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Abstract

The use of several types of structural restrictions within algorithms for learning Bayesian
networks is considered. These restrictions may codify expert knowledge in a given domain, in such
a way that a Bayesian network representing this domain should satisfy them. The main goal of this
paper is to study whether the algorithms for automatically learning the structure of a Bayesian net-
work from data can obtain better results by using this prior knowledge. Three types of restrictions
are formally defined: existence of arcs and/or edges, absence of arcs and/or edges, and ordering
restrictions. We analyze the possible interactions between these types of restrictions and also how
the restrictions can be managed within Bayesian network learning algorithms based on both the
score + search and conditional independence paradigms. Then we particularize our study to two
classical learning algorithms: a local search algorithm guided by a scoring function, with the
operators of arc addition, arc removal and arc reversal, and the PC algorithm. We also carry out
experiments using these two algorithms on several data sets.
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1. Introduction

Nowadays, Bayesian networks [26] constitute a widely accepted formalism for repre-
senting uncertain knowledge and for efficiently reasoning with it. A Bayesian network
(BN) is a graphical representation of a joint probability distribution, which consists of a
qualitative part, a directed acyclic graph (DAG) representing conditional (in)dependence
relationships, and a quantitative one, a collection of numerical parameters representing
conditional probability distributions. There has been a lot of work in the last ten years
on the automatic learning of Bayesian networks from data and, consequently, many learn-
ing algorithms have been developed, based on different methodologies. However, little
attention has been paid to the use of additional expert knowledge, not present in the data,
in combination with a given learning algorithm. This knowledge could help in the learning
process and contribute to get more accurate results, and even reduce the search effort of
the BN representing a given domain of knowledge.

In this paper, we address this problem by considering some kinds of expert knowledge
that will be codified by defining several types of restrictions, which will be used in conjunc-
tion with algorithms for learning Bayesian networks. More precisely, we shall consider
three types of restrictions: (1) existence of arcs and edges, (2) absence of arcs and edges,
and (3) ordering restrictions. All of them will be considered ‘‘hard’’ restrictions (as
opposed to ‘‘soft’’ restrictions [19]), in the sense that they are assumed to be true for
the BN representing the domain of knowledge, and therefore all the candidate BNs must
necessarily satisfy them. We can consider our method as a mixture of automatic learning
from data and manual construction of Bayesian networks using expert knowledge. There-
fore, we can move from one extreme to the other using more or less structural restrictions.

The paper is structured as follows: in Section 2 we briefly give some preliminary basic
concepts about learning the structure of Bayesian networks. Section 3 formally introduces
the three types of restrictions that we are going to study. In Section 4 we describe how to
represent the restrictions and how to manage them, including their self-consistency and the
consistency of the restrictions with a given graph. Section 5 studies how to combine the
restrictions with learning algorithms based on the score + search paradigm, and particu-
larizes this study to the case of algorithms based on local search. Section 6 carries out a
similar study for learning algorithms based on independence tests, focusing on the PC
algorithm.1 Section 7 discusses the experimental results and Section 8 contains the con-
cluding remarks. Finally, although the proofs of the propositions set out in the paper
are relatively simple, for the sake of completeness we have included them in the appendix.

2. Notation and preliminaries

Let us consider a finite set V ¼ fx1; x2; . . . ; xng of discrete random variables, each
variable taking on values from a finite set. We shall use lower-case letters for variable
names, and capital letters to denote sets of variables. The structure of a Bayesian network
on this domain is a directed acyclic graph (DAG) G ¼ ðV;EGÞ, where V is the set of
nodes2 and EG represents the set of arcs in the graph.
1 Examples of existing systems that can manage some kinds of structural restrictions within PC are TETRAD
[27] and Hugin [25].

2 We do not distinguish between a node and the random variable it represents.
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The problem of learning the structure of a BN from data is that given a training set D of
instances of the variables in V, find the network that, in some sense, best matches D. The
learning algorithms may be subdivided into two general approaches: methods based on
conditional independence tests, and methods based on a scoring function and a search
procedure.

The algorithms based on the score + search paradigm attempt to find a graph that max-
imizes the selected score. All use a scoring function [12,19,21], usually defined as a measure
of fit between the graph and the data, in combination with a search method in order to
measure the goodness of each explored structure from the space of feasible solutions. Most
of these algorithms use different search methods [5,6,13,14,16,19,20,23] but the same
search space: the space of DAGs.3

The algorithms based on independence tests generate a list of conditional indepen-
dence relationships among the variables in the domain (obtained from D by means of
conditional independence tests), and attempt to find a network that represents these
relationships as far as possible. The number, complexity and reliability of the required
independence tests are the main concerns regarding this type of algorithms [9,15,27].
The class of graphs where these methods implicitly search for the best solution is that
of partially directed acyclic graphs (PDAGs), which may contain both undirected links4

(edges) and directed links (arcs) but no directed cycle.
In both cases our objective is to narrow the corresponding search space (which is hyper-

exponential) by introducing several types of restrictions that the elements in this space
must satisfy.
3. Types of restrictions

We are going to study three types of restrictions on the graph structures defined for the
domain V, namely existence, absence and ordering restrictions.

3.1. Existence restrictions

We shall consider two kinds of existence restrictions, existence of arcs and existence of
edges. Let Ea;Ee �V�V be two subsets of pairs of variables, with Ea \ Ee ¼ ;. They
will be interpreted as follows:

• ðx; yÞ 2 Ea: the arc x! y must belong to any graph in the search space.
• ðx; yÞ 2 Ee: there is either a directed or a undirected link between the nodes x and y in

any graph in the search space. In the case of the DAG space this means that either the
arc x! y or the arc y! x must appear in any DAG.

An example of the use of existence restrictions may be any BAN algorithm [8], a BN
learning algorithm for classification, which fixes the naive Bayes structure (i.e. arcs from
3 Although other alternatives are possible, as searching in a space of equivalence classes of DAGs [2,11] or in a
space of orderings [17,24], in this paper we shall focus only on the space of DAGs.

4 Because the directionality of some links cannot be determined by using only information about conditional
independence relationships between sets of variables.
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the class variable to all the attribute variables) and searches for the appropriate additional
arcs connecting pairs of attribute variables.

3.2. Absence restrictions

We shall also consider two kinds of absence restrictions, absence of arcs and absence of
edges. Let Aa;Ae �V�V be two subsets of pairs of variables, with Aa \Ae ¼ ;. Their
meaning is the following:

• ðx; yÞ 2Aa: the arc x! y cannot be present in any graph in the search space.
• ðx; yÞ 2Ae: there is neither a directed nor a undirected link connecting nodes x and y in

any graph in the search space. For the DAG space this means that neither the arc x! y

nor the arc y! x can appear in any DAG.

An example of the use of absence restrictions is a selective naive Bayesian classifier [22],
which forbids arcs between attribute variables and also arcs from the attributes to the class
variable.

3.3. Partial ordering restrictions

We need some additional concepts to better understand the meaning of this kind of
restriction. We shall say that a total ordering, r, of the set of variables V is compatible

with a partial ordering, l, of the same set of variables if

8x; y 2V; if x<ly then x<ry; ð1Þ

i.e. if x precedes y in the partial ordering l then also x precedes y in the total ordering r.
Notice that a DAG (and also a PDAG) G determines a partial ordering on its variables: if
there is a directed path from x to y in G, then x precedes y. Therefore, we can also say that
a total ordering r on the set V is compatible with a graph G ¼ ðV;EGÞ if

8x; y 2V; if x! y 2 EG then x<ry: ð2Þ
Now, let us consider a subset Ro �V�V. In this case the interpretation is:

• ðx; yÞ 2 Ro: every graph in the search space has to satisfy that x precedes y in some total
ordering of the variables compatible with the graph.

Notice that the restriction ðx; yÞ 2 Ro is equivalent to assert that there is not a directed
path from y to x in any of the graphs in the search space. The ordering restrictions may
represent, for example, temporal or functional precedence between variables. Examples of
use of ordering restrictions are all the BN learning algorithms that require a fixed total
ordering of the variables (as the well-known K2 algorithm [12] or the algorithm in [15]).

4. Representation and management of the restrictions

In order to manage the restrictions it is useful to represent them also graphically.
So, the existence restrictions can be represented by means of a partially directed graph
Ge ¼ ðV;EeÞ, where each element (x,y) in Ea is associated with the corresponding arc
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Fig. 1. (a) Existence graph Ge used by a BAN algorithm; (b) absence graph Ga corresponding to a selective naive
Bayesian classifier; (c) ordering graph Go used by the K2 algorithm. In cases (a) and (b) x0 represents the class
variable.
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x! y 2 Ee, and each element (x,y) in Ee is associated with the edge x—y 2 Ee. Fig. 1(a) dis-
plays the existence graph used by a BAN algorithm. The absence restrictions may be repre-
sented by means of another partially directed graph Ga ¼ ðV;EaÞ, where the elements (x,y)
in Aa correspond with arcs x! y 2 Ea and the elements (x,y) in Ae are associated with
edges x—y 2 Ea. Fig. 1(b) represents the absence graph corresponding to a selective naive
Bayesian classifier. Finally, the ordering restrictions will be represented by using a directed
graph Go ¼ ðV;EoÞ, with each (x,y) in Ro being associated with the arc x! y 2 Eo. Notice
that, as we are assuming that the ordering restrictions form a partial ordering (i.e. the rela-
tion is transitive), we are not forced to include in Go an arc for each element in Ro. Go may be
any graph such that its transitive closure contains an arc for each element in Ro. For exam-
ple, to represent a total ordering restriction x1 < x2 < � � � < xn it suffices to include in Go the
n � 1 arcs xi! xi+1, i = 1, . . . ,n � 1, instead of having a complete graph with all the arcs
xi! xj, "i < j. Fig. 1(c) displays the ordering graph used by the K2 algorithm.

Now, let us formally define when a given graph is consistent with a set of restrictions
(i.e. the graph satisfies the restrictions):

Definition 1. Let Ge ¼ ðV;EeÞ, Ga ¼ ðV;EaÞ and Go ¼ ðV;EoÞ be the graphs representing
the existence, absence and ordering restrictions, respectively. Let G ¼ ðV;EGÞ be a DAG
and H ¼ ðV;EH Þ be a PDAG. We say that

(1) G is consistent with the existence restrictions if and only if

• 8x; y 2V, if x! y 2 Ee then x! y 2 EG,
• 8x; y 2V, if x—y 2 Ee then x! y 2 EG or y! x 2 EG.
(2) G is consistent with the absence restrictions if and only if

• 8x; y 2V, if x! y 2 Ea then x! y 62 EG,
• 8x; y 2V, if x—y 2 Ea then x! y 62 EG and y! x 62 EG.
(3) G is consistent with the ordering restrictions if and only if

• there exists a total ordering r of the variables in V compatible with both G and Go.
(4) H is consistent with the existence restrictions if and only if

• 8x; y 2V, if x! y 2 Ee then x! y 2 EH,
• 8x; y 2V, if x—y 2 Ee then x! y 2 EH or y! x 2 EH or x—y 2 EH,
• H can be transformed into a DAG, which is consistent with the restrictions, by

directing its edges.

(5) H is consistent with the absence restrictions if and only if
• 8x; y 2V, if x! y 2 Ea then x! y 62 EH,
• 8x; y 2V, if x—y 2 Ea then x! y 62 EH, y! x 62 EH and x—y 62 EH,
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• H can be transformed into a DAG, which is consistent with the restrictions, by
directing its edges.
(6) H is consistent with the ordering restrictions if and only if

• there exists a total ordering r of the variables in V compatible with both H and Go,
• H can be transformed into a DAG, which is consistent with the restrictions, by

directing its edges.
When we are specifying the set of restrictions to be used within a given domain, it is nec-
essary to make sure that these restrictions can indeed be satisfied. In this sense, we shall say
that a set of restrictions is self-consistent if there is some DAG that is consistent with them.
Testing the self-consistency of each of the three types of restrictions separately is very simple:

Proposition 2. Let Ge ¼ ðV;EeÞ, Ga ¼ ðV;EaÞ and Go ¼ ðV;EoÞ be the graphs represent-

ing existence, absence and ordering restrictions, respectively. Then

(a) The set of existence restrictions is self-consistent if and only if the graph Ge has no
directed cycle.

(b) The set of absence restrictions is always self-consistent.

(c) The set of ordering restrictions is self-consistent if and only if Go is a DAG.
When several types of self-consistent restrictions are considered simultaneously, some
interactions can occur among each other. These interactions may give rise to inconsistencies.
For example, the existence and absence of the same arcs; the ordering restrictions may also
contradict with the existence of some arcs (as they implicitly also represent partial ordering
restrictions). For instance, x! v, v! y 2 Ee contradicts with y! z, z! t, t! x 2 Eo.

It is also possible that some absence or ordering restrictions force an existence restriction.
For instance, if an arc must exist in either direction (i.e. x—y 2 Ee) but either an absence or
an ordering restriction indicates that some direction is forbidden (e.g. x! y 2 Ea or
y! x 2 Eo), then the other direction is forced (x—y should be replaced by y! x in Ee). This
can also produce interactions among the three types of restrictions, giving rise to inconsisten-
cies. For example, if y! t, t! x, x—z, z—y 2 Ee, y! z 2 Ea and x! z 2 Eo, the absence
and ordering restrictions force the orientation of the edges z—y and x—z which, together
with the other existence restrictions, generate a directed cycle. The following result character-
izes global self-consistency of the restrictions, in terms of simple operations on graphs.

Proposition 3. Let Ge ¼ ðV;EeÞ, Ga ¼ ðV;EaÞ and Go ¼ ðV;EoÞ be the graphs represent-

ing existence, absence and ordering restrictions, respectively. Let Gre ¼ ðV;EreÞ be the

refined graph of existence restrictions5 defined as

Ere ¼ fx! yjx! y 2 Eeg [ fy ! xjx—y 2 Ee; x! y 2 Eag
[ fx—yjx—y 2 Ee; x! y 62 Ea; y ! x 62 Eag ð3Þ

Then the three sets of restrictions are self-consistent if and only if Gre \ Ga = G; and
Gre [ Go has no directed cycle. G; is the empty graph6 and both the union and the intersection
is the graph Ge with some edges being replaced by arcs (those ones whose direction is forced because of an
e restriction).
raph having neither arcs nor edges.
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of two partially directed graphs use the convention that {x! y} [ {x—y} = {x! y} and

{x! y} \ {x—y} = {x! y}.

The following result shows that testing the consistency of a DAG with a set of restric-
tions can also be reduced to simple graph operations.

Proposition 4. Let Ge ¼ ðV;EeÞ, Ga ¼ ðV;EaÞ and Go ¼ ðV;EoÞ be graphs representing

self-consistent existence, absence and ordering restrictions, respectively, and let G ¼ ðV;EGÞ
be a DAG. Then G is consistent with the restrictions if and only if G [ Ge = G, G \ Ga = G;
and G [ Go is a DAG.

Testing the consistency of a PDAG with a set of restrictions is only a bit more compli-
cated, because of the possible interaction between the edges in the PDAG and the arcs in
the absence restrictions:

Proposition 5. Let Ge ¼ ðV;EeÞ, Ga ¼ ðV;EaÞ and Go ¼ ðV;EoÞ be graphs representing

self-consistent existence, absence and ordering restrictions, respectively, and let H ¼ ðV;EH Þ
be a PDAG and H r ¼ ðV;EH r

Þ be the refined PDAG7 defined as

EH r ¼ fx! yjx! y 2 EHg [ fy ! xjx—y 2 EH ; x! y 2 Eag
[ fx—yjx—y 2 EH ; x! y 62 Ea; y ! x 62 Eag ð4Þ

Then H is consistent with the restrictions if and only if H [ Ge = H, Hr \ Ga = G; and

Hr [ Go has no directed cycle.
5. Using the restrictions within score + search learning algorithms

If we have a set of self-consistent restrictions and we want to build a Bayesian network
from data using a score + search learning algorithm, it seems natural to use them to
reduce the search space and force the algorithm to return a DAG consistent with the
restrictions. A general mechanism to do it, which is valid for any algorithm of this type,
is very simple: each time the search process selects a candidate DAG G to be evaluated
by the scoring function, we can use the result in Proposition 4 to test whether G is consis-
tent with the restrictions, and reject it otherwise.

However, this general procedure may be somewhat inefficient. It would be convenient
to adapt it to the specific characteristics of the learning algorithm being used. We are going
to do that for the case of the classical score + search learning algorithm based on local
search [19], which uses the operators of arc insertion, arc deletion and arc reversal.

5.1. Conditions to apply the search operators

We start from the current DAG G, which is consistent with the restrictions, and let G 0

be the DAG obtained from G by applying one of the aforementioned operators. Let us see
which are the conditions necessary and sufficient to assure that G 0 is also consistent with
the restrictions.
7 As before, Hr is the graph H with the edges whose direction is forced because of an absence restriction being
replaced by arcs.
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Proposition 6. Let Ge ¼ ðV;EeÞ, Ga ¼ ðV;EaÞ and Go ¼ ðV;EoÞ be graphs representing

self-consistent existence, absence and ordering restrictions, respectively, and let G ¼ ðV;EGÞ
be a DAG consistent with the restrictions.

(a) Arc insertion: Let G0 ¼ ðV;E0GÞ, E0G ¼ EG [ fx! yg, with x! y 62 EG. Then G 0 is a
DAG consistent with the restrictions if and only if
8 Gr
9 Th
• x! y 62 Ea and x—y 62 Ea,

• there is not any directed path from y to x in G [ Go.
(b) Arc deletion: Let G0 ¼ ðV;E0GÞ, E0G ¼ EG n fx! yg, with x! y 2 EG. Then G 0 is a

DAG consistent with the restrictions if and only if
• x! y 62 Ee and x—y 62 Ee.
(c) Arc reversal: Let G0 ¼ ðV;E0GÞ, E0G ¼ ðEG n fx! ygÞ [ fy ! xg, with x! y 2 EG.

Then G 0 is a DAG consistent with the restrictions if and only if
• x! y 62 Ee, y! x 62 Ea and x! y 62 Eo,

• excluding the arc x! y, there is not any other directed path from x to y in G [ Go.
Notice that the conditions about the absence of directed paths between x and y in the
previous proposition have also to be checked by the algorithm that does not consider the
restrictions (using in this case the DAG G instead of G [ Go), so that the extra cost of
managing the restrictions is quite reduced: only two or three tests about the absence of
either an arc or an edge from a graph.

It is also interesting to notice that other score + search learning algorithms, more
sophisticated that a simple local search, can also be easily extended to efficiently deal with
the restrictions. There are many BN learning algorithms that perform a search more pow-
erful than local search but use the same three basic operators (as variable neighborhood
search [16], tabu search [2] or GRASP8 [14]), or even a subset of them (as ant colony opti-
mization [13] which only uses arc insertion9). These algorithms can be used together with
the restrictions with almost no additional modification.

5.2. Search initialization

Another question to be considered is the initialization of the search process. In general,
the learning algorithms start from one or several initial DAGs that, in our case, must be
consistent with the restrictions. A very common starting point is the empty DAG G;. In
our case G; should be replaced by the graph Ge or, even better, by the graph Gre. However,
as Gre is not necessarily a DAG, it must be transformed into a DAG. An easy way to do it
is to iteratively select an edge x—y 2 Ere, randomly choose an orientation and test whether
the restrictions are still self-consistent, choosing the opposite orientation if the test is neg-
ative. This process is based on the following result:

Proposition 7. Let Ge ¼ ðV;EeÞ, Ga ¼ ðV;EaÞ and Go ¼ ðV;EoÞ be graphs representing

self-consistent existence, absence and ordering restrictions, respectively, and let Gre ¼ ðV;EreÞ
be the refined graph of existence restrictions. Let x—y 2 Ere and define the graph Geðx!yÞ ¼
ðV;Eeðx!yÞÞ, where Ee(x!y) = (Een{x—y}) [ {x! y}. Then Ge(x!y), Ga and Go are still
eedy randomized adaptive search procedure.
e B algorithm [7] also uses arc insertion only, together with local search.
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self-consistent if and only if there is not a directed path from y to x in Gre [ Go. Moreover, either

Ge(x!y) or Ge(y!x), together with Ga and Go, are self-consistent.

In other cases the search algorithm is initialized with one (or several) random DAGs.
The process of selecting a random DAG, checking the restrictions and iterating until
the generated DAG satisfies the restrictions may be time-consuming, specially when there
are many restrictions. In these cases it would be quite useful to have a repair operator, i.e.
a method to transform any DAG G into one verifying the restrictions. This method can
also be useful for learning algorithms using population-based search processes (as genetic
algorithms [23] and EDAs [5]). There are many ways to define this repair operator. Here
we propose a quite simple method: we start from a DAG Gred containing only the arcs10

(not the edges) in Gre; then, given a random ordering of the arcs in G we iteratively try to
insert each of these arcs into Gred, using the conditions in Proposition 6(a); finally, for the
edges in Gre, we include them in Gred with the appropriate orientation, using the test in
Proposition 7 (replacing the graph Gre [ Go by Gred [ Go). The result is a DAG consistent
with the restrictions and containing as many arcs from G as possible.
6. Using the restrictions within independence-based learning algorithms

The learning algorithms based on independence tests typically proceed by eliminating
edges connecting pairs of nodes which are conditionally independent given some subset
of nodes, and by directing edges to form head-to-head patterns (triplets of nodes x,y,z

such that x and y are not adjacent and the arcs x! z and y! z exist). Both activities
are guided by the results of some statistical tests of conditional independence applied to
the available data. For example, the SGS and PC algorithms [27] first eliminate as many
edges as they can, and after they give direction to some of the non-removed edges by form-
ing head-to-head patterns. Finally, several additional edges may be directed by using some
coherence rules.

In this general context, a simple method to use a set of restrictions, in order to reduce
the number of necessary tests, is the following: before applying an independence test
I(x,yjZ), to either eliminate an edge x—y or to create a head-to-head pattern x! z y,
we could test whether the graph obtained by applying this operation is consistent with the
restrictions (using the result in Proposition 5); if the consistency test fails, the indepen-
dence test will not be carried out. However, in order to improve the efficiency of the pro-
cedure, it is convenient to adapt the general consistency test in Proposition 5 to the specific
characteristics of the operators being used.

Proposition 8. Let Ge ¼ ðV;EeÞ, Ga ¼ ðV;EaÞ and Go ¼ ðV;EoÞ be graphs representing

self-consistent existence, absence and ordering restrictions, respectively, and let

H ¼ ðV;EH Þ be a PDAG consistent with the restrictions.

(a) Arc deletion: Let H 0 ¼ ðV;E0H Þ, E0H ¼ EH n fx! yg, with x! y 2 EH. Then H 0 is a
PDAG consistent with the restrictions if and only if

• x! y 62 Ee and x—y 62 Ee.
10 Gred ¼ ðV;EredÞ, with Ered = {x! yjx! y 2 Ere}.
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(b) Edge deletion: Let H 0 ¼ ðV;E0HÞ, E0H ¼ EH n fx—yg, with x—y 2 EH. Then H 0 is a

PDAG consistent with the restrictions if and only if

• x! y 62 Ee, y! x 62 Ee and x—y 62 Ee.
(c) Head-to-head insertion: Let x; y; z 2V and define a subset of links S as either
S = {x! z, z—y}, S = {x—z,y! z} or S = {x—z, z—y}. If x and y are not adjacent

in H and S � EH, let H 0 ¼ ðV;E0H Þ, with E0H ¼ ðEH n SÞ [ fx! z; y ! zg. Then H 0 is

a PDAG consistent with the restrictions if and only if

• x! z 62 Ea and y! z 62 Ea,

• there is a directed path neither from z to x nor from z to y in H [ Go.
(d ) Edge orientation: Let H 0 ¼ ðV;E0H Þ, E0H ¼ ðEH n fx—ygÞ [ fx! yg, with x—y 2 EH.

Then H 0 is a PDAG consistent with the restrictions if and only if
• x! y 62 Ea,

• there is not a directed path from y to x in H [ Go.
Moreover, another way to reduce the number and complexity of the required indepen-
dence tests, is to use the restrictions to reduce the size of the sets of nodes which are can-
didate to form the separating sets employed by the tests. Focusing on the PC algorithm,
it tries to determine whether two nodes x and y are not adjacent by testing whether y is inde-
pendent on x conditional on some subset of the current adjacencies of x (and after testing
whether x is independent on y conditional on some subset of the current adjacencies of y).
The reason is that, if x and y are not adjacent, then they will be conditionally independent
given either the parents of x or the parents of y in the true graph, and these sets will always
be subsets of the current adjacencies of either x or y, respectively. In this context, we can use
the restrictions to remove, from any subset of the current adjacencies of node x, all the
nodes that cannot be parents of x: for each node z (excluding y) adjacent to x in the current
graph, if either there is a directed path from x to z in Gre [ Go, or z! x 2 Ea or x—z 2 Ea

then, according to Proposition 5, z! x cannot be an arc in any graph consistent with the
restrictions and therefore it can be safely removed from any candidate separating set.

As in the case of the score + search based methods, we have also to consider the initial-
ization step of the algorithm. A common starting point for independence-based algorithms
is the complete undirected graph Gc ¼ ðV;EcÞ, with Ec ¼ fx—yjx; y 2Vg. In our case this
initial graph should be transformed by removing the edges in the absence restrictions and
giving direction to some edges taking into account the arcs in the existence, ordering and
absence restrictions. More precisely, let us define the following graphs:

• The graph of undirected absence restrictions:

Gau ¼ ðV;EauÞ; Eau ¼ fx—yjx—y 2 Eag
• The graph of inverted absence restrictions:

Gai ¼ ðV;EaiÞ; Eai ¼ fx! yjy ! x 2 Eag
• The transitive closure of the graph of ordering and existence restrictions:

Geot ¼ ðV;EeotÞ; Eeot ¼ fx! yj there is a directed path from x to y in Gre [ Gog
The complete undirected graph Gc should then be replaced by the graph (GcnGau) [
Geot [ Gai. Fig. 2 illustrates this transformation.
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Fig. 3. Transforming the complete undirected graph into an initial graph which is not consistent with the
restrictions Ge, Ga and Go.
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However, a problem may appear, namely that this initial PDAG may be non-consistent
with the restrictions. For example, the set of self-consistent restrictions in Fig. 3 gives rise
to a graph (GcnGau) [ Geot [ Gai which is not consistent. It is quite simple to show that this
situation will occur if and only if the graph Ge [ Go [ Gai has a directed cycle.

The reason for this situation is that in these cases the set of restrictions, together, implies
another absence restrictions which have not been explicitly stated. For the example in
Fig. 3, the explicit restrictions imply that the arc t! x cannot exist (so that the restriction
x! t 2 Ea in fact is x—t 2 Ea). A possible solution is to detect this situation and then
remove the corresponding arc (the arc t! x in the example). However, there are cases
where more than one arc could be removed (i.e. the set of implicit absence restrictions that
can be deduced from the explicit restrictions does not form a conjunction). For example,
the set of restrictions x! y 2 Ee, y! z 2 Eo and x! t, t! z 2 Ea implies that either
x—t 2 Ea or t—z 2 Ea. In these cases we would have to choose eliminating one of these
arcs without using additional information. For that reason we believe that a better solution
is to postpone the removal of these arcs, temporarily allowing the intermediate graphs
obtained to be non-consistent with the restrictions. Once the phase of elimination of
edges/arcs guided by independence tests has finished, we would remove the additional arcs
(if any) which are necessary to restore the consistency. This can be easily done by testing
for the presence of directed cycles in the graph H [ Go, being H the current graph, and
then removing one of the arcs in the cycle that comes from an absence restriction. The
advantage of this strategy is that some of the arcs that could generate the lack of consis-
tency may have already been eliminated by the independence tests, and we avoid making
an arbitrary selection. In the last example, if the arc z! t is eliminated by an indepen-
dence test, we avoid the risk of having arbitrarily removed the arc t! x at the beginning
(to after eliminate also the arc z! t).

The proposed adaptation of the PC algorithm to use restrictions is therefore quite sim-
ple: we start with the PDAG (GcnGau) [ Geot [ Gai. Next, the phase of edge elimination of
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PC is carried out, considering the conditions (a) and (b) in Proposition 8 for arc and edge
deletion, respectively, using also the reduced candidate separating sets. Then we test for
the consistency of the resulting PDAG and eliminate some arcs if necessary, as we
explained previously. The following step is the PC phase of detection of head-to-head pat-
terns, using in this case the conditions (c) in Proposition 8. Finally, the orientation of addi-
tional edges using the coherence rules is carried out using the conditions (d) in Proposition
8. If the final graph H is not a DAG, we can direct the remaining edges in either direction
that avoids the creation of new head-to-head patterns, as long as we do not create directed
cycles in H [ Go.

7. Experimental results

In this section we shall describe the experiments carried out to test the effect of using
restrictions on BN learning algorithms, and the obtained results. The score + search learn-
ing algorithm considered is the previously mentioned classical local search (with addition,
removal and reversal of arcs), using the BDeu scoring function [19], with the parameter
representing the equivalent sample size set to 1 and a uniform structure prior. The inde-
pendence-based learning algorithm used is PC. We have selected four different problems.
The Alarm network (left-hand side of Fig. 4) displays the relevant variables and relation-
ships for the Alarm Monitoring System [3], a diagnostic application for patient monitor-
ing. This network contains 37 variables and 46 arcs. Insurance [4] is a network for
evaluating car insurance risks. The Insurance network (Fig. 5) contains 27 variables and
52 arcs. Hailfinder [1] is a normative system that forecasts severe summer hail in northeast-
ern Colorado. The Hailfinder network contains 56 variables and 66 arcs. Asia (right-hand
side of Fig. 4) is a small Bayesian network that calculates the probability of a patient hav-
ing tuberculosis, lung cancer or bronchitis respectively based on different factors. All these
networks have been widely used in specialist literature for comparative purposes.

The collected performance measures are: (1) The scoring value (BDeu) of the obtained
network; this measure is interesting because it is just the criterion which guides the local
search algorithm. (2) Three measures of the structural difference between the learned net-
work and the true one, which measure the capacity to reconstruct the graphical structure:
the number of added arcs (A), the number of deleted arcs (D) and the number of inverted
arcs (I) in the learned network with respect to the original. To eliminate fictitious differ-
ences or similarities between the two networks, caused by different but equivalent sub-
DAG structures, before comparing the two networks we have converted them to their
corresponding completed PDAG (also called essential graph) representation,11 using the
algorithm proposed in [10]. (3) A measure of the ability to reconstruct the joint probability
distribution: we use the Kullback–Leibler divergence (KL) between the distributions asso-
ciated to the original and the learned networks.

For each problem we have randomly selected fixed percentages of restrictions of each
type, extracted from the whole set of restrictions corresponding to the true network. More
precisely, if G ¼ ðV;EGÞ is the true network, then each arc x! y 2 EG is a possible exis-
tence restriction (we may select the restriction x! y 2 Ee if this arc is also present in the
11 A completed PDAG is a partially directed acyclic graph which is a canonical representation of all the DAGs
belonging to the same equivalence class of DAGs.
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completed PDAG representation of G; otherwise we would use the restriction x—y 2 Ee);
each arc x! y 62 EG is a possible absence restriction (in case that also y! x 62 EG we ran-
domly select whether to use the restriction x! y 2 Ea or x—y 2 Ea); finally, if there is a
directed path from x to y in the completed PDAG representation of G then x! y 2 Eo is a
possible ordering restriction. The selected percentages have been 10%, 20%, 30% and 40%.



246 L.M. de Campos, J.G. Castellano / Internat. J. Approx. Reason. 45 (2007) 233–254
We have run the learning algorithms for each percentage of restrictions of each type alone,
and also using the three types of restrictions together.

Each network has been used to generate 10 databases, each of which contains 1000
instances, except for Asia, where the sample size is 100. The results displayed in the follow-
ing sections represent the average values of the performance measures across 50 iterations
(i.e. 5 random subsets of restrictions for each of the 10 datasets). All the implementa-
tions have been carried out within the Elvira System [18], a Java tool to construct prob-
abilistic decision support systems, which works with Bayesian networks and influence
diagrams.

7.1. Results for the local search algorithm

Tables 1–4 display the results obtained using the local search algorithm, including the
results obtained by the learning algorithm without using restrictions (0%), and the KL
values of the true networks, with parameters retrained from the corresponding databases,
which may serve as a kind of scale. Tables 5 and 6 display the corresponding BDeu values,
as well as the scoring values of the true networks.

First, let us analyze the results from the perspective of the structural differences. What it
was expected is that the number of deleted arcs, added arcs and inverted arcs decreases as
the number of existence, absence and ordering restrictions, respectively, increases. This
behaviour is indeed clearly observed in the results. Moreover, another less obvious effect,
frequently observed in the experiments, is that the use of any of the three types of restric-
tions also tends to decrease the other measures of structural difference. For example, the
existence restrictions decrease the number of deleted arcs, but also the number of added
and inverted arcs.

With respect to the analysis of the results from the perspective of the KL divergence, we
have to distinguish Hailfinder from the other three datasets. For these datasets the use of
each type of restriction leads to better network structures, and the improvement almost
systematically increases with the number of restrictions being used. Nevertheless, there
are a few cases (with Alarm) where using the absence restrictions gives worse results than
those of the unrestricted local search. We believe that the explanation of this behaviour lies
in the following fact: when a local search-based learning algorithm mistakes the direction
of some arc connecting two nodes,12 then the algorithm tends to ‘cross’ the parents of
these nodes to compensate the wrong orientation; if some of these ‘crossed’ arcs are used
as absence restrictions, then the algorithm cannot compensate the mistake and has to stop
in a worse configuration. These results suggest another way of using the absence restric-
tions: once the algorithm, using only existence and ordering restrictions, has found a local
maximum, we could delete all the forbidden arcs and run another local search. However,
the case of Hailfinder is completely different, all the types of restrictions give rise to worse
networks, the more restrictions we use the greater the KL divergence (except in the case of
the absence restrictions). For the present we do not have an explanation for this unex-
pected behaviour of the KL divergence for the Hailfinder datasets.

Finally, concerning the BDeu values we can observe that they are always greater
(better) than the BDeu scores of the true networks, which indicates some kind of overfitting
12 This situation may be quite frequent at early stages of the search process.



Table 2
Average results obtained for Alarm using local search

% Ge, Ga, Go Only Ge Only Ga Only Go

KL A D I KL A D I KL A D I KL A D I

10 0.2875 6.7 3.0 7.9 0.2896 8.0 3.0 12.5 0.3419 9.9 3.9 15.7 0.3163 9.5 3.6 13.7
20 0.2620 4.2 2.4 4.3 0.2595 6.5 2.4 9.5 0.3608 8.7 4.2 12.8 0.3079 8.9 3.6 11.5
30 0.2338 2.7 2.0 2.7 0.2435 5.7 2.0 7.1 0.3401 6.5 4.1 9.6 0.2833 7.6 3.4 8.5
40 0.2240 2.1 1.7 1.6 0.2309 4.8 1.6 5.4 0.3183 4.9 3.6 7.0 0.2714 7.0 3.3 6.7

0 0.3199 10.5 3.7 18.4 KL true Alarm network (retrained): 0.2112

Table 3
Average results obtained for Insurance using local search

% Ge, Ga, Go Only Ge Only Ga Only Go

KL A D I KL A D I KL A D I KL A D I

10 0.5592 3.3 15.3 11.5 0.5871 4.6 15.9 13.6 0.6053 4.7 17.5 14.3 0.5984 5.4 17.9 14.2
20 0.5403 2.1 13.4 8.9 0.5571 3.5 13.9 12.3 0.5819 3.6 17.0 13.0 0.5729 4.9 17.8 13.0
30 0.5144 1.0 11.3 6.3 0.5293 2.5 11.8 9.8 0.5685 2.7 16.6 11.1 0.5614 4.5 17.6 11.8
40 0.5092 0.5 9.3 4.8 0.5263 1.9 9.8 7.3 0.5587 2.0 16.2 8.1 0.5513 4.1 17.4 10.4

0 0.6295 6.1 18.3 16.1 KL true Insurance network (retrained): 0.5531

Table 4
Average results obtained for Hailfinder using local search

% Ge, Ga, Go Only Ge Only Ga Only Go

KL A D I KL A D I KL A D I KL A D I

10 1.4409 11.7 16.2 13.2 1.4322 14.1 16.6 16.4 1.4329 13.4 17.7 15.6 1.4382 15.0 18.3 14.8
20 1.4974 9.2 14.3 12.4 1.4946 13.3 14.9 16.7 1.4249 11.3 17.3 13.1 1.4536 15.1 18.7 13.6
30 1.5209 6.7 12.3 10.4 1.5330 11.9 13.0 15.7 1.4049 8.9 16.2 11.5 1.4465 14.7 18.6 12.0
40 1.5453 4.8 10.7 8.6 1.5415 11.1 11.2 14.4 1.3886 7.2 15.6 9.8 1.4517 14.5 18.7 10.6

0 1.4216 15.5 18.1 17.3 KL true Hailfinder network (retrained): 1.1609

Table 1
Average results obtained for Asia using local search

% Ge, Ga, Go Only Ge Only Ga Only Go

KL A D I KL A D I KL A D I KL A D I

10 0.1385 2.3 1.8 0.8 0.1448 2.8 2.0 0.8 0.1418 2.4 2.1 0.5 0.1491 2.9 2.3 0.6
20 0.1319 1.7 1.4 0.5 0.1438 2.6 1.6 1.0 0.1409 2.1 2.1 0.6 0.1481 2.9 2.3 0.6
30 0.1225 1.5 1.1 0.4 0.1378 2.5 1.4 0.9 0.1408 1.9 2.0 0.6 0.1481 2.9 2.3 0.6
40 0.1169 1.1 0.8 0.3 0.1308 2.4 1.1 0.9 0.1376 1.4 1.8 0.5 0.1485 2.9 2.3 0.6

0 0.1491 2.9 2.3 0.6 KL true Asia network (retrained): 0.0955
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to the data. Moreover, the BDeu values, as we increase the number of restrictions, tend to
decrease for Asia and Hailfinder and tend to increase for Alarm and Insurance. We believe



Table 6
Average BDeu values for Insurance and Hailfinder

% Insurance Hailfinder

Ge, Ga, Go Only Ge Only Ga Only Go Ge, Ga, Go Only Ge Only Ga Only Go

10 �14105.75 �14137.72 �14115.24 �14113.08 �52638.00 �52612.30 �52599.14 �52595.80
20 �14100.71 �14129.56 �14082.38 �14080.21 �52785.04 �52720.74 �52616.60 �52607.93
30 �14117.11 �14138.98 �14060.97 �14068.16 �52977.60 �52868.29 �52620.29 �52608.47
40 �14158.52 �14178.02 �14047.71 �14052.52 �53207.97 �53020.67 �52641.89 �52622.05

0 �14152.92 BDeu true network: �14439.10 �52580.32 BDeu true network: �55268.49

Table 5
Average BDeu values for Asia and Alarm

% Asia Alarm

Ge, Ga, Go Only Ge Only Ga Only Go Ge, Ga, Go Only Ge Only Ga Only Go

10 �218.97 �218.68 �218.66 �218.35 �11184.80 �11192.55 �11253.17 �11233.99
20 �219.50 �219.15 �218.73 �218.38 �11151.20 �11157.59 �11264.57 �11226.59
30 �219.67 �219.22 �219.01 �218.38 �11123.20 �11134.51 �11237.61 �11190.76
40 �220.00 �219.41 �219.25 �218.38 �11113.99 �11119.93 �11209.80 �11171.16

0 �218.35 BDeu true network: �258.91 �11233.37 BDeu true network: �11256.62
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that this is due to a greater degree of overfitting of the BDeu score in the first two cases,
caused by a smaller relative sample size.

7.2. Results for the PC algorithm

In some preliminary experiments we observed poor results when using the absence restric-
tions, especially concerning the KL divergence and the number of inverted arcs. We think
that the reason for this behaviour is the following: the algorithm does not perform indepen-
dence tests for any two nodes x and y involved in undirected absence restrictions. Therefore,
if these nodes become related through another node z, x—z—y, we have not the information
required to determine whether they form a head-to-head pattern (namely that z is not in the
subset which separated x and y). For that reason we have modified the algorithm in such a
way that we do not eliminate from the initial graph the edges x—y 2 Ga but we remove them
after the step where the algorithm eliminates edges using independence tests. The results
obtained after this modification are displayed in Tables 7–10.
Table 7
Average results obtained for Asia using PC

% Ge, Ga, Go Only Ge Only Ga Only Go

KL A D I KL A D I KL A D I KL A D I

10 0.2520 0.3 4.0 2.7 0.2639 0.2 4.1 3.0 0.2839 0.2 4.8 2.8 0.2847 0.2 4.8 2.9
20 0.2224 0.4 3.3 2.0 0.2388 0.2 3.4 2.8 0.2796 0.2 4.8 2.7 0.2802 0.3 4.7 2.8
30 0.2023 0.5 2.6 1.6 0.2242 0.3 3.0 2.6 0.2837 0.4 4.7 2.5 0.2740 0.4 4.7 2.6
40 0.1818 0.5 2.1 1.1 0.2145 0.4 2.4 2.4 0.2774 0.4 4.6 2.2 0.2735 0.6 4.7 2.3

0 0.2895 0.2 4.8 2.8 KL true Asia network (retrained): 0.0955



Table 8
Average results obtained for Alarm using PC

% Ge, Ga, Go Only Ge Only Ga Only Go

KL A D I KL A D I KL A D I KL A D I

10 2.2590 1.5 13.5 7.6 2.3850 1.7 15.0 8.5 2.7508 1.5 16.9 9.2 2.7265 1.6 17.1 8.8
20 1.5953 1.2 9.5 6.4 1.9995 1.8 12.6 7.2 2.5969 1.5 15.8 8.6 2.6471 1.7 16.5 8.3
30 1.1720 1.1 6.8 4.5 1.7976 1.9 10.5 6.2 2.3655 1.2 14.0 7.7 2.4914 1.6 15.2 8.3
40 0.8204 1.0 4.9 2.9 1.5681 1.9 8.5 5.6 2.0665 1.1 12.1 6.9 2.3195 1.7 14.2 8.2

0 2.7482 1.7 17.8 9.6 KL true Alarm network (retrained): 0.2112

Table 9
Average results obtained for Insurance using PC

% Ge, Ga, Go Only Ge Only Ga Only Go

KL A D I KL A D I KL A D I KL A D I

10 2.2192 1.1 26.9 11.4 2.4062 1.4 27.8 12.0 2.3718 1.1 31.2 7.9 2.3385 1.4 31.3 7.5
20 1.8538 1.0 22.7 13.0 2.2920 1.4 24.7 14.4 2.2248 1.1 30.4 8.4 2.2134 1.4 30.7 7.9
30 1.6081 0.8 18.1 13.5 2.1726 1.3 20.8 15.9 2.0282 1.1 29.4 9.1 2.1007 1.3 30.2 7.8
40 1.4259 0.5 14.8 13.4 2.0900 1.3 17.7 17.2 1.8690 0.6 28.3 9.6 1.9995 1.3 29.7 7.9

0 2.4314 1.4 31.6 7.4 KL true Insurance network (retrained): 0.5531

Table 10
Average results obtained for Hailfinder using PC

% Ge, Ga, Go Only Ge Only Ga Only Go

KL A D I KL A D I KL A D I KL A D I

10 8.2310 12.2 32.3 9.7 8.4367 11.1 32.8 10.4 8.9021 11.8 36.3 8.8 9.0700 10.9 36.6 9.0
20 7.7158 13.0 27.9 9.9 8.2728 11.3 28.8 11.4 8.6166 12.3 35.9 8.3 8.9622 11.2 36.3 8.8
30 7.4199 14.0 23.6 10.1 8.2550 11.5 24.9 12.6 8.2566 13.6 35.1 7.7 8.8277 11.6 35.9 8.3
40 7.4649 15.7 19.4 10.3 8.3642 11.7 20.9 13.5 8.0320 15.4 34.3 7.2 8.7295 11.7 35.5 7.8

0 9.1548 10.7 36.8 9.4 KL true Hailfinder network (retrained): 1.1609
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In this case, the use of the restrictions always gives rise to better network structures than
the unrestricted PC, from the point of view of the KL divergence. With respect to the
structural differences, all the types of restrictions decrease the number of deleted arcs (pos-
sibly this is due to the smaller number of independence tests carried out). However, for the
same reason the number of added arcs tends to increase (except in the case of Insurance).
The number of inverted arcs tends to decrease (once again except in the case of Insurance).

8. Concluding remarks

We have formally defined three types of structural restrictions for Bayesian networks,
namely existence, absence and ordering restrictions, and studied their use in combination
with BN learning algorithms that use score + search methods and independence tests. We
have illustrated it for the specific cases of a local search learning algorithm and the PC
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algorithm. The experimental results show that the use of additional knowledge in the form
of restrictions may lead to improved network structures (usually in less time). For future
work we plan to study the use of restrictions within score + search based learning algo-
rithms that do not search directly in the DAG space [2,17]. We would also like to study
another type of restrictions, namely conditional independence relationships between pairs
of variables that should be true.
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Appendix

We include here the proofs of all the propositions stated in the paper.

Proof of Proposition 2. (a) Necessary condition: We know that a DAG G exists which is
consistent with the restrictions. If the graph Ge has some directed cycle, as all the arcs in Ge

must also be arcs in G, then G will contain a directed cycle too, which contradicts the fact
that G is a DAG.

Sufficient condition: We know that Ge has no directed cycle. Starting from Ge we shall
build a graph G ¼ ðV;EGÞ as follows: 8x; y 2V, if x! y 2 Ee then x! y 2 EG; if x!
y 62 Ee, y! x 62 Ee and x—y 62 Ee then x! y 62 EG and y! x 62 EG; if x—y 2 Ee then we
include in EG either the arc x! y or the arc y! x. This graph G is obviously consistent
with the restrictions. We can always select at least one orientation of the edges x—y that
does not generate a directed cycle and hence G will be a DAG: if the arc x! y generates a
directed cycle this is because there was a directed path from y to x before including this
arc; if the arc y! x also generates a directed cycle, then there was also a directed path
from x to y. As we have a directed path from x to y and another directed path from y to x,
we would have a directed cycle before introducing any arc.

(b) The empty graph G; always verifies the absence restrictions.
(c) Necessary condition: We know that there is a DAG G and a total ordering

compatible with both G and Go. If Go is not a DAG, then it has a directed cycle, and then
no total ordering can be compatible with Go.

Sufficient condition: We know that Go is a DAG. There is at least one total ordering
compatible with Go. Therefore, for the graph G = Go this ordering is obviously compatible
with G and Go.
Proof of Proposition 3. Necessary condition: We know that there exists a DAG G consis-
tent with the restrictions. First, let us see that Gre \ Ga = G;:

x! y 2 Ere if and only if either x! y 2 Ee or x—y 2 Ee and y! x 2 Ea. In the first case,
from x! y 2 Ee we get x! y 2 EG and from this x! y 62 Ea and x—y 62 Ea. In the second
case, from x—y 2 Ee we get either x! y 2 EG or y! x 2 EG; if x! y 2 EG then we also
obtain x! y 62 Ea and x—y 62 Ea; the second case, y! x 2 EG, cannot happen because we
also have that y! x 2 Ea. Therefore, we have that if x! y 2 Ere then x! y 62 Ea and x—
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y 62 Ea. On the other hand, x—y 2 Ere if and only if x—y 2 Ee, x! y 62 Ea and y! x 62 Ea.
From x—y 2 Ee we obtain that either x! y 2 EG or y! x 2 EG, and in any case this implies
that x—y 62 Ea. So, we have that if x—y 2 Ere then x! y 62 Ea, y! x 62 Ea and x—y 62 Ea.
Therefore, Gre \ Ga = G;.

Now, let us see that Gre [ Go has not directed cycles:
If Gre [ Go has some directed cycle x1! x2! � � � ! xk! x1, then each one of these arcs

belongs to either Ere or Eo. If xi! xi+1 2 Eo then every total ordering r compatible with Go

has to verify that xi <r xi+1. If xi! xi+1 2 Ere then xi! xi+1 2 EG and again every total
ordering r compatible with G has to verify that xi <r xi+1. Consequently, every total ordering
compatible with both G and Go would have to verify that x1 <r x2 <r � � � <r xk <r x1, which
is obviously not possible. Therefore, Gre [ Go has not directed cycles.

Sufficient condition: We know that Gre \ Ga = G; and Gre [ Go has not directed cycles.
As Gre [ Go is a graph without directed cycles we can give direction to the edges in this
graph to get a DAG. Let us select only the arcs from this completed DAG that come from
Gre, and we obtain a new subDAG G ¼ ðV;EGÞ. Obviously G satisfies the existence
restrictions. Let us see that G also verifies the absence and ordering restrictions: If
x! y 2 Ea then x! y 62 Ere and x—y 62 Ere, hence x! y 62 EG. If x—y 2 Ea then
x—y 62 Ere, x! y 62 Ere and y! x 62 Ere, hence x! y 62 EG and y! x 62 EG, and G

satisfies the absence restrictions. As G [ Go is a DAG then there exists an ordering
compatible with G [ Go. This ordering is clearly compatible with both G and Go, and then
G satisfies the ordering restrictions.
Proof of Proposition 4. Necessary condition: We know that G is consistent with the restric-
tions. First let us prove that G [ Ge = G. If x! y 2 EG [ Ee then either x! y 2 EG or
x! y 2 Ee. In the second case we also deduce that x! y 2 EG. If x—y 2 EG [ Ee then
x—y 2 Ee, x! y 62 EG and y! x 62 EG, but this situation is not possible because G is con-
sistent with Ge. Therefore, we obtain that G [ Ge � G, and obviously G � G [ Ge.

Now, let us prove that G \ Ga = G;. If x! y 2 Ea then x! y 62 EG. If x—y 2 Ea then
x! y 62 EG and y! x 62 EG. Hence G \ Ga = G;.

Finally, let us prove that G [ Go is a DAG. In case that G [ Go is not a DAG, there
exists a directed cycle x1! x2! � � � ! xk! x1, each one of these arcs belonging to
EG [ Eo. Then, as in Proof of Proposition 3 to prove that Gre [ Go had not directed cycles,
we can deduce that every total ordering r compatible with both G and Go would have to
verify that x1 <r x2 <r � � � <r xk <r x1.

Sufficient condition: We know that G [ Ge = G, G \ Ga = G; and G [ Go is a DAG. As
EG [ Ee = EG, if x! y 2 Ee then x! y 2 EG; if x—y 2 Ee then either x! y 2 EG or
y! x 2 EG. Therefore, G is consistent with the existence restrictions.

As Ea \ EG = ;, if x! y 2 Ea then x! y 62 EG; if x—y 2 Ea then x! y 62 EG and
y! x 62 EG, and G is consistent with the absence restrictions.

As G [ Go is a DAG, there exists a total ordering r compatible with G [ Go. Then this
ordering is compatible with both G and Go.
Proof of Proposition 5. The proof is quite similar to that of Propositions 3 and 4, so that
we shall omit the details. The justification to use Hr instead of H is that, as it happened
with the existence restrictions Ge in Proposition 3, the edges in H may interact with the
arcs in Ga (for example, if Ea = {x1! x2} and EH = {x1—x2}, then Ga \ H 5 G; because
{x1! x2} \ {x1—x2} = {x1! x2}). The edges of H whose orientation becomes forced
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because of the arcs in Ga can also interact with the arcs in Go (for example, if Ea =
{x1! x2,x2! x3} and Eo = {x1! x3}, then the graph H ¼ ðV;EH Þ with EH =
{x1—x2,x2—x3}, verifies that H [ Go has not directed cycles although H is not consistent
with the restrictions, whereas Hr [ Go has a directed cycle).
Proof of Proposition 6. (a) Necessary condition: We know that G 0 is consistent with the
restrictions. As E0G \ Ea ¼ ;, then (EG [ {x! y}) \ Ea = ;. Therefore, {x! y} \ Ea = ;
and this means that x! y 62 Ea and x—y 62 Ea. On the other hand, if G [ Go had a direc-
ted path from y to x, then we would have a cycle in G 0 [ Go, and then G 0 [ Go would not
be a DAG.

Sufficient condition: We know that G is consistent with the restrictions.
As EG [ Ee = EG, then E0G [ Ee ¼ ðEG [ fx! ygÞ [ Ee ¼ EG [ fx! yg ¼ E0G and

therefore G 0 [ Ge = G 0.
As EG \ Ea = ;, then E0G \ Ea ¼ ðEG [ fx! ygÞ \ Ea ¼ fx! yg \ Ea, and this last

intersection is empty because x! y 62 Ea and x—y 62 Ea. Therefore, G 0 \ Ga = G;.
Finally, as G [ Go is a DAG and there is not a directed path from y to x in this graph,

then the graph G 0 [ Go obtained from G [ Go by including the arc x! y is a DAG.
(b) Necessary condition: We know that G and G 0 are consistent with the restrictions. As

G 0 [ Ge = G 0, then E0G [ Ee ¼ E0G, i.e. (EGn{x! y}) [ Ee = EGn{x! y}. In case that
x! y 2 Ee then we would have (EGn{x! y}) [ Ee = EG [ Ee = EG. In case that
x—y 2 Ee then (EGn{x! y}) [ Ee = ((EG [ Ee)n{x! y}) [ {x—y} = (EGn{x! y}) [
{x—y}, and both cases contradict the hypothesis.

Sufficient condition: As EG \ Ea = ; then E0G \ Ea ¼ ðEG n fx! ygÞ \ Ea ¼ ;, and
G 0 \ Ga = G;.

As EG [ Ee = EG, x! y 62 Ee and x—y 62 Ee, then E0G [ Ee ¼ ðEG n fx! ygÞ[
Ee ¼ ðEG [ EeÞ n fx! yg ¼ EG n fx! yg ¼ E0G. Thus, G 0 [ Ge = G 0.

Finally, as G [ Go is a DAG and G 0 [ Go is a subgraph, it is also a DAG.
(c) Necessary and sufficient conditions: Reversing an arc x! y can be seen as first

deleting it and after inserting the arc y! x. Then, by applying the conditions for deleting
and inserting we would have x! y 62 Ee, x—y 62 Ee, y! x 62 Ea, x—y 62 Ea and there is
not any directed path from x to y in (Gn{x! y}) [ Go. However, the condition x—y 62 Ee

is not necessary, because we are not eliminating the arc x! y but replacing it by y! x.
The condition x—y 62 Ea will be always true, because x! y was in G and G is consistent.
Finally, the condition stating that there is not any directed path from x to y in
(Gn{x! y}) [ Go is equivalent to say that there is not any directed path from x to y in
(G [ Go)n{x! y} and that x! y 62 Eo.
Proof of Proposition 7. Let Greðx!yÞ ¼ ðV;Ereðx!yÞÞ be the refined graph of existence restric-
tions using Ge(x!y) instead of Ge. It is clear that Ere(x!y) = (Eren{x—y}) [ {x! y}. As x—y

2 Ere we also know that x! y 62 Ea and y! x 62 Ea. Then, according to Proposition 3,
Ge(x!y), Ga and Go will be self-consistent if and only if Gre(x!y) \ Ga = G; and Gre(x!y) [ Go

has no directed cycle.
Let us assume first that Ge(x!y), Ga and Go are self-consistent. If there is a directed path

from y to x in Gre [ Go, all the arcs in this path are also in Gre(x!y) [ Go and, together with
the arc x! y, they form a directed cycle in Gre(x!y) [ Go, which contradicts the
hypothesis.
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Now, let us assume that there is not any directed path from y to x in Gre [ Go. As Ge, Ga

and Go are self-consistent, we also know that Gre \ Ga = G; and Gre [ Go has no directed
cycle.

Ere(x!y) \ Ea = ((Eren{x—y}) [ {x! y}) \ Ea = ((Eren{x—y}) \ Ea) [ ({x! y} \ Ea) = ;.
Therefore, Gre(x!y) \ Ga = G;.

As Gre [ Go has no directed cycle, if after directing the edge x—y as x! y, in order to
obtain Gre(x!y) [ Go, we get a cycle, then there was a directed path from y to x in
Gre [ Go, which contradicts the hypothesis. Therefore, we have that Gre(x!y) \ Ga = G;
and Gre(x!y) [ Go has not a directed cycle, hence Ge(x!y), Ga and Go are self-consistent.

Finally, let us prove that either Ge(x!y) or Ge(y!x), together with Ga and Go are self-
consistent. If we assume that this is not true, then there is a directed path from y to x and
another from x to y in Gre [ Go, and this means that we have a directed cycle in Gre [ Go,
which contradicts the fact that Ge, Ga and Go are self-consistent.
Proof of Proposition 8. (a) and (b) The proof is completely similar to that of Proposition
6(b). The difference is that we use Hr instead of H, but we only have to take into account
that H 0r is always a subgraph of Hr.

(d) Directing an edge x—y is similar to inserting an arc x! y, so that the conditions
that assure the consistency are those in Proposition 6(a); the only difference is that the
condition x—y 62 Ea in Proposition 6(a) is not necessary (it is always true), since the edge
x—y is already in H and H is consistent with the restrictions.

(c) As in the previous case, creating a head-to-head pattern is similar to insert two arcs,
so that the conditions for consistency are again those in Proposition 6(a) applied to the
arcs x! z and y! z; as before, as we know that there are links joining nodes x and z and
nodes y and z in H, we do not need to check that x—z 62 Ea and y—z 62 Ea, because, as H is
consistent with the restrictions, these conditions will be true.
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