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Abstract

Fuzzy modelling research has traditionally focused on certain types of fuzzy rules. However, the use of
alternative rule models could improve the ability of fuzzy systems to represent a specific problem. In this
proposal, an extended fuzzy rule model, that can include relations between variables in the antecedent of
rules is presented. Furthermore, a learning algorithm based on the iterative genetic approach which is able
to represent the knowledge using this model is proposed as well. On the other hand, potential relations
among initial variables imply an exponential growth in the feasible rule search space. Consequently, two
filters for detecting relevant potential relations are added to the learning algorithm. These filters allows
to decrease the search space complexity and increase the algorithm efficiency. Finally, we also present an
experimental study to demonstrate the benefits of using fuzzy relational rules.
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1. Introduction

One of the most important areas in the development
of fuzzy-logic-based applications has been, and re-
mains, the design of fuzzy rule-based systems. Dif-
ferent types of fuzzy rules have been used for the dif-
ferent applications found in the literature, with the
most common being the linguistic 1 and TSK rules
2. The former is a traditional rule model whose an-
tecedent and consequent are composed of linguistic
variables, whereas the latter is based on rules whose
antecedent is composed of linguistic variables and
whose consequent is represented by a function of
the input variables, frequently a linear function. The
DNF rule is a very well known extension of the lin-
guistic rule in which each input variable takes a set
of linguistic terms whose members are joined by a
disjunctive operator as its value, whilst the output

variable remains a normal linguistic variable with a
single associated value. Other types of fuzzy rule ex-
tensions, such as rules with weights, rules with dou-
ble consequents, etc., each of which tries to improve
the system accuracy and/or the system interpretabil-
ity, have also been proposed.

The fuzzy relational rule (FRR) model has re-
ceived relatively little attention to date 3,4. The
main idea underlying these type of rules and the
mechanism to reason with them is introduced in 5.
FRRs include variables and fuzzy relations in the
antecedent of the rule and generate a more flexi-
ble partitioning of the input space than traditional
rules models. The main goal of this work is there-
fore to study whether this type of partitioning al-
lows us to obtain more precise knowledge maintain-
ing the simplicity in the description of a system, and
checking if we can obtain fuzzy models with a good
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interpretability-accuracy trade-off.

Despite their likely utility, very few learning
methods have been proposed for FRRs. An induc-
tive approach for learning FRRs was proposed in 3.
This algorithm was the extension of a fuzzy-rule-
learning algorithm called SLAVE 6 and was able
to manage FRRs which only consider general bi-
nary relations. Likewise, a fuzzy-rule-learning al-
gorithm including particular binary relations on ap-
proximately linear dependence was proposed in 4.

Herein we propose, on the idea initiated in 3 and
subsequently followed in 7, an efficient fuzzy rule
learning algorithm that can handle the additional
complexity that appears when we include fuzzy re-
lations. To this end, and following the idea initiated
in 3, we restrict the inclusion of fuzzy relations by
using a catalog of relations that contains only those
related to the problem. In 3 this catalog is previously
defined by an expert and the learning algorithm is
allowed to choose between the different relations in-
cluded in the catalog. In this way, the catalog defini-
tion enables us to restrict the additional complexity
involved in the learning of FRRs. However, defi-
nition of the catalog by an expert is not always the
ideal solution since it can involve a considerable ef-
fort, therefore we now propose a methodology to au-
tomatically restrict the large number of fuzzy rela-
tions that can be considered and to select only the
most promising for the problem at hand.

FRRs can be included using different kinds of
learning algorithms, and in this work we use NSLV
8, a genetic fuzzy-rule-learning algorithm.

The following section is devoted to describing
the FRR model and its inference process, the third
section describes the most relevant details of the
NSLV learning algorithm, and the modifications
needed to allow this algorithm to extract FRRs, and
the fourth section is devoted to describing how to
manage fuzzy relations and the definition of a re-
strictive fuzzy relation selection process chiefly in-
volving equality or comparison relationships. The
fifth section is devoted to presenting an experimen-
tal study to analyze the possible interest of includ-
ing relations in the learning process. Finally, the last
section presents some conclusions and future work.

2. Fuzzy Relational Rules

Tradicionally, linguistic fuzzy models are based on
families of fuzzy rules of the form:

IF X1 is A1 and X2 is A2 and . . .and Xn is An

THEN Y is B

where X1,X2, . . . ,Xn are the antecedent variables
defined on the universes U1,U2, . . . ,Un, and Y is
the consequent variable defined on the universe V.
A1,A2, . . . ,An and B are fuzzy subsets defined on the
respective universes. The basic effect of using this
kind of rule can be seen as a rectangular partitioning
of the input space (see Figure 1).

Fig. 1. Rectangular partition generated by a particular lin-
guistic fuzzy rule associated with the central labels in the
first and second variable

The use of fuzzy models with relational an-
tecedents is introduced in 5. An FRR is a rule in
which the antecedent involves the satisfaction of a
relationship between different variables, for exam-
ple ,

IF (X1,X2, . . . ,Xn) is R THEN Y is B

where R is a fuzzy relation, in other words a fuzzy
subset of U = U1×U2× . . .×Un. An example of an
FRR is

IF X1 is approximately equal to X2 THEN Y is B.

Obviously, although this particular rule can be ap-
proximated by traditional fuzzy rules, the use of an
FRR increases the interpretability of the knowledge
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since it is described in a more human-like manner.
Furthermore, it increases the simplicity of the model
since only one rule is needed, whereas more rules
(at least one for each fuzzy value of the variable) are
needed in the previous model to represent the same
knowledge.

A practical example of this type of rule in the
design of a control rule for a mobile robot could be:

If the robot’s distance to the right wall is approx-
imately equal to the distance from the robot to the
left wall and the angle between the direction of the
robot and the wall is almost zero then do not turn
and increase speed.

This rule can be represented satisfactorily by the
FRR model using the particular relation ”approxi-
mately equal to” (see Figure 2).

Fig. 2. Partition generated by the fuzzy relation X is approx-
imately equal to Y

Thus, the idea is to include fuzzy relations in or-
der to increase the knowledge-representation capac-
ity of the learning system whilst improving the in-
terpretability and simplicity of fuzzy models but ex-
tending the traditional fuzzy-rule model only min-
imally, in other words using fuzzy relations only
when a clear improvement of the model results.
Moreover, in a first step, we only explore a restric-
tive definition of the previous one in which we only
consider antecedent requirements involving individ-
ual variables or the satisfaction of relationships be-
tween two variables, in other words we only con-

sider binary relations such as

IF (X1,X2) is R and X3 is A3 THEN Y is B (1)

where R is now a fuzzy subset of U = U1×U2.
The use of FRRs allows more general partitions

than the rectangular one, which, as can be seen from
Figure 2, is obviously an extension of the traditional
models.

An interesting study of the reasoning with these
rules can be found in 9. In the general case, this rea-
soning needs complex calculus, although the use of
singletons as inputs simplifies the process. For an in-
put like (x1,x2,x3) with xi ∈Ui for the rule described
in (1), the output value is

B∗(y) = τ ∧B(y)

with τ = R(x1,x2)∧A3(x3) and ∧ a t-norm like the
minimum operator. When several rules are used,
B∗(y) is taken as the maximum value for the differ-
ent B∗(y) for each rule.

The aim of this work was to develop a FRR learn-
ing algorithm. However, as the number of possi-
ble binary relations between two selected variables
among the set of n original variables can become too
large and therefore cause problems for the search
component of the learning algorithm, thereby in-
creasing the complexity of the problem consider-
ably, a previous reduction of the relation candidates
is needed. In 3 we proposed a reduction method
based on the definition of a catalog of fuzzy rela-
tions by an expert. The idea behind such a catalog
is to collect those relations that the expert considers
most relevant to the particular problem or to discard
those that should not be used in any case.

The Catalog of Relations (CR) is actually man-
aged as an index set. Let us suppose we number all
the candidate relations, thus allowing us to define the
Catalog of Relation CR as:

if {(Xi,X j) is Rk} is a relevant relation to be con-
sider for the learning algorithm, then we put (i,j,k)
in the CR set.

We can now associate an integer representing the
index of the relation in the catalog to this relation.

Using the CR set, the formalism for a FRR is
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IF X1 is A1∧. . .∧Xn is An∧{∧(i, j,k)∈H [(Xi,X j) is Rk]}

THEN Y is B

where Ai are the antecedent values, B is the conse-
quent value and H ⊆CR is an index subset defining
the specific relation participating in the rule. We de-
note this rule as RB(A,H), with A = (A1,A2, . . . ,An).

We will actually manage an extended version of
this rule (the DNF rule) which allows us to assign
a set of values from its domain to each antecedent
variable of the rule, that is,

IF X1 is Ã1∧. . .∧Xn is Ãn∧{∧(i, j,k)∈H [(Xi,XJ) is Rk]}

THEN Y is B

where Ãi is a set of fuzzy values on universe Ui.
The inference process associated to this rule is a
simple extension of the general case. For an input
x = (x1,x2, . . . ,xn), xi ∈Ui the output is

B∗(y) = τ(x, Ã1, . . . , Ãn)∧R(x,H)∧B(y)

with

R(x,H) = {∧(i, j,k)∈HRk(xi,x j)} (2)

and

τ(x, Ã1, . . . , Ãn) = Ã1(x1)∧ . . .∧ Ãn(xn) (3)

and

Ãi(xi) =
max j∈SAi j(xi)

max j∈1...niAi j(xi)
(4)

where the domain of Xi is defined by ni values
{Ai1,Ai2, . . . ,Aini} and Ãi is defined by the set of val-
ues contained in the index set S, in other words,

Ãi = {Ai j| j ∈ S}.

Obviously, when S = {1,2, . . . ,ni} then Ãi(xi) = 1
and the component i does not affect to the calculus
of τ . The situation is therefore the same as when this
variable does not appear in the rule.

Let us now see an example of this kind of rule.
Suppose we have five variables X1, X2, X3, X4 and
Y which take values on the same universe and with
the same fuzzy domain associated for all the vari-
ables composed of the five fuzzy labels described in
Figure 3.

HighMediumLowVeryLow VeryHigh

Fig. 3. Example of a fuzzy domain

An example of the particular type of rule we are
using is:

IF X1 is {VeryLow or Low} and
X2 is {Medium or High or VeryHigh} and

X3 is approximately equal to X4
THEN

Y is Medium.
As we can see, the first variable takes the values

VeryLow or Low, and using formula (4) this disjunc-
tion can be interpreted as the convex hull of both la-
bels, in other words a new label means ”less than
or equal to Low”. In this case, the set S used in
equation (4) is S={1,2}. The second variable takes
three values, and using the same formula can be in-
terpreted as a new label meaning any value ”greater
than or equal to Medium”. In this case, the set S used
in equation (4) is S={3,4,5}.Finally, a relation asso-
ciated with the third and fourth variable, specifically
the relation ”approximately equal to”, appears.

Our rule model also considers a weight associ-
ated with each rule which represents the percentage
of positive examples covered by the rule. We there-
fore adapted the inference mechanism to allow us to
use FRRs with weights.

Now that we have described the FRR model, in
the next section we will propose a learning algorithm
that can be used to obtain this kind of rule.
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3. Learning Algorithm

Our goal is to design a learning algorithm able to ob-
tain a fuzzy relational rule set efficiently. This pro-
cess could be made from scratch, but in our case we
believe it is more efficient to change a previous pro-
posed fuzzy rule learning algorithm for this purpose.
In our case we extend NSLV 8, a learning algorithm
of fuzzy rules. NSLV is the evolution of SLAVE 6,
one of the first fuzzy rule learning algorithms.

3.1. The NSLV learning algorithm

NSLV is a genetic fuzzy rule learning algorithm that
use a sequential covering strategy 10. A prototypical
description of this family of algorithms is:

SEQUENTIAL-COVERING(T,A,E,D)

• Learned-rules← {}
• Rule← LEARN-ONE-RULE(T,A,E)
• while PERFORMANCE(Rule,E) > D, do

• Learned-rules← Learned-rules + Rule
• E← E-examples correctly classified by Rule
• Rule← LEARN-ONE-RULE(T,A,E)

• Learned-rules ← sort Learned-rules accord to PER-
FORMANCE over E

• return Learned-rules

where T is the target attribute, A is the attribute set,
E is the set of examples and D is a threshold.

The sequential covering algorithm reduces the
problem of learning a disjunctive set of rules to a se-
quence of simpler problems, each of which requires
a single conjunctive rule to be learned.

The algorithm NLSV 8 does not actually delete
the examples correctly classified by a fuzzy rule, as
shown in the above description, but instead marks
the examples already covered by this rule with the
idea that they should not be considered as positive
examples for other rules, but can be considered as
negative. Moreover, NLSV uses a genetic algorithm
(GA) to implement the LEARN-ONE-RULE proce-
dure. The input of this GA is a target attribute rep-
resenting the consequent variable, the complete set

of antecedent variables and the set of examples, and
the output is a single rule that covers at least some
of the examples. The criterion for selecting the best
rule in NSLV is based on obtaining a single rule that
verifies the following objectives:

O1: The rule describes a high number of exam-
ples correctly and a low number of them incor-
rectly.
O2: The rule has a reduced number of variables
in its antecedent.
O3: The rule antecedent has an understandable
assignment of values to variables.

The criterion for selecting the best rule is there-
fore actually managed as a multiobjective problem
since the solution must satisfy three different cri-
teria. To solve this problem, NSLV applies a lex-
icographical evaluation functional (LEF), in other
words it assumes that the objectives do not have the
same importance. The preference criterion in NSLV
corresponds exactly to the order in which the objec-
tives have been written previously.

Thus, the most important criterion (O1) involves
finding the rule that covers many of the positive ex-
amples and few of the negative examples. In clas-
sical learning algorithms this criterion is related to
two well-known conditions, namely the consistency
and completeness 11. These conditions are extended
for working with fuzzy rules in 6. Such an extension
establishes the degree to which a rule satisfies each
of them, thus meaning that NSLV tries to optimize
the product of consistency and completeness. Both
definitions require the calculus of the number of pos-
itive and negative examples to a fuzzy rule. Given a
particular fuzzy rule

IF X1 is Ã1∧ . . .∧Xn is Ãn THEN Y is B

the number of positive examples of this rule is de-
fined as the cardinal of the fuzzy set of positive ex-
amples to the rule. This set is defined by giving a
membership degree to each example regarding the
concept of ”being positive” to the rule. This mem-
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bership degree is defined by

τ(x, Ã1, . . . , Ãn)∧
B(y)

maxB′B′(y)

and represents the simultaneous adaptation of the
example to the antecedent and the consequent of the
rule. The number of negative examples is the cardi-
nal of the fuzzy set of the negative examples to the
rule. The membership degree of each example to
this set is defined by

τ(x, Ã1, . . . , Ãn)∧
maxB′ 6=BB′(y)

maxB′B′(y)

and represents the adaptation to the antecedent and
any of the other possible values of the consequent
variable different to that considered in the rule.

The other two objectives (O2 and O3) are re-
lated to the simplicity of the rule. The second ob-
jective establishes a preference for rules with a re-
duced number of variables. An example of the ap-
plication of the third objective is the preference for
the assignment of values that can be replaced by new
labels such as ”the variable is greater than” or ”the
variable is less than”, such as those described in the
example provided in Section 2.

Each individual in the population of the genetic
algorithm represents a complete rule. NSLV uses a
DNF-type rule model, therefore each variable takes
as its value a set of linguistic terms whose members
are joined by a disjunctive operator. The genetic al-
gorithm represents each DNF rule by three different
elements or levels (Figure 4):

Fig. 4. Representation of a rule in NSLV

• The variable level. This level contains a gene for
each predictive variable involved in the problem.
Each gene represents a real value that it is inter-
preted as the relevance degree of a predictive vari-
able on the rule in relation to the consequent vari-
able. Furthermore, a special gene is added in this
level that it is interpreted as an activation thresh-
old, in other words the variables whose associated
genes have values less than the threshold are not
considered in the antecedent of the rule. The use
of this level therefore allows us to develop an em-
bedded feature-selection process 12.
Two genetic operators are used in this level: the
two-point crossover and the real uniform muta-
tion. Generation of this level in the initial popula-
tion is based on an information measure obtained
from the training set. This measure permits an
initial relevance degree to be established for each
variable. The values obtained are used for all in-
dividuals in the population on this level. The ac-
tivation threshold is randomly generated between
the maximum and minimum value of the initial
relevance degree obtained. A more detailed de-
scription can be found in 13.

• The value level. This is composed of the sequence
of assignments to the predictive variables, where
each assignment variable/value is represented by a
binary string. The complete level is composed by
concatenation of the binary strings representing
the assignment variable/values for all input vari-
ables. The assignment of a certain variable will
appear finally in the description of the rule if the
value of its associated gene in the variable level
permits it to be considered as the relevant variable
for this rule.
We use a binary representation and two genetic
operators on this level: the two-point crossover
and the binary uniform mutation. Generation of
this level in the initial population is as follows: as
the consequent value is known (generated previ-
ously in the consequent level), an example of this
class is selected. The more specific antecedent for
this example is obtained and is used to code the
individual. This process is repeated for all indi-
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viduals in the population.
• The consequent level. This codes the value of the

classification variable for the rule. This level is
composed of one gene which is represented by an
integer value.
The integer uniform mutation is the only genetic
operator considered on this level, and this level is
generated randomly in the initial population.

Fig. 5. Subpopulations in NLSV

NSLV uses a steady-state genetic algorithm that
divides the population into subpopulations, each
containing the best individuals per class (Figure
5). It uses the classical reproduction process of the
steady-state genetic algorithm but with one modifi-
cation: the worst individuals to be removed from the
population are selected in those subpopulations that
have more than a minimum number of individuals,
thus guaranteeing that the subpopulations have suffi-
cient individuals to evolve during the genetic search.
The selection mechanisms choose two individuals,
which generate two offspring to replace those indi-
viduals selected for removal.

The goal of the subpopulations is to keep high di-
versity in the genetic population, thus allowing pre-

mature convergence of the search process to be con-
trolled. Furthermore, the sizes of the subpopulations
are not fixed as the size depends on the search state.
The policy followed in NSLV consists of prioritising
those subpopulations which present a high capacity
to improvise their individual members. Two indi-
cators are taken into account when evaluating this
capacity:

(a) the difference between the fitness of the best in-
dividual in the subpopulation and the number of
examples of its class, and

(b) the difference between the fitness of the best and
the worst individuals.

In both cases, the subpopulation is close to a
good point of convergence when the differences are
low and therefore the subpopulation does not need
to contain a large number of individuals. In con-
trast, when the subpopulation is not near an accept-
able point of convergence the subpopulations need
to contain more individuals to evolve.

The minimum size of the subpopulation for a
particular class (MinSize(class)) is defined as

SizePopulation
2×NumberClasses if the subpopulation is near of

an acceptable convergence
point.

SizePopulation
1+NumberClasses in other case.

where SizePopulation is the number of individuals
in the genetic population and NumberClasses is the
number of classes of the learning problem.

An exception to the previous policy is applied
when a determined class contains no examples. In
this case, the subpopulation associated with this
class is removed from the genetic population.

3.2. NSLV-R: an FRR genetic-learning
algorithm

In this section we will adapt NSLV so that it can
learn fuzzy relational rules; the new algorithm is
called NSLV-R.
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One important aspect in this adaptation is obvi-
ously the modification of the genetic algorithm, par-
ticularly the modification of the representation of a
rule. The first component we need to modify is the
genetic representation of each rule. Thus, a FRR is
represented by extending the representation of a pre-
viously described fuzzy rule. To this end, we again
consider the variable level, the value level and the
consequent level with the same interpretation, struc-
ture and operators, but we now include a new sub-
structure to encode the active fuzzy relations that ap-
pear in the rule. This structure will be called the re-
lation level.

The relation level. This level represents the rela-
tion set included in the antecedent of the rule. Each
gene codes a possible relation of the Catalog of Re-
lations.

Each individual is now composed by four differ-
ent representations or levels (Figure 6).

Fig. 6. Representation of a rule in NLSV-R

The maximum number of relations that we can
include in a rule is defined by a parameter. In the
experiments we have considered up to 10 relations
in each rule. The relation level uses integer coding,
where 0 indicates ”no relation” and any other pos-
itive value means to include the relation associated
with this index in the Catalog of Relations.

As far as genetic operators are concerned, we
keep the same operators used by NSLV in the de-
scription part associated with variables, antecedent
values and consequent value, whereas in the relation
level we use a crossover operator which corresponds
to the integer coding extension to the intersection of

two points used in binary coding. We also use in
the relation level an operator of mutation associated
with two probabilities, one associated with the prob-
ability of applying the operator (we used a value of
0.99 in the experiments) and the other with a non-
uniform probability distribution that gives a higher
probability of zero than the remaining values. The
idea is to include relations only when there is a clear
improvement in the accuracy of the rule.

In the initial population, all the genes for all in-
dividuals of this level begin with a value of zero, in
other words no relations are considered in the chro-
mosome at the beginning of the genetic process.

Finally, the criterion for selecting the best rule is
similar to NSLV and is based on the multiobjective
process defined in subsection 3.1. However, some
aspects need to be adapted. Thus, in relation to ob-
jective O1, it is necessary to clarify the calculus of
the number of positive and negative examples for
a FRR. This calculation is needed for the consis-
tency and completeness definitions, which must be
adapted to the new structure of the rule.

Given a FRR RB(Ã,H), the number of positive
examples of this rule is defined in a similar manner
as for fuzzy rules without relations except that the
membership degree to each example of ”being posi-
tive” to the rule is now defined by

τ(x, Ã1, . . . , Ãn)∧R(x,H)∧ B(y)
maxB′B′(y)

using the τ and R definitions described in equation
(2) and (3). The previous expression represents the
simultaneous adaptation of the example to the an-
tecedent (variables and relations) and the consequent
of the rule. The membership degree of each example
of ”being negative” to the rule is defined by

τ(x, Ã1, . . . , Ãn)∧R(x,H)∧
maxB′ 6=BB′(y)

maxB′B′(y)

which represents the adaptation to the antecedent
(variables and relations) and any of the other pos-
sible values of the consequent variable different to
that considered in the rule.

In relation to the objective O2, we include the
sum of the number of variables and the number of
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relations in the comparison in order to obtain rules
with the smallest number of variables and relations.
The objective O3 is not affected by the inclusion of
relations.

4. The Catalog of Relations

The aim of this section is to establish a mechanism
to limit the number of relations in the catalog. In
any case, this mechanism is only associated with
the comparison or equality relations established for
fuzzy variables defined on a real valued universe.

Our proposal is to define two filters for the pos-
sible relations. In the first filter, relations are elimi-
nated through an approach based on the properties of
the variables or their reference universes. The sec-
ond filter uses a heuristic procedure based on the use
of information measures.

Before that, however, we describe the relations
that we use in our study and the procedure used to
define them.

4.1. Relations

Herein we have considered only four fuzzy relations
and two crisp relations, although of course we could
consider any other relation that may be of interest.
The reason for choosing these particular relations
is mainly for simplicity. With the idea to check
that relations could be of interest to a broad list of
databases, such as those we use in the experimental
section, it is advisable to select a set of simple re-
lations that are likely to be useful for the different
databases under consideration.

In particular, we have considered the fuzzy rela-
tions:

• approximately equal to,
• very different to
• approximately less than or equal to, and
• approximately greater than or equal to

and the two crisp relations > and <.

All these relations are defined for numerical vari-
ables Xi and X j with bounded universes [in fi,supi]
and [in f j,sup j], respectively.

Furthermore, all the fuzzy relations have been
defined using a particular methodology with the aim
of transforming the fuzzy binary relation into a vari-
able taking values in a particular universe, in other
words to transform R(Xi,X j) in the variable Zi j tak-
ing a particular fuzzy value. For example, X1 is ap-
proximately equal to X2 is transformed into Zi j =
|Xi−X j| is approximately equal to zero, where zero
is a fuzzy value.

Using this methodology, we can define the dif-
ferent fuzzy relations in a simple manner. Thus, as-
sociated with the universe of the variables Xi and X j

we define the parameter

qi j =
|Ii− I j|

c

with Ii = min{supi,sup j), I j = max{in fi, in f j) and
where c is a strictly positive parameter (the exper-
iments were performed using c=10). The value qi j

represents the size of the partition in c fragments of
the universe of the difference variable |Xi−X j| as
shown in Figure 7.

0.5

1

0
q

q
(c−1)q

c q2ij
ij

ij
ij

Zero VeryHigh

Fig. 7. Relations approximately equal to and very different
to.

The Xi is approximately equal to X j relation is
associated with |Xi−X j| is approximately equal to
Zero. Zero is defined as the fuzzy number described
in Figure 7 and therefore calculated as:
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µXi≈X j(xi,x j)=

{
1−| xi−x j

qi j
| if |xi− x j|< qi j

0 otherwise

The Xi is very different to X j relation is associated
with |Xi−X j| is approximately equal to VeryHigh,
where VeryHigh is defined as the fuzzy number de-
scribed in Figure 7 and therefore calculated as:

µXi<>X j(xi,x j) =

=

{
0 if |xi− x j|< (c−1)qi j
|xi−x j|−(c−1)qi j

qi j
otherwise

The Xi is approximately less than or equal to X j

relation is a combination of the relation < and the
approximately equal to relation:

µXi<≈X j(xi,x j) =

=


1 if xi < x j

1−| xi−x j
qi j
| if 0 < |xi− x j|< qi j

0 otherwise

The Xi is approximately greater than or equal to
X j relation is included in an indirect manner since
Xi >≈ X j is equivalent to X j <≈ Xi.

4.2. Basic filter

The main idea of the first filter is to use expert infor-
mation or information generated by its own variables
to reduce the number of relations that the learning
algorithm can include in the rules. The idea now is
to consider the following three processes to reduce
the number of relations:

• The first idea is to use expert information, if avail-
able. This information can be very useful and is
easily described in some cases. For example, Do
not use relations comparing age and height.

• The second idea is to use information regarding
the units of the variables. Thus, only comparison
relations between variables with the same units
are allowed.

• Finally, we only consider comparison relations
between variables with a sufficient overlap of their

universes.

The first two processes are simple and require no
additional explanation, although further details re-
garding how to make the third are required. Thus,
the idea is to define a degree of overlap between
variables such that if this degree of overlap exceeds
a certain threshold, then comparison or equality re-
lations between both variables are candidates to be
included in the catalog of relations (CR).

Given the variables X1 and X2 with universes
[in f1,sup1] and [in f2,sup2] respectively, we can say
that there is overlap between them if

(in f2 6 in f1 6 sup2) or (in f1 6 in f2 6 sup1).

If there is no overlap between these two vari-
ables, then the degree of overlap is zero. In contrast,
we can define the degree of overlap of variables X1
and X2 as

degreeo(X1,X2)= max(
|b−a|

|sup1− in f1|
,
|b−a|

|sup2− in f2|
),

where a = max(in f1, in f2) and b = min(sup1,sup2).
When defining the CR we usually consider a de-

gree of overlap close to one, for example 0.9. Thus,
if degreeo(Xi,X j) > 0.9 then relations between both
variables are allowed by the basic filter.

4.3. Heuristic filter

The second filter reduces the number of relations to
be included in the CR using heuristic information.
The idea is to use a measure of information to se-
lect the relations that provide more information re-
garding the variable consequence. This is clearly a
heuristic process since we use only partial informa-
tion about each relation, which means that it is not
possible to determine the influence of the relation in
a specific rule exactly due to the existence of other
variables and/or relations.

The heuristic filter is used on the relations ob-
tained after applying the basic filter described pre-
viously. Thus, the information measure is ap-
plied to each element {(Xi,X j) is Rk} obtained in
the previous stage. This information measure is
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actually applied to the variable associated with the
fuzzy relation Zi j = |Xi − X j| using the following
idea: the information measure between the rela-
tion {(Xi,X j) is Rk} and the classification variable
will be calculated using the information measure be-
tween Zi j = |Xi−X j| is Vk and the classification vari-
able, where Vk is a particular value that defines the
fuzzy relation (zero in the case of the relation ”ap-
proximately equal to”).

The idea is to use a measure of the relevance of
each variable associated to the relation with respect
to the classification variable.

We use the following measure 14,15

ρ(X ,Y ) =
I(X ,Y )
H(X ,Y )

where

I(X ,Y ) = ∑
x

∑
y
−p(x,y) log2(

p(x)p(y)
p(x,y)

)

and H(X,Y) is the Shannon entropy over two vari-
ables, defined as

H(X ,Y ) = ∑
x

∑
y
−p(x,y) log2 p(x,y).

The ρ measure estimates the dependence between
two generic variables X and Y in the following way:
values of ρ(X ,Y ) close to zero determine a high de-
gree of independence of both variables, whereas val-
ues close to one demonstrate a high degree of func-
tional dependency between them.

In our case, we calculate

ρ(Zi j,Y ) =
I(Zi j,Y )
H(Zi j,Y )

where Zi j is the variable associated with the relation
{(Xi,X j) is Rk} and Y is the classification measure.

Thus, the procedure consists in selecting the NR

best relations, where NR is a parameter that we need
to fix. In order to select these relations, we first use
ρ(Zi j,Y ) to order the relations and then select the
best relations amongst these that verify the follow-
ing property on the basis of this ordering

ρ(Zi j,Y ) > maxp{ρ(Xp,Y )}

where Xp are the different antecedent variables and
Y is the classification variable. The previous expres-
sion ensures that the information regarding the rela-
tion is better than the information provided by any
of the antecedent variables.

Moreover, in this selection we include useful re-
lations for the different values of the consequent
variable.

Table 1. Database used in the experimental study. Each row
represents the number of examples (#E), variables (#V), contin-
uous variables (#C), nominal variables (#N), classes (#Cl) and
missing values (M).

Database #E #V #C #N #Cl M

ann 898 38 6 32 5 No
aut 205 25 15 10 6 Yes
brd 106 11 4 7 7 No
bal 625 4 4 0 3 No
bpa 345 6 6 0 2 No
car 1729 6 0 6 4 No
crx 690 15 6 9 2 No
col 368 22 7 15 2 Yes
drm 366 34 33 1 7 No
gls 214 9 9 0 6 No
h-c 303 13 6 7 2 Yes
h-h 296 13 6 7 5 No
h-s 270 13 13 0 2 No
hpt 155 19 6 13 2 Yes
irs 150 4 4 0 3 No
pim 768 8 7 1 2 No
son 208 60 60 0 2 No
tao 888 2 2 0 2 No
thy 215 5 5 0 3 No
trf 748 4 4 0 2 No
vot 435 16 0 16 2 No
wdbc 569 30 30 0 2 No
wpbc 198 33 33 0 2 Yes
zoo 101 17 0 17 7 No

5. Experimental Study

In this section we compare the behaviour of the
new NSLV-R learning algorithm with that of the
base algorithm NSLV. Furthermore, NSLV-R is
benchmarked against other well-known classical
and fuzzy-rule-learning algorithms. The experimen-
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Table 2. Results obtained using NSLV and NSLV-R
Training Test Rules Time Conditions

Data NSLV NSLV-R NSLV NSLV-R NSLV NSLV-R NSLV NSLV-R NSLV NSLV-R
ann 94.8 (2) 96.3 (1) 93.7 (2) 95.1 (1) 8 (1) 9 (2) 102 (1) 128.7 (2) 15.3 (1) 16.8 (2)
aut 92.5 (2) 94.4 (1) 69.8 (2) 70.7 (1) 17.6 (1.5) 17.6 (1.5) 78 (1) 100.7 (2) 83.2 (2) 65.5 (1)
bal 86.6 (2) 88.4 (1) 77.9 (2) 80.2 (1) 18.8 (2) 18.1 (1) 49 (1) 55.1 (2) 43.5 (1) 44.7 (2)
bpa 66.9 (2) 75.9 (1) 56.7 (2) 71 (1) 6 (1) 7.2 (2) 18 (2) 15 (1) 18 (2) 16 (1)
brd 94.7 (1) 93.5 (2) 55.6 (2) 65 (1) 19.1 (2) 18 (1) 17 (1) 27.6 (2) 47.7 (2) 42.5 (1)
car 86.4 (2) 88.2 (1) 85.5 (2) 87.5 (1) 14.5 (1) 17.1 (2) 77 (1) 123.7 (2) 34.2 (1) 39.6 (2)
col 91.4 (1) 90.5 (2) 82 (2) 84.2 (1) 7.7 (2) 6.7 (1) 48 (2) 42.5 (1) 25.1 (2) 20.8 (1)
crx 90.2 (2) 91 (1) 83.7 (2) 83.9 (1) 8 (1) 9 (2) 40 (1) 69.3 (2) 27.1 (1) 31.5 (2)
drm 99.2 (1) 99 (2) 94.7 (2) 95.6 (1) 9.5 (1) 10.3 (2) 58 (1) 145 (2) 22.8 (2) 20.8 (1)
gls 80.7 (2) 72.6 (1) 63.4 (1) 57.3 (2) 14.5 (2) 12.3 (1) 40 (2) 35.9 (1) 41.5 (2) 35 (1)
h-c 91.2 (2) 92.7 (1) 77.8 (1) 75.2 (2) 11.4 (1) 13.5 (2) 33 (1) 43.5 (2) 36.8 (1) 44.3 (2)
h-h 87.8 (2) 88.7 (1) 66.3 (1) 66.2 (2) 37.6 (2) 34 (1) 74 (1) 113.4 (2) 120.5 (2) 111.2 (1)
hpt 91.4 (2) 93.1 (1) 79.9 (2) 85.7 (1) 5 (1) 6.7 (2) 20 (2) 9.7 (1) 14.5 (1) 16 (2)
h-s 91.5 (2) 92 (1) 77.4 (1) 72.9 (2) 10.8 (2) 10.3 (1) 34 (2) 33 (1) 32.7 (2) 31.8 (1)
irs 96.8 (2) 97.1 (1) 93.9 (1.5) 93.9 (1.5) 4 (1.5) 4 (1.5) 3 (2) 2 (1) 3.5 (1) 4.2 (2)

pim 80.2 (1.5) 80.2 (1.5) 72.6 (2) 73.8 (1) 12.8 (2) 11 (1) 87 (2) 84 (1) 39 (2) 33.2 (1)
son 90.4 (1) 90.1 (2) 69.1 (2) 72.9 (1) 9.9 (2) 9.6 (1) 60 (1) 87 (2) 48 (2) 41.7 (1)
tao 82.4 (2) 82.7 (1) 81.6 (2) 82.3 (1) 3.2 (1) 4 (2) 22 (1) 25 (2) 5 (1) 6.7 (2)
thy 93.5 (2) 94.7 (1) 90.7 (2) 92.6 (1) 4.9 (2) 4.7 (1) 8 (2) 6 (1) 10.5 (1) 10.6 (2)
trf 77.1 (2) 77.4 (1) 75.9 (1.5) 76.4 (1.5) 3.2 (2) 2.8 (1) 7 (1) 11 (2) 4.5 (2) 4.2 (1)
vot 97.6 (2) 97.7 (1) 95.6 (2) 96.5 (1) 4.7 (1.5) 4.7 (1.5) 7 (1) 11 (2) 9.6 (2) 9.5 (1)

wdbc 95.8 (1) 94.2 (2) 93.6 (1) 92.2 (2) 4.5 (1) 5.2 (2) 75 (2) 45 (1) 17.5 (2) 15.4 (1)
wpbc 80.1 (2) 81.2 (1) 74.2 (1) 71.2 (2) 3.2 (1) 4.2 (2) 15 (2) 11 (1) 9.6 (2) 8.6 (1)
zoo 99.5 (2) 100 (1) 95.8 (2) 96.4 (1) 7.4 (1) 7.5 (2) 6 (1) 7 (2) 9.4 (1.5) 9.4 (1.5)
Rnk 1.73 1.27 1.73 1.27 1.48 1.52 1.42 1.58 1.6 1.4
Pos 2 1 2 1 1 2 1 2 2 1

tal study was performed on 24 databases (Table
1) from the UCI Repository of Machine Learning
Databases and Domain Theories 16.

We have used five uniformly distributed linguis-
tic labels to define the domain of the continuous
variables in all databases. In both algorithms, we use
the missing-values treatment described in 17. The re-
sults were obtained by ten-fold cross validation us-
ing the same partition for all algorithms. The size
of the population was fixed at 100. The GA finishes
returned a solution when the best individual did not
change in the population during 500 iterations.

The variable-level mutation probability is
1

#V
where #V is the number of predictive variables in-
volved in the learning problem.

The value-level mutation probability is
1

Length Chromo
where Length Chromo is the number of bits needed
to code the chromosome level of an individual. We

focused our study on the following indicators: accu-
racy on training set (Training), accuracy on test set
(Test), the number of rules (Rules), the time needed
to learn the whole model (Time), and, finally, the
number of conditions of the whole rule set (Condi-
tions). For the NSLV-R algorithm, this last parame-
ter is evaluated as the number of variables plus the
number of relations.

Training and Test represent the accuracy of the
learned model, whereas Rules and Conditions de-
fine the size and interpretability of the knowledge
base and Time shows the learning efficiency.

A Bonferroni-Dunn test 18 has been used, which
establishes that two classifiers have differences if
they differ in at least one critical distance, was used
to perform the comparison. This distance depends
on the number of databases, the number of learn-
ing algorithms to be compared and a critical value
qα , with error α . Thus, setting α to a value 0.05
gives qα = 1.960, therefore the critical distance for
24 databases and two classifiers is 0.4.

The results obtained are shown in Table 2, where
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the first column represents the results obtained using
NSLV and the second column those obtained using
NSLV-R. The first row lists the indicators evaluated,
and the last but one shows the values used for the
Bonferroni-Dunn test.

It is clear from Table 2 that there are significant
differences in terms of Training and Test, thus sug-
gesting that NSLV-R is more accurate than NSLV.
The improvement in Training indicates that the in-
clusion of relations provides the learning algorithm
with a greater ability to represent the underlying
knowledge of the problem, whereas the improve-
ment in Test validates the improvement in training
in the sense that it is not due to overlearning.

Table 3. Rule Set obtained for the IRIS Database using NSLV-R

IF Petal length <≈ Sepall width
THEN Class is Setosa WITH weight 1.0

IF Petall width IS High
THEN Class IS Virginica WITH weight 0.97

OTHERWISE Class is Versicolour WITH weight 0.33

No significant differences were observed be-
tween the two algorithms in terms of the parameters
Rules and Conditions, although NSLV-R tended to
increase the number of rules and decrease the num-
ber of conditions. Thus, the number of conditions
per rule in NSLV is in the interval [0.875,4.85], with
an average of 2.7, in this study. This value is low
considering that the average number of variables in-
volved in the selected database is 16.96, thus mean-
ing that the individual rules have a reduced num-
ber of conditions in their antecedents. The number
of conditions obtained by NSLV-R is in the range
[1.05,4.34], with an average of 2.5. A comparison
of these results shows that NSLV-R produces sim-
pler individual rules. A rule set obtained by NSLV-
R for the IRIS database is shown in Table 3. The
knowledge is composed by a reduced set of simple
rules which use the approximately less than or equal
to relation.

Table 4. Relations included in each database. #R represents the
average number of relations in each rule set and %R the average
ratio of relations with respect to the total number of conditions
in each rule set

DBase #R %R DBase #R %R
ann 1.6 10% h-s 4.4 27%
aut 5.5 8% hpt 2.3 7%
bal 0 0% irs 1.3 31%
bpa 4.4 27% pim 1.0 3%
brd 0.5 1% son 6.7 16%
car 0 0% tao 0 0%
col 0.2 0.1% thy 3.7 35%
crx 4 13% trf 0.5 12%
drm 5.5 26% vot 0 0%
gls 7.7 22% wdbc 5.5 36%
h-c 5.2 12% wpbc 3.7 43%
h-h 7.5 6% zoo 0 0%

As mentioned above, the algorithm includes re-
lations only when needed to improve the accuracy.
We can see this effect by looking at Table 4, which
shows the average number of relations used and
the ratio of conditions that are relations on each
database.

Analysis of the computing time is also interest-
ing. Thus, although there are no significant differ-
ences in time, given that the inclusion of relations
increases the search space and that, furthermore, the
new algorithm takes time to build the CR set, main-
taining the computing time can be interpreted posi-
tively. The time required to build the CR is justified
as this process reduces the time needed to converge
to good solutions and we know from the significant
improvements in test and training that the solutions
obtained are better than those provided by the previ-
ous version.

5.1. Comparing NSLV-R with other classical
learning algorithms in terms of accuracy

In this section we compare NSLV-R with some other
classification algorithms using the WEKA platform
19 and the default configuration for each algorithm.

In order to find significant differences among the
methods, we use a statistical analysis. According to
the recommendations made in 20, where the use of
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Table 5. Test accuracy for NSLV-R and several well-know clas-
sical learning algorithms

Databases C4.5 IB5 NBayes Part SMOpol NSLV-R
ann 98.9 (1) 97.3 (2) 86.3 (6) 98.6 (2) 91.9 (5) 95.1 (4)
aut 80.9 (1) 64 (4) 58.1 (5) 74.4 (2) 45.6 (6) 70.7 (3)
bal 77.4 (6) 88.2 (3) 90.6 (1) 82.9 (4) 88.3 (2) 80.2 (5)
bpa 62.3 (3) 58.9 (4) 56 (6) 67.6 (2) 58 (5) 71 (1)
brd 68.8 (1) 57.5 (6) 67.9 (5) 64.1 (2) 65 (3.5) 65 (3.5)
car 92.4 (4) 95.3 (2) 85.7 (6) 95.8 (1) 93.2 (3) 87.5 (5)
col 85.3 (1) 81.5 (5) 78.2 (6) 84.5 (2) 82.4 (4) 84.2 (3)
crx 83.7 (3) 81.4 (5) 76.9 (6) 83.3 (4) 84.6 (1) 83.9 (2)
drm 96.1 (3) 95.3 (5) 97.8 (1) 94.2 (6) 97.2 (2) 95.6 (4)
gls 66.1 (2) 64.7 (3) 48.9 (5) 66.6 (1) 35.6 (6) 57.3 (4)
h-c 78.4 (4) 83.2 (1) 82.8 (2) 74.2 (6) 82.5 (3) 75.2 (5)
h-h 66.6 (2.5) 62.2 (6) 64.6 (5) 67 (1) 66.6 (2.5) 66.2 (4)
h-s 79.3 (5) 80.7 (3) 83.3 (1) 80 (4) 82.6 (2) 72.9 (6)
hpt 79.3 (6) 81.9 (5) 83.8 (3.5) 85.8 (1) 83.8 (3.5) 85.7 (2)
irs 94 (5) 96 (2) 96 (2) 94 (5) 96 (2) 94 (5)

pim 74.2 (3) 73.3 (5) 75.8 (2) 78.9 (1) 65.1 (6) 73.8 (4)
son 71 (4) 84 (1) 69.7 (5) 74.4 (2) 69.3 (6) 72.9 (3)
tao 95.9 (2) 97.1 (1) 81 (6) 94.3 (3) 83.6 (4) 82.3 (5)
thy 85.5 (6) 88.8 (3) 87.0 (5) 96.3 (1) 88.5 (4) 92.6 (2)
trf 78.3 (1) 68.8 (6) 75.1 (5) 77.9 (2) 76.3 (4) 76.4 (3)
vot 96.7 (1) 91.4 (5) 90.3 (6) 96.3 (3) 95.6 (4) 96.5 (2)

wdbc 94.4 (3) 96.8 (1) 93.1 (4) 94.5 (2) 92.9 (5) 92.2 (6)
wpbc 71.6 (3) 78.8 (1) 69.4 (6) 70 (5) 73 (2) 71.2 (4)
zoo 92.8 (4) 90.5 (6) 94.5 (2) 93.8 (3) 76 (6) 96.4 (1)

Average 82.1 81.6 78.9 82.9 78.1 80.8

a set of simple, safe and robust non-parametric tests
for statistical comparisons of classifiers has been in-
troduced. Specifically, we use the Friedman’s 21 and
Holm’s 20 tests. In order to perform multiple com-
parisons, it is necessary to check whether all the re-
sults obtained by the algorithms present any signifi-
cant difference (Friedman’s test) and, in the case of
finding one, then we can find out by using a post-hoc
test for comparing the control algorithm with the re-
maining algorithms (Holm’s test). We use α = 0.05
as the level of confidence in all cases.

The algorithms considered for this study are:

• C4.5 22, which is based on decision trees and it
is an extension of the ID3 algorithm for working
with continuous variables and missing values.

• IBk 23, which is based on the Nearest Neighbour
Algorithm and classifies an instance with the ma-
jority class of its k nearest neighbours. We set the

k parameter to 5.
• NBayes 24, which is a probabilistic classifier that

estimates parameters in a Bayesian model.
• Part 25, which is a learning framework that applies

divide and conquer learning techniques to rules
for developing a classifier.

• SMOpol 26, which is an implementation of sup-
port vector machines. In this study we used SMO
with a polynomial (order 3) kernel.

This list contains several well-known algo-
rithms, each of which represents a different learning
paradigm. The test accuracy for these algorithms is
shown in Table 5 where the last rows of this table
show the average accuracy obtained by each algo-
rithm on all databases.
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Table 6. Friedman statistic (distributed according to chi-square
with 5 degrees of freedom)

Statistic critical value p value
7.751905 11.0705 0.169855

Table 7. Average rankings of the algorithms (Friedman)

Algorithm Ranking
Part 2.8125
C45 3.0833
IB5 3.5417

NSLV-R 3.6458
SMOpol 3.8125
Nbayes 4.1042

Table 6 shows the result of the Friedman’s test
with α = 0.05. From this result, we can conclude
that here are not significant differences between the
studied methods since the statistic is not greater than
the critical value. Although this test shows no differ-
ence between methods, in order to confirm the re-
sults we apply the Holm’s test. Average ranks ob-
tained by each method in the Friedman’s test are
shown in Table 7. These averages are calculated by
the Friedman’s test, and establish an order of prefer-
ence which is used by the Holm’s test.

Table 8. Holm’s test comparison Table for α = 0.05

i algorithm z p α/i
5 Nbayes 2.391702 0.01677 0.01
4 SMOpol 1.85164 0.064078 0.0125
3 NSLV-R 1.543033 0.122823 0.016667
2 IB5 1.350154 0.176966 0.025
1 C45 0.501486 0.616029 0.05

We now apply Holm’s test to compare the best
ranking method (Part) with the remaining methods.
Table 8 presents these results. In this Table, the
methods are ordered with respect to the z value ob-
tained. Holm’s test rejects the hypothesis of equal-
ity with the rest of the methods (p < α/i). In this
case, we can see that the hypothesis is accepted in
all cases and therefore, there are not significant dif-
ferences between the methods.

So, we can interpret that NSLV-R has a predic-
tion capacity similar to the classical studied algo-
rithms. Figure 8 shows the expected accuracy of
each classifier for the databases studied here. Part
is the best algorithm as regards this parameter, with
NSLV-R in fourth place.

Fig. 8. Comparison of the expected accuracy of classical
classifiers.

5.2. Comparing NSLV-R with other
fuzzy-rule-learning algorithms in terms of
accuracy.

In this section we compare NSLV-R with other
well-known fuzzy-rule-learning algorithms using
the KEEL platform 27 and the settings recommended
by KEEL for all algorithms. The fuzzy algorithms
used are as follows ∗:

• GFS-GCCL-C (Fuzzy rule approach based on
a genetic cooperative-competitive learning ) 28:
This genetic algorithm handles each fuzzy rule as
an individual and assigns a fitness value to each
rule. It uses linguistic values with fixed mem-
bership functions as antecedent fuzzy sets, thus
meaning that a linguistic interpretation of each
fuzzy rule is easily obtained.

∗We use in this experimentation the ”short name” that KEEL platform associates to these algorithms.
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Table 9. Test accuracy for NSLV-R and several well-know fuzzy
rule based learning algorithms

Databases GFS-GP-C GFS-GPG-C GFS-GCCL-C GFS-LogitBoost-C GFS-SP-C NSLV-R
ann 82.4 (3) 77.9 (5) 87.1 (2) 76.2 (6) 80.2 (4) 95.1 (1)
aut 51.7 (3) 41.5 (6) 57.1 (2) 47.3 (4) 46.8 (5) 70.7 (1)
bal 78 (4) 70.1 (5) 84.1 (2) 87.2 (1) 69.4 (6) 80.2 (3)
bpa 55.3 (6) 60.8 (4) 58.3 (5) 70.2 (2) 63.5 (3) 71 (1)
brd 55.1 (4) 56.9 (3) 51.7 (6) 57.8 (2) 54 (5) 65 (1)
car 78.7 (3) 76.7 (5) 70 (6) 86.7 (2) 77.4 (4) 87.5 (1)
col 85.9 (1) 83.7 (4) 71.8 (5) 70.6 (6) 84 (3) 84.2 (2)
crx 84.9 (2) 84.5 (3) 73 (6) 82.9 (5) 85.1 (1) 83.9 (4)
drm 76.7 (3) 68.3 (4) 81.4 (2) 30.6 (6) 58.2 (5) 95.6 (1)
gls 45 (6) 54.4 (4) 59.9 (2) 67 (1) 48.5 (5) 57.3 (3)
h-c 78.2 (1) 73.5 (6) 77.9 (2) 76.2 (4) 76.88 (3) 75.2 (5)
h-h 66.3 (1) 62.9 (6) 63.9 (5) 64.3 (4) 64.9 (3) 66.2 (2)
h-s 73 (5) 78.9 (1) 78.1 (2) 74.8 (3) 74.1 (4) 72.9 (6)
hpt 81.9 (3) 82 (2) 80.6 (4.5) 78.7 (6) 80.6 (4.5) 85.7 (1)
irs 86.7 (6) 90.7 (5) 95.3 (2) 95.3 (2) 95.3 (2) 93.9 (4)

pim 73.6 (4) 73.8 (2.5) 68.8 (6) 75.9 (1) 72.5 (5) 73.8 (2.5)
son 70.7 (2) 61.1 (5) 61.6 (4) 51.9 (6) 69.1 (3) 72.9 (1)
tao 82.8 (3) 76.2 (6) 81.2 (5) 87.0 (1) 86.9 (2) 82.3 (4)
thy 85.5 (6) 88.8 (3) 87.0 (5) 96.3 (1) 88.5 (4) 92.6 (2)
trf 76.5 (2.5) 76.2 (5.5) 76.2 (5.5) 78.9 (1) 76.5 (2.5) 76.4 (4)
vot 94.7 (2) 93.6 (3.5) 61.4 (6) 87.1 (5) 93.6 (3.5) 96.5 (1)

wdbc 93.2 (1) 81.9 (4) 92.6 (2) 72.8 (5) 71.2 (6) 92.2 (3)
wpbc 76.8 (4) 88.2 (2) 76.4 (5) 96.6 (1) 80.9 (3) 71.2 (6)
zoo 84.2 (3) 82.5 (4) 91.6 (2) 41.9 (6) 79 (5) 96.4 (1)

Average 75.8 74.4 74.5 73.1 74.0 80.8

• GFS-GPG-C (Fuzzy Learning based on Genetic
Programming Grammar Operators) 29: This clas-
sifies an instance as a result of a quadratic combi-
nation of its features. The weights of this combi-
nation are fitted as a quadratic discriminant. An
instance is classified with the class that has the
better value for the quadratic combination of its
features.

• GFS-SP-C (Fuzzy Learning based on Genetic
Programming Grammar Operators and Simulated
Annealing) 29: A Simulated Annealing algorithm
is used to learn a fuzzy classifier. The number of
labels and number of rules must be given for each
hypothesis. Likewise, as it is possible to manage
any combination of conjunction and/or disjunc-
tions in the antecedent part of a fuzzy rule, a max-
imum deep tree size must be given too. These pa-
rameters, in conjunction with Simulated Anneal-

ing type parameters, are of vital importance in the
evolution of this method.

• GFS-LogitBoost-C 30: LogitBoost, or the logis-
tic extended additive model, is a back-fitting al-
gorithm which repeatedly invokes a learning al-
gorithm to successively generate a committee of
simple, low-quality classifiers. In this algorithm,
each of the weak hypotheses is a Fuzzy rule ex-
tracted from data. These fuzzy rules are extracted
from data by means of a genetic algorithm. Each
time a new simple classifier is added to the com-
pound one, the examples in the training set are re-
weighted (so that future classifiers will focus on
the most difficult examples).

• GFS-GP-C (Fuzzy Learning based on Genetic
Programming) 29: This combines genetic pro-
gramming operators with a Simulated Annealing
Search to evolve fuzzy-rule-based classifiers.
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Table 9 shows a comparison of the above-
mentioned fuzzy methods.

In a similar way to the previous subsection, we
apply the Friedman’s and Holm’s tests for finding
significant differences among the proposed meth-
ods. In Table 10 is showed the Friedman’s test. It
shows that there are significant differences between
the methods since the statistic is greather than the
critical value.

Table 10. Friedman statistic (distributed according to chi-square
with 5 degrees of freedom)

Statistic critical value p value
11.40472 11.0705 0.04392

The average ranking of the studied algorithms
are showed in Table 11.

Table 11. Average rankings of the algorithms (Friedman)

Algorithm Ranking
NSLV-R 2.5208

GFS-GP-C 3.2708
GFS-SP-C 3.8125

GFS-LogitBoost-C 3.375
GFS-GCCL-C 3.9167
GFS-GPG-C 4.1042

Table 12. Holm’s test comparison Table for α = 0.05

i algorithm z p α/i
5 GFS-GPG-C 2.931 0.00337 0.01
4 GFS-GCCL-C 2.584 0.00975 0.0125
3 GFS-SP-C 2.391 0.01677 0.016667
2 GFS-LogitBoost-C 1.581 0.113739 0.025
1 GFS-GP-C 1.388 0.164915 0.05

We now apply Holm’s test to compare the best
ranking method (NSLV-R) with the remaining meth-
ods. Table 12 presents these results. In this table, the
methods are ordered with respect to the z value ob-
tained. Holm’s test rejects the hypothesis of equal-
ity with the rest of the methods (p < α/i). Ana-
lyzing the statistical study shown in Table 12 we
conclude that NSLV-R is significatively better than
GFS-GPG-C and GFS-GCCL-C and there are no
significant differences with respect to GFS-GP-C,

GFS-SP-C and GFS-LogitBoost-C. However, if we
compare these algorithms taking into account the av-
erage expected accuracy (see Figure 9), we can see
that NSLV-R gives by far the best value, with a dif-
ference to the second best algorithm of a 5%.

Fig. 9. Comparison between expected accuracy of fuzzy
classifiers.

6. Conclusions

We have presented a learning algorithm that can be
used to obtain fuzzy relational rules. The basic idea
is to provide the learning algorithm with a more de-
scriptive capacity in the rule model. However, this
increased descriptive capacity means more complex-
ity, therefore we have defined a prior procedure to
determine the most relevant relations to be consid-
ered by the learning algorithm. This procedure in-
volves the use of two filters: a basic filter, which al-
lows the use of expert information and/or particular
information concerning the universe of the variables
to reduce the number of relations that the learning al-
gorithm can consider, and a heuristic filter based on
the use of a measure of information that allows us
to define the most relevant relations given the classi-
fication variable of the problem. Finally, the exper-
imental study shows that the inclusion of fuzzy re-
lational rules is interesting and provides a clear im-
provement in accuracy with respect to other fuzzy-
rule-learning algorithms.
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This work is, however, simply a first step, and it
will therefore be necessary to experiment with more
relations and to improve the efficiency of the process
as a whole. With this in mind our next goals are, first
getting to applied the algorithm to specific problems
to see the contribution that the FRR have on these
problems, and on the other hand, include more rela-
tions in the learning algorithm and ensure that this
does not produce a worsening of the performance of
the algorithm.
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