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In many real application areas, the data used are highly skewed and the number of
instances for some classes are much higher than that of the other classes. Solving a classi-
fication task using such an imbalanced data-set is difficult due to the bias of the training
towards the majority classes.

The aim of this paper is to improve the performance of fuzzy rule based classification sys-
tems on imbalanced domains, increasing the granularity of the fuzzy partitions on the
boundary areas between the classes, in order to obtain a better separability. We propose
the use of a hierarchical fuzzy rule based classification system, which is based on the
refinement of a simple linguistic fuzzy model by means of the extension of the structure
of the knowledge base in a hierarchical way and the use of a genetic rule selection process
in order to get a compact and accurate model.

The good performance of this approach is shown through an extensive experimental
study carried out over a large collection of imbalanced data-sets.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Throughout the last years, the classification problem in the framework of imbalanced data-sets has been identified as an
important problem in Data Mining [8,46]. This problem occurs when the number of instances of one class is much lower than
the instances of the other classes. This phenomenon is growing in importance since it appears in most of the real domains of
classification such as fraud detection [16], detection of oil spills from satellite images [31], prediction of pre-term births [21],
or medical diagnosis [5].

When learning from imbalanced data-sets, the tendency is that the classifier might obtain a high predictive accuracy over
the majority class, but might predict poorly over the minority class [43]. Furthermore, the minority class examples can be
treated as noise and they can be completely ignored by the classifier. There are studies that show that most classification
methods lose their classification ability when dealing with imbalanced data [30,33].

Our previous work on the topic [18] showed the good behaviour obtained by fuzzy rule based classification systems
(FRBCSs) in the framework of imbalanced data-sets, by means of the application of a preprocessing step in order to balance
the training data before the rule generation phase. We determined the robustness of this approach specially when increasing
the imbalance degree.
. All rights reserved.
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In this paper, we propose a hierarchical environment to improve the behaviour of linguistic FRBCSs. This approach pre-
serves the original descriptive power and increases its accuracy by reinforcing those problem subspaces that are specially
difficult. Therefore, we focus our efforts in enhancing the classification performance in the boundary areas of the problem,
obtaining a good separability between the minority and majority classes.

We consider the modification of the knowledge base (KB) structure using the concept of ‘‘layers” that was introduced in
[12], defined by the authors as hierarchical knowledge base (HKB). We propose a two-level learning method for obtaining a
hierarchical fuzzy rule base classification system (HFRBCS) by means of two processes:

1. A linguistic rule generation (LRG) method is used to create the initial rule base (RB), from which we extract the hier-
archical rule base (HRB).

2. A genetic algorithm (GA) is employed to select the best cooperative rules from the HRB.

This type of models are usually known as genetic fuzzy systems [23], which are an emerging tool during the last years
with very good results from the optimization point of view of fuzzy models [1,10,36].

To obtain the initial linguistic fuzzy models, we will employ a simple inductive LRG-method, the Chi et al.’s method [9],
that extends the well-known Wang and Mendel method [42] to classification problems. According to the decisions taken in
our previous work [18], we will use triangular membership functions for the fuzzy partitions and rule weights in the con-
sequent of the rules. We will also apply a re-sampling procedure to prepare the training data for the learning process, spe-
cifically using the ‘‘Synthetic Minority Over-sampling Technique” (SMOTE) [7]. In any case, we will also study the effect of
preprocessing in the performance of HFRBCSs by contrasting the results obtained using the original data-sets against the
ones obtained with the SMOTE algorithm.

We will analyze the behaviour of our HFRBCS proposal comparing its results with a linguistic FRBCS generated by a com-
mon approach [29], and a new one, the E-Algorithm [45], which is an extension of the previous method to generate an FRBCS
adapted to imbalanced data-sets. We will also include the C4.5 decision tree [35] in our experimental study; thus, we will
show that the HFRCBS is a very robust method in the framework of imbalanced data-sets when compared not only with
other fuzzy systems, but also with a well-known machine learning algorithm. Furthermore, in this study we make use of
some non-parametric tests [13] for statistical comparisons of the performance of these classifiers.

For the empirical analysis, we have considered 44 data-sets from UCI repository [2], making a division between two de-
grees of imbalance (low and high imbalance) according to the imbalance ratio (IR) [32], which is defined as the ratio of the
number of instances of the majority class and the minority class. Multi-class data-sets are modified to obtain two-class non-
balanced problems, defining the joint of one or more classes as positive and the joint of one or more classes as negative.

This paper is set up as follows. Section 2 introduces the imbalanced data-set problem, describing the preprocessing tech-
nique for imbalanced data-sets used in this work and discussing the evaluation metric used for this type of data. In Section 3,
we describe our proposal and we present a methodology to automatically design an HFRBCS from a generic LRG-method in
the framework of imbalanced data-sets. In Section 4 we include our experimental analysis where we first analyze the effect
of preprocessing, and then we compare the performance of our model with the remaining FRBCSs methods and with C4.5 in
order to validate our results in imbalanced data-sets with different IR. In Section 5 some concluding remarks are pointed out.
Finally, we include two appendices with the description of the non-parametric tests used in our study and the detailed re-
sults for the experiments carried out in the experimental study, respectively.

2. Imbalanced data-sets in classification

In this section, we will first introduce the problem of imbalanced data-sets. Then, we will describe the preprocessing tech-
nique that we have applied in order to deal with the imbalanced data-sets: the SMOTE algorithm [7]. Finally, we will present
the evaluation metrics for this kind of classification problem.

2.1. The problem of imbalanced data-sets

Learning from imbalanced data is an important topic that has recently appeared in the machine learning community.
When treating with imbalanced data-sets, one or more classes might be represented by a large number of examples whereas
the others are represented by only a few.

We focus on the binary-class imbalanced data-sets, where there is only one positive and one negative class. We consider
the positive class as the one with the lowest number of examples and the negative class the one with the highest number of
examples. Furthermore, in this work we use the IR [32], defined as the ratio of the number of instances of the majority class
and the minority class, to organize the different data-sets according to their IR.

The problem of imbalanced data-sets is extremely significant because it is implicit in most real world applications, such
as fraud detection [16], text classification [41], risk management [25] or medical applications [22].

In classification, this problem (also named the ‘‘class imbalance problem”) will cause a bias on the training of classifiers
and will result in the lower sensitivity of detecting the minority class examples. For this reason, a large number of ap-
proaches have been previously proposed to deal with the class imbalance problem. These approaches can be categorized into
two groups: the internal approaches that create new algorithms or modify existing ones to take the class imbalance problem
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into consideration [3,45] and external approaches that preprocess the data in order to diminish the effect cause by their class
imbalance [4,15].

The internal approaches have the disadvantage of being algorithm specific, whereas external approaches are independent
of the classifier used and are, for this reason, more versatile. Furthermore, in our previous work on this topic [18] we ana-
lyzed the cooperation of some preprocessing methods with FRBCSs, showing a good behaviour for the over-sampling meth-
ods, specially in the case of the SMOTE methodology.

According to this, we will employ in this paper the SMOTE algorithm in order to deal with the problem of imbalanced
data-sets. This method is detailed in the next subsection.

2.2. Preprocessing imbalanced data-sets. The SMOTE algorithm

As mentioned before, applying a preprocessing step in order to balance the class distribution is a positive solution to the
imbalance data-set problem [4]. Specifically, in this work we have chosen an over-sampling method which is a reference in
this area: the SMOTE algorithm [7].

In this approach the minority class is over-sampled by taking each minority class sample and introducing synthetic exam-
ples along the line segments joining any/all of the k minority class nearest neighbours. Depending upon the amount of over-
sampling required, neighbours from the k-nearest neighbours are randomly chosen. This process is illustrated in Fig. 1,
where xi is the selected point, xi1 to xi4 are some selected nearest neighbours and r1 to r4 the synthetic data points created
by the randomized interpolation. The implementation employed in this work uses only one nearest neighbour using the
euclidean distance, and balance both classes to the 50% distribution.

Synthetic samples are generated in the following way: take the difference between the feature vector (sample) under con-
sideration and its nearest neighbour. Multiply this difference by a random number between 0 and 1, and add it to the feature
vector under consideration. This causes the selection of a random point along the line segment between two specific fea-
tures. This approach effectively forces the decision region of the minority class to become more general. An example is de-
tailed in Fig. 2.

In short, its main idea is to form new minority class examples by interpolating between several minority class examples
that lie together. Thus, the overfitting problem is avoided and causes the decision boundaries for the minority class to spread
further into the majority class space.

2.3. Evaluation in imbalanced domains

The measures of the quality of classification are built from a confusion matrix (shown in Table 1) which records correctly
and incorrectly recognized examples for each class.

The most used empirical measure, accuracy (1), does not distinguish between the number of correct labels of different
classes, which in the framework of imbalanced problems may lead to erroneous conclusions. For example a classifier that
obtains an accuracy of 90% in a data-set with an IR value of 9, might not be accurate if it does not cover correctly any minor-
ity class instance.
Acc ¼ TP þ TN
TP þ FN þ FP þ TN

: ð1Þ
Because of this, instead of using accuracy, more correct metrics are considered. Two common measures, sensitivity and spec-
ificity (2,3), approximate the probability of the positive (negative) label being true. In other words, they assess the effective-
ness of the algorithm on a single class.
sensitivity ¼ TP
TP þ FN

; ð2Þ

specificity ¼ TN
FP þ TN

: ð3Þ
The metric used in this work is the geometric mean of the true rates [3], which can be defined as
GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FN

� TN
FP þ TN

r
: ð4Þ
Fig. 1. An illustration on how to create the synthetic data points in the SMOTE algorithm.



Fig. 2. Example of the SMOTE application.
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This metric attempts to maximize the accuracy of each one of the two classes with a good balance. It is a performance metric
that links both objectives.

3. Hierarchical fuzzy rule based classification system

In this section we will describe our algorithm proposal to obtain an HFRBCS, which is based on two processes:

1. HKB generation process: An HRB is created from a simple RB obtained by an LRG-method.
2. HRB genetic selection process: The best cooperative rules are selected by means of a GA.

In the following subsections we will first introduce the type of rules, rule weights and inference model used in this work.
Next, we will describe each one of processes to obtain an HFRBCS, explaining in detail all their characteristics.

3.1. Fuzzy rule based classification systems

Any classification problem consists of m training patterns xp = (xp1, . . . ,xpn), p = 1, 2, . . ., m from M classes where xpi is the
ith attribute value (i = 1, 2, . . ., n) of the pth training pattern.

In this work we use fuzzy rules of the following form for our FRBCSs:
Table 1
Confusi

Positive
Negativ
Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class ¼ Cj with RWj; ð5Þ
where Rj is the label of the jth rule, x = (x1, . . . ,xn) is an n-dimensional pattern vector, Aji is an antecedent fuzzy set (we use
triangular membership functions), Cj is a class label, and RWj is the rule weight.

In the specialized literature rule weights have been used in order to improve the performance of FRBCSs [27]. In this work,
following the conclusions extracted in [18], we employ as heuristic method for the rule weight the penalized certainty factor
[29]:
RWj ¼
P

xp2ClassCj
lAj
ðxpÞPm

p¼1lAj
ðxpÞ

�
P

xpRClassCj
lAj
ðxpÞPm

p¼1lAj
ðxpÞ

: ð6Þ
We use the fuzzy reasoning method (FRM) of the winning rule (classical approach) [11] for classifying new patterns by the
RB. The single winner rule Rw is determined for a new pattern xp = (xp1, . . . ,xpn) as
lwðxpÞ � RWw ¼ maxfljðxpÞ � RWjg; xp 2 X; j ¼ 1 . . . L: ð7Þ
The new pattern xp is classified as Class Cw, which is the consequent class of the winner rule Rw. If multiple fuzzy rules
have the same maximum value but different consequent classes for the new pattern xp in (7), the classification of xp is re-
jected. The classification is also rejected if no fuzzy rule is compatible with the new pattern xp.

3.2. Hierarchical systems of linguistic rules

This approach presents a more flexible KB structure that allows to improve the accuracy of the FRBCSs without losing
their interpretability: the HKB, which is composed of a hierarchical data base (HDB) and an HRB.
on matrix for a two-class problem.

Positive prediction Negative prediction

class True positive (TP) False negative (FN)
e class False positive (FP) True negative (TN)
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The description of the HKB and the two-level learning method to generate an HFRBCS are introduced in the following two
subsections.

3.2.1. Hierarchical knowledge base
The HKB [12] is composed of a set of layers, and each layer is defined by its components in the following way:
layerðt;nðtÞÞ ¼ DBðt;nðtÞÞ þ RBðt;nðtÞÞ; ð8Þ
with n(t) being the number of linguistic terms in the fuzzy partitions of layer t,DB(t,n(t)) being the data base (DB) which con-
tains the linguistic partitions with granularity level n(t) of layer t (t-linguistic partitions), and RB(t,n(t)) being the RB formed
by those linguistic rules whose linguistic variables take values in DB(t,n(t)) (t-linguistic rules). For the sake of simplicity in
the descriptions, the following notation equivalences are established:
DBðt;nðtÞÞ � DBt and RBðt;nðtÞÞ � RBt : ð9Þ
At this point, we should note that, in this work, we are using linguistic partitions with the same number of linguistic terms
for all input variables, composed of symmetrical triangular-shaped and uniformly distributed membership functions (see
Fig. 1). The number of linguistic terms in the t-linguistic partitions is defined in the following way:
nðtÞ ¼ ðnð1Þ � 1Þ � 2t�1 þ 1; ð10Þ
with n(1) being the granularity of the initial fuzzy partitions.
Fig. 3 (left) graphically depicts the way in which a linguistic partition in DB1 becomes a linguistic partition in DB2. Each

term of order k from DBt ; SnðtÞ
k (Snð1Þ

k in the figure), is mapped into the fuzzy set S2�nðtÞ�1
2k�1 ; preserving the former modal points,

and a set of n(t) � 1 new terms is created, each one between SnðtÞ
k and SnðtÞ

kþ1 (k = 1, . . . ,n(t) � 1) (see Fig. 3 right).
The main purpose of developing an HRB is to divide the problem space in a more accurate way. To do so, those linguistic

rules from RB(t,n(t)) – RBt – that classify a subspace with bad performance are expanded into a set of more specific linguistic
rules, which become their image in RB(t + 1,2 � n(t) � 1) – RBt+1 – this set of rules classify the same subspace that the former
one and replaces it. As a consequence of the previous definitions, we could now define the HKB as the union of every layer t:
HKB ¼ [t layerðt;nðtÞÞ: ð11Þ
In this paper, we will just consider a two-layer HKB which allows us to produce a refinement of simple FRBCS to increase
their accuracy, preserving their structure and descriptive power, and reinforcing only the classification of those problem sub-
spaces with more difficulties by a hierarchical treatment of the rules generated in these zones.

3.2.2. Two-level learning method for building HFRBCSs
In this subsection, we present the two-level learning method to generate two-layer HKBs [12]. To do so, we consider the

existence of a set X of m training patterns xp = (xp1, . . . ,xpn), p = 1, 2, . . ., m from M classes where xpi is the ith attribute value
(i = 1, 2, . . ., n) of the pth training pattern.

We use an existing inductive LRG-method and a previously defined DB1. Specifically, we consider as LRG-method the Chi
et al. [9] approach, that will lead us to obtain simple linguistic fuzzy models, although any other technique could be used.

Two measures of error are used in the algorithm: a global measure, which is used to evaluate the complete RB, and a local
measure, used to determine if an individual rule is expanded. Their expressions are defined below:
Fig. 3. Two-layers of linguistic partitions which compose the HDB and mapping between terms from successive DBs.
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1. Global measure. We will employ the accuracy per class (sensitivity or specificity), computed as:
Table 2
Two-lev

Hierarc
Ste
Ste
Ste

Hierarc
Ste
Acci Xi;RBð Þ ¼ j fxp 2 Xi=FRMðxp;RBÞ ¼ ClassðxpÞg j
j Xi j

; ð12Þ
where j�j is the number of patterns, with Xi being the subset of examples of the ith class (i 2 1 . . . M), FRM(xp,RB) is the output
class computed following the fuzzy reasoning process using the current RB and Class(xp) is the class label for example xp.
2. Local measure. The accuracy for a simple rule, Rnð1Þ

j , calculated over X, is showed as follows:
AccðX;Rnð1Þ
j Þ ¼

Xþ Rnð1Þ
j

� ���� ���
X Rnð1Þ

j

� ���� ��� ; ð13Þ

Xþ Rnð1Þ
j

� �
¼ xp 2 X=lRnð1Þ

j
ðxpÞ > 0 and ClassðxpÞ ¼ Class Rnð1Þ

j

� �� �
; ð14Þ

X Rnð1Þ
j

� �
¼ fxp 2 X=lRnð1Þ

j
ðxpÞ > 0g; ð15Þ
where Class(�) is a function that provides the class label for a pattern, or for a rule. We must note that Xþ Rnð1Þ
j

� �
and X Rnð1Þ

j

� �
only include those examples that the rule actually classifies, because we are using as FRM the winning rule approach.

Now we will describe the HKB generation process (summarized in Table 2), which basically consists of the following
steps:

Step 0: RB1 Generation. Generate the rules from DB1 by means of an existing LRG-method: RB1 = LRG �method(DB1,X).
Step 1: RB2 Generation. Generate RB2 from RB1, DB1 and DB2.

(a) Calculate the global error of RB1 per class: Acci(Xi,RB1),i = 1, . . . ,M.
(b) Calculate the local error of each 1-linguistic rule: AccðX;Rnð1Þ

j Þ.
(c) Select the 1-linguistic rules with bad performance which will be expanded (the expansion factor a may be adapted in

order to have more or less expanded rules):
el lea

hical k
p 0. RB
p 1. RB
p 2. Su
hical r
p 3. H
If Acc X;Rnð1Þ
j

� �
6 ð1� aÞ � AcciðXi;RB1ÞThen Rnð1Þ

j 2 RB1
bad

Else Rnð1Þ
j 2 RB1

good;
ð16Þ
where ClassðRnð1Þ
j Þ ¼ i.

(d) Create DB2.
(e) For each bad performance 1-linguistic rule to be expanded, Rnð1Þ

j 2 RBbad:
(i) Select the 2-linguistic partitions terms from DB2 for each rule. For all linguistic terms considered in Rnð1Þ

j , i.e., Snð1Þ
jk

defined in DB1, select those terms S2�nð1Þ�1
h in DB2 that significantly intersect them. We consider that two lin-

guistic terms have a ‘‘significant intersection” between each other, if the maximum cross level between their
fuzzy sets in a linguistic partition overcomes a predefined threshold d:
rnin

now
(1,
(2,2
mm

ule b
RB g
I Snð1Þ
jk

� �
¼ S2�nð1Þ�1

h 2 DB2=max
u2Uk

min lSnð1Þ
jk
ðuÞ;lS2�nð1Þ�1

h
ðuÞ

� �
P d

� �
; ð17Þ
where d 2 [0,1].
(ii) Combine the previously selected s sets I Snð1Þ

jk

� �
by the following expression:
I Rnð1Þ
j

� �
¼ I Snð1Þ

j1

� �
� � � � � I Snð1Þ

js

� �
: ð18Þ
(iii) Extract 2-linguistic rules, which are the expansion of the bad 1-linguistic rule Rnð1Þ
j . This task is performed by the

LRG-method, which takes I Rnð1Þ
j

� �
and the set of examples X Rnð1Þ

j

� �
as its parameters:
CLRðRnð1Þ
j Þ ¼ LRG-method I Rnð1Þ

j

� �
; X Rnð1Þ

j

� �� �
¼ R2�nð1Þ�1

j1
; . . . ;R2�nð1Þ�1

jL

n o
ð19Þ
g method.

ledge base generation process
n(1)) Generation process
� n(1)-1) Generation process

arization process
ase genetic selection process
enetic selection process
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with CLR Rnð1Þ
j

� �
being the image of the expanded linguistic rule Rnð1Þ

j , i.e., the candidates to be in the HRB from
rule Rnð1Þ

j .

Step 2: Summarization. Obtain a Joined set of Candidate linguistic rules (JCLR), performing the union of the group of the new

generated 2-linguistic rules and the former good performance 1-linguistic rules:
JCLR ¼ RB1
good [ ð[jCLRðRnð1Þ

j ÞÞ; Rnð1Þ
j 2 RB1

bad:
Example. In the following, we show an example of the whole expansion process. Let us consider n(1) = 3 and the following
linguistic partitions:
DBð1;3Þ ¼ fS3;M3; L3g;
DBð2;5Þ ¼ fVS5; S5;M5; L5;VL5g;
where S stands for Small, M for Medium, L for Large, and V for Very. Let us consider the following bad performance 1-linguistic
rule to be expanded (see Fig. 4):
R3
i : IF x1 is S3

i1 AND x2 is S3
i2 THEN Class ¼ C with RWi;
where the linguistic terms are, S3
i1 ¼ S3; S3

i2 ¼ S3, and the resulting sets I with d = 0.5 are:
IðS3
i1Þ ¼ fVS5; S5g; IðS3

i2Þ ¼ fVS5; S5g;
IðR3

i Þ ¼ IðS3
i1Þ � IðS3

i2Þ:
Therefore, it is possible to obtain at most four 2-linguistic rules generated by the LRG-method from the expanded R3
i :n o
LRGðIðR3
i Þ; XðR3

i ÞÞ ¼ R5
i1;R

5
i2;R

5
i3;R

5
i4 :
This example is graphically showed in Fig. 4. In the same way, other bad performance neighbour rules could be expanded
simultaneously.
Step 3: HRB Selection. Simplify the set JCLR by removing the unnecessary rules from it and generating an HRB with good cooper-

ation. In JCLR – where rules of different hierarchical layers coexist-, it may happen that a complete set of 2-linguistic
rules which replaces an expanded 1-linguistic rule does not produce good results. However, a subset of this set of 2-
linguistic rules may work properly. A genetic process is considered to put this task into effect, which is explained on
detail in the next subsection.
HRB ¼ Selection Process ðJCLRÞ:
After applying this algorithm, the HKB is obtained as:
HKB ¼ HDBþHRB:
Fig. 4. Example of the HRB generation process.
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Remark 1. About repeated 2-linguistic rules. As a consequence of the previous DB2 generation policy, which is based on
selecting those terms in DB2 which significantly intersect the ones of the bad rule, repeated 2-linguistic rules can be
generated as a consequence of the expansion of adjacent bad 1-linguistic rules. If they are exactly the same we will eliminate
one of the rules. On the other hand, if they have a different class in their consequent part, the rule with a higher rule weight
remains in the RB whereas the other is removed.
3.3. Hierarchical rule base genetic rule selection process

In the previous section we have mentioned that an excessive number of rules may not produce a good performance and it
makes difficult to understand the model behaviour. We may find different types of rules in a large fuzzy rule set: irrelevant
rules, which do not contain significant information; redundant rules, whose actions are covered by other rules; erroneous
rules, which are wrong defined and distort the performance of the FRBCS; and conflicting rules, which perturb the perfor-
mance of the FRBCS when they coexist with others.

In this work, we consider the CHC genetic model [14] in order to make the rule selection process, since it has achieved
good results for binary selection problems [6]. In the following, the main characteristics of this genetic approach are
presented.

1. Coding scheme and initial gene pool: It is based on a binary coded GA where each gene indicates whether a rule is selected
or not (alleles ‘1’ or ‘0’, respectively). Considering that N rules are contained in the preliminary/candidate rule set, the
chromosome C = (c1, . . . ,cN) represents a subset of rules composing the final HRB, such that:
IF ci ¼ 1 THEN ðRi 2 HRBÞ ELSE ðRi R HRBÞ;
with Ri being the corresponding ith rule in the candidate rule set and HRB being the final hierarchical rule base.The initial
pool is obtained with an individual having all genes with value ‘1’ and the remaining individuals generated at random in
{0, 1}, so that the initial HRB is taking into account in the genetic selection process.

2. Chromosome evaluation: The fitness function must be in accordance with the framework of imbalanced data-sets. Thus,
we will use, as presented in Section 2.3, the geometric mean of the true rates, defined in (4) as:
GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FN

� TN
FP þ TN

r

3. Crossover operator: The half uniform crossover scheme (HUX) is employed. In this approach, the two parents are com-
bined to produce two new offspring. The individual bits in the string are compared between the two parents and exactly
half of the non-matching bits are swapped. Thus the Hamming distance (the number of differing bits) is first calculated.
This number is divided by two. The resulting number is how many of the bits that do not match between the two parents
will be swapped.

4. Restarting approach: To get away from local optima, this algorithm uses a restart approach. In this case, the best chromo-
some is maintained and the remaining are generated at random in {1,0}. The restart procedure is applied when a thresh-
old value is reached, which means that all the individuals coexisting in the population are very similar.

5. Evolutionary model: The CHC genetic model makes use of a ‘‘Population-based Selection” approach. N parents and their
corresponding offspring are combined to select the best N individuals to take part of the next population. The CHC
approach makes use of an incest prevention mechanism and a restarting process to provoke diversity in the population,
instead of the well-known mutation operator.
This incest prevention mechanism will be considered in order to apply the HUX operator, i.e., two parents are crossed if
their hamming distance divided by 2 is higher than a predetermined threshold, L. The threshold value is initialized as:
L = (#Genes/4.0). Following the original CHC scheme, L is decremented by one when the population does not change in
one generation. The algorithm restarts when L is below zero. We will stop the genetic process if more than 3 restarts are
performed without including any new chromosome in the population.

4. Experimental study

In order to develop the study, we use a five fold cross validation approach, that is, five partitions for training and test sets,
80% for training and 20% for test, where the five test data-sets form the whole set. For each data-set we consider the average
results of the five partitions.

Statistical analysis needs to be carried out in order to find significant differences among the results obtained by the stud-
ied methods [20]. We consider the use of non-parametric tests, according to the recommendations made in [13], where it is
presented a set of simple, safe and robust non-parametric tests for statistical comparisons of classifiers. For pair wise com-
parison we will use the Wilcoxon Signed-Ranks Test [37,44], and for multiple comparison we will employ different ap-
proaches, including the Friedman test [19], the Iman and Davenport test [26] and the Holm method [24]. We will use in
all cases a = 0.05 as level of confidence. A wider description of these tests is presented in the Appendix A.
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In this section we will first introduce the configuration of the two-level learning method, determining all the parameters
used in this experimental study. Next we will study the effect of preprocessing in the performance of the HFRBCS by con-
trasting the results obtained using the original data-sets against the ones obtained with the SMOTE algorithm. Then, we will
analyze the results of the HFRBCS when applied to imbalanced data-sets globally, and considering two different degrees of
imbalance. This last part of the study is divided into two sections: on the one hand, we will make a comparative study be-
tween our model and other fuzzy learning methodologies, including Chi et al.’s [9] and Ishibuchi et al.’s [29] rule learning
algorithms, and a new approach proposed by Xu et al. for imbalanced data-sets, called E-Algorithm [45]. On the other hand,
we will compare the performance of the HFRBCSs against the well-known C4.5 algorithm [35], that has been widely used for
this kind of problems [4,15,32,38–40].

4.1. Experimental setup: parameters and data-sets

In our former studies [17,18] we selected as a good FRBCS model the use of the product T-norm as conjunction operator,
together with the Penalized Certainty Factor [29] approach for the rule weight and FRM of the winning rule. This configuration
will be employed for all the FRBCSs used in this work, including Chi et al.’s method, Ishibuchi et al.’s approach and E-Algorithm.

After several trials, we selected the following values for the parameters in the learning method for building HFRBCSs:

� Rule generation:
– d, n(t + 1)-linguistic partition terms selector: 0.1.
– a, used to decide the expansion of the rule: 0.2.

� GA Selection:
– Number of evaluations: 10,000.
– Population length: 61.
In the SMOTE preprocessing we consider only the 1-nearest neighbour to generate the synthetic samples, and we balance
the training data to the 50% class distribution.

For Ishibuchi et al.’s rule generation method and E-Algorithm, only rules with three or less antecedent attributes are gen-
erated. Furthermore we have restricted the number of fuzzy rules in the RB to 30 for each class, using as selection measure
the product of support and confidence. This configuration is the one indicated by the authors in [29,45].

In this paper we use the IR to distinguish between two-classes of imbalanced data-sets: data-sets with a low imbalance
when the instances of the positive class are between 10 and 40% of the total instances (IR between 1.5 and 9) and data-sets
with a high imbalance where there are no more than 10% of positive instances in the whole data-set compared to the negative
ones (IR higher than 9). Specifically, we have considered 44 data-sets from UCI repository [2] with different IR. Table 3 sum-
marizes the data employed in this study and shows, for each data-set, the number of examples (#Ex.), number of attributes
(#Atts.), class name of each class (minority and majority), class attribute distribution and IR. This table is ordered by the IR,
from low to highly imbalanced data-sets.

4.2. Analysis of the significance of the preprocessing approach

Our first aim is to show that preprocessing is a necessity in the framework of imbalanced data-sets. As mentioned in Sec-
tion 2.2, the objective of the preprocessing step is to prepare the data for the experiments, removing the imbalance among
classes by changing the original class distribution. In this manner, we can have all the data-sets prepared and stored in ad-
vance and thus, there is no need to adapt the algorithm itself to perform well with this type of data.

Table 4 shows the mean results for the Chi et al.’s method and the HFRBCS without preprocessing and with the SMOTE
technique [7] in all the imbalanced data-sets. The difference in performance achieved in each case, is very clear only by
observing this table. We also show statistically the goodness of preprocessing using a Wilcoxon test (Table 5), in which
the p-value is 0 in all cases.

4.3. Analysis of the hierarchical fuzzy rule based classification system on imbalanced data-sets

In this part of the study we will focus on determining whether our HFRBCS is robust in the framework of imbalanced
data-sets and if it improves the performance of other FRBCSs approaches and the well-known C4.5 algorithm. According
to the conclusions of the previous section, the SMOTE preprocessing is applied for all approaches apart from the E-Algorithm,
which is an algorithm proposed for imbalanced data-sets that uses cost values for instances.

Following this idea, Table 6 shows the results for the test partitions for each FRBCS method with its associated standard
deviation. Specifically, by columns we include the Chi et al.’s method with 3 and 5 labels (Chi-3 and Chi-5), the Ishibuchi
et al.’s method (Ishibuchi05), the E-Algorithm and the HFRBCS. Additionally, we include the results for the C4.5 decision tree.
This table is divided by the IR, on the one hand data-sets with low imbalance and, on the other hand, data-sets with high
imbalance. The best global result for test is stressed in boldface in each case. In Appendix B the reader can examine the
whole training and test results.



Table 3
Summary description for imbalanced data-sets.

Data-set #Ex. #Atts. Class (min., maj.) % Class (min.; maj.) IR

Data-sets with low imbalance (IR 1.5–9)
Glass1 214 9 (build-win-non_float-proc; remainder) (35.51, 64.49) 1.82
Ecoli0vs1 220 7 (im; cp) (35.00, 65.00) 1.86
Wisconsin 683 9 (malignant; benign) (35.00, 65.00) 1.86
Pima 768 8 (tested-positive; tested-negative) (34.84, 66.16) 1.90
Iris0 150 4 (Iris-Setosa; remainder) (33.33, 66.67) 2.00
Glass0 214 9 (build-win-float-proc; remainder) (32.71, 67.29) 2.06
Yeast1 1484 8 (nuc; remainder) (28.91, 71.09) 2.46
Vehicle1 846 18 (Saab; remainder) (28.37, 71.63) 2.52
Vehicle2 846 18 (Bus; remainder) (28.37, 71.63) 2.52
Vehicle3 846 18 (Opel; remainder) (28.37, 71.63) 2.52
Haberman 306 3 (Die; Survive) (27.42, 73.58) 2.68
Glass0123vs456 214 9 (non-window glass; remainder) (23.83, 76.17) 3.19
Vehicle0 846 18 (Van; remainder) (23.64, 76.36) 3.23
Ecoli1 336 7 (im; remainder) (22.92, 77.08) 3.36
New-thyroid2 215 5 (hypo; remainder) (16.89, 83.11) 4.92
New-thyroid1 215 5 (hyper; remainder) (16.28, 83.72) 5.14
Ecoli2 336 7 (pp; remainder) (15.48, 84.52) 5.46
Segment0 2308 19 (brickface; remainder) (14.26, 85.74) 6.01
Glass6 214 9 (headlamps; remainder) (13.55, 86.45) 6.38
Yeast3 1484 8 (me3; remainder) (10.98, 89.02) 8.11
Ecoli3 336 7 (imU; remainder) (10.88, 89.12) 8.19
Page-blocks0 5472 10 (remainder; text) (10.23, 89.77) 8.77

Data-sets with high imbalance (IR higher than 9)
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (Ve-win-float-proc; build-win-float-proc, build-win-non_float-proc,headlamps) (8.89, 91.11) 10.29
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeast1vs7 459 8 (nuc; vac) (6.72, 93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, build-win-non_float-proc,headlamps) (4.89, 95.11) 19.44
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87
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This study is divided into two parts. First, we will analyze the results globally for all imbalanced data-sets and then, we
will study the two imbalance scenarios defined in this paper. Furthermore, our aim is to test the HFRBCS against the FRBCSs
approaches and C4.5 separately.

4.3.1. Global analysis of the hierarchical fuzzy rule based classification system
First of all, we will study the performance of the HFRBCS with the remaining FRBCSs approaches. In order to compare the

results, we will use a multiple comparison test to find the best approach in this case, considering the results in the test par-
Table 4
Average results for FRBCS in imbalanced data-sets with and without preprocessing.

Algorithm No preprocessing SMOTE preprocessing

GMTr GMTst GMTr GMTst

Chi-3 50.64 ± 3.59 42.83 ± 9.47 84.57 ± 1.86 79.65 ± 7.71
Chi-5 73.70 ± 2.99 57.60 ± 11.33 90.17 ± 1.01 77.97 ± 8.77
HFRBCS 82.80 ± 2.30 66.02 ± 11.49 93.82 ± 1.05 81.57 ± 9.10



Table 5
Wilcoxon Test to compare the use of the SMOTE preprocessing against original data-sets. R+ corresponds to no preprocessing and R� to SMOTE.

Comparison R+ R� Hypothesis (a = 0.1) p-Value

Chi-3 vs. Chi-3 + SMOTE 21.5 977.5 Rej. for Chi3 + SMOTE 0.000
Chi-5 vs. Chi-5 + SMOTE 38.5 960.5 Rej. for Chi5 + SMOTE 0.000
HFRBCS vs. HFRBCS + SMOTE 36.5 953.5 Rej. for HFRBCS + SMOTE 0.000

Table 6
Detailed results table for FRBCSs in imbalanced data-sets. Only test results are shown.

Data-Set Chi-3 Chi-5 Ishibuchi05 E-Algorithm HFRBCS C4.5

Data-sets with low imbalance
Glass1 64.90 ± 6.91 64.91 ± 6.87 59.29 ± 10.33 0.00 ± 0.00 73.66 ± 4.66 75.11 ± 3.74
Ecoli0vs1 92.27 ± 5.93 95.56 ± 5.15 96.70 ± 2.40 95.25 ± 4.75 93.63 ± 6.45 97.95 ± 2.20
Wisconsin 88.91 ± 2.13 43.58 ± 5.86 95.78 ± 1.38 96.01 ± 1.55 88.24 ± 1.63 95.44 ± 2.01
Pima 66.80 ± 5.93 66.78 ± 2.28 71.10 ± 4.45 55.01 ± 4.64 68.72 ± 5.26 71.26 ± 4.05
Iris0 100.0 ± 0.00 98.97 ± 2.29 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 98.97 ± 2.29
Glass0 64.06 ± 3.51 63.69 ± 1.80 69.39 ± 7.70 0.00 ± 0.00 76.57 ± 8.05 78.14 ± 2.21
Yeast1 67.69 ± 1.91 69.66 ± 1.52 51.41 ± 12.18 0.00 ± 0.00 71.71 ± 2.39 70.86 ± 2.95
Vehicle1 70.92 ± 4.34 71.88 ± 1.25 64.89 ± 4.37 3.09 ± 6.90 71.76 ± 2.64 69.28 ± 3.41
Vehicle2 85.54 ± 3.36 87.19 ± 3.04 67.82 ± 4.95 43.83 ± 13.17 90.61 ± 2.17 94.85 ± 1.68
Vehicle3 69.22 ± 4.89 63.13 ± 1.95 63.12 ± 4.06 0.00 ± 0.00 66.80 ± 3.34 74.34 ± 1.08
Haberman 58.91 ± 6.03 60.40 ± 2.40 62.65 ± 2.84 4.94 ± 11.06 57.08 ± 4.09 61.32 ± 3.85
Glass0123vs456 85.83 ± 3.04 85.94 ± 1.66 88.56 ± 5.18 82.09 ± 6.96 88.37 ± 3.97 90.13 ± 3.17
Vehicle0 86.41 ± 3.06 84.93 ± 1.61 75.94 ± 1.42 39.07 ± 16.49 88.92 ± 1.96 91.10 ± 2.70
Ecoli1 85.28 ± 9.77 86.05 ± 8.57 85.71 ± 2.86 77.81 ± 7.90 84.18 ± 12.69 76.10 ± 9.58
New-Thyroid2 89.81 ± 10.77 96.34 ± 6.65 94.21 ± 4.23 88.57 ± 3.82 99.72 ± 0.63 96.51 ± 4.87
New-Thyroid1 87.44 ± 8.11 95.38 ± 8.80 89.02 ± 13.52 88.52 ± 8.79 98.58 ± 2.48 97.98 ± 3.79
Ecoli2 88.01 ± 5.45 87.64 ± 4.96 87.00 ± 4.43 70.35 ± 15.36 87.62 ± 8.24 91.60 ± 4.86
Segment0 94.99 ± 0.45 95.88 ± 1.21 42.47 ± 2.79 95.33 ± 1.14 97.51 ± 1.11 99.26 ± 0.61
Glass6 83.87 ± 9.82 78.13 ± 7.78 86.27 ± 8.19 90.23 ± 3.77 86.95 ± 10.84 83.00 ± 9.05
Yeast3 90.13 ± 4.09 89.33 ± 3.30 77.06 ± 17.73 81.99 ± 2.28 90.41 ± 2.34 88.50 ± 3.66
Ecoli3 87.58 ± 4.08 91.61 ± 4.95 85.39 ± 3.70 78.54 ± 8.68 90.81 ± 4.43 88.77 ± 7.65
Page-blocks0 79.91 ± 4.29 87.25 ± 1.94 32.16 ± 9.61 64.51 ± 2.79 91.40 ± 0.67 94.84 ± 1.52
Mean 81.29 ± 4.90 80.19 ± 3.90 74.81 ± 5.83 57.05 ± 5.46 84.69 ± 4.09 85.70 ± 3.68

Data-sets with high imbalance
Yeast2vs4 86.80 ± 5.53 86.39 ± 7.35 70.85 ± 23.45 80.92 ± 9.09 89.32 ± 4.18 85.09 ± 10.15
Yeast05679vs4 78.91 ± 5.99 75.99 ± 6.39 79.49 ± 9.54 59.99 ± 16.44 73.18 ± 7.47 74.88 ± 10.88
Vowel0 98.37 ± 0.61 97.87 ± 1.84 89.03 ± 6.63 89.63 ± 6.09 98.82 ± 1.62 94.74 ± 5.22
Glass016vs2 40.84 ± 7.62 56.17 ± 5.16 41.18 ± 15.40 0.00 ± 0.00 58.37 ± 20.04 48.91 ± 29.44
Glass2 47.67 ± 10.16 49.24 ± 8.19 43.55 ± 15.70 9.87 ± 22.07 54.84 ± 20.57 33.86 ± 32.29
Ecoli4 91.27 ± 7.43 92.11 ± 8.35 86.92 ± 8.65 92.43 ± 8.24 93.02 ± 8.17 81.28 ± 11.67
Yeast1vs7 80.05 ± 6.43 63.02 ± 12.62 53.15 ± 10.35 27.55 ± 26.06 70.74 ± 12.40 67.73 ± 2.28
Shuttle0vs4 99.12 ± 1.15 98.71 ± 1.18 99.16 ± 1.15 98.40 ± 1.26 99.12 ± 1.15 99.97 ± 0.07
Glass4 84.96 ± 13.80 81.75 ± 11.24 78.27 ± 17.70 83.38 ± 19.89 70.39 ± 40.49 83.71 ± 10.78
Page-Blocks13vs4 91.92 ± 4.76 92.93 ± 9.48 94.53 ± 4.88 94.12 ± 10.33 98.64 ± 0.65 99.55 ± 0.47
Abalone9-18 63.93 ± 11.00 66.47 ± 10.67 65.78 ± 9.23 32.29 ± 20.61 67.56 ± 14.01 53.19 ± 8.25
Glass016vs5 71.48 ± 40.17 75.59 ± 42.27 88.77 ± 2.48 65.14 ± 39.41 77.96 ± 43.61 72.08 ± 42.33
Shuttle2vs4 89.99 ± 8.61 78.34 ± 43.87 99.17 ± 1.13 100.0 ± 0.00 97.49 ± 2.71 99.15 ± 1.90
Yeast1458vs7 62.40 ± 4.55 58.76 ± 8.57 40.80 ± 16.58 0.00 ± 0.00 62.49 ± 6.26 41.19 ± 6.06
Glass5 81.56 ± 12.65 64.33 ± 38.40 89.96 ± 2.43 50.61 ± 47.17 68.73 ± 39.56 86.70 ± 15.44
Yeast2vs8 72.75 ± 14.99 78.76 ± 8.60 72.83 ± 14.97 72.83 ± 14.97 72.47 ± 15.10 78.23 ± 13.05
Yeast4 82.99 ± 3.10 83.07 ± 2.58 71.36 ± 23.29 32.16 ± 20.59 82.64 ± 2.29 65.00 ± 8.94
Yeast1289vs7 76.12 ± 7.24 69.26 ± 4.57 48.55 ± 16.86 50.00 ± 13.62 69.37 ± 4.37 64.13 ± 9.00
Yeast5 93.41 ± 5.35 93.64 ± 2.70 94.94 ± 0.38 88.17 ± 7.04 94.20 ± 2.59 92.04 ± 4.99
Ecoli0137vs26 71.04 ± 41.38 49.57 ± 46.41 71.31 ± 41.65 73.65 ± 43.09 71.48 ± 41.80 71.21 ± 41.31
Yeast6 87.50 ± 10.55 87.73 ± 9.32 88.42 ± 6.06 51.72 ± 13.76 84.92 ± 12.88 80.38 ± 15.47
Abalone19 62.96 ± 8.27 66.71 ± 10.21 66.09 ± 9.40 0.00 ± 0.00 70.19 ± 8.56 15.58 ± 21.36
Mean 78.00 ± 10.51 75.75 ± 13.63 74.28 ± 11.72 56.95 ± 15.44 78.45 ± 14.11 72.21 ± 13.70

All data-sets
Mean 79.65 ± 7.71 77.97 ± 8.77 74.55 ± 8.78 57.00 ± 10.45 81.57 ± 9.10 78.95 ± 8.69
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titions (GMTst). In Table 7, the results of applying Friedman and Iman-Davenport tests are shown in order to see if there are
differences in the results. We employ the v2-distribution with 4 degrees of freedom and the F-distribution with 4 and 172
degrees of freedom for Nds = 44. We emphasize in boldface the highest value between the two values that are being com-
pared, and as the smallest in both cases corresponds to the value given by the statistic, it informs us of the rejection of
the null hypothesis of equality of means, telling us of the existence of significant differences among the observed results
in all data-sets. Table 8 shows the rankings (computed using a Friedman test) of the 5 algorithms considered.
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Now, we apply a Holm test to compare the best ranking method (HFRBCS) with the remaining fuzzy methods. The result
of this test is shown in Table 9, in which the algorithms are ordered with respect to the z value obtained. Thus, by using the
normal distribution, we can obtain the corresponding p-value associated with each comparison and this can be compared
with the associated a/i in the same row of the table to show whether the associated hypothesis of equal behaviour is rejected
in favour of the best ranking algorithm or not.

Therefore, analyzing the results presented in Table 6 and the statistical study shown in Tables 8 and 9 we conclude that
our model is a solid FRBCS approach to deal with imbalanced data-sets, as it has shown to be the best performing algorithm
when comparing with the remaining fuzzy rule learning methods applied in this study.

Finally, we use a Wilcoxon test for the comparison with the C4.5 algorithm, which is shown in Table 10. We can observe
that our proposal achieves a higher ranking, but this is not enough to reject the null hypothesis. We may conclude that both
approaches have a similar performance when treating all imbalanced data-sets as a whole, without taking into account the
IR.

4.3.2. Analysis of the hierarchical fuzzy rule based classification system according to the imbalance ratio
In the final part of our study, we will analyze the behaviour of our hierarchical approach in each imbalanced scenario.

Table 11 shows, by columns, the geometric mean in training and test of the different algorithms considered, for the two types
Table 7
Results of the Friedman and Iman-Davenport tests for comparing performance of the FRBCS in all imbalanced data-sets.

Method Test value Distribution value p-Value

Friedman 37.29091 9.4877 1.56929E�7
Iman-Davenport 11.56023 2.4242 2.45881E�8

Table 10
Wilcoxon test to compare the HFRBCS against C4.5 in all imbalanced data-sets. R+ corresponds to HFRBCS and R� to C4.5.

Comparison R+ R� Hypothesis (a = 0.05) p-Value

HFRBCS vs. C4.5 589 401 Accepted 0.273

Table 8
Rankings obtained through a Friedman test for FRBCSs in all imbalance data-sets.

Algorithm Ranking

HFRBCS 2.09091
Chi-5 2.77273
Chi-3 3.0
Ishibuchi05 3.02273
E-Algorithm 4.11364

Table 9
Holm test table for FRBCSs in all imbalanced data-sets. HFRBCS is the control method.

i Algorithm z p a/i Hypothesis

4 E-Algorithm 6.00038 1.96858E�9 0.0125 Rejected for HFRBCS
3 Ishibuchi05 2.76422 0.00576 0.01667 Rejected for HFRBCS
2 Chi-3 2.69680 0.00700 0.025 Rejected for HFRBCS
1 Chi-5 2.02260 0.04311 0.05 Rejected for HFRBCS

Table 11
Results table for FRBCSs for the different degrees of imbalance.

Algorithm Low imbalance High imbalance All data-sets

GMTr GMTst GMTr GMTst GMTr GMTst

Chi-3 85.50 ± 1.28 81.29 ± 4.90 83.64 ± 2.43 78.00 ± 10. 51 84.57 ± 1.86 79.65 ± 7.71
Chi-5 91.31 ± 0.69 80.19 ± 3.90 89.04 ± 1.32 75.75 ± 13. 63 90.17 ± 1.01 77.97 ± 8.77
Ishibuchi05 75.45 ± 3.04 74.81 ± 5.83 76.90 ± 6.35 74. 28 ± 11.72 76.17 ± 4.70 74.55 ± 8.78
E-Algorithm 58.33 ± 4.09 57.05 ± 5.46 65.72 ± 5.06 56. 95 ± 15.44 62.02 ± 4.57 57.00 ± 10.45
HFRBCS 94.30 ± 0.80 84.69 ± 4.09 93.35 ± 1.30 78.45 ± 14.11 93.82 ± 1.05 81.57 ± 9.10
C4.5 94.95 ± 0.87 85.70 ± 3.68 95.81 ± 1.77 72.21 ± 13.70 95.38 ± 1.32 78. 95 ± 8.69
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of data-sets, that is, low and high imbalance (IR lower than 9 and higher than 9, respectively). The last column corresponds to
the global results. Reader can refer to Table 6, presented in the previous part of this study, where we show the detailed re-
sults in each data-set.

The main conclusion extracted from this table is that our HFRBCS is very robust in both imbalanced scenarios considered,
as it obtains very competitive results independently of the IR. Next, we will analyze the results in each case, for data-sets
with low and high imbalance. We will employ multiple comparison tests for the statistical study, using for this purpose
Friedman, Iman-Davenport and Holm tests. As we did in the previous section, we will compare the HFRBCS with the FRBCSs
and with the C4.5 decision tree separately, using a Wilcoxon test for the study with C4.5.

� Data-sets with low imbalance: This study is shown through Tables 12–15. First, we check for statistical differences using
Friedman and Iman-Davenport tests, following the same scheme as in the previous section. Since the smallest value cor-
responds in both cases to the one given by the statistic, we conclude that there are differences among the algorithms.
Thus, Table 13 shows the ranking for the algorithms and Table 14 contains a Holm test, which shows that the HFRBCS
is better in performance than the remaining FRBCS unless the Chi et al.’s method with 5 labels.
Now, we will compare the performance achieved by our proposal with C4.5 in low imbalanced data-sets by means of a
Wilcoxon test, which is shown in Table 15. Furthermore, we compare the HFRBCS with the Chi et al.’s approach with 5
labels in order to check if we find differences between both algorithms.
The main conclusion after this study is that the HFRBCS is better than the rest of the FRBCS methods. It outperforms the
base Chi LRG-method, the Ishibuchi et al.’s approach and the E-Algorithm. When compared with C4.5, there are no statis-
tical differences in this imbalance scenario.

� Data-sets with high imbalance: This part of the study is very important, since it includes the data-sets with a higher
degree of imbalance. In this manner, we can analyze how the imbalance actually affects the different methods employed
in this study. For this purpose, we use the Friedman and Iman-Daverport tests in order to find statistical differences, as
shown in Table 16. Next, Table 17 shows the ranking for the FRBCS algorithms, in which our HFRBCS proposal is the first
one. Finally, we perform a Holm test, which is shown in Table 18, where we can only conclude that the HFRBCS is better
than the E-Algorithm in data-sets with high imbalance.
A Wilcoxon test (Table 19) will help us to make a pairwise comparison between our proposal and the remaining algo-
rithms, including C4.5 in this case. Now, we detect differences between the HFRBCS and the Chi et al.’s method with 5
Table 13
Rankings obtained through a Friedman test for FRBCSs in data-sets with low imbalance.

Algorithm Ranking

HFRBCS 1.97727
Chi-5 2.63636
Chi-3 3.06818
Ishibuchi05 3.11364
E-Algorithm 4.20454

Table 12
Results of the Friedman and Iman-Davenport tests for comparing performance of the FRBCS in data-sets with low imbalance.

Method Test value Distribution value p-Value

Friedman 23.29091 9.4877 1.10759E�4
Iman-Davenport 7.55858 2.4803 2.98974E�5

Table 14
Holm test table for FRBCSs in data-sets with low imbalance. HFRBCS is the control method.

i Algorithm z p a/i Hypothesis

4 E-Algorithm 4.67197 2.98329E�6 0.0125 Rejected for HFRBCS
3 Ishibuchi05 2.38366 0.01714 0.01667 Rejected for HFRBCS
2 Chi-3 2.28831 0.02212 0.025 Rejected for HFRBCS
1 Chi-5 1.38252 0.16681 0.05 Accepted

Table 15
Wilcoxon test to compare the HFRBCS against Chi-5 and C4.5 in data-set with low imbalance. R+ corresponds to HFRBCS and R� to Chi-5 and C4.5 in each case.

Comparison R+ R� Hypothesis (a = 0.05) p-Value

HFRBCS vs. Chi-5 219 34 Rejected for HFRBCS 0.003
HFRBCS vs. C4.5 84 169 Accepted 0.168



Table 16
Results of the Friedman and Iman-Davenport tests for comparing performance of the FRBCS in data-sets with high imbalance.

Method Test value Distribution value p-Value

Friedman 14.92727 9.4877 0.00485
Iman-Davenport 4.28987 2.4803 0.00330

Table 17
Rankings obtained through a Friedman test for FRBCSs in data-sets with high imbalance.

Algorithm Ranking

HFRBCS 2.20454
Chi-5 2.90909
Chi-3 2.93182
Ishibuchi05 2.93182
E-Algorithm 4.02273

Table 18
Holm test table for FRBCSs in data-sets with high imbalance. HFRBCS is the control method.

i Algorithm z p a/i Hypothesis

4 E-Algorithm 3.81385 1.36818E�4 0.0125 Rejected for HFRBCS
3 Ishibuchi05 1.52554 0.12712 0.01667 Accepted
2 Chi-3 1.52554 0.12712 0.025 Accepted
1 Chi-5 1.47787 0.13944 0.05 Accepted

Table 19
Wilcoxon test to compare the HFRBCS against the remaining FRBCS approaches and C4.5 in data-set with high imbalance. R+ corresponds to HFRBCS and R� to
the remaining algorithms in each case.

Comparison R+ R� Hypothesis (a = 0.05) p-Value

HFRBCS vs. Chi-3 148.5 104.5 Accepted 0.498
HFRBCS vs. Chi-5 191 62 Rejected for HFRBCS 0.036
HFRBCS vs. Ishibuchi05 175 78 Accepted 0.115
HFRBCS vs. C4.5 192 61 Rejected for HFRBCS 0.033
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labels per variable, but it remains statistically similar to the Ishibuchi et al.’s algorithm and the Chi et al.’s method with 3
labels. Nevertheless, watching the results for the comparison with C4.5 we see that the null hypothesis is rejected in
favour of our HFRBCS proposal.
According to these results, we must emphasize the good behaviour achieved in highly imbalanced data-sets by the all
fuzzy models studied here, particularly for our proposal. Furthermore, we can determine that it is very competitive, since
it outperforms C4.5 algorithm in this kind of data-sets, with a p-value of 0.033.

In brief, we have improved the behaviour of the base FRBCS by a simple and effective methodology, that is, applying a
higher granularity in the areas where the RB has a bad performance in order to obtain a better coverage of that area of
the space of solutions. As future work we consider the inclusion of a multi-objective GA for rule selection with the aim of
getting a trade-off between interpretability and accuracy [28,34].

5. Concluding remarks

In this paper, we have proposed an HFRBCS approach for classification with imbalanced data-sets. Our aim was to employ
a hierarchical model to obtain a good balance among different granularity levels. A fine granularity is applied in the bound-
ary areas, and a thick granularity may be applied in the rest of the classification space providing a good generalization. Thus,
this approach enhances the classification performance in the overlapping areas between the minority and majority classes.

Furthermore, we have made use of the SMOTE algorithm in order to balance the training data before the rule learning
generation phase. This preprocessing step enables the obtention of better fuzzy rules than using the original data-sets
and therefore, we improve the global performance of the fuzzy model.

In the experimental study, we have shown statistically that our proposal performs better than well-known FRBCSs ap-
proaches and that clearly outperforms the C4.5 decision tree, generally for all data-sets and particularly in data-sets with
high imbalance.
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Appendix A. On the use of non-parametric tests based on rankings

In this paper, we have made use of statistical techniques for the analysis of GBML methods, since they are a necessity in
order to provide a correct empirical study [13,20]. Specifically, we have employed non-parametric tests, due to the fact that
the initial conditions that guarantee the reliability of the parametric tests may not be satisfied, making the statistical analysis
to lose credibility [13].

In this appendix, we describe the procedures for performing pairwise an multiple comparisons. Specifically, we have em-
ployed the Wilcoxon signed-rank test as non-parametric statistical procedure for performing pairwise comparisons between
two algorithms. For multiple comparison we have used the Friedman and Iman-Davenport tests to detect statistical differ-
ences and the Holm post-hoc test in order to find what algorithms partners’ average results are dissimilar. Next, we will de-
scribe both approaches.

A.1. Pairwise comparisons: Wilcoxon signed-ranks test

This is the analogous of the paired t-test in non-parametrical statistical procedures; therefore, it is a pair wise test that
aims to detect significant differences between the behaviour of two algorithms.

Let di be the difference between the performance scores of the two-classifiers on ith out of Nds data-sets. The differences
are ranked according to their absolute values; average ranks are assigned in case of ties. Let R+ be the sum of ranks for the
data-sets on which the second algorithm outperformed the first, and R� the sum of ranks for the opposite. Ranks of di = 0 are
split evenly among the sums; if there is an odd number of them, one is ignored:
Rþ ¼
X
di>0

rankðdiÞ þ
1
2

X
di¼0

rankðdiÞ; ð20Þ

R� ¼
X
di<0

rankðdiÞ þ
1
2

X
di¼0

rankðdiÞ: ð21Þ
Let T be the smallest of the sums, T = min(R+, R�). If T is less than or equal to the value of the distribution of Wilcoxon for Nds

degrees of freedom (Table B.12 in [47]), the null hypothesis of equality of means is rejected.

A.2. Multiple comparisons: Friedman test and Holm post-hoc test

In order to perform a multiple comparison, it is necessary to check whether all the results obtained by the algorithms
present any inequality. In the case of finding it, then we can know, by using a post-hoc test, what algorithms partners’ aver-
age results are dissimilar. Next, we describe the non-parametric tests used.

� The first one is the Friedman test [37], which is a non-parametric equivalent of the test of repeated-measures ANOVA. It
computes the ranking of the observed results for algorithm (rj for the algorithm j with k algorithms) for each data-set,
assigning to the best of them the ranking 1, and to the worst the ranking k. Under the null hypothesis, formed from sup-
posing the results of the algorithms are equivalents and, therefore, their rankings are also similar, Friedman’s statistic
v2
F ¼

12Nds

kðkþ 1Þ
X

j

R2
j �

kðkþ 1Þ2

4

" #
; ð22Þ
is distributed according to v2
F with k � 1 degrees of freedom, being Rj ¼ 1

Nds

P
ir

j
i , and Nds the number of data-sets. The critical

values for Friedman’s statistic coincide with the established in the v2 distribution when Nds > 10 and k > 5. In a contrary case,
the exact values can be seen in [37,47].
� The second one of them is the Iman and Davenport test [26], which is a non-parametric test, derived from the Friedman

test, less conservative than the Friedman statistic:
FF ¼
ðNds � 1Þv2

F

NdsðK � 1Þ � v2
F

which is distributed according to the F-distribution with k � 1 and (k � 1) (Nds � 1) degrees of freedom. Statistical tables for
critical values can be found at [37,47].
� Holm test [24]: it is a multiple comparison procedure that can work with a control algorithm and compares it with the

remaining methods. The test statistics for comparing the ith and jth method using this procedure is:
z ¼ ðRi � RjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6Nds

s,
:

The z value is used to find the corresponding probability from the table of normal distribution, which is then compared with
an appropriate level of confidence a. A Holm test is a step-up procedure that sequentially tests the hypotheses ordered by
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their significance. We will denote the ordered p-values by p1,p2, . . . , so that p1 6 p26� � �6pk�1. The Holm test compares each
pi with a/(k � i), starting from the most significant p value. If p1 is below a/(k � 1), the corresponding hypothesis is rejected
and we allow to compare p2 with a/(k � 2). If the second hypothesis is rejected, the test proceeds with the third, and so on. As
soon as a certain null hypothesis cannot be rejected, all the remain hypotheses are retained as well.

Appendix B. Detailed results for the experiments

See Table 20.
Table 20
Detailed results table for FRBCSs and C4.5 in imbalanced data-sets.

Data-set Chi-3 Chi-5 Ishibuchi05 E-Algorithm HFRBCS C4.5

GMTr GMTst GMTr GMTst GMTr GMTst GMTr GMTst GMTr GMTst GMTr GMTst

Data-sets with low imbalance
Glass1 75.37 64.90 77.30 64.91 65.33 59.29 10.24 0.00 87.76 73.66 89.74 75.11
Ecoli0vs1 95.49 92.27 98.19 95.56 97.00 96.70 95.16 95.25 98.26 93.63 99.26 97.95
Wisconsin 98.07 88.91 99.72 43.58 96.17 95.78 96.04 96.01 99.92 88.24 98.31 95.44
Pima 72.31 66.80 85.53 66.78 71.31 71.10 55.86 55.01 90.97 68.72 83.88 71.26
Iris0 100.00 100.0 100.0 98.97 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.97
Glass0 66.57 64.06 74.44 63.69 72.22 69.39 0.00 0.00 86.94 76.57 94.23 78.14
Yeast1 68.33 67.69 72.75 69.66 51.83 51.41 0.00 0.00 78.22 71.71 80.34 70.86
Vehicle1 76.47 70.92 91.18 71.88 64.83 64.89 5.93 3.09 93.78 71.76 95.50 69.28
Vehicle2 88.10 85.54 96.36 87.19 66.28 67.82 46.24 43.83 98.82 90.61 98.95 94.85
Vehicle3 75.52 69.22 90.22 63.13 63.21 63.12 0.00 0.00 93.65 66.80 94.88 74.34
Haberman 66.21 58.91 70.86 60.40 64.36 62.65 8.47 4.94 76.53 57.08 74.00 61.32
Glass0123vs456 94.05 85.83 98.48 85.94 85.68 88.56 82.08 82.09 99.22 88.37 99.07 90.13
Vehicle0 88.23 86.41 96.26 84.93 76.54 75.94 44.68 39.07 98.28 88.92 98.97 91.10
Ecoli1 87.92 85.28 93.78 86.05 85.45 85.71 75.34 77.81 96.02 84.18 96.28 76.10
New-Thyroid2 94.70 89.81 99.58 96.34 94.34 94.21 88.94 88.57 99.79 99.72 99.57 96.51
New-Thyroid1 92.32 87.44 99.58 95.38 90.97 89.02 88.92 88.52 99.30 98.58 99.21 97.98
Ecoli2 89.66 88.01 92.90 87.64 87.23 87.00 71.98 70.35 94.93 87.62 95.11 91.60
Segment0 95.45 94.99 98.19 95.88 42.61 42.47 95.64 95.33 99.32 97.51 99.85 99.26
Glass6 95.04 83.87 98.06 78.13 86.42 86.27 90.84 90.23 98.61 86.95 99.59 83.00
Yeast3 91.37 90.13 92.01 89.33 79.97 77.06 82.09 81.99 95.22 90.41 95.64 88.50
Ecoli3 89.24 87.58 94.75 91.61 85.78 85.39 80.21 78.54 96.34 90.81 98.14 88.77
Page-Blocks0 80.60 79.91 88.64 87.25 32.41 32.16 64.65 64.51 92.72 91.40 98.46 94.84
Mean 85.50 81.29 91.31 80.19 75.45 74.81 58.33 57.05 94.30 84.69 94.95 85.70
Standard deviation 1.28 4.90 0.69 3.90 3.04 5.83 4.09 5.46 0.80 4.09 0.87 3.68

Data-sets with high imbalance
Abalone9-18 69.80 63.93 71.07 66.47 66.42 65.78 39.67 32.29 83.96 67.56 95.20 53.19
Abalone19 70.39 62.96 75.99 66.71 66.93 66.09 0.00 0.00 83.43 70.19 84.31 15.58
Ecoli4 94.04 91.27 98.12 92.11 89.21 86.92 92.80 92.43 98.69 93.02 97.67 81.28
Glass2 58.00 47.67 71.39 49.24 45.25 43.55 27.03 9.87 82.99 54.84 95.68 33.86
Yeast4 83.44 82.99 87.94 83.07 75.80 71.36 38.31 32.16 90.01 82.64 90.76 65.00
Vowel0 98.56 98.37 99.64 97.87 89.99 89.03 89.84 89.63 99.99 98.82 99.67 94.74
Yeast2vs8 75.66 72.75 82.35 78.76 74.01 72.83 74.01 72.83 83.34 72.47 90.93 78.23
Glass4 95.15 84.96 98.87 81.75 87.03 78.27 84.82 83.38 99.81 70.39 98.42 83.71
Glass5 94.15 81.56 98.77 64.33 89.88 89.96 80.60 50.61 97.64 68.73 99.76 86.70
Yeast5 94.67 93.41 95.40 93.64 94.93 94.94 88.66 88.17 97.82 94.20 97.75 92.04
Yeast6 88.43 87.50 89.57 87.73 88.48 88.42 53.82 51.72 93.41 84.92 92.15 80.38
Ecoli0137vs26 93.85 71.04 96.79 49.57 85.21 71.31 83.99 73.65 98.67 71.48 96.70 71.21
Shuttle0vs4 100.0 99.12 100.0 98.71 99.18 99.16 98.42 98.40 100.0 99.12 99.99 99.97
Yeast1vs7 81.67 80.05 83.99 63.02 62.17 53.15 57.25 27.55 91.63 70.74 93.42 67.73
Shuttle2vs4 94.77 89.99 100.0 78.34 92.89 99.17 100.0 100.0 99.90 97.49 99.90 99.15
Glass016vs2 50.29 40.84 73.06 56.17 44.02 41.18 37.77 0.00 87.26 58.37 97.10 48.91
Glass016vs5 89.98 71.48 98.42 75.59 88.72 88.77 81.82 65.14 99.71 77.96 99.21 72.08
Page-Blocks13vs4 93.59 91.92 98.70 92.93 96.88 94.53 94.53 94.12 99.89 98.64 99.75 99.55
Yeast05679vs4 82.63 78.91 87.85 75.99 80.20 79.49 63.28 59.99 92.90 73.18 95.20 74.88
Yeast1289vs7 73.80 76.12 79.92 69.26 52.23 48.55 51.41 50.00 86.99 69.37 94.63 64.13
Yeast1458vs7 67.90 62.40 80.60 58.76 46.47 40.80 23.77 0.00 90.37 62.49 91.46 41.19
Yeast2vs4 89.36 86.80 90.40 86.39 75.82 70.85 83.98 80.92 95.27 89.32 98.13 85.09
Mean 83.64 78.00 89.04 75.75 76.90 74.28 65.72 56.95 93.35 78.45 95.81 72.21
Standard deviation 2.43 10.51 1.32 13.63 6.35 11.72 5.06 15.44 1.30 14.11 1.77 13.70

All data-sets
Mean 84.57 79.65 90.17 77.97 76.17 74.55 62.02 57.00 93.82 81.57 95.38 78.95
Standard deviation 1.86 7.71 1.01 8.77 4.70 8.78 4.57 10.45 1.05 9.10 1.32 8.69
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