
International Journal of Approximate Reasoning
44 (2007) 261–280

www.elsevier.com/locate/ijar
Hill-climbing and branch-and-bound algorithms
for exact and approximate inference

in credal networks

Andrés Cano *, Manuel Gómez, Serafı́n Moral, Joaquı́n Abellán

Department of Computer Science and Artificial Intelligence, E.T.S. Ingenierı́a Informática,

University of Granada, 18071 Granada, Spain

Received 15 December 2005; received in revised form 30 June 2006; accepted 31 July 2006
Available online 29 September 2006
Abstract

This paper proposes two new algorithms for inference in credal networks. These algorithms
enable probability intervals to be obtained for the states of a given query variable. The first
algorithm is approximate and uses the hill-climbing technique in the Shenoy–Shafer architecture
to propagate in join trees; the second is exact and is a modification of Rocha and Cozman’s
branch-and-bound algorithm, but applied to general directed acyclic graphs.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Credal network; Probability intervals; Bayesian networks; Strong independence; Hill-climbing;
Branch-and-bound algorithms
1. Introduction

A credal network is a graphical structure (a directed acyclic graph (DAG) [10]) which is
similar to a Bayesian network [20], where imprecise probabilities are used to represent
quantitative knowledge. Each node in the DAG represents a random event, and is associ-
ated with a set of convex sets of conditional probability distributions.
0888-613X/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijar.2006.07.020

* Corresponding author. Tel.: +34 958 240803; fax: +34 958 243317.
E-mail addresses: acu@decsai.ugr.es (A. Cano), mgomez@decsai.ugr.es (M. Gómez), smc@decsai.ugr.es

(S. Moral), jabellan@decsai.ugr.es (J. Abellán).

mailto:acu@decsai.ugr.es
mailto:mgomez@decsai.ugr.es
mailto:smc@decsai.ugr.es
mailto:jabellan@decsai.ugr.es

262 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
There are several mathematical models for imprecise probabilities [28]. We consider
convex sets of probabilities to be the most suitable for calculating and representing impre-
cise probabilities. They are powerful enough to represent the results of basic operations
(combination and marginalization) within the model without having to make approxima-
tions. Such approximations on basic operations cause loss of information (as in interval
probabilities).

In the following, we consider inference with credal networks as the problem of comput-
ing posterior upper and lower probabilities for each state of a specific query variable, given
a set of observations. A very common hypothesis is that of separately specified credal sets
[19,23] (there is no restriction between the set of probabilities associated to a variable given
two different configurations of its parents). According to it, there is a different credal set for
each one of the configurations of the parents [23]. This hypothesis will be accepted in this
paper. Some authors have considered the propagation of probabilistic intervals directly in
graphical structures [1,15,26,27]. In the proposed procedures, however, there is no guaran-
tee that the calculated intervals are always the same as those obtained when a global com-
putation using the associated convex sets of probabilities is used. In general, it can be said
that calculated bounds are wider than exact ones. The problem is that exact bounds need a
computation with the associated convex sets of probabilities. Following this approach, dif-
ferent approximate and exact methods have been proposed [6,4,3,9,23,21]. These assume
that there is a convex set of conditional probabilities for each configuration of the parent
variables in the dependence graph, and provide a model for obtaining exact bounds
through the use of local computations. Working with convex sets, however, may be extre-
mely inefficient: if we have n variables and each variable, Xi, has a convex set with li extreme
points as the conditional information, the propagation algorithm has a complexity order of
OðK �

Qn
i¼1liÞ, where K is the complexity of carrying out a simple probabilistic propagation.

This is so since the propagation of convex sets is equivalent to the propagation of all the
global probabilities that can be obtained by choosing an exact conditional probability in
each convex set.

In this paper, we shall propose a new approximate algorithm for inference in credal net-
works. This is a hill-climbing procedure which quickly obtains good inner approximations
to the correct intervals. The algorithm is based on the Shenoy–Shafer architecture [25] for
propagation in join trees. Rocha et al. [22] have presented another hill-climbing search,
inspired by the Lukatskii–Shapot algorithm, for obtaining accurate inner approximations.
We shall also propose a branch-and-bound procedure (also used in [21]) for inference in
credal networks, where the initial solution is computed with our hill-climbing algorithm,
reducing its running time. This approach is similar to the one in [22], but our algorithm
will be applicable to general graph structures. Furthermore, our hill-climbing initial solu-
tion will reduce the total running time. de Campos and Cozman [13,14] also give a multi-
linear programming method which provides a very fast branch-and-bound procedure.

The rest of the paper is organized as follows: Section 2 describes the basics of probabil-
ity propagation in Bayesian networks and the Shenoy–Shafer architecture; Section 3 pre-
sents basic notions about credal sets and credal networks; Section 4 introduces probability
trees and briefly describes two algorithms based on variable elimination and probability
trees for inference in credal networks; Section 5 details the proposed hill-climbing
algorithm for inference in credal networks; Section 6 explains how to apply the proposed
algorithm in Rocha and Cozman’s branch-and-bound algorithm; Section 7 shows the
experimental work; and finally Section 8 presents the conclusions.

A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280 263
2. Probability propagation in Bayesian networks

Let X = {X1, . . . ,Xn} be a set of variables. Let us assume that each variable Xi takes val-
ues on a finite set XX i (the frame of Xi). We shall use xi to denote one of the values of Xi,
xi 2 XX i . If I is a set of indices, we shall write XI for the set {Xiji 2 I}. Let N = {1, . . . ,n} be
the set of all the indices. The Cartesian product �i2IXX i will be denoted by XXI . The
elements of XXI are called configurations of XI and will be written with x or xI. In Shenoy
and Shafer’s [25] terminology, a mapping from a set XXI into Rþ0 will be called a valuation h

for XI. Shenoy and Shafer define two operations on valuations: combination h1 � h2 (mul-
tiplication) and marginalization h#J (by summing out all the variables not in J).

A Bayesian network is a directed acyclic graph (see the left side of Fig. 1), where each
node represents a random event Xi, and the topology of the graph shows the independence
relations between variables according to the d-separation criterion [20]. Each node Xi also
has a conditional probability distribution pi(XijY) for that variable given its parents Y.
Following Shenoy and Shafer’s terminology, these conditional distributions can be consid-
ered as valuations. A Bayesian network determines a unique joint probability distribution:

pðX ¼ xÞ ¼
Y
i2N

piðxijyjÞ 8x 2 XX ð1Þ

An observation is the knowledge of the exact value X i ¼ xj
i of a variable. The set of

observed variables is denoted by XE; the configuration for these variables is denoted by
xE and it is called the evidence set. E will be the set of indices of the observed variables.
Each observation, X i ¼ xj

i , is represented by means of a valuation which is a Dirac func-
tion defined on XX i as dX iðxi; xj

iÞ ¼ 1 if xj
i ¼ xi, xi 2 XX i , and dX iðxi; xj

iÞ ¼ 0 if xj
i 6¼ xi.

The aim of probability propagation algorithms is to calculate the a posteriori probabil-
ity function p(xqjxE), (for every xq 2 XX q) by making local computations, where Xq is a
given query variable. This distribution verifies:

pðxqjxEÞ /
Y
X i

pðxijyjÞ
Y

xj
i2xE

dX iðxi; xj
iÞ

0
@

1
A
#X q

ð2Þ

In fact, the previous formula is the expression for p(xq,xE). p(xqjxE) can be obtained from
p(xq,xE) by normalization.

A known propagation algorithm can be constructed by transforming the DAG into a
join tree. For example, the right-hand tree in Fig. 1 shows a possible join tree for the DAG
on the left. There are several schemes [18,25,24,16] for propagating on join trees. We shall
follow Shenoy and Shafer’s scheme [25]. Every node in the join tree has a valuation WCi

attached, initially set to the identity mapping. There are two messages (valuations)
E, H, K, M

C, D, E E, F, G

A, B, C

H, L

A

B C E H L

D F G

I

J K

M

E, J E, I

E, H, K, M

C, D, E E, , G

A, B, C

H, L

A

B C E H L

D F G

I

J K

M

E, J E, I

F

Fig. 1. A Bayesian network and its join tree.

264 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
MCi!Cj , MCj!Ci between every two adjacent nodes Ci and Cj. MCi!Cj is the message that Ci

sends to Cj, and MCj!Ci is the message that Cj sends to Ci. Every conditional distribution pi

and every observation di will be assigned to one node Ci which contains all its variables.
Each node contains a (possibly empty) set of conditional distributions and Dirac func-
tions, which must then be combined into a valuation, WCi .

The propagation algorithm is performed by crossing the join tree from leaves to root
and then from root to leaves, updating messages as follows:

MCi!Cj ¼ WCi �
Y

Ck2AdyðCi ;CjÞ
MCk!Ci

0
@

1
A

0
@

1
A
#Ci\Cj

ð3Þ

where Ady(Ci,Cj) is the set of adjacent nodes to Ci with the exception of Cj.
Once the propagation has been performed, the a posteriori probability distribution for

Xq, p(XqjxE), can be calculated by looking for a node Ci containing Xq and normalizing the
following expression:

pðX q; xEÞ ¼ WCi �
Y

Cj2AdyðCiÞ
MCj!Ci

0
@

1
A

0
@

1
A
#X q

ð4Þ

where Ady(Ci) is the set of adjacent nodes to Ci. The normalization factor is the probability
of the given evidence that can be calculated from the valuation calculated in expression (4)
using:

pðxEÞ ¼
X

xi
q

pðxi
q; xEÞ ð5Þ

In fact, we can compute the probability of the evidence, p(xE), by choosing any node Ci,
combining all the incoming messages with the valuation WCi , and summing out all the vari-
ables in Ci.

3. Inference in credal networks

A credal set for a variable Xi is a convex, closed set of probability distributions and
shall be denoted by HX i . We assume that every credal set has a finite number of extreme
points. The extreme points of a convex set are also called vertices. A credal set can be
identified by enumerating its vertices. A conditional credal set about Xi given a set of vari-
ables Y will be a closed, convex set H X i jY of mappings p : X i � Y! ½0; 1�, verifyingP

xi2XX i
pðxi; yjÞ ¼ 1; 8yj 2 XY. Once again, we suppose a finite set of extreme points,

ExtðH X ijYÞ ¼ fp1; . . . ; plg. Some authors call extensive conditional credal set to this way
of specifying a conditional credal set. See, for example, Ref. [11].

A credal network is a directed acyclic graph similar to a Bayesian network. Each node is
also associated with a variable, but every variable is now associated with a credal set H X i jY,
where Y are the parent variables of Xi in the graph. In this paper, we suppose that a local

credal set HX ijY¼yj is given for each configuration yj of Y. This is described by Rocha and
Cozman [23] as separately specified credal sets. For example Fig. 2 shows a credal network
with two variables (X and Y). Conditional information for X is given by two separately
specified credal sets (HX jY¼y1 and HX jY¼y2). From a separately specified credal set, we obtain

Fig. 2. A simple credal network.

A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280 265
a conditional one (extensive conditional credal set) with HX i jY ¼ fpjfyj
ðxiÞ ¼ pðxi; yjÞ 2

H X i jY¼yj ; 8yj 2 XYg. Table 1 shows the extensive conditional credal set HXjY obtained from
the separately specified credal sets HX jY¼y1 and H X jY¼y2 of Fig. 2.

As in the case of Bayesian networks, the topology of a credal network represents inde-
pendence relations between variables using the d-separation criterion. The meaning of
such independences depends on which concept of independence for credal sets is adopted.
This paper uses the concept of strong independence [10,8]. The strong extension of a credal
network is the largest joint credal set such that every variable is strongly independent [10,8]
of its non-descendants non-parents given its parents. The strong extension of a credal net-
work is the joint credal set that contains every possible combination of vertices for all cre-
dal sets in the network, such that the vertices are combined by multiplication as in
expression (1) [10].

An inference in an extension of a credal network is the computation of tight bounds for
the probability values of a query variable Xq given a set of observed variables XE. This
paper is dedicated to inference algorithms in the strong extension of a credal network.
The propagation of credal sets is completely analogous to the propagation of probabilities;
the procedures are the same. Here, we shall only describe the main differences and further
details can be found in [6]. Here, valuations are convex sets of possible probabilities, with a
finite number of vertices. A conditional valuation is a convex set of conditional probability
distributions (extensively conditional credal set). An observation of a value for a variable
will be represented in the same way as in the probabilistic case. The combination of two
convex sets of mappings is the convex hull of the set obtained by multiplying a mapping
of the first convex set with a mapping of the second convex set (repeating the probabilistic
combination for all pairs of vertices of the two convex sets). The marginalization of a con-
vex set is defined by marginalizing each mapping of the convex set. A more detailed
Table 1
An extensive conditional credal set

HXjY x1,y1 x2,y1 x1,y2 x2,y2

p1,q1 0.2 0.8 0.4 0.6
p1,q2 0.2 0.8 0.6 0.4
p2,q1 0.3 0.7 0.4 0.6
p2,q2 0.3 0.7 0.6 0.4

266 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
description of these operations can be found for example in [2]. With these operations, we
can carry out the same propagation algorithms as in the probabilistic case.

The result of the propagation for a variable, Xq, will be a convex set of mappings from
XX q in [0, 1], also called points (as XX q is finite). This convex set will be called Rq. If we
assume that XX q ¼ fx1

q; . . . ; xm
q g, then the points of Rq are obtained in the following way:

if p is a global probability distribution, formed by selecting a fixed probability for each
convex set, then we shall obtain a point (p1, . . . ,pm) 2 Rq associated to this probability,
where pi ¼ pðxi

q; xEÞ, with xE being the given evidence. If we normalize each point of Rq

by computing piðxi
qjxEÞ ¼ pi=

P
jpj, then we obtain the convex set of a posteriori condi-

tional probability distributions for each xi
q 2 XX q .

4. Probability trees

Probability trees [5] have been used as a flexible data structure that allows asymmetrical
independences and exact or approximate representations of probability valuations (also
called potentials) to be used.

A probability tree T is a directed labeled tree, where each internal node represents a
variable and each leaf represents a non-negative real number. Each internal node has
one outgoing arc for each state of the variable associated with that node. The size of a tree
T, denoted by sizeðTÞ, is defined as its number of leaves.

A probability tree T on variables XI = {Xiji 2 I} represents a valuation h : XXI ! Rþ0 if
for each xI 2 XXI the value h(xI) is the number stored in the leaf node that is reached by
starting from the root node and selecting the child corresponding to coordinate xi for each
internal node labeled Xi.

A probability tree is usually a more compact representation of a valuation than a table.
This is illustrated in Fig. 3, which displays a valuation h and its representation using a
probability tree. The tree contains the same information as the table, but using only five
values instead of eight. Furthermore, trees enable even more compact representations to
be obtained in exchange for loss of accuracy. This is achieved by pruning certain leaves
and replacing them by the average value, as shown in the second tree in Fig. 3.

We say that part of a probability tree is a terminal tree if it contains only one node
labeled with a variable, and all the children are numbers (leaf nodes).
2
3

2
2

2
1

1
3

2
2

2
1

2
3

1
2

2
1

1
3

1
2

2
1

2
3

2
2

1
1

1
3

2
2

1
1

2
3

1
2

1
1

1
3

1
2

1
1

321321

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

)X,X,h(XXXX

0.2

0.5

0.7

0.7

0.3

0.5

0.3

0.3

X2

X3 X1

0.7X1 0.5

0.2

2
2x1

2x

2
1x1

1x
2

3x1
3x

2
1x1

1x

X2

X3 X1

0.70.25 0.5

2
2x1

2x

2
1x1

1x
2

3x1
3x

2
3

2
2

2
1

1
3

2
2

2
1

2
3

1
2

2
1

1
3

1
2

2
1

2
3

2
2

1
1

1
3

2
2

1
1

2
3

1
2

1
1

1
3

1
2

1
1

321321

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

)X,X,h(XXXX

0.2

0.5

0.7

0.7

0.3

0.5

0.3

0.3

X2

X3 X1

0.7 0.3X1 0.5

0.2 0.3

2
2x1

2x

2
1x1

1x
2

3x1
3x

2
1x1

1x

X2

X3 X1

0.7 0.30.25 0.5

2
2x1

2x

2
1x1

1x
2

3x1
3x

Fig. 3. A valuation h, its representation as a probability tree and its approximation after pruning various
branches.

X2

X1 X1

0.7 0.30.2 0.8

2
2x1

2x

2
1x1

1x2
1x

1
1x

X1

0.2 0.8

2
1x

1
1x

Fig. 4. Restriction of a tree to the value X 2 ¼ x1
2.

A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280 267
If T is a probability tree on XI and XJ � XI, we use TRðxJ Þ (probability tree restricted to
the configuration xJ) to denote the restriction operation which consists in returning the part
of the tree which is consistent with the values of the configuration xJ 2 XXJ . For example,
in the left probability tree in Fig. 3, TRðX 2¼x1

2
;X 3¼x1

3
Þ represents the terminal tree enclosed by

the dashed line square. This operation is used to define combination and marginalization
operations. It is also used for conditioning. Fig. 4 shows another example of the restriction
operation. Right probability tree is the result of restricting left tree to X 2 ¼ x1

2.
The basic operations (combination, marginalization) over potentials can be carried out

directly on probability trees (further details can be found in [5]). The combination of a
probability tree comprising a single node labeled with a real number r, and another
probability tree T is obtained by multiplying all the leaf nodes of T by r. The combi-
nation of two general probability trees T1 and T2 is obtained in the following way: for
each leaf node l in T1, if XJ = xJ is the configuration for the ancestor nodes of l, then l is
replaced by the combination of node l and T

RðXJ¼xJ Þ
2 . The sum of two probability trees is

defined in the same way as the combination but by adding (rather than multiplying) real
numbers. Marginalization is equivalent to deleting variables. A variable is deleted from a
probability tree and is replaced by the sum of its children. Figs. 5–7 show examples of
combination, marginalization and addition on probability trees., as described in the next
algorithms.
0.2

X2

X1 X1

0.5 0.60.4

2
2x1

2x

2
1x1

1x2
1x

1
1x

X1

0.3

2
1x

1
1x

X1

0.3 0.7

2
1x

1
1x

×

(i)

X1

X2 X2

2
1x

1
1x

0.2 0.5

2
2x1

2x
0.3 ×

0.4 0.6

2
2x1

2x
0.7 ×

(ii)

X1

X2 X2

2
1x

1
1x

0.3 × 0.2 0.3× 0.5

2
2x1

2x

0.7 × 0.4 0.7× 0.6

2
2x1

2x

(iii)

X1

X2 X2

2
1x

1
1x

0.06 0.15

2
2x1

2x

0.28 0.42

2
2x1

2x

(iv)

Fig. 5. Combination of two probability trees.

X2

X3

X1 X2

0.6 0.3X2

2
3x1

3x

2
2x1

2x2
1x

1
1x

0.4 0.4

1
2x

1
2x

0.7 0.6

2
2x

2
2x

X2

X1

X2

2
1x

1
1x

0.4 0.4

1
2x

1
2x

0.7 0.6

2
2x

2
2x

+
X2

0.6 0.3

2
2x1

2x

X2

X1

X2

2
1x

1
1x

1

1
2x

1
2x

1 1 0.9

2
2x

2
2x

(i) (ii)

(iii)

Fig. 6. Marginalizing out variable X3.

X2

X1

X2

2
1x

1
1x

0.2 0.4

1
2x

1
2x

0.7 0.5

2
2x

2
2x

+
X2

0.8 0.1

2
2x1

2x

X2

X1

X2

2
1x

1
1x

1 1.2

1
2x

1
2x

0.8 0.6

2
2x

2
2x

(i)

(iii)

X1
2

1x
1

1x

X2 X2

0.2 0.8

1
2x

1
2x

0.7 0.1

2
2x

2
2x

X2 X2

0.4 0.8

1
2x

1
2x

0.5 0.1

2
2x

2
2x

+ +

(ii)

Fig. 7. Addition of two probability trees.

268 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
4.1. Propagating credal sets using probability trees

Different algorithms have been used for propagation in credal networks using proba-
bility trees [4,3]. For each Xi, we originally have a collection of m local credal sets
fHX ijY¼y1 ; . . . ;H X ijY¼ymg, where m is the number of configurations of Y. The problem is
now transformed into an equivalent one by using a transparent variable T yj

for each
yj 2 XY. T yj

will have as many cases as the number of vertices in the local credal set
HX ijY¼yj . A vertex of the global credal set H X ijY can be found by fixing all transparent vari-
ables T yj

to one of its values. Let us use T to denote the set of all transparent variables in
the credal network.

A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280 269
Probability trees enable a conditional credal set HXjY to be represented efficiently when
we start with m local credal sets fH X i jY¼y1 ; . . . ;H X i jY¼ymg and with a single data structure
(the necessary space for the tree is proportional to the sum of the necessary spaces for
the m local trees). In Fig. 8, we can see one example where a probability tree represents
the global information HXjY associated to the two credal sets H X jY¼y1 and H X jY¼y2 . The
figure also shows the global conditional credal set HXjY by means of a table. In the prob-
ability tree in Fig. 8, we obtain the extreme points by fixing T y1

and T y2
to one of its values.

For example, if the probability tree is restricted to T y1
¼ t1

y1
and T y2

¼ t2
y2

, we obtain a new
probability tree that gives us the extreme point r2. The tree avoids repetition of probability
values, reducing the space necessary with respect to the table representation.

The simpler approximate algorithm for propagating credal sets using probability trees
is based on variable elimination [4]. In this algorithm, all the variables should be removed
(by marginalization) except the query variable and the transparent variables, which are
used to compute the upper and lower probability bounds. The algorithm applies a pruning
procedure in order to reduce the size of the probability trees that represent initial condi-
tional distributions, and the potentials obtained after combination or marginalization in
the propagation procedure. This allows to maintain probability trees in a reasonable size.
The pruning is an iterative method that selects a terminal tree and replaces it with the aver-
age of its leaf nodes. A terminal tree can be selected for pruning if Kullback–Leibler’s
cross-entropy [17] between the potential before pruning and the potential after pruning
is below a given threshold r. The pruning operation can select any variable in the proba-
bility tree including a transparent variable. The method is applied until there is no terminal
tree with a distance smaller than a given threshold r. The greater the parameter r, the
smaller the probability tree obtained. Further information about the measure used to
select the terminal tree for pruning can be found in Proposition 2 in [4].

When we apply the variable elimination algorithm described above to calculate proba-
bility intervals for a given variable Xq, then, in general, the correct intervals enclose the
Y
2y1y

X

1
1yt

X X X

2
1yt

0.2 0.30.8 0.7 0.4 0.60.6 0.4

1
2yt 2

2yt

1x 1x 1x 1x2x 2x 2x 2x

4

3

2

1

22211211

r
r
r
r

),y) (x,y) (x,y) (x,y(x

0.2 0.8 0.4 0.6
0.2 0.8 0.6 0.4
0.3 0.7 0.4 0.6
0.3 0.7 0.6 0.4

=YXH |

2

1

21

p
p

xx

0.2 0.8
0.3 0.7

== 1| yYXH

2

1

21

p
p

xx

0.4 0.6
0.6 0.4

== 2| yYXH

1yT
2yT

Fig. 8. A probability tree for HXjY.

X2

X3 X1

0.7
[0.7,0.7]

0.3
[0.3,0.3]

0.25
[0.2,0.3]

0.5
[0.5,0.5]

2
2x1

2x

2
1x1

1x2
3x

1
3x

Fig. 9. Probability tree with rmin and rmax values.

270 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
approximate ones (inner approximation). In [4], a method is also proposed for obtaining
outer approximations. The proposal consists in using two new values at each leaf node in
probability trees. If previously we only had one value r 2 Rþ0 , we now add the values
rmin; rmax 2 Rþ0 at each leaf node. These values inform us about the interval in which
the true value can oscillate. When a branch of the tree has not been approximated, then
rmin, rmax and r will be the same; when it is approximated, however, then r will be between
rmin and rmax. For example, Fig. 9 shows the probability tree in Fig. 3, supposing that the
only approximation is the one shown in this figure. In [4], details can be found about the
calculation of the rmin and rmax values for the probability trees resulting from combination
and marginalization operations. Once the variable elimination algorithm has finished, we
obtain a probability tree with the variable of interest Xq and some transparent variables.
The leaf nodes contain rmin, rmax values. These values enable outer bounds to be obtained
(see [4] for further details).
5. Hill-climbing algorithm

The objective of the proposed algorithm is to obtain the upper or lower bound for
pðxi

qjxEÞ (posterior probability of a case xi
q of a given query variable Xq). This can be solved

by selecting the configuration of transparent variables (a configuration ts of transparent
variables determines a global probability distribution pts

) which results in a minimum
value for pðxi

qjxEÞ (and the configuration for the maximum). Let us suppose that our prob-
lem consists in finding the configuration ts which results in the upper probability for
pðX q ¼ xi

qjxEÞ:

max
ts

pts
ðX q ¼ xi

qjxEÞ ð6Þ

The proposed algorithm is a hill-climbing algorithm based on the Shenoy–Shafer propa-
gation algorithm for Bayesian networks. A run of the algorithm is directed to compute the
lower or upper probability for a single state xi

q of a given query variable Xq. It will obtain
inner bounds for pðX q ¼ xi

qÞ in the strong extension of a given credal network.
The algorithm begins with the construction of a join tree from the credal network (see

Section 2), like the one shown in Fig. 1. Now, a double message system is necessary. For
each pair of connected nodes, Ci and Cj, there are two messages going from Ci to Cj,
M1

Ci!Cj
and M2

Ci!Cj
, and two messages going from Cj to Ci, M1

Cj!Ci
and M2

Cj!Ci
(see

Fig. 10). Messages M1
Ci!Cj

will be calculated as usual, according to formula (3). Messages
M2

Ci!Cj
will be also calculated as usual but we assume that the observation X q ¼ xi

q is
added to the evidence set xE.

After constructing the join tree, each conditional credal set H X i jY is assigned to one node
as we explained for Bayesian networks in Section 2. Each conditional credal set HX ijY is

Fig. 10. Double messages between two nodes of the join tree.

A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280 271
represented by means of a probability tree (see Section 4 and Fig. 8). For observations, we
follow a different procedure from the one explained in Section 2. If we have an observation
X i ¼ xj

i , then we should combine its valuation dX i with a valuation WCi containing Xi. We
achieve the same result with the operation of restriction in probability trees; that is, for
each observation X i ¼ xj

i , we restrict WCi to X i ¼ xj
i if node Ci contains Xi. In this way, val-

uations are significantly reduced in size, making posterior operations (combination and
marginalization) more efficient. The valuation WCi is then calculated for every node Ci

by combining all the valuations assigned to node Ci and restricting the combination of
all its assigned valuations to the evidence set xE. The resulting WCi is saved on a copy val-
uation Wc

Ci
.

At a given time, the algorithm has associated a configuration t for the transparent vari-
ables. The configuration t will be modified in the hill-climbing step in order to optimize the
conditional probability ptðX q ¼ xi

qjxEÞ. A random initial configuration t0 is selected for the
set of transparent variables T. This initial configuration of T is appended to the evidence
set xE. Each probability tree WCi is then restricted according to this new set of observa-
tions. For example, in Fig. 8, if the initial configuration for T contains T y1

¼ t1
y1

and
T y2
¼ t2

y2
, then the valuation (probability tree) WCi containing H X i jY will be restricted

and the tree in Fig. 11 shall be obtained.
The valuations WCi no longer contain transparent variables because all of them are

observed and disappear from the probability trees after restricting to the observed values.
In this join tree, a propagation from root to leaves and then from leaves to root would
allow the probability distribution pt0

ðX qjxEÞ to be obtained for the vertex of the a poste-
riori credal set H X qjxE corresponding to T = t0, by looking for a node Ci containing the var-
iable Xq and using expression (4); however, we follow a different procedure. The algorithm
makes an initial propagation (using the double message system) sending messages from leaf
nodes towards the root. Messages are calculated as we explained above.

After the initial propagation, we begin the hill-climbing step by crossing the join tree
from root to leaves and vice versa a given number of times, or until the algorithm does
not improve the best solution found so far. Every time we visit a node Ci, we locally max-
imize pðX q ¼ xi

qjxEÞ by choosing a state for each transparent variable in Ci. Transparent
Fig. 11. Restricted tree for HXjY using T y1
¼ t1

y1
and T y2

¼ t2
y2

.

272 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
variables are improved one by one. The process can require the set of transparent variables
of Ci to be treated several times. We leave the current node when there is no further trans-
parent variable to improve.

In the crossing of the join tree, let us suppose that we are now visiting a node Ci and
that t is the current configuration for the transparent variables. Let us also assume that
T yj

is the transparent variable which will be improved now (one of the transparent vari-
ables included in node Ci). The hill-climbing algorithm must locally select the best value
for the variable T yj

. At this moment all transparent variables are fixed to a value. This
determines a point of the joint credal set. If we discard the observation for T yj

we obtain
jXT yj

j points of the joint credal set. The idea is to assign to T yj
the case that maximizes

pðX q ¼ xi
qjxEÞ. In order to do so, we need to calculate the probability of the evidence

p(xE) and the probability pðxi
q; xEÞ for each value of T yj

. With p(xE) and pðxi
q; xEÞ, we

can compute pðxi
qjxEÞ, the value we want to maximize. The vector of values p(xE) is

obtained as follows: in the first message system, we discard the previous observation of
variable T yj

in node Ci, and then for each ti
yj
2 Xyj

we add T yj
¼ ti

yj
to the set of observa-

tions, computing p(xE) for the resulting configuration by the procedure indicated at the
end of Section 2. The vector of values pðxi

q; xEÞ is calculated in a similar way with the sec-
ond message system.

In the previous computation, we can discard the previous observation for T yj
using the

following procedure: a new WCi is calculated restricting the saved valuation Wc
Ci

to the cur-
rent configuration of transparent variables t, but removing the observation for T yj

in such
a configuration. In this way, the only transparent variable in WCi is T yj

. A new configura-
tion t will be obtained by selecting in T yj

the state that maximizes pðxi
qjxEÞ. The process

continues by improving the next transparent variable in Ci, and so on until modification
of any transparent variable does not improve pðxi

qjxEÞ. In this case, a new node is visited.
Algorithm 1 shows the main steps of the hill climbing procedure.

Algorithm 1

Input: A credal network N0

Output: The value of p ¼ max pðxi
qjxEÞ

Represent each conditional credal set H X ijY using a probability tree T
Build a join tree from the credal network
Associate each conditional credal set HX i jY (a probability tree) to one node Ci of the join
tree
for each available probability tree T do
Incorporate evidence xE by using the restriction operation on T: TRðxEÞ

end

for each Ci in the join tree do

Calculate WCi by combining all the probability trees associated to node Ci.
end

Choose a random initial configuration t0 for the set of transparent variables T

Incorporate evidence t0 to all the probability trees in the join tree using restriction

operation
Carry out an initial propagation in the join tree using a double system of messages
• Messages M1

Ci!Cj
are used to propagate the given evidence xE and the current con-

figuration for T: they allow to compute p(xE)

A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280 273
• Messages M2
Ci!Cj

propagate xE, the current configuration for T and X q ¼ xi
q: they

allow to compute pðxi
q; xEÞ

for each step = 1 to m do
Traverse the join tree from root to leaves and vice versa
for each visited node Ci and transparent variable Tj in WCi do

• Calculate p(xE) and pðxi
q; xEÞ for each ti

j 2 XT j
(1) Discard the current observation for Tj.
(2) Calculate values for p(xE) and pðxi

q; xEÞ for each tj 2 XT j :

pðxE; T jÞ ¼ WCi �
Y

Cj2AdyðCiÞ
M1

Cj!Ci

0
@

1
A

0
@

1
A
#T j

pðxi
q; xE; T jÞ ¼ WCi �

Y
Cj2AdyðCiÞ

M2
Cj!Ci

0
@

1
A

0
@

1
A
#T j
• From the vectors p(xE,Tj) and pðxi
q; xE; T jÞ calculate a new vector:
pðxi
qjxE; T jÞ ¼

pðxi
q; xE; T jÞ

pðxE; T jÞ
• Choose the case ti
j 2 XT j giving the maximum in pðxi

qjxE; T jÞ
• T j ¼ ti

j is appended to the configuration of transparent variables T.

end

end
Take p as the biggest pðxi

qjxE; T jÞ found in the m steps.
6. Branch-and-bound algorithm

Rocha and Cozman [21] have given an exact algorithm for inference on credal networks
with a polytree structure which is based on branch-and-bound optimization search algo-
rithms. The authors distinguish between outer and inner approximate inference algorithms.
The former are produced when the correct interval between lower and upper probabilities
is enclosed in the approximate interval; the latter approximations are produced when the
correct interval encloses the approximate one. The algorithm presented in previous section
produces inner approximations.

In the Rocha and Cozman algorithm, given a query variable Xq and a credal network
N, a single run of the branch-and-bound algorithm computes the lower or upper a pos-

teriori probability for a single state xi
q of Xq, as in the hill-climbing algorithm explained

in Section 5, but now the exact solution is obtained. The algorithm to find the lower or
upper probability for a single state xi

q of Xq uses a credal network N0 as the input,
obtained from N by discarding variables that are not used to compute the inference by
d-separation [12]. Let us suppose that we are interested in looking for max pðxi

qjxEÞ. The
branch-and-bound technique requires a procedure to obtain a bound r (overestimation)

274 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
for the solution: r must produce an estimation rðNÞ of max pðxi
qjxEÞ, verifying rðNÞP

max pðxi
qjxEÞ. Rocha and Cozman use Tessem’s A/R algorithm [26], an algorithm that pro-

duces outer bounds rather quickly. The A/R algorithm focuses on polytrees. Algorithm 2
shows the main steps of the branch-and-bound procedure.

Algorithm 2

Input: A credal network N0

Output: The value of p ¼ max pðxi
qjxEÞ

Initialize p̂ with �1
if the credal net N0 contains a single vertex then

Update p̂ with pðxi
qjxEÞ if pðxi

qjxEÞ > p̂
end
else
Using the k possibilities of one of the credal sets in N0, obtain a list of k credal net-
works fN01; . . . ;N0kg from N0

for each N0h do

if rðN0hÞ > p̂ then

Call recursively depth-first branch-and-bound over N0h

end

end
end

Take the last p̂ as p.
The algorithm can be explained as a search in a tree where the root node contains
N0. The root node is divided into several simpler credal networks fN01; . . . ;N0kg. Each
of these networks is obtained by taking one of the transparent variables T yj

in N0 and
producing as many networks as the number of states in T yj

, by fixing T yj
to its different

states (that is, we select one credal set in N0, and we produce as many networks as ver-
tices in that credal set). Resulting networks are inserted as children of the root node in
the search tree. The decomposition procedure is applied recursively. At each step, a
transparent variable is expanded. In this way, a leaf node contains a Bayesian network,
obtained by a particular selection of states in all the transparent variables (that is, a
selection of vertices in all credal sets in the credal network). Rocha and Cozman apply
the variable elimination algorithm to perform inference in the Bayesian network defined
by the leaf.

We introduce the following modifications in our version of the branch-and-bound
algorithm:

• We use the hill-climbing algorithm in Section 5 to initialize p̂. This is a better solution
because it is a fast algorithm and initialization with a good underestimation of
max pðxi

qjxEÞ can save a lot of search work, and therefore a lot of computation time
in the branch-and-bound algorithm.

• We also use the variable elimination algorithm for inference in leaf nodes (Bayesian net-
works) but now we use the probability tree version [4] without using approximations.
The use of probability trees in this stage does not greatly affect efficiency and it is spe-
cially good in later steps of the algorithm.

A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280 275
• The algorithm for overestimating the solution (computing rðN0Þ) in inner nodes of
the search tree is also based on the variable elimination algorithm with probability
trees. However, we now use the version that makes use of the rmin and rmax values
explained in Section 4. In the algorithm, the probability trees corresponding with
the initial conditional information are pruned using the method described in Section
4. Such a method is also used to prune the probability trees resulting from a combi-
nation or marginalization operation. This enables the probability trees to be main-
tained in a reasonable size, making propagation possible when the problem is
hard. Another advantage of this algorithm is that it can be used in general Bayesian
networks and not only in polytrees as this is a generic outer approximation
algorithm.

7. Experiments

We have analyzed several kind of networks to better check the performance of the
two proposed algorithms. The basic structure of the networks is the one used in [21]
(see Fig. 1), but three different variants are considered, varying the number of states
for its variables. All the tests are done using two vertices (extreme points) for each con-
ditional credal set HX i jY¼yj . The following combinations are considered: two states for
every variable (BN2s); three states for all variables except for variables A, B and C

(two states) (BNMixedRed); and three states for all variables except for variable C

(two states) (BNMixed). We obtain 30 credal networks for each of the three variants.
The numerical values for the extreme points are randomly generated. This random gen-
eration is made in the following way. We take a Bayesian network and transform it into
a credal network by generating a given number l of random vertices for each conditional
distribution p(XijY = y). The generation of a random vertex from p(XijY = y) is made by
producing a random uniform number r 2 [�1.0,1.0] for each xi 2 XX i , and adding r to
p(xijY = y). If the new p(xijY = y) < 0.0, then we change its sign. Finally, the values
p(XijY = y) are normalized to obtain the new vertex. The experiments use E as the query
variable with no evidence. The potential number of vertices of the strong extension for
the three kind of networks is 211, 213 and 218 (BN2s, BNMixedRed, and BNMixed,
respectively).

We have made several tests to check critical issues:

• For the branch-and-bound algorithm: maximum size of the probability trees required
during the search, the size of the search tree, and computation time. The maximum size
of the probability trees is the size of the biggest tree used in the computations. These
parameters are measured running the algorithm with several values for the threshold
r (used when pruning the probability trees). We have proved 64 values for r: 32 ranging
from 0.0 to 0.000002, 21 from 0.000002 to 0.00005 and 11 covering the values from
0.00005 to 0.01. It should be noted that this algorithm always obtains exact computa-
tions for all the values of r. A small value for r requires a low number of visited nodes
in the search space, but it needs large probability trees. A large r, however, requires a
high number of visited nodes but smaller probability trees.

• For the hill-climbing algorithm: computation time and root mean square error for
pðxi

qjxEÞ.

Table 2
Root mean square error for min pðxi

qjxEÞ and max pðxi
qjxEÞ using the hill-climbing algorithm

BN2s BNMixedRed BNMixed

min pðx1
qjxEÞ 1.4137E�4 7.342E�35 6.519E�4

max pðx1
qjxEÞ 1.2516E�4 1.989E�4 6.02E�4

min pðx2
qjxEÞ 1.3611E�4 1.56E�33 5.972E�4

max pðx2
qjxEÞ 1.5902E�4 1.944E�5 6.237E�4

min pðx3
qjxEÞ – 7.288E�5 4.982E�4

max pðx3
qjxEÞ – 6.740E�35 4.721E�4

276 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
The two algorithms are implemented in Java language (j2sdk 1.5) within the Elvira sys-
tem [7]. The experiments have been run on a Pentium IV 3400 MHz computer, with 2
GBytes of Ram memory, and the Linux Fedora Core 3 operating system. In the experi-
ments, the hill-climbing algorithm makes only three crosses in the join tree (the initial
propagation from leaves towards the root, and then a crossing from the root towards
the leaves and vice versa).

7.1. Hill-climbing algorithm performance

The performance when only the hill climbing algorithm from Section 5 is applied is
shown in Table 2. This table shows the root mean square error of max pðxi

qjxEÞ and
min pðxi

qjxEÞ for all the states of the query variable. In this case, the average running time
for the three kinds of networks is 0.023, 0.2118 and 4.59 s (BN2s, BNMixedRed, and
BNMixed, respectively). It can be observed that the hill-climbing algorithm produces a
very good approximation in a short time.

7.2. Branch-and-bound algorithm performance

Using the branch-and-bound algorithm with the hill-climbing algorithm at the initiali-
zation step, we obtain the value of the different parameters in Figs. 12–14. The diagrams
show the average values resulting from the 30 runs for each threshold r and for each kind
of network. A logarithmic scale (base 10) is used as the differences in the parameters for
the different kinds of networks are too large. Fig. 12 shows the relation between the max-
imum size of the probability trees with respect to the threshold r used for pruning. It is
clear that the greater r is, the smaller the probability trees obtained. The savings when
pruning is used should also be observed, even with a very small threshold r (r = 2E�6).

Fig. 13 shows the number of visited nodes in the search tree of the branch-and-bound
algorithm with respect to the threshold r. In this case, the greater r is, the greater the
search required, as the approximation is poorer which implies that less branches are
pruned and thus the solution to the problem is reached after a deeper search. In any case,
the size of the search tree by the branch-and-bound is a small fraction of the potential
number of vertices of the strong extension.

Fig. 14 shows the computation time with respect to the threshold r. Time is quickly
decreased until r reaches 0.001, and then it is slowly increased. For r = 0 (no pruning),
we have the smallest search space, but the algorithm for overestimating pðxi

qjxEÞ (variable
elimination with rmin and rmax values) uses large probability trees, requiring a lot of time.

 10

 100

 1000

 10000

 100000

 0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05 3.5e-05 4e-05 4.5e-05 5e-05

V
is

ite
d

no
de

s

Threshold for prunning

BN2st
BNMixedRed

BNMixed

Fig. 13. Nodes visited during the search.

 10

 100

 1000

 10000

 100000

 0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05 3.5e-05 4e-05 4.5e-05 5e-05

P
ot

en
tia

ls
 m

ax
im

um
 s

iz
e

Threshold for prunning

BN2s
BNMixedRed

BNMixed

Fig. 12. Prob. tree maximum size – threshold r.

A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280 277
When r is small (close to 5E�6), the search space is increased because the algorithm for
overestimating pðxi

qjxEÞ produces worse bounds than before, but the running time is com-
pensated with a decrease in the time employed by that algorithm (the probability trees are
now smaller). When r is large, the search space continues increasing but the reduction in

 0.1

 1

 10

 100

 1000

 0 0.002 0.004 0.006 0.008 0.01

T
im

es
 o

f c
om

pu
ta

tio
n

Threshold for prunning

BN2s
BNMixedRed

BNMixed

Fig. 14. Computation times.

Table 3
Average increase without using hill-climbing in initialization of p̂

BN2s BNMixedRed BNMixed

Max. pot. size (%) 11.25 9.31 10.42
Visited nodes (%) 83.66 82.93 12.84
Comput. time (%) 157.14 161.68 112.87

278 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
the size of the probability trees no longer compensates for that increase in the search space.
The best performance is obtained when r is around 5E�6.

In order to gain further insight into the performance of the hill-climbing algorithm in
combination with the branch-and-bound algorithm, we have repeated the previous exper-
iments, but now without using the hill-climbing algorithm to initialize p̂ (the initial bound
are +1 for min pðxi

qjxEÞ, and �1 for max pðxi
qjxEÞ). With this change, the performance of

the branch-and-bound search is not so good. Table 3 includes the average percentages of
increases for the maximum size of potentials, number of visited nodes, and computation
times.

While the maximum size of potentials is not very different, the computation time is
greatly increased; a worse initial bound requires a deeper search in order to reach the final
solution. This also explains the increase in the number of visited nodes.
8. Conclusions

In this paper, we have presented two new algorithms for inference in credal networks.
They are used to obtain probability intervals for the states of a query variable given a set

A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280 279
of observed variables XE. The first is an approximate algorithm that provides inner bounds
close to the correct ones in a very short time (see Table 2). The second is based on Rocha
and Cozman’s branch-and-bound algorithm. This makes use of the proposed hill-climbing
algorithm to initialize the starting point p̂. This is a good decision as Table 3 demonstrates.
The branch-and-bound algorithm uses the variable elimination algorithm with the rmin

and rmax values to overestimate the intervals in the inner nodes of the search. In this
way, it can be applied to any credal network structure (not only to polytrees). The variable
elimination algorithm is controlled by a parameter r. When the variable elimination
requires more memory than that available in our computer, we apply large values of r
in order to reduce the size of the probability trees which enable propagation, although
there will be an increase in the search space. In this way, the best performance of the
branch-and-bound algorithm is reached with a trade-off between the parameter r and
the number of visited nodes.

In the future, we would like to prove the two algorithms in credal networks with a more
complex structure. We would also like to prove alternative strategies in the hill-climbing
algorithm (for example, increasing the number of iterations in the join tree). Another point
is to study the effect of the order in which the transparent variables are expanded in the
search tree on the running time and number of visited nodes.

Acknowledgement

This work has been supported by Dirección General de Investigación, Ministerio de Edu-

cación y Ciencia (Spain) under project TIN2004-06204-C03-02.

References

[1] S. Amarger, D. Dubois, H. Prade, Constraint propagation with imprecise conditional probabilities, in: B.D’.
Ambrosio, Ph. Smets, P.P. Bonissone (Eds.), Proceedings of the 7th Conference on Uncertainty in Artificial
Intelligence, Morgan & Kaufmann, 1991, pp. 26–34.

[2] A. Cano, S. Moral, A review of propagation algorithms for imprecise probabilities, in: Proceedings of the
First International Symposium on Imprecise Probabilities and their Applications (ISIPTA’99), Ghent, 1999.

[3] A. Cano, S. Moral, Computing probability intervals with simulated annealing and probability trees, Journal
of Applied Non-Classical Logics 12 (2) (2002) 151–171.

[4] A. Cano, S. Moral, Using probabilities trees to compute marginals with imprecise probabilities,
International Journal of Approximate Reasoning 29 (2002) 1–46.

[5] A. Cano, S. Moral, A. Salmerón, Penniless propagation in join trees, International Journal of Intelligent
Systems 15 (11) (2000) 1027–1059.

[6] J.E. Cano, S. Moral, J.F. Verdegay-López, Propagation of convex sets of probabilities in directed acyclic
networks, in: B. Bouchon-Meunier et al. (Eds.), Uncertainty in Intelligent Systems, Elsevier, 1993, pp. 15–
26.

[7] Elvira Consortium, Elvira: an environment for creating and using probabilistic graphical models, in: J.A.
Gámez, A. Salmerón (Eds.), Proceedings of the First European Workshop on Probabilistic Graphical
Models, 2002, pp. 222–230.

[8] I. Couso, S. Moral, P. Walley, Examples of independence for imprecise probabilities, in: Proceedings of the
First International Symposium on Imprecise Probabilities and their Applications (ISIPTA’99), 1999.

[9] F.G. Cozman, Robustness analysis of Bayesian networks with local convex sets of distributions, in:
Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, Morgan & Kaufmann, San
Mateo, 1997.

[10] F.G. Cozman, Credal networks, Artificial Intelligence 120 (2000) 199–233.
[11] F.G. Cozman, Graphical models for imprecise probabilities, International Journal of Approximate

Reasoning 39 (2005) 167–184.

280 A. Cano et al. / Internat. J. Approx. Reason. 44 (2007) 261–280
[12] F.G. Cozman, Irrelevance and independence relations in quasi-Bayesian networks, in: Proceedings of the
Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), Morgan & Kaufman
Publishers, San Francisco, CA, 1998, pp. 89–96.

[13] C.P. de Campos, F.G. Cozman, Inference in credal networks using multilinear programming, in: Proceedings
of the Second Starting AI Researcher Symposium, 2004, pp. 50–61.

[14] C.P. de Campos, F.G. Cozman, Computing lower and upper expectations under epistemic independence, in:
Proceedings of the Forth International Symposium on Imprecise Probabilities and their Applications
(ISIPTA’05), Pittsburgh, PA, USA, 2005, pp. 78–87.

[15] K.W. Fertig, J.S. Breese, Interval influence diagrams, in: M. Henrion, R.D. Shacter, L.N. Kanal, J.F.
Lemmer (Eds.), Uncertainty in Artificial Intelligence, vol. 5, North-Holland, Amsterdam, 1990, pp. 149–161.

[16] J. Kohlas, Information Algebras: Generic Structures for InferenceDiscrete Mathematics and Theoretical
Computer Science, Springer-Verlag, 2003.

[17] S. Kullback, R.A. Leibler, On information and sufficiency, Annals of Mathematical Statistics 22 (1951) 76–
86.

[18] S.L. Lauritzen, D.J. Spiegelhalter, Local computation with probabilities on graphical structures and their
application to expert systems, Journal of the Royal Statistical Society, Ser. B 50 (1988) 157–224.

[19] S. Moral, A. Cano, Strong conditional independence for credal sets, Annals of Mathematics and Artificial
Intelligence 35 (2002) 295–321.

[20] J. Pearl, Probabilistic Reasoning with Intelligent Systems, Morgan & Kaufman, San Mateo, 1988.
[21] J.C.F. Rocha, F.G. Cozman, Inference in credal networks with branch-and-bound algorithms, in:

Proceedings of the Third International Symposium on Imprecise Probabilities and their Applications
(ISIPTA’03), 2003, pp. 482–495.

[22] J.C.F. Rocha, F.G. Cozman, C.P. de Campos, Inference in polytrees with sets of probabilities, in: Chris-
topher Meek, Uffe Kjærulff (Eds.), Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence, Morgan & Kaufmann, 2003, pp. 217–224.

[23] J.C.F. Rocha, F.G. Cozman, Inference with separately specified sets of probabilities in credal networks, in:
A. Darwiche, N. Friedman (Eds.), Proceedings of the 18th Conference on Uncertainty in Artificial
Intelligence, Morgan & Kaufmann, 2002.

[24] P.P. Shenoy, Binary join trees, in: Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-96), Portland, Oregon, 1996, pp. 492–499.

[25] P.P. Shenoy, G. Shafer, Axioms for probability and belief-function propagation, in: Shachter et al. (Eds.),
Uncertainty in Artificial Intelligence, vol. 4, North-Holland, 1990, pp. 169–198.

[26] B. Tessen, Interval probability propagation, International Journal of Approximate Reasoning 7 (1992) 95–
120.

[27] H. Thöne, U. Güntzer, W. Kießling, Towards precision of probabilistic bounds propagation, in: Proceedings
of the 8th Conference on Uncertainty in Artificial Intelligence, 1992, pp. 315–322.

[28] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, 1991.

	Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks
	Introduction
	Probability propagation in Bayesian networks
	Inference in credal networks
	Probability trees
	Propagating credal sets using probability trees

	Hill-climbing algorithm
	Branch-and-bound algorithm
	Experiments
	Hill-climbing algorithm performance
	Branch-and-bound algorithm performance

	Conclusions
	Acknowledgement
	References

