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Abstract. A visual consensus feedback mechanism for group decision
making (GDM) problems with complementary linguistic preference rela-
tions is presented. Linguistic preferences are modelled using triangular
fuzzy membership functions, and the concepts of similarity degree (SD)
between two experts as well as the proximity degree (PD) between an
expert and the rest of experts in the group are defined and used to
measure the consensus level (CL). A feedback mechanism is proposed to
identify experts, alternatives and corresponding preference values that
contribute less to consensus. The novelty of this feedback mechanism
is that it provides experts with visual representations of their consen-
sus status to easily ‘see’ their consensus position within the group as
well as to identify the alternatives and preference values that should be
reconsidered for changing in the subsequent consensus round. The feed-
back mechanism also includes individualised recommendations to those
identified experts on changing their identified preference values and vi-
sual graphical simulation of future consensus status if the recommended
values were to be implemented.
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1 Introduction

Subjectivity, imprecision and vagueness in the articulation of opinions pervade
real world decision applications, and individuals usually find difficult to evaluate
their preference using exact numbers. In these cases, individuals might feel more
comfortable using words by means of linguistic labels or terms to articulate their
preferences [1, 2].

Let £ = {lo, ..., ls} be a set of linguistic labels (s > 2), with semantics
underlying a ranking relation that can be precisely captured with a linear order:
lp < 13 < +++ < lg. Assuming that the number of labels is odd and the central
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label (I, /2) stands for the indifference state when comparing two alternatives, the
remaining labels are usually located symmetrically around that central assess-
ment, which guarantees that a kind of complementary or reciprocity property
holds as in the case of numerical preferences [3]. Thus, if the linguistic assess-
ment associated to the pair of alternatives (x;,x;) is r;; = I € L, then the
linguistic assessment corresponding to the pair of alternatives (x;,x;) would be
7j; = ls—p. Therefore, the operator defined as N(l,) = I, with (¢ +h) = s is a
negator operator because N (N(lp)) = N(ly) = 1), [4].

The main two representation formats of linguistic information are [2]: the
cardinal, which is based on the use of fuzzy sets characterised with membership
functions and that are mathematically processed using Zadeh’s extension princi-
ple [1]; and the ordinal, which is based on the use of the symbolic computational
model [2]. Although the latter representation is able to capture some of the lin-
guistic information to model, it is in fact processed using mathematical tools that
are not appropriate for ordinal information but for information provided using
a difference or ratio scale. Evidence of this is that the ordinal linguistic model is
mathematically equivalent to the cardinal approach with fuzzy sets represented
using a representative element of the corresponding membership functions, an
example of which is the centroid [4]. Therefore, the uncertainty nature of the
information is lost in the ordinal linguistic computational model. Furthermore,
the linguistic cardinal approach is richer than the ordinal linguistic approach,
not only because it has the latter one as a particular case but also because it
provides a more flexible tool for GDM with LPRs because different types of
fuzzy sets are possible to be used depending on the type and intensity of the
imprecision and vagueness contained in the linguistic information to model.

In particular, convex normal fuzzy subsets of the real line, also known as
fuzzy numbers, are commonly used to represent linguistic terms [5-7]. By doing
this, each linguistic assessment is represented using a fuzzy number that is char-
acterised by a membership function, with base variable the unit interval [0, 1],
describing its semantic meaning. The membership function maps each value in
[0,1] to a degree of performance representing its compatibility with the linguis-
tic assessment [1]. This paper focuses on the use of triangular fuzzy numbers to
model linguistic information, which leads to the so-called triangular fuzzy com-
plementary preference relations (TFCPRs) [8] because they extend both numeric
preference relations and interval-valued preference relations.

GDM problems generally involve situations of conflict among its experts,
and therefore it is preferable that the set of experts reach consensus before ap-
plying a selection process to derive the decision solution. There are two basic
consensus models in GDM: the static consensus models [9] and the interactive
consensus models [10]. The former does not implement any type of feedback
mechanism to advice experts on how to change their preferences in order to
achieve a higher consensus level while the latter does. Existing interactive con-
sensus models methodology relies on the imposition to decision makers (DM) of
changes in their opinion when consensus is below a threshold value. However,
in practice, it is up to the decision maker to implement or not the recommen-
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dations given to him/her [11]. A more reasonable and suitable policy should
rest on this premise and, consequently, it would allow the DM to revisit his/her
evaluations using appropriate and meaningful consensus information representa-
tion. Therefore, the aim of this paper is to propose a visual consensus feedback
mechanism for GDM to provide experts with visual representations of their con-
sensus status to easily ‘see’ their consensus position within the group as well as
to identify the alternatives and preference values that he/she should reconsider
for changing in the subsequent consensus round. The feedback mechanism also
includes individualised recommendations to those identified experts on changing
their identified preference values as well as visual graphical simulation of future
consensus status if the recommended values were to be implemented. To achieve
this, we first define a TFCPRs similarity degree (SD) to measure, in the unit
interval, how close two individual experts are. The proximity of an expert with
respect to the whole group of experts is also measured, resulting in individual
proximity degree (PD). Consensus level (CL) is defined as a linear combination
of SD with PD, and all will be defined at the three different levels of a preference
relation [12-14]: the pairs of alternatives, the alternatives and the whole set of
alternatives.

The rest of paper is set out as follows: Section 2 focuses on the development
of similarity and proximity degrees for TFCPRs. In Section 3, the level of con-
sensus for TFCPRs is proposed, and a visual information feedback mechanism
to increase the level of consensus is investigated. Finally, conclusions are drawn
in Section 4.

2 Similarity and proximity degrees of triangular fuzzy
complementary preference relations

A fuzzy subset A of R is called a triangular fuzzy number (TFN) when its
membership function pz(x): R — [0,1] is [15]:

0, z<a
r—a
ja(z) = =, a<z<b
A =L hp<zx<c
c—=b’ —
0, T >c

A TFN is shortly represented as A= (a,b,c), with a and ¢ known as the lower
and upper bounds, respectively, while b is known as its modal value.

A preference relation on a set of alternatives X = {x1,29,...,2,} with
elements being TFNs, P = (Pij)nxn and pi; = (a;j,bij, ¢ij), is called a triangu-
lar fuzzy complementary preference relation (TFCPR) if the following property
holds [15]:

aij + Cji :bij-i-bjl‘ :cij—l—aji:L Vi,j=1,2,...n, (1)
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2.1 Similarity degrees

Given two TFNs, El = (a1,b1,¢1) and 12(2 = (ag, ba, c2), their similarity d(ﬁl, ;12)
can be defined as follows [16, 12]:

B |CL1 —a2| + |b1 — b2| + |Cl —Cg|

S(Avhgg) =1 3

In the following, the similarity degree between two experts using TFCPRs is
introduced:

Definition 1 Let P" = (pl) and P' = (p},) be two TFCPRs on a set of alter-
natives X provided by two experts ey and e, respectively. Then, the similarity
degree between experts ey, and e; on the pair of alternatives (x;, x), SD%, 18 :

SDil = SD(ply, ix) = 1 — d(pli, D). (2)
Notice that SDI = 1 implies |al, — al | = |bf, — bl | = |ch — ¢l | = 0 and
therefore p,?k = pék. Therefore, we have the following interpretation: the higher

the value of SD!, the more similar pf,, and p}, are.

Definition 2 The similarity degree between experts e, and e; on the alternative

: 1 SD (0l Pl)
: . SD[LZ — SD h l —_ Zk_l ik ik
z; is: SD; (pi 1) -

As above, when SD! = 1 experts e, and e; provide the same linguistic valuations
for pairs of alternatives involving x;. Thus, the higher the value of SD!  the
more similar the experts’ preferences are on the alternative x;.

Definition 3 The similarity degree between experts ep, and e; on the whole set

n " SD(ph plk
of alternatives X is: SD" = SD(P", P!) = Liz1 2ot 5 (p““’plk).
n

Clearly, SD™ = 1 means that experts e;, and e; provide identical TFCPRs, and
we can interpret this similarity degree as follows: the higher the value SD™, the
closer experts e;, and e; are in their preferences on the set of alternatives.

The similarity degrees of an expert with the rest of the group of experts at
the three different levels of a relation are defined as:

Level 1. Similarity degree on the pair of alternatives (x;,xzy) of expert e to

m
v SDH
the rest of experts in the group is SPA?,C = &thlk
m —
Level 2. Similarity degree on the alternative x; of expert e, to the rest of ex-
. . h_ 2he1 SP Al
perts in the group is SA;} = =S =———2%.

n
Level 3. Similarity degree on the preference relation of expert ey to the rest of
Yiq SAY

n

experts in the group is SD" =
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Finally, each expert in the GDM problem can be associated a relative (nor-
malised) importance degree based on the similarity degrees at level 3 computed
above, which we obviously refer to as the relative similarity degree of an expert:
RSDh = %. These relative importance degrees could be different to par-
ticular imp(l)}éance weights the experts in the group are assigned before they
provide their linguistic information on the set of alternatives. Our methodology
is to implement both importance degrees in the computation of consensus to
reflect the actual position of experts in the group as a collective [17,18]. This
will be developed in the following subsection. Next we provide a simple GDM
example to illustrate the computation of the similarity degrees at the three levels
of a relation and the final relative similarity degrees of the experts in the group.

Ezample 1. Suppose four experts {e1, €2, e, e4} with associated importance de-
grees ID = (0.2,0.1,0.4,0.3)”, are asked to provide their preference on a set of
four alternatives {z1,z2, 3,24}, being their linguistic preferences modelled via
the following TFCPRs:

- (0.3,0.4,0.5) (0.4,0.5,0.6) (0.5,0.6,0.7)
(0.5,0.6,0.7) - (0.4,0.5,0.6) (0.3,0.4,0.5)
(0.4,0.5,0.6) (0.4,0.5,0.6) - (0.5,0.6,0.7)
(0.3,0.4,0.5) (0.5,0.6,0.7) (0.3,0.4,0.5) -

Pl =

- (0.4,0.5,0.6) (0.2,0.3,0.4) (0.3,0.4,0.5)

p2_ | (04,05,06) - (0.5,0.6,0.7) (0.5,0.6,0.7)
~ | (0.6,0.7,0.8) (0.3,0.4,0.5) - (0.1,0.2,0.3)

(0.5,0.6,0.7) (0.3,0.4,0.5) (0.7,0.8,0.9) -

- (0.5,0.6,0.7) (0.4,0.5,0.6) (0.6,0.7,0.8)

ps_ | (0:3,04,05) - (0.5,0.6,0.7) (0.2,0.3,0.4)
~ | (0.4,0.5,0.6) (0.3,0.4,0.5) - (0.4,0.5,0.6)

(0.2,0.3,0.4) (0.6,0.7,0.8) (0.4,0.5,0.6) -

- (0.4,0.5,0.6) (0.5,0.6,0.7) (0.5,0.6,0.7)

p_ | (04,05,06) - (0.6,0.7,0.8) (0.2,0.3,0.4)
~ | (0.3,0.4,0.5) (0.2,0.3,0.4) - (0.3,0.4,0.5)

(0.3,0.4,0.5) (0.6,0.7,0.8) (0.5,0.6,0.7) -

I) The similarity degree on pairs of alternatives for each expert are:

1.000 0.867 0.900 0.900 1.000 0.933 0.767 0.767

1| 0.8671.000 0.867 0.867 | 2 ] 0.9331.000 0.933 0.733
SPAT = 0.900 0.867 1.000 0.767 |’ SPAT = 0.767 0.933 1.000 0.700
0.900 0.867 0.767 1.000 0.767 0.733 0.700 1.000

1.000 0.867 0.900 0.833 1.000 0.933 0.833 0.900

SPA? — 0.867 1.000 0.933 0.867 | . SpAt — 0.933 1.000 0.867 0.867

0.900 0.933 1.000 0.833 0.833 0.867 1.000 0.833
0.833 0.867 0.833 1.000 0.900 0.867 0.833 1.000
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IT) The similarity degrees on alternatives for each expert are:
SA' = (0.917, 0.900, 0.883, 0.883) ; SA? = (0.867, 0.900, 0.850, 0.800)

SA% = (0.900, 0.917, 0.917, 0.883) ; SA* = (0.917, 0.917, 0.883, 0.900)

IITI) The similarity degrees on the set of alternatives for each expert are:
SD' = 0.896 ; SD? =0.854 ; SD3 =0.904 ; SD* = 0.904.
IV) The relative group similarity degrees for each expert are:

RSD' =0.252 ; RSD? =0.240 ; RSD?® = 0.254 ; RSD* = 0.254.

2.2 Proximity degrees

The proximity degrees measure the similarity between individual experts’ opin-
ions and the collective opinion for the group of experts. The aggregation of
individual opinions will be weighted using a weight vector whose elements are
a linear combination of the importance degree of individuals before the deci-
sion making process and the relative similarity degrees computed based on the
information they provided as per the previous subsection. This is elaborated
next:

(1) Experts weighting vector: W = n-ID + (1 —n)- RSD. If n > 0.5,
then the group/moderator values higher the a priori importance degrees of
the experts than their a posteriori relative similarity degrees. Obviously, for
homogeneous GDM problems the value n = 0 applies.

(2) The collective TFCPR, P = (pix)nxn, is computed as follows:

pik=w'@pj, G P ®- SW™ R pip (3)

Ezample 2 (Example 1 Continuation). Assuming a value of = 0.5 we have the
following weighting vector

W =0.5%ID+ 0.5+ RSD = (0.22,0.17,0.33,0.28)

and the collective TFCPR is

- (0.41,0.51,0.61) (0.39,0.49, 0.59) (0.50,0.60,0.70)
(0.39,0.49, 0.59) - (0.51,0.61,0.71) (0.27,0.37,0.47)
(0.41,0.51,0.61) (0.29,0.39, 0.49) - (0.34,0.44, 0.54)
(0.30,0.40,0.50) (0.53,0.63,0.73) (0.46,0.56,0.66) -

P =

Once the collective TFCPR is obtained, we compute the proximity degrees
for each expert at the three different levels of a relation:

Level 1. Prozimity degree on pair of alternatives (x;,xy) of expert ep, to the
group is PPAY = SD(pl , pir).
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Level 2. Proximity degree on alternatives x; of expert e, to the group is PA! =
Z::l PPAilk

n
Level 3. Proximity degree on the preference relation of expert ey to the group
- .

is PDM =

Ezample 3 (Example 1 Continuation). Proximity degrees computation.

I) The proximity degree on pairs of alternatives for each expert are:

1.000 0.889 0.994 0.999 1.000 0.989 0.806 0.801
1| 0.8891.0000.894 0.973 | 2 ] 0.9891.000 0.994 0.773
PPA" = 0.994 0.894 1.000 0.843 |’ PPA™ = 0.806 0.994 1.000 0.757
0.999 0.973 0.843 1.000 0.801 0.773 0.757 1.000
1.000 0.911 0.994 0.899 1.000 0.989 0.894 0.999
0.911 1.000 0.994 0.927 0.989 1.000 0.906 0.927

3 _ . 4 _
PPA™ = 0.994 0.994 1.000 0.943 |’ PPA™ = 0.894 0.906 1.000 0.957
0.899 0.927 0.943 1.000 0.999 0.927 0.957 1.000

IT) The proximity degrees on alternatives for each expert are:
PA' = (0.971, 0.939, 0.933, 0.954 ) ; PA? = (0.899, 0.939, 0.889, 0.833)

PA® = (0.951, 0.958, 0.983, 0.942) ; PA* = (0.971, 0.956, 0.940, 0.971)

IIT) The proximity degrees on the relation for each expert are:

PD' =0.949 ; PD? =0.890 ; PD? =0.958 ; PD* = 0.959.

3 Consensus model with visual information feedback
mechanism for GDM with TFCPRs

Both similarity degree (SD) and proximity degree (PD) convey the concept of
closeness of opinions between experts in a group: the first one between pairs of
individual experts and the second one between an individual expert and the rest
of experts in the group. Thus, both degrees could/should be used in measuring
the level of consensus within a group of experts regarding the set of feasible
alternatives in GDM. The simplest of the combinations is the linear one, and
it is here used to propose the following definitions of the consensus level (CL)
associated to each expert of the group at the three different levels of a relation:

Level 1. Consensus level on the pair of alternatives (CLPA) (x;,xy) of expert
en is CLPAL =+ - SPARL + (1 —v)- PPAR.

Level 2. Consensus level on the alternatives(CLA) z; of expert ey, is CLAM =
- SAT 4+ (1—1v) - PA.
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Level 3. Consensus level on the relation (CL) of expert ey, is CL" =) - SD" +
(1 —1p)- PD".

The parameter ¢ € [0,1] controls the weight of both similarity and proximity
criteria. Unless there are specific reasons to prefer one index to the other one, the
value to assume for the weighting parameter v should be 0.5, as it is assumed
in the example below.

Ezample 4 (Example 1 Continuation). Consensus levels computation. Setting
1 at 0.5, the following consensus levels on the relation are obtained:

CL'=0.922, CL?=0.872, CL?>=0.932, CL*=0.932

The only expert with a consensus level below the threshold value is e5 and
therefore he/she will receive feedback advice on how to change his/her prefer-
ences to achieve a higher consensus level.

In practice, it is rare to achieve full and unanimous agreement of all the
experts regarding all the feasible alternatives. As a consequence, the consensus
threshold value () to achieve is usually set to a value lower than 1. At the same
time, the decision output should be acceptable for at least half of the experts,
which means that the parameter v should be set to a value no lower than 0.5.
If the consensus level is not acceptable, that is, if it is lower than the specified
threshold value, the experts are normally invited to discuss their opinions fur-
ther in an effort to make them closer. To help experts in their discussion, in
the following section a detailed description of a visual feedback methodology is
provided.

3.1 Visual Information Feedback Mechanism

The visual information feedback mechanism consists of three stages: firstly, the
identification of the triangular fuzzy preference values that should be subject to
modification; secondly, the generation of advice on the direction—value of the
required change; and, thirdly, the automatic feedback process simulation to show
what would happen if experts are to accept the recommended preference values.
These three stages are described in detail below:

(1) Identification of the Triangular Fuzzy Preference Values: The set of trian-
gular fuzzy preference values that contribute less to reach an acceptable
consensus level is identified and presented to the experts using visual graphs
as illustrated in Fig. 1. Once consensus levels are computed, at the relation
level, all experts will receive a visual representation of their consensus status
in relation to the threshold value, which can be used to easily identify the
experts furthest form the group. Following with Ex. 4, and using a thresh-
old value v = 0.9, Fig. 1(a) clearly identifies expert es as the only expert
contributing less to group consensus. If necessary, individual visual repre-
sentations of consensus levels of alternatives and pair of alternatives are also
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provided to each expert to help them identify those alternatives and their
associated preference values at the level of pairs of alternatives that con-
tribute less to consensus and, consequently, potential to be reconsidered for
changing in the next round of consensus. It is obvious from Ex. 4 that this is
necessary to be done for expert es, whom would receive visual representation
at these levels as illustrated in Fig. 1(b) and Fig. 1(c), respectively.

~Threshold Value

----- —Threshold Value { " eeen-Threshold Value

---—-Before Feedback ---Before Feedback

(a) Consensus levels on the (b) Consensus levels on the (¢) Consensus levels on the
relation: CL" alternatives for es: CLA? pairs of alternatives for A;
and ea: C’LPA%j

Fig. 1. Visual representation of consensus levels in relation to the consensus threshold
value

Mathematically, these steps are modelled as follows:

Step 1. The set of experts with consensus levels below the threshold value
7 is identified: ECH = {h |CL" < ~}.

Step 2. For experts identified in step 1, those alternatives with a consensus
level below v are identified: ACH = {(h,i) | h € ECH ACLA! < ~}.

Step 3. Finally, the triangular fuzzy preference values for the experts and
alternatives identified in steps 1 and 2 that need to be changed are
identified: PACH = {(h,i,k) | (h,i) € ACH ANCLPAlL <~}.

Ezample 5 (Example 1 Continuation). The sets of 3-tuple identified as con-
tributing less to consensus are:

PACH = {(2,1,3),(2,1,4),(2,2,4), (2,3,1),(2,3,4), (2,4,1), (2,4,2), (2,4,3)}

(2) Generation of Advice: The feedback mechanism also generates personalised
recommendations rules, which will not only tell the experts which prefer-
ence values they should change, but also provide them with the consensus
advice to revisit their evaluation in the light of this extra information. For
all (h,i,k) € PACH, the following rule is feed backed to the corresponding
experts:
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“To increase your consensus level (CL), your preference value pt should be
—=h — » =

closer to Py, = ¢ - Dy, + (1 — ) - pir,” where iy, = (312 D) /(m — 1)

and p;; the collective preference value. The reciprocity property that the

TFCPRs verify implies that when the pair of alternatives (i, k) is identified

for change, the pair (k,7) has to be changed accordingly as well.

Ezample 6 ((Example 1 continuation)). The recommendations for expert

eg are:
— Preference value p?; should be closer to (0.4,0.5,0.6).
— Preference value p3; should be closer to (0.4,0.5,0.6).
— Preference value p?, should be closer to (0.5,0.6,0.7).
— Preference value p3, should be closer to (0.3,0.4,0.5).
— Preference value p3, should be closer to (0.4,0.5,0.6).
— Preference value p3, should be closer to (0.4,0.5,0.6).
— Preference value p3, should be closer to (0.4,0.5,0.6).
— Preference value p35 should be closer to (0.4,0.5,0.6).

(3) Automatic Feedback Process Simulation: A what-if scenario analysis could
be run to generate a visual graphical simulation of future consensus status
if the recommended values were to be implemented, as shown in Fig. 2(a),
Fig. 2(b) and Fig. 2(c). This will provide the decision makers with a clear
picture of their actual position within the group, which they can then use
to decide upon their actual position or subsequent action. If the advice is
implemented, then the consensus level increases as example 7 shows. Not im-
plementing these advices can lead to the consensus level to remain fixed or to
increase at a very low rate, which would make the group consensus threshold
value difficult to achieve. To avoid these situation, a maximum number of
iterations maxlter can be incorporated in the visual information feedback
mechanism following a similar approach of consensus models proposed in
[19].

Ezample 7 (Finishing Example 1). After expert ey revisits his/her evaluation
and implements the recommended TFNs, a new round of the consensus process
is carried out, leading to the following new consensus levels:

CL' =0.956, CL? = 0.976, CL* = 0.961, CL* = 0.957.

Because all experts are over the minimum consensus threshold value v = 0.9,
the consensual collective TFCPR is computed from which the final solution of
consensus will be selected.

4 Conclusion

In this paper, a novel visual information feedback mechanism for GDM problems
with TFCPRs has been presented. To achieve this, the concepts of similarity de-
gree (SD) between two experts as well as the proximity degree (PD) between an
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{_ #———Threshold Valus ¢ eereeeThreshold Value i —— Threshold Value

O— ------ Before Feedback
(O-Before Feedback
.——--—---Afler Feedback . ------ After. Feedback
O ------- -After Feedback

Before Feedback

(a) CLPA?; before and af- (b) CLA? before and af- (c) CL" before and af-
ter ez implements recom- ter es implements recom- ter ez implements recom-
mended values mended values mended values

Fig. 2. Simulation of consensus before and after recommended values are implemented
by expert es

experts and the rest of experts in the group are developed for TFCPRs. These
degrees are used to compute both the aggregation weighting vector as well as
the consensus level of the group of experts. The visual information feedback
mechanism is investigated to identify experts, alternatives and corresponding
preference values that contribute less to consensus. Recommendations to help
experts the direction of the change required to increase their consensus are pro-
duced and an automatic visual feedback process simulation to show the experts
what would happen if they were to follow recommendations by pictures is devel-
oped.

Acknowledgements

The authors would like to acknowledge FEDER financial support from the
Project FUZZYLING-II Project TIN2010-17876; the financial support from the
Andalusian Excellence Projects TIC-05299 and TIC-5991; and the University of
Granada Excellence campus GENIL-BioTIC-UGR Research Visit programme.
This work was also supported by National Natural Science Foundation of China
(NSFC) under the Grant No.71101131 and No.713311002, and Zhejiang Provin-
cial National Science Foundation for Distinguished Young Scholars of China
under the Grant No. LR13G010001.

References

1. Zadeh, L.A. The concept of a linguistic variable and its application to approximate
reasoning-1. Information Sciences, 8, 199 — 249, 1975.

2. Herrera F., Alonso S., Chiclana F., Herrera-Viedma E. Computing with words
in decision making: foundations, trends and prospects. Fuzzy Optimization and
Decision Making 8 (4), 337 — 364, 20009.



12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

F. Chiclana, J. Wu, E. Herrera-Viedma

Chiclana, F, Herrera-Viedma, E., Alonso, S., Herrera, F. Cardinal consistency
of reciprocal preference relations: a characterization of multiplicative transitivity.
IEEE Transactions on Fuzzy Systems, 17 (1), 14 — 23, 2009.

Pérez-Asurmendi, P., Chiclana, F. Linguistic majorities with difference in support.
Applied Soft Computing 18, 196 — 208, 2014.

Zhou, S-M. , Chiclana, F., John, R., Garibaldi, J. M. Type-1 OWA operators
for aggregating uncertain information with uncertain weights induced by type-2
linguistic quantifiers. Fuzzy Sets and Systems 159 (24), 3281 — 3296, 2008.

Zhou, S-M. , Chiclana, F., John, R., Garibaldi, J. M.. Alpha-level aggregation: a
practical approach to type-1 OWA operation for aggregating uncertain information
with applications to breast cancer treatments. IEEE Transactions on Knowledge
and Data Engineering 23 (10), 1455 —1468, 2011.

Chiclana, F., Zhou, S-M. Type-reduction of general type-2 fuzzy sets: the type-1
OWA approach. International Journal of Intelligent Systems 28 (5), 505-522, 2013.
Xia, M. M., Xu, Z. S. Methods for fuzzy complementary preference relations based
on multiplicative consistency. Computers and Industrial Engineering 61 (2011)
930-935.

Xu, Z. S., Cai, X. Q. Group consensus algorithms based on preference relations.
Information Science 181 (2011) 150-162.

Alonso, S., Herrera-Viedma, E., Chiclana, F., Herrera, F. A web based consensus
support system for group decision making problems and incomplete preferences.
Information Sciences 180 (2010) 4477-4495.

Eklund, P., Rusinowska,A., de Swart, H., Dong, Y. C., Xu, Y. F.; Li, H., Feng,
B. A consensus model of political decision-making. Annals of Operations Research
158 (2008) 5-20.

Chiclana, F., Tapia-Garcia,J. M., del Moral, M. J., Herrera-Viedma, E. A statistical
comparative study of different similarity measures of consensus in group decision
making. Information Sciences 221 (2013) 110-123.

Alonso, S., Pérez, 1.J., Cabrerizo, F.J., Herrera-Viedma, E.. A linguistic consensus
model for Web 2.0 communities. Applied Soft Computing 18 (1) (2013) 149-157.

Wu, J., Chiclana, F. A social network analysis trust-consensus based approach to
group decision-making problems with interval-valued fuzzy reciprocal preference
relations. Knowledge-Based Systems 59 (2014) 97-107.

Laarhoven, P. J. M., Pedrycz, W. A fuzzy extension of Saaty’s priority theory.
Fuzzy Sets Systems 11 (1983) 229-241.

Zwick, R., Carlstein, E., Budescu, D. V. Measures of similarity among fuzzy con-
cepts: A comparative analysis. International Journal of Approximate Reasoning 1
(1987) 221-242.

Chiclana, F., Herrera-Viedma, E., Herrera, F., Alonso, S. Some induced ordered
weighted averaging operators and their use for solving group decision-making prob-
lems based on fuzzy preference relations. Furopean Journal of Operational Re-
search 182 (2007) 383-399.

Mata, F., Perez, L.G., Zhou, S.-M., Chiclana, F. Type-1 OWA methodology to
consensus reaching processes in multi-granular linguistic contexts. Knowledge-
Based Systems 58 (2014) 11-22.

Herrera-Viedma, E., Herrera, F., Chiclana, F. A consensus model for multiper-
son decision making with different preference structures. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans 32 (2002) 394—402.



