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Abstract. The cerebellum plays a major role in motor control. It is thought
to mediate the acquisition of forward and inverse internal models of the body-
environment interaction [1]. In this study, the main processing components of
the cerebellar microcomplex are modelled as a network of spiking neural pop-
ulations. The model cerebellar circuit is shown to be suitable for learning both
forward and inverse models. A new coupling scheme is put forth to optimise on-
line adaptation and support offline learning. The proposed model is validated on
two procedural tasks and the simulation results are consistent with data from hu-
man experiments on adaptive motor control and sleep-dependent consolidation
[2, 3]. This work corroborates the hypothesis that both forward and inverse inter-
nal models can be learnt and stored by the same cerebellar circuit, and that their
coupling favours online and offline learning of procedural memories.

1 Introduction

It is largely admitted that the cerebellum plays a major role in motor control (e.g. co-
ordinating movements and making them accurate) by acquiring internal models of the
body and the world [1, 4]. In motor control theory, internal models are divided into
two groups identified as forward and inverse. The forward model predicts the sensory
outcome of an action: it estimates the causal relationship between inputs to the system
and its outputs. The inverse model works in the opposite direction, providing a motor
command that causes a desired change in state [5]. Both forward and inverse models
depend on the dynamics of the motor system and must adapt to new situations and
modifications of the motor apparatus [6].

Although Darlot et al. (1996) [7] suggested that a forward model could be first
formed in the cerebellar cortex and then converted to an inverse model, most of the ex-
isting studies on bioinspired control architectures have compared the advantages of one
type of internal model against the other, debating on which of them is most likely to be
implemented in the cerebellum [8, 9]. Very few works have investigated the benefits of
coupling internal models [10, 11], and none has underlied the fact that internal model
coupling would endow the system with offline learning capabilities. This is quite sur-
prising, given that sleep is known to contribute to offline consolidation and enhancement
of motor adaptation capabilities in humans [12], and that the cerebellum is undoubtedly
implied in these adaptation processes [13].
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Fig. 1. Coupling scheme for online and offline motor learning. (a) Online adaptation. The arm
controller receives the desired state and maps it onto a motor command (τ ). The desired state
is also sent to the inverse model that acts as a feed-forward corrector and calculates the motor
correction (τc). The resulting command (τf ) is then sent to the arm actuators. By comparing the
desired state against the sensed real state, the inverse model learns to reduce the error between
desired and real arm positions. While the motor command τf is being sent to the arm, an efference
copy of the order is also conveyed to the forward model that learns to predict the consequent
future position of the arm. The predicted state is then sent to the arm controller that can recalculate
a new trajectory if the expected position in the trajectory differs from the predicted one. Finally,
the real state is used to adapt the forward model to mimic the motor apparatus of the arm. (b)
Offline adaptation. During offline processing, sensory feedbacks (i.e. the real state signals driving
forward and inverse model learning) are not available. Yet, if the forward model is at least partially
learnt, the predicted state signals can be used to continue to train the inverse model.

This paper proposes a novel scheme to couple internal cerebellar models. The model
is primarily validated on a closed-loop architecture to control the dynamics of a robotic
arm. The overall coupling model is depicted in Fig. 1a, whereas the offline functioning
of the learning scheme is presented in Fig. 1b, under the assumption that the sequence of
actions performed during online training can be replayed offline. This hypothesis relies
on earlier animal investigations that have explored the possibility that patterns of brain
activity which are elicited during initial task training are replayed during subsequent
sleep [14]. The model is prominently assessed on the rotation adaptation task used by
Huber et al. (2004) [3] to study motor learning (both online and offline) in humans. Our
numerical simulations investigate the benefits of using both internal models to improve
online learning capabilities, and they evaluate to what extent the proposed coupling
scheme can explain the experimental findings on offline learning occurring during sleep
[3]. Second, the model is also validated on a significantly different motor adaptation
task, proposed by Walker and Stickfold 2004, in which subjects have to type simple
numerical sequences on a computer keyboard [2]. Again, both the online and offline
learning capabilities of the model are compared to experimental data.

2 Methods

2.1 Cerebellar microcomplex model

The cerebellar microcomplex circuit is modelled as a network of populations of spiking
neurons (Fig. 2) and simulated using an event-driven simulation scheme [15]. Mossy
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Fig. 2. The cerebellar microcomplex model.

fibres (MFs) are implemented as axons of a population of 1600 leaky integrate-and-fire
neurones separated in two regions: Forward and Inverse Model, FM and IM, respec-
tively. Their driving currents are determined by using radial basis functions spanning
the input space uniformly. The MFs of the forward model carry sensory information (θ)
and an efference copy of the motor command τf . The MFs of the inverse model convey
desired joint position θdes and velocity θ̇des [16]. Each MF region activates a corre-
sponding population of 200 neurones in the deep cerebellar nuclei (DCN). Also, each
MF region projects onto a cluster of 10.000 granule cells (GCs), producing a sparse
representation of the input space. Each GC subpopulation activates in turn a population
of 200 Purkinje cells (PCs), which send inhibitory projections onto DCN neurones. The
firing of DCN provides the outputs of the model, i.e. the forward model estimate the
future state of each joints (position θestim and velocity θ̇estim) and the inverse model
correction to be sent to the system (following an agonist-antagonist muscle representa-
tion, one population called agonist coding for the positive correction torque τ+

corr and
one population called antagonist coding for the negative correction torque τ−corr).

The firing rate of DCN units is mainly determined by the inhibitory action of PCs,
which in turn are principally driven by the parallel fibre (PF) activity, axons of the
GCs. Therefore, modifying the strength of the synapses between PFs and PCs results in
changes of the input-output relation characterising the cerebellar system. Bidirectional
long-term plasticity (i.e. potentiation, LTP, and depression, LTD) is modelled at the
level of PF-PC synapses (see fig. 2, plastic synapses).

The LTP is implemented as a non-associative weight increase triggered by each GC
spike, simulating the homosynaptic potentiation rule described by Lev-Ram [17]. As
shown in equation 1, the weight of a GCi -PCj connection is increased by α every
time GC i discharges (δGCi = 1):

wGCi−PCj
(t) = wGCi−PCj

+ αδGCi
(t) (1)

On the other hand, LTD is implemented as an associative weight decrease triggered
by a spike from the inferior olive. This is the heterosynaptic rule described in 1982 by
Ito [18]. This learning rule is presented in the equation 2 and uses a temporal kernel K
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Fig. 3. Overview of the biomimetic control architecture used to learn the rotation adaption task.
(a) Functional diagram of the controller. A desired trajectory to the highlighted target is computed
by the trajectory generator and transformed in the joint-related reference frame via the inverse
kinematics model. These desired arm states are used at each time step to compute a crude torque
command. The desired state is also sent to the inverse model of the cerebellum, whose output
is a corrective command to control arm movements. The cerebellar forward model receives an
efference copy of the motor command, and predicts the future state (position and speed) and
sends it to the trajectory generator. In the coupling scheme, both internal models drive the system.
Trajectory error is sensed at the level of the limb and sent back to the system, which is used to
compute the training signal at the olivary system level and conveyed by the climbing fibres to
both internal models. (b) Experimental task and calculation of error. S: Starting point; E: Ending;
Green dashed line: Ideal movement towards the target; Red line: actual movement.

which correlates each spike from the inferior olive with the past activity of connected
GCs (see [20] for more information).

wGCi−PCj
(tIO) = wGCi−PCj

− β

ˆ tIO

−∞
K(t− tIO)δGCi

(t)dt (2)

In my simulations, α and β parameters are set to 0.1 and 0.025, respectively.
The teaching signal is conveyed by a population of 400 inferior olive (IO) neurones,

simulated to produce the climbing fibre projections targeting PCs. In the inverse model,
the teaching signal relies on the estimated motor errors ε− and ε+, which are extracted
from the discrepancy between the desired state of each joints and their real state (po-
sition θreal and velocity θ̇real). The latter variables are also used to drive the learning
of the forward model. Normally, the real state of the joints is calculated in the central
nervous system using congruent information from proprioceptive and visual sources.
However, in our simulation, the positions and velocities of each joint are known vari-
ables, and corrective signals are directly derived algorithmically.

All the neuronal units of the microcomplex (i.e. GCs, PCs and DCNs) are modelled
as conductance based, leaky integrate-and-fire units [19]. The irregular discharge of the
IO is simulated by means of a Poisson spike-train generation model.



2.2 Global architecture of the system

The global architecture of the generation of arm movement is illustrated in figure 3. We
use the architecture described recently by Carrillo et al. in [20] to control a 2 joints simu-
lated arm in real time. First, a minimum jerk model computes the desired smooth move-
ment of the arm end-point toward the target positioned in (X,Y ). The desired trajectory
is expressed in Cartesian coordinates for the defined time of movement∆t. This desired
movement is then transformed into arm-related coordinates: θdes(t) = (θs,des, θe,des)
are the desired angular position of the shoulder and elbow. Since we use an arm with
only two degrees of freedom, there are no redundancy or inversion problems. As there
is a small chance that cerebellum could play a major role in dealing with these incon-
veniences, the model should still be valid for more complex arm devices.

These coordinates are the input of a crude inverse dynamic controller, which ex-
tracts a set of torque commands τ = (τs, τe), then sent to the articulations with a time
delay δ1 = 50ms. All mathematical solutions of minimum jerk, inverse kinematics and
dynamics model have been taken from [20]. An error is added to the minimum jerk
model, through an added rotation of α degrees at each time step.

Two adaptive internal models encoded by our simulated cerebellum were included
to the system, an inverse and a forward model. In the inverse model scheme, the desired
angular position for both joints are sent to the cerebellum. The model then calculates
a corrective torque signal τc = (τs,c, τe,c) that compensates the rotation error during
the realisation of the movement. The torque command applied to each articulation i is
the sum of the torque τi computed by a basic inverse dynamics model according to the
desired kinematic trajectory, and of the cerebellar correction (τi,c ): τf = τ + τc. These
two commands are then sent to the limbs with a delay δ1 = 50 ms. The error in the
execution of movement is computed at the level of the arm, and sent back to the system
with a delay δ2 = 50 ms. This error is mainly used to determine the learning signal
conveyed by the inferior olive in order to produce anticipative motor corrections.

In the forward model scheme, the simulated cerebellum receives information about
the current state of each articulation (the angular position of the elbow and the shoul-
der θ(t) = (θs, θe)) and an efference copy of the torque command τf = τs,f + τe,f .
The model then predicts the future position and velocity of the articulations (θ(t) =
(θs,est, θe,est) and θ̇(t) = (θ̇s,est, θ̇e,est)). The coordinates are transformed into Carte-
sian coordinates and sent to the trajectory generator (Xp, Yp). This prediction is com-
pared to the expected position of the arm. If there is a discrepancy between the two
positions, the entire movement from the current estimated place is recomputed by the
minimum jerk model. Because this process is supposed to require important neuronal
resources, we limited its use at once every 100ms.

We fixed the duration of the motor execution to 0.7s for each movement, followed
by a pause period of 0.3s during which joints are reset to their central position, and the
activity of the models is allowed to fall back to normal. Because of this short execu-
tion time and taking into consideration the delay of the sensory feedback , we assume
that high level motor correction (recalculation of the entire trajectory) could not be
performed in the absence of a prediction of the sensory feedback signal.



2.3 Main procedural adaptation task

The first simulated task is inspired from the rotation adaptation task realized by Huber
et al. (2004) [3]. In this task human subjects have to move a handheld cursor on a two-
dimensional tablet from a central starting point to one of eight targets displayed on a
computer screen together with the cursor position. An opaque shield prevent subjects
from seeing their arm. Targets are randomly highlighted at regular 1-s intervals. Unbe-
known to the subjects, the cursor position is rotated anticlockwise relative to the hand
position by a fixed angle (from 15 to 60°, depending on the trial, see details below).

We simulate the rotation adaptation experiment in order to study the possible role
of internal model coupling for online learning and offline consolidation. The global
architecture of the simulated arm controller is detailed in Fig. 3a. The ideal trajectory
of the arm is computed according to the minimum jerk model ([21]). In order to learn
the rotation adaptation task (i.e. to compensate for the unknown anticlockwise bias),
two internal models encoded by the modelled cerebellar microcomplex of Fig. 2 form
the core of the adaptive closed-loop controller.

The simulated experimental setup consists of a central position S and eight targets
evenly distributed on a circle centred at position S (Fig. 3b). A trial is defined as the
succession of 90 movements. Each movement starts from S and consists in realising a
movement of the arm to one of the eight targets, which is randomly changed every sec-
ond (1s corresponds to the duration of one target-directed movement in our simulation).

Similar to Huber et al. (2004) [3], the experimental protocol involves four incre-
mental steps, for each of which the angular deviation (bias) is increased by 15°, within
the range [15°, 60°] (see Fig. 4). Every step is composed of three trials. Three groups
(FM, IM, CMoff ) of ten individuals each are trained on the rotation adaptation task.
The FM group uses a pure forward model to solve the task. The IM group employs
a pure inverse model to adapt the response to the unknown angular bias. The CMoff

group uses the coupling scheme.
Following the four training steps, the extent of rotation adaptation of the CMoff

group is tested using an imposed bias of 60° (Trial 13 in Retest 1). Then, simulated
agents are enabled to undergo an offline consolidation process consisting of a series of
48 trials. Subsequently, subjects are retested on a simple trial (Trial 14, retest 2). To
assess the benefit of an offline consolidation process against a pure online learning, per-
formances of the CMoff group are compared to a group of control subjects (CMCTRL)
which do not perform offline consolidation.

Performances are measured by quantifying the directional error (see Fig. 3b), which
corresponds to the angle between the line from the initial hand position (S) to the central
position of the target (T) (dotted green line) and the line to the position of the hand at
the peak outward velocity (solid line).

3 Results

3.1 Rotation adaptation task: online learning

Figs. 5a,b show the learning performances of the three groups FM, IM, and CMoff

during the online training sessions (i.e. step 1-4, trial 1-12) of the rotation adaptation
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task. Fig. 5a displays three examples of arm trajectories towards three different targets.
It shows qualitatively that, at the end of the trial 6, subjects using the coupling scheme
(CMoff , green solid line) tend to perform better than both subjects using the inverse
model only (IM, red dashed line) and subjects using the forward model only (FM, blue
dotted line).

Fig. 5b quantifies these results for the entire set of training trials by averaging over
all subjects. The mean normalised directional error is plotted as a function of training
trials. The three groups of subjects learn to solve the rotation adaptation task and cope
with the increasing unknown angular bias (from 15° to 60°) over training steps. Forward
model subjects (FM, blue dotted curves) adapt quite rapidly but they reach a plateau
after the 2nd trial and do not further reduce the error over training. The passage to a new
step (i.e. trials 4,7 and 10) does not have a significant impact on the FM performances
and leads to a small increase of the directional error (+8% between trial 3 and 4; +6%
between trial 6 and 7; and +2% between trial 9 and 10), which reflects the fast learning
capabilities of FM subjects. However, subsequent training trials do not significantly
decrease the error, which stabilises around 0.45-0.5 until the end of the training process
(trial 12).

On the other hand, inverse model subjects (IM, red dashed curves) are slightly
slower to adapt than FMs, but they succeed in minimising the directional error within
each training session, going beyond the performances of purely FM subjects. Adapta-
tion of IM subjects is rather characteristic and stereotyped during steps 2, 3, and 4 (i.e.
for angular deviation ranging from 30° to 60°). Every time the angular bias is increased
(i.e. trials 4,7 and 10), the performances of the inverse model are impaired and direc-
tional error increases (between 0.43 and 0.47). This result reflects the slow adaptation
capability of the inverse model when facing new contexts. Then, during the 2nd and 3rd

trials of each step, the inverse model adapts properly and the directional error decreases
significantly (converging to accuracy values ranging from 0.25 to 0.3).

Finally, the subjects using the coupled internal models (CMoff , green solid curves)
perform better than both IM and FM subjects along the entire training period, showing
both fast adaptability and error reduction over time. The mean error rises slightly when
the angular bias changes (i.e. trials 4,7 and 10) but then it decreases significantly and
converges to values ranging from 0.15 to 0.2. Fig. 5b also displays the learning perfor-
mances of human subjects (yellow data points) as reported by Huber et al. (2004) [3].
It is shown that the simulated CMoff subjects (green data) have online learning per-
formances comparable to those of real subjects over the entire training process. These
results suggest that the proposed coupling scheme, which favours the cooperation be-
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Fig. 5. Rotation adaptation task. Simulation results for both online and offline learning and com-
parison with experimental human data. (a) Example of three target-directed trajectories at the
end of trial 6. The system has to adapt its dynamics to compensate for an angular bias of 30°.
The blue dotted (resp. red dashed) lines indicate the sample solutions found by purely forward
(resp. inverse) model simulated subjects, respectively. The green solid lines denote the trajec-
tories obtained with the coupling scheme model. (b) Results of online learning. The coupling
model (green solid curves) provides both rapid adaptation and appropriate convergence levels.
Also, it reproduces the experimental data obtained with human subjects undertaking the same
rotation adaptation task (yellow data, taken from Huber et al. (2004) [3]. (c) Offline learning
results. The mean error is significantly reduced in the group of simulated subjects that undergo
offline consolidation. The experimental results obtained with real subjects (offline corresponds to
sleep-dependent consolidation) are shown in yellow (taken from Huber et al. (2004) [3]). ***Sig-
nificant values, p<0.001.

tween internal predictor and corrector models, offers a plausible solution to optimise
procedural motor learning.

3.2 Rotation adaptation task: Offline learning and consolidation

As aforementioned, another potential advantage of the coupling scheme is that it sup-
ports offline learning assuming that the sequence of actions executed during online
training can be replayed offline [14]. In order to assess whether an offline consolidation
process can further increase the system performances reached at the end of the online
adaptation protocol, 2 groups of 10 simulated subjects are considered. Both groups con-
sist of subjects adopting the coupling scheme (CM). However, one group (CMoff ) is
allowed to undergo offline learning, whereas the other (CMCTRL) is not.

The Fig. 4 shows the protocol. Both groups (CMoff and CMCTRL) undertake the
12 training trials. A first probe test (trial 13) is executed to evaluate the extent of the
online rotation adaptation in both groups. Then, subjects from group CMoff undergo a
simulated offline learning process consisting of a set of 48 trials (4320 trajectories ran-
domly replayed) during which no sensory feedback is provided to the system. There-
fore, the learning signal can only be computed based on the prediction provided by the
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forward model, and the inverse model can adapt its dynamics only when this teaching
information is available. Finally, both groups CMoff and CMCTRL undertake a second
probe test (trial 14) and their performances are compared.

Fig. 5c shows the results of this comparison both from our simulations and from
experimental data obtained on human subjects [3]. A repeated measure analysis of vari-
ance and post-hoc tests show that the two groups have similar performances during the
first probe test (i.e. when tested immediately after online training, trial 13). On the other
hand, the second probe test (trial 14) shows that the mean directional error of CMoff

subjects is significantly reduced compared to control subjects. Compared to the first
probe test (trial 13), a performance enhancement of 12.7 ± 2.1 % is reached by CMoff

subjects. By contrast, control subjects exhibit a lower performance improvement of 5.2
± 1 %. The increase of performance of simulated CMoff subjects is consistent to that
observed experimentally on human subjects after a night of sleep (yellow data, +11 ±
3 % [3]). Since all parameters were controlled in our simulation, the improvement we
report could only be explained by the offline consolidation process, and not by other
factors such as circadian cycle. However, simulated control subjects appear to have bet-
ter performances during the probe test (trial 14) compared to human subjects tested
again after 8 hours of wakefulness, who do not show any significant improvement.



3.3 Cross-task validation. Results on a ‘sequential finger tapping task’

In order to further validate the coupling scheme model, a second (totally different)
procedural task was simulated: the sequential finger tapping task proposed by Walker
and Stickfold (2004) [2].

This task requires subjects to press four numeric keys on a standard computer key-
board with the fingers of their non-dominant hand. A five elements sequence, 4-1-3-2-4,
must be repetead as quickly and accurately as possible for a period of 30 s. Each 30 s
trial is then scored according to the number of complete sequences achieved. The entire
training consists of 12 trials (with 30 s rest periods between trials). The score from the
first training trial is taken as a baseline, while the score from the final trial is taken as
the post-training performance. 30 simulated subjects are allocated into 2 groups (A and
B). Group A undergoes online adaptation only, whereas group B undergoes both online
and offline learning.

The protocol and results are presented in Figs. 6a, and b,c, respectively. Subjects
from groups A and B show similar performance improvement across the 12 training tri-
als, with a non significant difference of 4.8% observed at the end of training (Figs. 6b).
Overall performances improved by about 64% across the 12 training trials, with 40%
occurring across the first three trials, and the remaining 24% occurring at a slower but
relatively constant rate across the final ten trials. Figs. 6c illustrates the effect of offline
learning and consolidation. It is shown that subjects from group B, after offline train-
ing, exhibit a significant improvement compared to control group A (probe test 1). They
display no further significant improvement with additional online training (probe test
2).

Figs. 6b,c also show the correspondance between simulation results and experimen-
tal data obtained on human subjects [2].

4 Discussion

This work addresses the issue of coupling internal models (i.e. forward and inverse) in
the cerebellum in order to enhance both online and offline learning capabilities. The
proposed connectionist architecture takes inspiration from the cerebellar microcomplex
circuit and it employs spiking neural populations to process information. Long-term
synaptic plasticity (both LTP and LTD) is implemented to achieve adaptive motor con-
trol. It is shown that the system can acquire representations of closed-loop sensorimotor
interactions, suitable to adapt the behavioural response to changing sensory contexts.

The coupling model reproduces the experimental findings on human procedural
learning during the rotation adaptation task proposed by Huber et al. (2004) [3]. The
sleep-dependent consolidation observed experimentally is mimicked here by an offline
learning phase during which a replay of the contextual information elicited during on-
line training occurs. This hypothesis is corroborated by several experimental studies:
for example, it has been shown that patterns of activity recorded during online practice
of a motor skill task reappear during episodes of REM sleep, while such activity is not
seen in control subjects [14].

The same architecture is also validated on a second procedural task (i.e. the se-
quential finger tapping task proposed by Walker and and Stickfold 2004 [2]), which



strengthens the idea that the proposed coupling scheme may offer a plausible model to
(i) combine the advantages from fast online adaptation properties of forward models
and accurate but slower convergence of inverse models, and (ii) achieve offline consol-
idation of procedural memories to enhance motor control capabilities.

In both cases, the model cerebellar microcomplex is used to adapt the dynamics of a
fairly simple controller (e.g. two degrees of freedom arm). The model would probably
need more neuronal resources to deal with more complex motor control tasks. One
possible solution may be to use a modular approach as previously proposed by Wolpert
and Kawato (1998) [10]. The coupling model would then be taken as a functional unit,
and various behaviours could be generated by combining the output of several units.
Because one unit could be used in different contexts, a large repertoire of behaviours
could be generated, even with a limited number of modules.

Other questions related to the offline consolidation process can be further investi-
gated using our model. As we observed, a sufficiently long offine consolidation leads to
an improvement of overall performances. This observation raises a fundamental ques-
tion concerning how the potential improvement varies as a function of the duration
of the offline process. Finally, in our simulations to solve the rotation adaptation task,
for instance, random sequences of entire trajectories were replayed when performing
offline consolidation. It remains to be elucidated how the benefits of offline learning
would vary if contextual information were only partially replayed. This question is cur-
rently under investigation using the presented coupling model.

To conclude, we voluntary omitted the role of the parietal lobe in this study, al-
though this region is known to be implicated in target reaching tasks, and more gener-
ally in motor prediction processes (for a good review see [22]). The differential roles in
prediction of the cerebellum and the parietal lobe are still under debate, and it is highly
possible that these two structures work as a functional loop for predicting the sensory
consequences of movement and making adequate corrections. It has been previously
suggested that one of the distinctions may be that, contrary to the predictions made
by the cerebellum, those of the parietal cortex would be made available to awareness
[22]. However, to the best of our knowledge, this is still highly speculative, and has
not been validated yet. A complementary view stresses the fact that the parietal cortex
could be more involved in the comparison between sensory and motor information by
maintaining the anticipated sensory consequence of the movement, this prediction be-
ing made by forward models located inside the cerebellum [23]. If this hypothesis were
to prove true, then it would give insights on (1) how the teaching signal sent to drive
learning of internal inverse models could be computed, and (2) why a strong correlation
between the increase of slow wave activity in parietal cortex areas during sleep and the
performance improvement after sleep are reported in procedural tasks [3]. An extended
version of the coupling scheme could therefore integrate a simplified model of the pari-
etal lobe, which could help to dissociate the role of both structures during online and
offline motor adaptation.

References

[1] Ito, M.: The Cerebellum and Neural Control. Raven Press, New York (1984)



[2] Walker, M.P., Stickgold, R.: Sleep-dependent learning and memory consolidation. Neuron
44(1) 121–133

[3] Huber, R., Ghilardi, M.F., Massimini, M., Tononi, G.: Local sleep and learning. Nature
430(6995) 78–81

[4] Kawato, M., Furukawa, K., Suzuki, R.: A hierarchical neural-network model for control
and learning of voluntary movement. Biol Cybern 57 (1987) 169–185

[5] Kawato, M.: Internal models for motor control and trajectory planning. Curr. Opin. Neu-
robiol. 9 718–727

[6] Lalazar, H., Vaadia, E.: Neural basis of sensorimotor learning: modifying internal models.
Current Opinion in Neurobiology 18(6) 573–581

[7] Darlot, C., Zupan, L., Etard, O., Denise, P., Maruani, A.: Computation of inverse dynamics
for the control of movements. Biological Cybernetics 75(2) 173–186

[8] Pasalar, S., Roitman, A.V., Durfee, W.K., Ebner, T.J.: Force field effects on cerebellar
purkinje cell discharge with implications for internal models. Nature Neuroscience 9(11)
1404–1411

[9] Dean, P., Porrill, J., Ekerot, C., Jorntell, H.: The cerebellar microcircuit as an adaptive
filter: experimental and computational evidence. Nat Rev Neurosci 11(1) (2010) 30–43

[10] Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control.
Neural Networks 11(7-8) 1317–1329

[11] Kawato, M., Kuroda, T., Imamizu, H., Nakano, E., Miyauchi, S., Yoshioka, T.: Internal
forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog.
Brain Res. 142 (2003) 171–188

[12] Stickgold, R.: Sleep-dependent memory consolidation. Nature 437(7063) 1272–1278
[13] Ito, M.: Historical review of the significance of the cerebellum and the role of purkinje

cells in motor learning. Ann. N. Y. Acad. Sci. 978 273–288
[14] Maquet, P., Schwartz, S., Passingham, R., Frith, C.: Sleep-related consolidation of a visuo-

motor skill: brain mechanisms as assessed by functional magnetic resonance imaging. The
Journal of Neuroscience 23(4) 1432–1440

[15] Ros, E., Carrillo, R., Ortigosa, E.M., Barbour, B., Agis, R.: Event-driven simulation scheme
for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural
Computation 18(12) 2959–2993

[16] Ito, M.: Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78 (2006) 272–303
[17] Lev-Ram, V., Wong, S.T., Storm, D.R., Tsien, R.Y.: A new form of cerebellar long-term

potentiation is postsynaptic and depends on nitric oxide but not cAMP. PNAS 99(12)
8389–8393

[18] Ito, M., Sakurai, M., Tongroach, P.: Climbing fibre induced depression of both mossy
fibre responsiveness and glutamate sensitivity of cerebellar purkinje cells. The Journal of
Physiology 324(1) (1982) 113–134

[19] Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Mod-
eling of Neural Systems. The MIT Press

[20] Carrillo, R.R., Ros, E., Boucheny, C., Coenen, O.J.D.: A real-time spiking cerebellum
model for learning robot control. Bio Systems 94(1-2) (November 2008) 18–27 PMID:
18616974.

[21] Viviani, P., Flash, T.: Minimum-jerk, two-thirds power law, and isochrony: converging
approaches to movement planning. J Exp Psychol Hum Percept Perform 21 32–53

[22] Blakemore, S.J., Sirigu, A.: Action prediction in the cerebellum and in the parietal lobe.
Exp Brain Res 153 239–245

[23] MacDonald, P.A., Paus, T.: The role of parietal cortex in awareness of self-generated move-
ments: a transcranial magnetic stimulation study. Cereb. Cortex 13 962–967


