the

difference that it learns fuzzy rules without fixing

the class of the consequent variable.

This simple description is valid, but hides im-

portant nuances that must be highlighted. On the

one hand, many SLAVE2 drawbacks are solved by

not fixing the class during the learning process: The

bias due to class selection order disappears; further-

more, it removes the dependence on parameter λ ,

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1208

D. Garcı́a, A. González and R. Pérez

since the consideration that an example is covered

by a rule in its class is determined by the interaction

among rules already learned. This parameter is ad-

justed automatically as new rules are included in the

knowledge base.

Moreover, the inclusion of the rule consequent in

the search process forces a major redefinition of the

algorithm, although the required changes are natural

extensions that keep the usual format of SLAVE and

SLAVE2.

However, a major problem arises, related to the

diversity of the population associated with the ge-

netic algorithm. It is well known that the conver-

gence of GAs can result in a final population where

most of the individuals are very similar. To solve this

problem, the iterative approach followed in SLAVE

and SLAVE 2 resets the initial population to enhance

the rule in the next iteration.

However, alternative solutions are possible, and

NSLV uses an alternative approach. This approach

is based on the use of subpopulations. Thus, NSLV

maintains a subpopulation for rules of each class and

a combination operator adapted to maintain the di-

versity in classes. After completing one iteration

step, the final population obtained by the GA con-

tains the best rule, but also other promising rules

that could be useful and therefore can be used as the

starting point for the next iteration.

The following subsections describe in more de-

tail the implementation of these ideas in the algo-

rithm.

4.1. The genetic algorithm

The genetic algorithm of NSLV maintains the basic

structure of SLAVE2, with some differences in the

representation of individuals, the search mechanism

(now we are looking for complete rules), the genetic

operators, and the termination condition.

4.1.1. Representation of a population element

Unlike SLAVE and SLAVE2, NSLV does not learn

classes in a specific order. That is why the repre-

sentation of an individual must include a new level

which allows considering the class that is being

learned in each moment. This new level is called

consequent level. So, the complete structure of an

individual (and therefore of a rule), would be (See

Figure 8):

Fig. 7. Representation of a population individual in NSLV.

The consequent level codifies the value of the

classification variable of the rule. This level is com-

posed by one gene that is represented through an in-

teger value and is randomly generated in the initial

population.

A real example extracted from database Glass20

that could be helpful to better understand the cod-

ification of each level in the rule representation is

shown in Figure 9. The Glass database, created by

the USA Forensic Science Service, classifies 6 types

of glass which can be found in a crime scene, de-

fined in terms of their oxide content (i.e. Na, Fe, K,

etc). The first attribute measures the refractive in-

dex, while the remaining attributes in the antecedent

measure the weight percentage in corresponding ox-

ide.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1209

Overview of the SLAVE learning algorithm

Fig. 8. Example of a rule codification.

According to this figure, and focusing our atten-

tion on the variable level, we can see that the only

variables that exceed the threshold are ”Sodium”

(Na) and ”Magnesium” (Mg), so they are consid-

ered in the rule with their respective value levels.

For variable ”Na”, the value level has only one ac-

tive position related to label ”Very Low”. Regarding

to variable ”Mg”, the active label is also ”Very Low”.

Thus, this codification corresponds to the rule:

IF Na is {VeryLow} and Mg is {VeryLow} THEN

TypeOfGlass is BuildingWindowsNonFloatProcessed

with weight 0.93.

The weight is also encoded in the rule, but since

it does not change with the evolution model, it is not

included in the representation of a population indi-

vidual in the genetic algorithm.

So, the previous rule would be easily interpreted

as:

”IF Sodium is Very Low and Magnesium is Very Low

THEN

TypeOfGlass is BuildingWindowsNonFloatProcessed

with weight 0.93”

4.1.2. Keeping diversity in the genetic population

In order to obtain ”good individuals”, the genetic

algorithm must maintain the diversity in the differ-

ent classes. That is, it must ensure that there are

always individuals of all classes. To achieve this,

NSLV uses a population composed of subpopula-

tions or niches (one for each class to be learned)

and a modified version of a steady state genetic algo-

rithm whose selection process ensures that no niche

disappears from the population.

The selection process is as follows: Two indi-

viduals in the population are selected; the crossover

operator on each level is applied between them ob-

taining two new individuals. The mutation operator

is used for modifying the new individuals. A stan-

dard genetic algorithm replaces these two new indi-

viduals with the two worst in the population. This

procedure could lead to the elimination of all indi-

viduals in a niche. Thus, it is necessary to modify

the standard criterion. In this way, the genetic algo-

rithm of NSLV takes an alternative approach which

consists in replacing the two new individuals with

the two worst of those subpopulations or niches that

are not at risk of being removed from the population.

It is considered that a subpopulation is not at risk of

being eliminated if it maintains at least m individu-

als in its niche, where m = NPopulation/(Nclasses +1),
NPopulation is the number of individuals in the popu-

lation, and Nclasses is the number of classes evolved

in the problem.

This steady state algorithm provides some im-

portant advantages. Unlike SLAVE and SLAVE2,

which after each iteration had to calculate the ini-

tial relevant degree of each variable for defining the

variable level for the next population, NSLV defines

the variable level of the next initial population as the

variable level of the last population. This modifica-

tion has two advantages:

• A runtime reduction, since the time required for

obtaining the initial relevant degree is expensive

when there is a large number of examples or vari-

ables.

• The last population keeps the best individuals

found, and this setting is a good starting point for

the next search.

4.1.3. Genetic operators

As for genetic operators, NSLV uses different ones

depending on the level involved. As occurred with

SLAVE2, we can distinguish between:

• Variable level:

1. Real uniform mutation.

2. Crossover operator over two points.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1210

D. Garcı́a, A. González and R. Pérez

• Value level:

1. Binary uniform mutation.

2. Crossover operator over two points.

• Consequent level:

1. Integer uniform mutation.

4.1.4. Penalization of examples and termination
condition

NSLV uses a new module for the penalization of ex-

amples. SLAVE and SLAVE2 removed the exam-

ples covered by a rule to avoid considering them in

a later step. In contrast, NSLV marks these exam-

ples so they are considered by rules of other classes.

As the evaluation of a rule is guided by the exam-

ples not covered by any previous one, the marked

examples do not affect any rule positively, but they

influence the evaluation of rules belonging to other

classes.

With respect to the termination condition, the it-

erative process ends under the consideration of the

completeness degree over the whole fuzzy rule set.

Thus, if a new rule is added and the completeness

degree does not improve, then the learning process

ends. The final solution obtained by the algorithm

is the complete set of extracted rules, excluding the

last one.

4.1.5. Rule Filtering module

According to our experimental tests, NSLV can add

irrelevant rules during the learning process. A rule

is considered irrelevant if it is not used at least once

for classifying correctly an example. This situation

can occur when using an iterative rule learning ap-

proach frequently, since it can happen that very spe-

cific rules are subsumed by more general rules ob-

tained in later steps. In order to simplify the final

rule set, NSLV uses a module for removing irrele-

vant rules from the learned rule set.

4.2. Main advantages and further improvements
of NSLV

As already mentioned, NSLV has two major ad-

vantages over its predecessors: The elimination of

bias in the presentation order of the classes during

the learning process, and the elimination of the de-

pendence on the λ parameter of minimum coverage

rules. These two advantages have two practical con-

sequences for the algorithm. First, we get knowl-

edge bases with fewer rules, and secondly, the learn-

ing time is lower. The reason we obtain fewer rules

is that, when the algorithm learns all the rules (after

fixing one class), it must ensure that most of the ex-

amples of this class are well covered by the rules. In

general, this involves adding additional rules in the

knowledge base, in anticipation of possible conflicts

with the rules of the classes that are to be learned.

This does not happen in NSLV, as it does not have

to anticipate future conflicts. The improvement in

learning time is related to the reuse of the final pop-

ulation of an iteration as the initial population of

the next iteration, since this initial population is now

closer to the solutions.

NSLV is an algorithm that demonstrates good

performance compared to other classification algo-

rithms that work with knowledge bases expressed by

fuzzy rules. However, there are many features that

can be improved; they have been studied and still are

in development, such as improving the efficiency of

the algorithm 27 or using a knowledge representation

model more complex than the DNF rule28.

5. Experimental study

In this section, we study the performance of the

re-implemented methods: SLAVE, SLAVE2, and

NSLV‡.

The experimental study has been carried out

on the KEEL platform20 using 37 datasets of this

‡The implementation of these algorithms, along with instructions for incorporating them to the KEEL platform, can be downloaded from

http://isg.ugr.es/descargas/descargar/272/

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1211

Overview of the SLAVE learning algorithm

Table 1. Database used for the experimental study.

Database #E #V #R #I #N #Cl M

Appendicitis 106 7 7 0 0 2 No

Australian 690 14 3 5 6 2 No

Automobile 205 25 15 0 10 6 Yes

Balance 625 4 4 0 0 3 No

Banana 5300 2 2 0 0 2 No

Bands 539 19 13 6 0 2 Yes

Breast 286 9 0 0 9 2 Yes

Bupa 345 6 1 5 0 2 No

Car Evaluation 1728 6 0 0 6 4 No

Chess 3196 36 0 0 36 2 No

Cleveland 303 13 13 0 0 5 Yes

Contraceptive Method 1473 9 0 9 0 3 No

Credit Approval 690 15 3 3 9 2 Yes

Dermatology 366 34 0 34 0 6 Yes

Ecoli 336 7 7 0 0 8 No

Glass 214 9 9 0 0 7 No

Haberman 306 3 0 3 0 2 No

Hayes-Roth 160 4 0 4 0 3 No

Heart 270 13 1 12 0 2 No

Hepatitis 155 19 2 17 0 2 Yes

Housevotes 435 16 0 0 16 2 Yes

Ionosphere 351 33 32 1 0 2 No

Iris 150 4 4 0 0 3 No

Monk-2 432 6 0 6 0 2 No

Movement Libras 360 90 90 0 0 15 No

New Thyroid 215 5 4 1 0 3 No

Pima 768 8 8 0 0 2 No

Ring 7400 20 20 0 0 2 No

Segment 2310 19 19 0 0 7 No

Sonar 208 60 60 0 0 2 No

Thyroid 7200 21 6 15 0 3 No

Vehicle 846 18 0 18 0 4 No

Vowel 990 13 10 3 0 11 No

Wisconsing Diagnostic 569 30 30 0 0 2 No

Wine 178 13 13 0 0 3 No

Wisconsing 699 9 0 9 0 2 Yes

Zoo 101 16 0 0 16 7 No

Table 2. Specific conditions for SLAVE. NGVL means the
number of genes in the value level.

Specific Conditions SLAVE
Size of genetic population 20

λ parameter 0.8

Number of iterations 500

Generalization prob. (Value level) 0.1

Mutation prob. (Value level) 0.5/NGVL

Crossover prob. (Value level) 0.1

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1212

D. Garcı́a, A. González and R. Pérez

Table 3. Specific conditions for SLAVE2. NGVL means the
number of genes in the value level and NAV means the number
of antecedent variables.

Specific Conditions SLAVE2
Size of genetic population 20

λ parameter 0.8

Number of iterations 500

Generalization prob. (Value level) 0.1

Mutation prob. (Value level) 0.5/NGVL

Mutation prob. (Variable level) 1/NAV

Crossover prob. (Value level) 0.1

Crossover prob. (Variable level) 0.1

Table 4. Specific conditions for NSLV. NAV means the number
of antecedent variables.

Specific Conditions NSLV
Size of genetic population 100

Number of iterations 500

Mutation prob. (Value level) 0.01

Mutation prob. (Variable level) 1/NAV

Mutation prob. (Consequent level) 0.01

Crossover prob. (Value level) 1

Crossover prob. (Variable level) 1

platform, with the same partitions in all databases

and the recommended settings. Table 1 describes

these databases, where each row represents the num-

ber of examples (#E), variables (#V), real variables

(#R), integer variables (#I), nominal variables (#N),

classes (#Cl), and missing values (M) respectively.

For all databases we have considered five uni-

formly distributed linguistic labels to define the do-

main of the continuous variables. The results have

been obtained using ten-fold cross validation and the

same partitions for all the algorithms. All the param-

eters used for each algorithm in this experimentation

are detailed in Tables 2, 3 and 4.

We can see that the parameters used for SLAVE

and SLAVE2 (Tables 2 and 3) are very similar. The

difference between them stems in the new codifi-

cation level added to SLAVE2, with an associated

probability value for the crossover and mutation op-

erators. The GA of these two proposals tries in

a special way the probability values associated to

the mutation operator, which are linked to the code

length of each level. So, in the case of a value level,

the factor NGVL represents the Number of Genes

in the Value Level. In the same sense, in a variable

level the NAV factor represents the Number of An-

tecedent Variables involved in the example set.

Comparing these tables with the parameters used

by NSLV (Table 4), we can find some important dif-

ferences. The first one is that the latter table does

not include the λ parameter nor the generalization

genetic operator, as the algorithm does not require

them. The second difference is related to the new

GA used for this proposal. NSLV uses a GA based

on a steady state approach, keeping niches (one for

each class) in the genetic population. These niches

are the reason for increasing the size of the popu-

lation (from 20 to 100 individuals). The use of a

steady state approach requires changing the proba-

bilities associated to the genetic operators.

5.1. SLAVE, SLAVE2, and NSLV

We have focused this analysis on the study of four

parameters: The accuracy on training and test, the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1213

Overview of the SLAVE learning algorithm

Table 5. Results obtained by SLAVE, SLAVE2, and NSLV on
37 databases. The Table shows the accuracy on training and
test.

Training Test

Data SLAVE SLAVE2 NSLV SLAVE SLAVE2 NSLV

appendicitis 91.7 (2.5) 91.7 (2.5) 93.2 (1) 84.2 (1) 84.1 (2.5) 84.1 (2.5)

australian 88.9 (3) 89.4 (2) 90.8 (1) 83.4 (3) 84.2 (2) 85 (1)
automobile 94.4 (3) 98.4 (2) 98.5 (1) 72.9 (3) 77.8 (2) 78.5 (1)

balance 94 (2) 94.4 (1) 87.5 (3) 66.2 (3) 66.8 (2) 76.4 (1)
banana 78 (2) 75.2 (3) 79.2 (1) 78 (2) 75.3 (3) 79.2 (1)
bands 84.9 (2) 85.3 (1) 81.4 (3) 65 (2) 69.1 (1) 64.7 (3)

breast 94.2 (1) 91.8 (2) 86.9 (3) 62.1 (3) 62.4 (2) 68.3 (1)
bupa 65 (3) 65.2 (2) 71.3 (1) 59.3 (3) 61.3 (2) 62.1 (1)
car 70 (3) 72.5 (1) 70.4 (2) 69.8 (3) 71.3 (1) 70 (2)

chess 97.5 (2) 98.5 (1) 94.9 (3) 97.1 (2) 98.2 (1) 94.8 (3)

cleveland 93.8 (1) 90.6 (3) 91.6 (2) 54.7 (1) 53.7 (2) 49.4 (3)

contraceptive 63.6 (1) 58.9 (2) 52.4 (3) 44.6 (1) 42 (2) 38.3 (3)

crx 94.4 (1) 94.2 (2) 90.4 (3) 84.2 (3) 84.4 (2) 84.9 (1)
dermatology 99.9 (1) 99.6 (2) 99.1 (3) 85.7 (3) 93.2 (1) 92.3 (2)

ecoli 88.7 (1) 88.4 (3) 88.6 (2) 82.7 (2) 83 (1) 80.6 (3)

glass 72.6 (2) 71.6 (3) 80.4 (1) 62.8 (2) 61.7 (3) 65.4 (1)
haberman 77.7 (2) 77.4 (3) 78.4 (1) 71.5 (2.5) 71.5 (2.5) 72.1 (1)

hayes 89.6 (2) 89.5 (3) 90.2 (1) 77.5 (3) 78.1 (2) 78.7 (1)
heart 96 (1) 95.6 (2) 91.1 (3) 75.9 (3) 76.6 (2) 79.6 (1)

hepatitis 98.7 (2) 98.8 (1) 96.2 (3) 87 (3) 88.9 (2) 89.4 (1)
housevotes 100 (1) 99.9 (2) 97.2 (3) 97.4 (1) 96.2 (2) 96 (3)

ionosphere 96.9 (2) 98.7 (1) 95.9 (3) 85.4 (3) 90.9 (1) 90.6 (2)

iris 97.2 (3) 97.3 (2) 97.7 (1) 96 (2.5) 96 (2.5) 96.6 (1)
monk-2 100 (1.5) 100 (1.5) 98 (3) 100 (1.5) 100 (1.5) 98.4 (3)

movement libras 92.3 (3) 97 (2) 98.3 (1) 70.2 (3) 78.8 (2) 79.1 (1)
new thyroid 93.4 (2) 93.2 (3) 95.2 (1) 92.1 (2) 91.6 (3) 93 (1)

pima 78.8 (2) 78.3 (3) 80 (1) 74.8 (1) 73.4 (2) 73.3 (3)

ring 92.5 (3) 93.3 (2) 93.8 (1) 92.1 (2) 93.3 (1) 92 (3)

segment 87.7 (3) 88.1 (2) 93 (1) 87 (3) 87.7 (2) 91.3 (1)
sonar 99.3 (1) 98.7 (2.5) 98.7 (2.5) 71.7 (3) 79.8 (1) 77.3 (2)

thyroid 92.9 (3) 93 (1.5) 93 (1.5) 92.8 (3) 93 (1.5) 93 (1.5)
vehicle 71.1 (2) 68.3 (3) 84.6 (1) 63.9 (2) 62.8 (3) 67.5 (1)
vowel 82.4 (2) 77.5 (3) 96.1 (1) 76.9 (2) 71.7 (3) 85.7 (1)
wdbc 96.2 (2.5) 96.2 (2.5) 98.2 (1) 94.5 (3) 94.7 (1.5) 94.7 (1.5)
wine 99 (3) 99.8 (1) 99.5 (2) 96 (1) 95.4 (2) 93.2 (3)

wisconsin 99.7 (1) 99.1 (2) 98.8 (3) 93.1 (3) 93.8 (1) 93.4 (2)

zoo 100 (2) 100 (2) 100 (2) 90.2 (3) 95.8 (2) 96.1 (1)
Rnk 2.01351 2.09459 1.89189 2.36486 1.89189 1.74324

Pos 2 3 1 3 2 1

Mean 89.5405 89.3351 90.0135 79.4243 80.5 81.2162

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1214

D. Garcı́a, A. González and R. Pérez

Table 6. Results obtained by SLAVE, SLAVE2 and NSLV on
37 databases. The Table shows the average number of rules per
database and the time needed to get the model.

Rules Time

Data SLAVE SLAVE2 NSLV SLAVE SLAVE2 NSLV

appendicitis 6.4 (3) 5.9 (2) 5.5 (1) 0 (1.5) 0 (1.5) 0.1 (3)

australian 13.7 (1) 15.1 (3) 14.1 (2) 5.4 (1) 10.2 (3) 6.4 (2)

automobile 27.2 (3) 23.1 (2) 19.3 (1) 2.1 (2) 1.3 (1) 3.8 (3)

balance 71.8 (3) 71.3 (2) 21.6 (1) 0.3 (1) 2.3 (2) 4 (3)

banana 8.5 (3) 7.7 (1.5) 7.7 (1.5) 20.4 (2) 36 (3) 10.5 (1)
bands 25.5 (2) 31 (3) 11.6 (1) 12.6 (2) 21.1 (3) 6 (1)
breast 20.4 (3) 19.4 (2) 11.8 (1) 0.2 (1) 0.4 (2) 1.2 (3)

bupa 9.6 (3) 8.4 (2) 6.8 (1) 0 (1) 1.4 (3) 1.2 (2)

car 3.6 (2) 9.8 (3) 2.2 (1) 4.1 (2) 12.4 (3) 0.7 (1)
chess 12.7 (3) 12 (2) 5.4 (1) 98.9 (3) 62.3 (2) 10.7 (1)

cleveland 57.1 (3) 51.7 (2) 49.8 (1) 3.7 (1) 4.9 (2) 17.4 (3)

contraceptive 77.9 (3) 60.7 (2) 54.9 (1) 80.6 (2) 125.9 (3) 63.9 (1)
crx 20.8 (2) 21.9 (3) 8.6 (1) 7.5 (2) 10.1 (3) 3.8 (1)

dermatology 25.1 (3) 10.8 (2) 10.1 (1) 10.8 (3) 3.8 (2) 2.5 (1)
ecoli 19.7 (3) 17.1 (2) 16.4 (1) 0 (1) 1.1 (2) 2.8 (3)

glass 19.3 (3) 16.5 (2) 16.4 (1) 0 (1.5) 0 (1.5) 2.4 (3)

haberman 8.7 (3) 7.9 (2) 5.6 (1) 0 (1.5) 0 (1.5) 0.2 (3)

hayes 9.4 (2) 9.7 (3) 8.9 (1) 0 (2) 0 (2) 0 (2)
heart 19.5 (2) 20.6 (3) 10.7 (1) 0.4 (1) 1.2 (2) 1.4 (3)

hepatitis 7 (3) 6.5 (2) 3.4 (1) 0 (2) 0 (2) 0 (2)
housevotes 6.4 (3) 6 (2) 2.5 (1) 0 (2) 0 (2) 0 (2)
ionosphere 39.8 (3) 17.8 (2) 9.1 (1) 13.7 (3) 11.1 (2) 3.5 (1)

iris 6 (3) 5.9 (2) 3.3 (1) 0 (2) 0 (2) 0 (2)
monk-2 4 (2.5) 4 (2.5) 3 (1) 0 (2) 0 (2) 0 (2)

movement libras 114.7 (3) 91 (2) 50.3 (1) 334.2 (2) 378.2 (3) 105.6 (1)
new thyroid 9.4 (3) 8 (2) 5.9 (1) 0 (1.5) 0 (1.5) 0.1 (3)

pima 14.1 (3) 11.6 (1) 13.4 (2) 6.8 (1.5) 11.1 (3) 6.8 (1.5)
ring 12 (1) 16.2 (2) 20.4 (3) 470.4 (2) 3081.7 (3) 334.8 (1)

segment 19.2 (2) 19 (1) 20.3 (3) 139.9 (2) 142.7 (3) 59.9 (1)
sonar 58.4 (3) 21.2 (2) 10.7 (1) 30.8 (3) 28.9 (2) 8.8 (1)

thyroid 5.1 (3) 4.8 (2) 3.2 (1) 76 (3) 75.7 (2) 10.2 (1)
vehicle 23 (2) 18.7 (1) 46.6 (3) 64.5 (3) 61.1 (1) 63.5 (2)

vowel 85.1 (2.5) 78.1 (1) 85.1 (2.5) 101.3 (1) 143.3 (2) 148.4 (3)

wdbc 9.3 (2) 11.2 (3) 7.7 (1) 26.7 (3) 20.8 (2) 8.2 (1)
wine 12.3 (2) 13.7 (3) 6.8 (1) 0.3 (1) 0.4 (2) 1 (3)

wisconsin 9.4 (2) 9.8 (3) 9.1 (1) 4.1 (1.5) 5.7 (3) 4.1 (1.5)
zoo 8.5 (3) 8.1 (2) 7.8 (1) 0 (2) 0 (2) 0 (2)
Rnk 2.59459 2.13514 1.27027 1.86486 2.21622 1.91892

Pos 3 2 1 1 3 2

Mean 24.3405 20.8703 16.1081 40.9649 115.003 24.1595

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1215

Overview of the SLAVE learning algorithm

average number of rules, and the time required to

learn them. To perform the comparison we used the

Bonferroni-Dunn test29. This test establishes that

two classifiers have differences if they differ at least

in one critical distance. This distance depends on the

number of databases, the number of learning algo-

rithms to compare and a critical value qα , with error

α . In this case we used α = 0.05, being qα = 1.960.

For 37 databases and three classifiers, the critical

distance (CD) was 0.456.

Fig. 9. Representation of the significant differences be-

tween the algorithms.

Now, using the information of Table 5, Table 6

and Figure 10, we can detect the main differences

among the three algorithms.

First, we have to highlight the main differences

between SLAVE and SLAVE2. SLAVE2 features

significant differences in accuracy and number of

rules compared to SLAVE, but with the penalty of

needing more time to learn. The likely cause of this

improvement in the number of rules and accuracy

along with a degradation of the time required, is the

codification used for a population individual. As

previously mentioned, SLAVE2 introduced a new

codification in order to improve the interpretability

when working with more complex databases.

Second, we can see that the three algorithms do

not present significant differences in training, being

NSLV the one that obtains the best results. SLAVE

and SLAVE2 have a very similar behavior. On the

other hand, according to the results obtained in test,

we have to note that both SLAVE2 and NSLV obtain

significant differences with respect to SLAVE.

Third, the results show that NSLV obtains a

smaller number of rules than SLAVE and SLAVE2,

with significant differences with respect to these

two algorithms. If we consider the time parame-

ter, the best algorithm is SLAVE, followed by NSLV

and SLAVE2, but without significant differences be-

tween them. It is important to remark that the

fastest algorithm with regard to means is NSLV,

which invests half the time required by the best

one (SLAVE). This means that SLAVE wins more

frequently than NSLV, but for the databases where

NSLV wins, it does so by investing considerably less

time than SLAVE.

In summary, as shown in Figure 10, the ability

to remove the bias caused by establishing a prede-

fined order in the way classes are learned allows

NSLV to improve the prediction capability (greater

accuracy), when compared to the two competing al-

gorithms. Moreover, it allows to reduce the final

number of rules in the model obtained, being signifi-

cantly smaller than the rule sets returned by SLAVE

and SLAVE2. Finally, one important point is that,

unlike SLAVE and SLAVE2 (which are generational

algorithms), NSLV is a stationary algorithm, a fact

that explains why the overall time (taking into ac-

count mean values) employed to generate the model

is much smaller.

5.2. SLAVE, SLAVE2, and NSLV vs other
learning algorithms

In this section we will compare the previously de-

scribed versions of SLAVE with other learning algo-

rithms. In order to do so, we use the KEEL platform
20 with recommended settings, and the databases

shown in Table 1. We show below a brief description

of the algorithms used for the comparison (in brack-

ets, the short name used in the KEEL platform):

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1216

D. Garcı́a, A. González and R. Pérez

Table 7. Results obtained by several learning algorithms on 37
databases. The Table shows the accuracy on test parameter.

Logitboost C4.5 Naive Bayes SGERD SLAVE SLAVE2 NSLV

appendicitis 80.2 (7) 83.2 (5) 87 (1) 83.1 (6) 84.2 (2) 84.1 (3.5) 84.1 (3.5)

australian 86 (1) 85.7 (2) 83.3 (7) 85.5 (3) 84.2 (6) 85 (4.5) 85 (4.5)

automobile 43.6 (7) 80.9 (1) 75.6 (4) 47.5 (6) 72.9 (5) 77.8 (3) 78.5 (2)

balance 88.4 (1) 76.7 (2) 71.2 (5) 75.9 (4) 66.2 (7) 66.8 (6) 76.4 (3)

banana 82.1 (2) 89.1 (1) 64.2 (6) 60.5 (7) 78 (4) 75.3 (5) 79.2 (3)

bands 64.1 (6) 66.5 (3) 68.3 (2) 63.7 (7) 65 (4) 69.1 (1) 64.7 (5)

breast 71.2 (3) 76.9 (1) 74.3 (2) 70.4 (4) 62.1 (7) 62.4 (6) 68.3 (5)

bupa 69.5 (1) 69.3 (2) 60.5 (5) 57.3 (7) 59.3 (6) 61.3 (4) 62.1 (3)

car 88.2 (2) 91.5 (1) 85.9 (3) 67.1 (7) 69.9 (5.5) 69.9 (5.5) 70 (4)

chess 52.2 (7) 99.4 (1) 87.7 (5) 61.4 (6) 97.1 (3) 98.2 (2) 94.8 (4)

cleveland 53.1 (4) 54.4 (2) 53 (5) 49.4 (6.5) 54.7 (1) 53.7 (3) 49.4 (6.5)

contraceptive 53.9 (1) 53.8 (2) 46.9 (4) 47.9 (3) 35.7 (7) 37 (6) 38.3 (5)

crx 83.4 (6) 85.2 (2) 82.3 (7) 86.2 (1) 84.2 (5) 84.4 (4) 84.9 (3)

dermatology 31 (7) 94.3 (2) 95.2 (1) 81.2 (5) 63.9 (6) 91 (4) 92.3 (3)

ecoli 78 (5) 79.4 (4) 77.3 (6) 74.6 (7) 82.7 (2) 83 (1) 80.6 (3)

glass 66.9 (2) 67.4 (1) 62.5 (5) 61 (7) 62.8 (4) 61.7 (6) 65.4 (3)

haberman 71.2 (6) 73.1 (2) 71.1 (7) 73.5 (1) 71.5 (4.5) 71.5 (4.5) 72.1 (3)

hayes 75 (5) 80 (1) 60 (6) 44.9 (7) 77.5 (4) 78.1 (3) 78.7 (2)

heart 76.6 (4.5) 78.5 (2) 75.9 (6.5) 77 (3) 75.9 (6.5) 76.6 (4.5) 79.6 (1)
hepatitis 81.9 (6) 83.9 (5) 85.9 (4) 77.3 (7) 87 (3) 88.9 (2) 89.4 (1)

housevotes 58 (7) 97 (2) 91 (5) 87.4 (6) 97.4 (1) 96.2 (3) 96 (4)

ionosphere 64.3 (7) 91.1 (1) 89.4 (4) 80.9 (6) 85.4 (5) 90.9 (2) 90.6 (3)

iris 94.6 (6) 96 (3) 94 (7) 95.3 (5) 96 (3) 96 (3) 96.6 (1)
monks 96.5 (5) 100 (2) 51.2 (7) 80.6 (6) 100 (2) 100 (2) 98.4 (4)

movement libras 5.5 (7) 69.4 (4) 50 (5) 42.5 (6) 70.2 (3) 78.8 (2) 79.1 (1)
new thyroid 95.3 (1.5) 92.5 (4) 95.3 (1.5) 87 (7) 92.1 (5) 91.6 (6) 93 (3)

pima 75.7 (1) 73.9 (3) 72.5 (7) 73 (6) 74.8 (2) 73.4 (4) 73.3 (5)

ring 97 (1) 90.2 (6) 91.8 (5) 71.4 (7) 92.1 (3) 93.3 (2) 92 (4)

segment 85.4 (5.5) 97.4 (1) 85.4 (5.5) 77.1 (7) 87 (4) 87.7 (3) 91.3 (2)

sonar 56.2 (7) 70.5 (4) 68.7 (5) 66.6 (6) 71.7 (3) 79.8 (1) 77.3 (2)

thyroid 92.8 (5.5) 99.5 (1) 97.4 (2) 91.9 (7) 92.8 (5.5) 93 (3.5) 93 (3.5)

vehicle 66.7 (3) 74.1 (1) 61.9 (6) 51.8 (7) 63.9 (4) 62.8 (5) 67.5 (2)

vowel 43.7 (5) 81.5 (2) 26.9 (7) 38.6 (6) 76.9 (3) 71.7 (4) 85.7 (1)
wdbc 94 (5.5) 95.2 (1) 94 (5.5) 90.6 (7) 94.5 (4) 94.7 (2.5) 94.7 (2.5)

wine 97.7 (1) 94.9 (5) 97.1 (2) 92 (7) 96 (3) 95.4 (4) 93.2 (6)

wisconsin 95.5 (2) 94.7 (3) 96.5 (1) 93.4 (5.5) 93.1 (7) 93.8 (4) 93.4 (5.5)

zoo 46.3 (7) 92.8 (4) 94.4 (3) 84.5 (6) 90.2 (5) 95.8 (2) 96.1 (1)
Rnk 4.33784 2.40541 4.59459 5.72973 4.18919 3.55405 3.18919

Pos 5 1 6 7 4 3 2

Mean 71.9378 83.2405 76.3676 71.6216 78.6189 80.2892 81.2162

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1217

Overview of the SLAVE learning algorithm

• Logitboost (GFS-LogitBoost-C): In 33, Otero and

Sánchez proposed Logitboost, a back fitting al-

gorithm which repeatedly invokes a learning al-

gorithm to successively generate a committee of

simple, low-quality classifiers. In this algorithm,

each of the weak hypotheses is a fuzzy rule ex-

tracted from data by means of a genetic algorithm.

Each time, a new simple classifier is added to the

compound one, and the examples in the training

set are re-weighted.

• C4.5 (C4.5-C) 34: Proposed by R.S. Quinlan, it

is an inductive classification algorithm that repre-

sents knowledge using a decision tree.

• Naive Bayes (NB-C): Naive Bayes was proposed

in 35 by Domingos and Pazzani. It is a probabilis-

tic classifier based on a Bayesian model.

• SGERD (SGERD-C) 36: It is a steady-state ge-

netic algorithm to extract a compact set of fuzzy

rules from numerical data.

Fig. 10. Representation of the significant differences be-

tween the algorithms.

According to the Bonferroni-Dunn test, the criti-

cal distance (CD) in this experimental study is 0.984.

Looking at the results shown in Table 7, we can

see that NSLV is the second best algorithm in test,

only surpassed by C4.5. In fact, NSLV obtains sig-

nificant differences in relation to the rest of algo-

rithms except C4.5 and SLAVE2. On the other hand,

SLAVE2 significantly outperforms the Naive Bayes

and SGERD algorithms, while SLAVE outperforms

SGERD. They both follow NSLV in the ranking, im-

proving the results obtained by Logitboost, Naive

Bayes, and SGERD. Figure 11 shows a graphical

interpretation of the results, where these significant

differences can be seen.

Anyway, the versions presented in these paper

have been the basis of later works in which these re-

sults have been substantially improved.

6. Steps under development for the SLAVE
methodology

The SLAVE methodology has been—and still is—

the basis of the work we are developing. NSLV al-

lowed us to develop several new improvements and

contributions to the learning algorithms based on

fuzzy rules.

In a first stage, we worked on feature construc-

tion for genetic learning algorithms based on the

iterative learning rule approach. The main diffi-

culty we had to address was the need to develop

techniques to convert the search over a huge space

of possible new good features into an approachable

problem. We studied different alternatives to incor-

porate a method of feature construction to NSLV,

and we implemented an approach based on a filter

model with very promising results. This approach

follows an idea which is similar to the feature selec-

tion used in SLAVE2. Specifically, the algorithm

takes two different paths for generating new fea-

tures: (a) from a reduced set of possible relations

or (b) from a reduced set of possible arithmetical

functions among input variables. Furthermore, to

determine the relevance of the new features, an in-

formation measure is used to select only the most

relevant new features. From an initial set of new at-

tributes, the evolution is ultimately responsible for

deciding the attributes that will be included in each

fuzzy rule. This process requires the definition of

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1218

D. Garcı́a, A. González and R. Pérez

a new rule model and a reasoning mechanism for

working with this kind of rules30,31.

In a second stage, we are interested in modify-

ing the iterative rule learning approach used in the

SLAVE proposals—particularly in NSLV—to allow

reviewing the knowledge obtained in each iteration.

We selected the iterative rule learning approach be-

cause it provides better efficiency. However, this ap-

proach also presents some problems. One of them is

related to the fact that it always adds a new rule in

each iteration. The sequential covered strategy as-

sumes that the process is closer to the final solution

each time that a new rule is added to the rule set. So,

each iteration of the algorithm implies an increase in

the rule count of the knowledge base. At some point,

it may be better to replace a rule by another, or delete

any of the rules learned instead of adding a new rule.

If these situations occur, and we have experimentally

observed that they do, then the sequential covered

strategy must be modified. The idea is to improve

the sequential covering algorithm to include the abil-

ity to add rules, among other capabilities, such as the

possibility of reviewing the learned knowledge in or-

der to remove or merge rules, or even add new rules

if necessary. We are currently analyzing a proposal

that replaces the main step of the sequential covering

strategy previously described (adding a new rule)

with a new function which is able to decide the best

action (add rule, remove rule, replace rule,...) that

should be taken in each situation. This proposal32

tries to break away from the idea that the problem

solution is the simple aggregation of the partial so-

lutions obtained (a particular rule), and it introduces

a more intelligent decision process where the algo-

rithm itself chooses the solution which offers the

best alternative for the current situation. As a natural

consequence of this ability, if the current situation

changes (e.g. the set of examples is changed), the al-

gorithm should perform incremental learning, which

is precisely the challenge we are currently working

on.

7. Conclusions

In this work we have described the evolution of the

SLAVE learning algorithm considering three stages

that show an inflection point in its development.

SLAVE is the oldest of the three proposals, and

defines the basic principles and the general frame-

work that were used by later extensions. It was one

of the first algorithms that represented knowledge

using fuzzy rules, with a structure similar to that of

the classical learning algorithms.

SLAVE2 is the next step in the evolution and in-

corporates two interesting aspects: A new criterion

for considering the positivity and negativity of the

examples, and model feature selection built in the

genetic algorithms.

NSLV is the most recent version, and the first to

learn complete rules without having to fix the con-

sequent variable. Furthermore, it uses a steady state

genetic algorithm and a niche structure in the popu-

lation to reduce the learning time.

The experimental study shows that NSLV

presents the best overall behavior, taking into ac-

count the prediction capacity parameters studied on

training and test sets, the number of rules and the

learning time. NSLV shows significant differences

in test compared with SLAVE and in number of rules

compared with the two competing algorithms, and

no differences for the remaining parameters. On the

other hand, SLAVE2 outperforms SLAVE in predic-

tion for test sets and in number of rules, and there-

fore its learning time is worse.

Acknowledgments

This work has been partially funded by the Andalu-

sian Regional Government project P09-TIC-04813,

the Spanish MEC project TIN2012-38969 and cofi-

nanced by FEDER funds (European Union).

References

1. Michalski, R.S., “A theory and methodology of induc-
tive reasoning”, in R.S. Michalski, J. Carbonell and T.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1219

Overview of the SLAVE learning algorithm

Mitchel (Eds.), Machine Learning: An artificial intel-
ligence approach, 1, San Mateo, CA: Morgan Kauf-
mann (1983).

2. Quinlan, J.R., “Induction of decision trees”, Machine
learning, 1 (1), 81–106 (1986).

3. González, A., Pérez, R., Verdegay, J. L., “Learning the
structure of a fuzzy rule: A genetic approach”, Fuzzy
Systems and A.I., 3 (1), 57–70 (1994).

4. González, A., Pérez, R., “A learning system of fuzzy
control rules”, in: Herrera, F., Verdegay, J. L. (Eds.),
Genetic Algorithms and Soft Computing, Physica-
Verlag, Wurzburg, 202–225 (1996).

5. Wang, L. and Mendel J.M., ”Generating fuzzy rules
by learning from examples”, IEEE Transactions on
Systems, Man, and Cybernetics, 22 (6) (1992).

6. Jang J.R., ”ANFIS: Adaptive-Network-Based Fuzzy
Inference System”, IEEE Transactions on Systems,
Man, and Cybernetics, 23 (3) (1993).

7. Mitchell, T., “Machine Learning”, Ed. MacGraw-Hill
(1997).

8. González, A., Herrera F., “Multi-stage genetic fuzzy
systems Based on the iterative rule learning ap-
proach”, Mathware and Soft Computing, 4, 233–249
(1997).

9. Castillo, L., Gonza lez, A., Pe rez, R., Including a sim-
plicity criterion in the selection of the best rule in a
genetic fuzzy learning algorithm, Fuzzy Sets and Sys-
tems, 120 (3), 309–321 (2001).

10. González, A., Pérez, R., “Improving the genetic algo-
rithm of SLAVE”, Mathware & Soft Computing, 16,
59–70 (2009).

11. González, A., Pérez, R., “SLAVE: A genetic learning
system based on an iterative approach”, IEEE Trans.
on Fuzzy Systems, 7 (2), 176–191 (1999).

12. Cordón O., Gomide, F., Herrera, F., Hoffmann, F.,
Magdalena, L., “Ten years of genetic fuzzy systems:
Current framework and new trends”, Fuzzy Sets and
Systems, 141 (1), 5–31 (2004).

13. Herrera, F., “Genetic fuzzy systems: Taxonomy, cur-
rent research trends and prospects”, Evolutionary In-
telligence, 1 (1), 27–46 (2008).

14. Ishibuchi, H., Nakashima, T., “Effect of rule weights
in fuzzy rule-based classification systems”, IEEE
Transactions on Fuzzy Systems, 9 (4), 506–515
(2001).

15. Del Jesús, M.J., Hoffmann, F., Navascués, L.J.,
Sánchez, L., “Induction of fuzzy-rule-based classifiers
with evolutionary boosting algorithms”. IEEE Trans-
actions on Fuzzy Systems, 12 (3), 296–308 (2004).

16. Ishibuchi, H., Yamamoto, T., “Comparison of heuris-
tic criteria for fuzzy rule selection in classification
problems”, Fuzzy Optimization and Decision Making,
3 (2), 119–139 (2004).

17. Gabryel, M., Rutkowski, L., “Evolutionary learning of
mamdani-type neuro-fuzzy systems”, Lecture Notes

in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 4029 LNAI, 354–359 (2006).

18. Hühn, J.C., Hüllermeier, E., “FR3: A fuzzy rule
learner for inducing reliable classifiers”, IEEE Trans-
actions on Fuzzy Systems, 17 (1), 138–149 (2009).

19. Stavrakoudis, D.G., Galidaki, G.N., Gitas, I.Z.,
Theocharis, J.B., “Enhancing the interpretability of
Genetic Fuzzy classifiers in land cover classifi-
cation from hyperspectral satellite imagery”, 2010
IEEE World Congress on Computational Intelligence,
WCCI 2010, art. no. 5584718 (2010).

20. Alcalá-Fdez, J., Fernández, A., Luego, J. Derrac, J.
and Garcı́a S., “Keel data-mining software tool: Data
set repository, integration and algorithms and exper-
imental analysis framework”, Multiple-Valued Logic
and Soft Computing, 17 (2-3), 255–287 (2011).

21. González, A., Pérez, R., “Completeness and consis-
tency conditions for learning fuzzy rules ”, Fuzzy Set
and Systems, 96, 37–51 (1998).

22. Michalski, R. S., Mozetic, I., Hong, J., Lavrac,
N., “The multi-purpose incremental learning system
AQ15 and its testing application to three medical do-
mains”, Proceedings of AAA-86 Fifth National Con-
ference on Artificial Intelligence, 1041–1045, Morgan
Kaufmann (1986).

23. González, A., Pérez, R., “Selection of relevant fea-
tures in a fuzzy genetic learning algorithm”, IEEE
Trans. on Systems, Man and Cybernetics-Part. B Cy-
bernetics, 31 (3), 417–425 (2001).

24. Castillo L., González A., Pérez R., “Including a sim-
plicity criterion in the selection of the best rule in a
genetic fuzzy learning algorithm”, Fuzzy Sets and Sys-
tems, 120 (2), 309–321 (2001).

25. González, A., Pérez, R., Valenzuela, A. “Diagno-
sis of myocardial infarction through fuzzy learning
techniques”, Proc. IFSA’95, Sao Paulo, 1, 273–276
(1995).

26. González, A., Pérez, R., “A two level genetic fuzzy
learning algorithm for solving complex problem”,
Proc. IFSA’97, Prague, 192–197 (1997).

27. González, A., “Improving the genetic algorithm of
SLAVE”, Mathware & Soft Computing, 59–70 (2009).

28. González, A., Pérez, R., Caises,Y., and Leyva E.,
“An Efficient Inductive Genetic Learning Algorithm
for Fuzzy Relational Rules”, International Journal of
Computational Intelligence Systems, 212–230 (2012).

29. O. Dunn,“Multiple Comparisons among means”.
Journal of the American Statistical Association, 56
(293), 52-64 (1961).

30. Garcı́a, D. González, A., Pérez, R., “A filter proposal
for including feature construction in a genetic learn-
ing algorithm”, International Journal of Uncertainty,
Fuzziness and Knowledge-based Systems, 20, 31–49
(2012).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1220

D. Garcı́a, A. González and R. Pérez

31. Garcı́a, D. González, A., Pérez, R., “A Feature Con-
struction Approach for Genetic Iterative Rule Learn-
ing Algorithm ”, Journal of Computers and Systems
Sciences, 80 (1), 101–117 (2014).

32. Garcı́a, D. González, A., Pérez, R., “A New Itera-
tive Model to Simplify the Knowledge Extracted on a
Fuzzy Rule-Based Learning Algorithm”, 2013 IEEE
International Conference on Fuzzy Systems, Hyder-
abad July 7-10 (2013).

33. Otero, J., Sánchez, L., “Induction of descriptive fuzzy
classifiers with the Logitboost algorithm”, Soft Com-

puting, 10 (9), 825–835 (2006).
34. Quinlan J.R., “C4.5: Programs for Machine Learn-

ing”, Morgan Kauffman Publishers (1993).
35. Domingos P., Pazzani M., “On the optimality of the

simple Bayesian classifier under zero-one loss”, Ma-
chine Learning, 29, 103–137 (1997).

36. Mansoori, E.G., Zolghadri, M.J., Katebi, S.D.,
“SGERD: A Steady-State Genetic Algorithm for
Extracting Fuzzy Classification Rules From Data”,
Transactions on Fuzzy Systems, 16 (4), 1061–1071
(2008).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1221

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

