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Abstract. Pure feature selection, where variables are chosen or not to
be in the training data set, still remains as an unsolved problem, espe-
cially when the dimensionality is high. Recently, the Forward-Backward
Search algorithm using the Delta Test to evaluate a possible solution was
presented, showing a good performance. However, due to the locality of
the search procedure, the initial starting point of the search becomes cru-
cial in order to obtain good results. This paper presents new heuristics to
find a more adequate starting point that could lead to a better solution.
The heuristic is based on the sorting of the variables using the Mutual
Information criterion, and then performing parallel local searches. These
local searches provide an initial starting point for the actual parallel
Forward-Backward algorithm.

1 Intoduction

Input selection is a crucial part when building an approximator. Too many input
variables increase the calculation time and model complexity and even lead to
suboptimal results. On the other hand too few variables might not contain all
the relevant information for an accurate approximation.

In many cases, the approximator cannot be used to test all possible combi-
nations of variables in order to find the optimal one. That can be due to the
huge number of combinations, which increases exponentially with respect to the
number of variables, or due to the fact that not all approximators can distinguish
the relevant inputs from the bogus ones.

In this paper, a greedy selection methodology, called Forward-Backward
Search, is used to select the variables. It relies on the Delta Test estimation
methodology [1]. Even though Forward-Backward is not going through all pos-
sible solutions and does not guarantee the optimality of the final selection, it
always finds a local optimal one.



Because of the locality of the Forward-Backward, a good initialization is cru-
cial, and this paper presents several new heuristics for the initialization. The
Forward-Backward methodology is also deterministic with respect to the initial-
ization; the same initial selection of variables provides the same final solution.

The rest of the paper is organized as follows: Section 2 presents the Forward-
Backward Search algorithm and the theoretical background of the Delta Test.
Then, Section 3 introduces the new improvements incorporated to enhance the
variable selection. Afterwards, Section 4 shows an experimental result, where the
heuristics are briefly compared.

2 Forward-Backward Search

Forward-Backward Search (FBS) is an algorithm that results from the joining
of two methodologies: Forward and Backward selections [2]. Both the Forward
Selection and the Backward Elimination (or Pruning) methods suffer from an
incomplete search. The FBS offers the flexibility to reconsider input variables
previously discarded and wvice wversa, to discard input variables previously se-
lected. It can start from any initial input set, including empty, full or randomly
initialized input set.

Let us suppose a set of inputs X?, i = 1,2,--- ,d and output Y, the procedure
of the Forward-Backward Search is summarized in Figure 1. In the procedure
example the k-Nearest Neighbors (KNN) criterion [3] is used as an example
criterion for evaluating the input set, but the criterion can be almost any criteria
or a suitable approximator.

1. (Initialization)
Let set S be the selected input set, which can contain any input variables, and
set I' be the unselected input set containing the inputs, which are not in set S.
Compute kNN(S,Y") error.

2. (Forward-Backward Search)
Find:

X* = arg max {kNN({$, X7 Y)PU{ENN(S\X", Y)}, X" € S, X7 € F.

If the previously computed kNN error is smaller than the new kNN error , stop;
otherwise, update set S and save the new kNN error, repeat step 2 until S is equal
to any former selected S.

3. (Result)
The selection result is in set S.

Fig. 1. Forward-Backward Search Strategy.



It is noted that the selection result depends on the initialization of the input
set. In this paper, several options are considered and the options are discussed
more deeply in Section 3.

In the course of FBS procedure, the number of evaluated input sets varies and
is dependent on the initialization of the input set, the stopping criteria and the
nature of the problem. Still, it is not guaranteed that in all cases this selection
method finds the global optimal input set.

2.1 The Delta Test

The Delta Test (DT), introduced by Pi and Peterson for time series [4] and
proposed for variable selection in [1], is a technique to estimate the variance of the
noise, or the mean squared error (MSE), that can be achieved without overfitting.
Given N input-output pairs (x;,%;) € R? x R, the relationship between x; and
y; can be expressed as

yi:f(xi)—l—ri, Z: 1,...,N (1)
where f is an unknown function and r is the noise. The DT estimates the variance
of the noise r.

The DT is useful for evaluating the nonlinear correlation between two random
variables, namely, input and output pairs. The DT can also be applied to input
variable selection: the set of input variables that minimizes the DT is the one
that is selected. Indeed, according to the DT, the selected set of input variables is
the one that represents the relationship between input variables and the output
variable in the most deterministic way.

The DT is based on a hypothesis coming from the continuity of the regression
function. If two points x and x’ are close in the input space, the continuity of
the regression function implies that the outputs f(x) and f(x’) are also close
enough in the output space. Alternatively, if the corresponding output values
are not close in the output space, this is due to the influence of the noise.

The DT can be interpreted as a particularization of the Gamma Test [5] con-
sidering only the first nearest neighbor. Let us denote the first nearest neighbor
of a point x; in the R space as Xy N()- The nearest neighbor formulation of the
DT estimates Var[r] by

N
1 .
Var[r] =~ ¢ = oN E_l(yi — ynn(y)?, with Var[s] — 0 for N — oo (2)
where yx () is the output of xnn(s)-

3 New Initialization Heuristics for the Forward-Backward
Search

The following subsections describe the different approaches proposed to define
an adequate starting point. The original FBS has been parallelized in order to



take advantage of the architectures available nowadays. The search for the best
solution is distributed to several computers in order to have more solutions in
less time.

The parallel implementation is quite straightforward and consists of the di-
vision of the generated subsets of variables from the first iteration of the FBS.
This division is shown in Figure 2.
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Fig. 2. Parallel scheme for the Forward-Backward Search.

Once each process has a part of the subset, they proceed as the original FBS.
The algorithm stops when all the processes have converged to a solution. Then,
the best solution is found among the final solutions of the individual processes.

3.1 Simple Mutual Information Based Initialization

Let X! = {z! } with [ € 1,...,d (i.e. X' is the [-th input variable) and Y = {y,,}
with {m = 1..M}. The Mutual Information (MI) between X! and Y can be
defined as the amount of information that X! provides about Y, and can be
expressed as:

I(ley) = Z Z Mxl,y(l‘,y) logw (3)

S5 ph (@) py (y)

fixty is the joint probability distribution function of X! and Y, and ply (z) and
wy (y) are the marginal probability distribution functions of X! and Y respec-
tively.

Therefore, in order to obtain the MI between X! and Y, only the estimate
of the joint probability density function is needed. This value can be computed
using several techniques based on histograms, kernels or the kNN. In this paper,
the one based on the kNN is used [6].



For each input variable, the MI between that variable and the output is com-
puted and, once finished, it is possible to rank all the input variables according
the values of MI. Then, the initial solution for the FBS is defined as a number
of first variables in the ranking. The problem now is to determine the actual
number of variables, since the value obtained by the MI is not enough to perform
this selection. Unfortunately, the only chance is to set this value manually.

Another issue is to determine the value of k for the kNN algorithm that
computes the MI. Although there is a possibility of guessing an adequate value:
compute the MI values using several k and select the one that provides the
highest values.

3.2 RaVI: Ranked Variables Initialization

Being aware of the two significant drawbacks of the used MI heuristic (the de-
termination of the k and the final number of variables to be chosen), another
heuristic is considered. This new heuristic requires the definition of only one pa-
rameter. This value can again be set manually as in the MI, or as a function of
the available computational resources making the heuristic more flexible when
executed in different computer architectures or systems.

The heuristic works as follows: it performs a division of the original input
vector into subvectors of a smaller dimension. Then, the local search is applied
to each subvector.

When the search is focused on the subvector, there are several possibilities
in handling the rest of the inputs. In this paper, we are considering four starting
alternatives: 1) all zeros, 2) subvectors ones, the other inputs zeros, 3) all ones,
4) subvectors zeros, the other inputs ones.

The RaVI scheme is summarized in Figure 3.

In the Figure, the initial solutions are divided into slices of size 3 (depicted
as x) and the remaining values are not changed (depicted as -) during the first
FBS. This first FBS is done sequentially and separately in each process. Once all
the processes have converged to a local optima, the processes perform a collective
communication and share the results found by the other processes. Then, the
initial starting point for the parallel FBS (named as middle solution in Figure
3) is computed by concatenating all local solutions. Finally, the parallel FBS,
presented in Figure 2, is performed starting from the middle solution.

The new aspect of this method is the sorting of the variables before per-
forming the slice division and the following local searches. Since the variables
are going to be analyzed with their neighbors in a local manner, it is convenient
to rank the variables with high MI values close to each other when performing
the local searches. When performing the MI, in this case, it is not so crucial
to select the k& for the MI as the most optimal one, because each of the slices
will contain similar variables in terms of their MI values. When the local results
are concatenated, the middle solution includes inputs with a wide range of MI
values, only the optimality inside each slice is emphasized.
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Fig. 3. Scheme of the algorithm using the slice division heuristic to initialize the start-
ing point for the FBS.

Here, we use two different sorting schemes based on the MI criterion. The
first one sorts the variables in a descending order, starting from the variable with
the largest MI value and ending up with the one with the lowest.

The second sorting scheme, called RaVI Mix, is aiming to bunch together
variables with high and low values of MI. This sorting gives more chances to the
sublocal searches to select good variables, whether they have large MI value or
not. The second sorting scheme is visualized in the following;:

[XMI(l) X MI(d) yxMI(2) XMI(d—l)_”XMI(m)} , (4)

where MI denotes the ranking of all d inputs in the dataset, MI(1) denotes the
input with the highest MI value and MI(d) the one with the lowest. m is the
middlemost input in the ranking.

After the sorting, the input space is divided into sublocal search spaces, or
slices, as demonstrated in Figure 3.

4 Experiments

In this paper, we use a dataset from the recently organized ESTSP 2007 con-
ference. The ESTSP dataset presents a weekly sea temperature for roughly 17
years and contains 874 values and it is shown in Figure 4.

The dataset is transformed into a regressor of 55 input variables, and one
output variable, and a total of 819 samples using a sliding window over the
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Fig. 4. The ESTSP 2007 Competition dataset.

whole dataset. We have a time series prediction problem of one step ahead and
we want to do the input variable selection in order to decrease the amount of
input variables. All the samples are used in the variable selection part.

We used 8 processes (or processors) with each method, which set the sizes
of the slices to 6 or 7 (7 slices with 7 variables and one with 6 variables). As
already mentioned, the number of processes can be defined manually or with re-
spect to the computational resources available. The parallel implementation was
performed using Matlab software and recently developed MPI implementation
[7].

In the preliminary tests performed before the actual comparison of the meth-
ods, a well-known Housing dataset was used to verify the correctness of the
methods. Because Housing dataset includes only 13 inputs, it is possible to use
exhaustive search to compute the global optimum according to the Delta Test.
Using any of the presented heuristics with any presented initialization, the global
optimum was always found.

Table 1 summarizes the results of all methods using the ESTSP 2007 Com-
petition dataset.

From Table 1 we can see that the RaVI Mix methodology obtains the lowest
Delta Test value and, therefore, has selected the best set of inputs. However,
there are no big differences among the methods, even though the Delta Test
value with all variables is 1.1765. It means that each of the presented heuristics
have done their job adequately.

The Exhaustive Search of all possible combinations in the 55 dimensional
space is clearly unfeasible task and one must use some sort of heuristics to ease
the search process. The Table 1 shows that the MI alone is not enough to guide
the FBS toward more optimal selection of input variables. Even though the
Simple MI heuristic searched through the largest amount of input combinations,
it was not able to find better solution than RaVI Mix heuristic.

Furthermore, we observed that although there is a possibility to end up in
the same solutions when using the parallel implementation of the FBS, only



Table 1. Results of all methods using the ESTSP 2007 Competition dataset.

Heuristic [ Starting Point # Variables Delta Test Solutions Time

pFBS All 46 0.0284 3856 248
None 18 0.0299 4640 168

Simple MI| 10 best MI 15 0.0272 8056 222
RaVI All 22 0.0269 4243 194
None 28 0.0277 6629 282

Ones and Zeros 19 0.0267 3541 145

Zeros and Ones 31 0.0283 5398 236

RaVI Mix All 21 0.0284 3755 156
None 32 0.0264 5445 289

Ones and Zeros 25 0.0269 4077 148

Zeros and Ones 28 0.0293 6358 273

few searches ended up with the same local minima. Roughly only one percent
of the solutions searched through were already evaluated by another parallel
computation thread.

Figure 5 shows the selected variables using the RaVI Mix selection scheme
and some inputs with high and low MI values for comparison.
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Fig. 5. Selected inputs using the RaVI Mix method starting from all zeros. The input
variables are on the horizontal axis, red circles at zero depict not selected variables and
blue circles at one depict selected variables. Blue dots at 0.9 denote the variables with
10 highest MI values and red crosses the ones with the 10 lowest values.

From Figure 5 we can see that the selection is not selecting all variables
with the highest MI values, but also the ones with very low value. For example,
variables 30 and 31 are among the variables with the highest MI values, but none
of them is selected. On the other hand, variables from 37 to 41 are among the
variables with the lowest MI values, but some of them are chosen by the RaVI
Mix.



This suggests that the MI value alone is not able to give a clear justification
to use the variable, and that also the variables with low MI value can be useful
in the approximation.

5 Conclusions

The problem of finding a good subset of variables for any kind of regression
model is still remaining as an unsolved problem. Due to the high dimensionality
of the real-life problems, it is not possible to apply an exhaustive search that
would provide the global optimum.

Within this context, this paper presents several heuristics to improve the be-
havior of a previously published algorithm, the Forward-Backward Search. These
new heuristics rely on the theoretical basis provided by the Mutual Information.
The search starts from a point that could be closer to adequate local minimum.

Another relevant aspect of one of the heuristics is the possibility to analyze
the relationships between variables, defining neighbor relationships. This aspect
can be further studied using different metrics, since this last heuristic provided
the best results in a complex input selection problem.

For further work, other ranking criteria are tested and the effect of using
different sizes of local searches are quantified and compared. Also other means
of local estimation of a good selection of inputs are tried.
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