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Abstract. Separate-and-conquer classifiers strongly depend on the cri-
teria used to choose which rules will be included in the classification
model. When association rules are employed to build such classifiers (as
in ART [3]), rule evaluation can be performed attending to different cri-
teria (other than the traditional confidence measure used in association
rule mining). In this paper, we analyze the desirable properties of such
alternative criteria and their effect in building rule-based classifiers using
a separate-and-conquer strategy.

1 Introduction

The aim of any classification algorithm is to build a classification model given
some examples of the classes we are trying to model. The model we obtain can
then be used to classify new examples or simply to achieve a better understanding
of the available data. Rule-based classifiers, in particular, can be built using a
“Separate and Conquer” strategy (as in decision lists) or a “Divide and Conquer”
approach (as in decision trees). In the former case, the criteria used to evaluate
the rules that will be included in the classification model are of the utmost
importance.

In this paper, we analyze alternative rule evaluation criteria and study their
actual impact in “separate and conquer” classification models built with ART
[3], which is a generalized “separate and conquer” algorithm that builds decision
lists that can also be viewed as degenerate, polythetic decision trees.

2 Alternative Rule Evaluation Criteria

Even though accurate classification models can be built using standard asso-
ciation rules [3] [1] [T7] 1] [14] [A8) [15] [7] [8] [12] [I3] [I0] [19], it is clear
that confidence is not the best measure for a classification rule. Alternative
rule evaluation measures might provide better insight into the capability of a
given association rule to classify data. Before delving into the details of existing
measures, we should review what we consider a good classification rule. An as-
sociation rule A = C will be useful in classification problems when the logical
implication A — C' is valid:
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— C happens more often when A holds.
— —C should be less frequent when A holds.

We might also be interested in verifying the validity of -C' — —A, which is
mathematically equivalent to A — C. Hence, a potentially useful rule should
also verify the following properties:

— = A happens more often when —C.
— A should occur less frequently when C' does not hold.

Although the latter two properties might be interesting from a logical point of
view, they do not directly affect classification accuracy, where we are interested
only in determining the class C given A. Even then, those properties might be
desirable to improve the understandability of the classification model obtained.

The following paragraphs discuss some rule evaluation measures and their
properties in the context of classification problems.

Confidence

Even when the rule support might be of interest during the association discovery
process from a purely tactical point of view, the rule confidence is what finally
determines the rule validity. Its meaning is easy to grasp, and it can be defined
as follows: conf(A = C) = P(C|A) = P(ANC)/P(A). Confidence is used
to measure the association between the antecedent A and the consequent C:
the higher the confidence of A = C, the lower the confidence of A = —C, since
P(C|A)+P(~C|A) = 1. However, the rule confidence cannot be used to establish
a causality relationship between antecedent and consequent. It cannot be used to
perform inferences since it does not take into account the validity of -C' = —A.
A variation of the confidence does, hence its name: Causal confidence [9].

Causal Confidence

The causal confidence measure considers the confidence of the rule A — C
and the confidence of its counterpart -=C' — —A. Thus, the definition is given
by confeausal(A = C) = 3J(P(C|A) + P(~A|=C)). The average is used just
to normalize the measure so that its values are always in the interval [0,1].
Unfortunately, this measure could have a high value even when the implication
A — C does not have a representative support but its counterpart -C — —A
does. Therefore, causal confidence is not adequate for classification problems.

Causal Support

The idea of causal confidence can also be applied to the support measure in order
to obtain the causal support: supportcausai(A = C) = P(ANC)+ P(—AN-C).
As before, even when P(ANC) is really low, P(=A N —C) can be high, causing
causal support to be high (even when the rule might not be too useful in a
classification problem). Consequently, causal support is not a good choice to
evaluate rules in classification problems.

Confirmation
Another measure, called confirmation, takes into account when the antecedent
holds but not its consequent, what might be used to highlight a rule depending
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on the commonness of its antecedent. K(A4 = C) = P(ANC)—P(AN-C). Since
P(AN-C) = P(A)—P(ANC), confirmation is reduced to P(ANC)—P(AN—-C) =
2P(ANC) — P(A). Since P(ANC) is the rule support and P(A) is the support
of the antecedent, confirmation is no more than K(A = C) = support(A =
C') — support(A). Hence

K(A = C) < support(A = C) (1)

The second term just penalizes the support of the rule according to the support
of the antecedent. In other words, given two equally common rules, confirmation
would select as most interesting the rule whose antecedent is less common. That
might be useful in the knowledge discovery process, although it does not help in
classification problems because it does not take into account relationship between
the rule antecedent and the rule consequent. This measure has been used to
obtained three new criteria to evaluate rules:

— Causal confirmation, takes into account -C' — —A and can be reduced
t0 Kequsal(A = C) = supportequsai(A = C) — support(A) + support(C). As
the standard confirmation, this measures varies depending upon the support
of A. On the other hand, the more common the class C' is, the higher causal
confirmation the rule will have, what certainly makes classification difficult
(especially when the class distribution is skewed). Apart from this fact, causal
support is not suitable for classification problems.

— Confirmed confidence is obtain from the standard confidence when we
try to measure the quality of the rule A = —C (that is, when the antecedent
holds but not the consequent): con feon firmed(A = C) = P(C|A)—P(-C|A).
However, since P(—C|A) = 1—P(C|A), confirmed confidence can be reduced
to confeonfirmed(A = C) =2 - conf(A = C) — 1. Therefore, if we are using
this measure just to rank the candidate rules which might be part of a
classification model, the rule confirmed confidence is completely equivalent
to the rule confidence (only that the confirmed confidence is defined over the
[—1,1] interval).

— Even a causal confirmed confidence can be concocted from the two pre-
vious measures, but no interesting results can be expected when dealing with
classification problems.

Conviction

Conviction [4] was introduced as an alternative to confidence to mine association
rules in relational databases (implication rules using their authors’ nomencla-
ture). conviction(A = C) = P;ﬁgi}?. Similar in some sense to confirmation,

conviction focuses on A = —(C"

support(—C')

conviction(A = C) = conf(A = ~C)

(2)

The lower P(AN—C'), the higher the rule conviction, what makes conviction ideal
for discovering rules for uncommon classes. However, the conviction domain is
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not bounded and it is hard to compare conviction values for different rules. This
constrains the usability of the conviction measure in classification models such
as ART [3], since no heuristics to automatically settle a conviction threshold can
be devised.

Later in this paper, another bounded measure will be analyzed which is com-
pletely equivalent to conviction in the situations of interest for classification
problems: the well-known Shortliffe and Buchanan’s certainty factors. When
there are at lest two classes (i.e. support(C) < 1) and the rule improves classi-
fier accuracy (i.e. CF(A = C) > 0), certainty factors can be defined as

1

CFA=0)=1- conviction(A = C)

This allows us to substitute conviction for another measure whose domain is
bounded. Further properties of the certainty factor will be discusses in

Interest
A rule interest measure was defined in [16] as interest(A = C) = Plzf;;;%) =
P(C|A)

PC) - The more common A and C|, the less interest the rule will have, which is
certainly useful to guide the knowledge discovery process. Among its properties,
its symmetry stands out: the interest of A = C equals to the interest of C = A.
As happened with conviction, its domain is not bounded, what might make its
interpretation harder in a classification model. In some sense, it can be considered
complementary to conviction if we take into account the following equality and
compare it with equation 2] although interest focuses on the association A = C'
while conviction focuses on A = —C':

confidence(A = C)

interest(A = C) = support(C)

3)

Dependency

The following measure is the discrete equivalent of correlation in continuous do-
mains. dependency(A = C) = |P(C|A) — P(C)|. In classification problems, it
is not suitable since its value is high for common classes even when the corre-
sponding rule confidence is minimum: dependency(A = C) = |conf(A = C) —
support(C)|. A causal variation [9] of this measure can also be defined as follows,
although it is not useful in classification problems either. Bhandari’s attribute
focusing measure is also derived from the dependency measure above, as the fol-
lowing expression shows Bhandari(A = C) = support(A)-dependency(A = C).
Therefore, it is of no use in classification problems.

Hellinger’s Divergence

Hellinger’s divergence was devised to measure the amount of information a rule
provides [5] and it can be viewed as a distance measure between a priori and a
posteriori class distributions:

H(A = O)=+/P(A)[(/P(AN C)—/P(C))?— (/1 — P(ANC)—/1 — P(C))?]
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This measure has been used in classifiers before and will be evaluated in
Section Bl

Certainty Factors

Certainty factors were introduced by Shortliffe and Buchanan to represent un-
certainty in the MYCIN expert system. Its use in association rule mining has
been proposed in [2]. The certainty factor of a rule A = C' is defined as

conf(A = C) — support(C)

F(A =
CF(4=C) 1 — support(C)

when conf(A = C) > support(C),

conf(A = C) — support(C)

CFA=0)= support(C)

when conf(A = C) < support(C), and
CF(A=C)=0

when conf(A = C) = support(C). This rule evaluation measure can be viewed
as the variation degree of the probability of C' when A holds. The larger a
positive certainty factor, the smaller the decrease of the probability of C not
being when A holds. In extreme situations, the rule confidence determines its
certainty factor:

conf(A=C)=1=CFA=0)=1

conf(A=C)=0=CF(A=C)=-1

Certainty factor take into account the probability of C' apart from the rule con-
fidence. They also verify an interesting property when they are positive (which
is when the rules are useful for classification):

CF(A= C) = CF(~C = -A) (4)

In classification problems, we could face different situations where certainty fac-
tors behavior are at their best:

1. If our problem includes a skewed class distribution, and two candidate rules
hold the same confidence value but correspond to classes of different fre-
quency, the rule corresponding to the less common class has a higher cer-
tainty factor:

conf(A = C)=conf(B= D) <1, support(C) > support(D) —

—-CF(A=C)<CF(B=D)

2. Under some circumstances, comparing certainty factors is equivalent to com-
paring confidence values. CF(A = C;) > CF(B = (3) can be reduced to
conf(A = Cy) > conf(B = C3) when
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— Both rules refer to the same class cy.
— Both rules correspond to classes with the same probability: support(ci)
= support(csa).

3. Finally, there exist situations where higher certainty factors do not corre-
spond to a higher confidence values. Given two rules so that CF(A = C) >
CF(B = D):

— When C is more common than D:

support(—C')

conf(A=C)>K - -conf(B=D) , K= <1

support(—D)
— When C is less common than D:

support(D) — support(C)

conf(A= C)>conf(B=D)-A , A= >0

support(—C')
In summary, even though certainty factors are intimately linked to confidence
values, a higher certainty factor does not imply a higher confidence value:

CF(A=C)>CF(B= D)= conf(A=C)>conf(B= D)

The relative frequency of each class determines the higher certainty factors. Let
us suppose that we we have two association rules: A = ¢; with 2% support
and 50% confidence, and B = c¢o with 50% support and 95% confidence. The
certainty factors of such rules would be 3/8 and 3/4 if ¢; has a 20% support
and co has a 80% support. However, if the class distribution varies, being now
10% of ¢1 and 90% of ¢o, when certainty factors would be 4/9 and 1/2, keeping
their relative order. However, if the class distribution is inverted and now c; has
a 94% support while ¢y only has a 6% support, when certainty factors would
become 46/94 and 1/6, being the second lower than the first!

Situations such as the one described in the paragraph above should be used a
a warning sign when comparing certainty factors to choose the rules to include in
a classification model. Sometimes they might be useful, as when they prefer rules
corresponding to uncommon classes, although you should also expect shocking
difference between classification models when class distributions change.

2.1 A Usefulness Constraint

Certainty factor properties suggest an additional pruning step when considering
association rules in order to build classification models. When you build such
models, only association rules with a positive certainty factor are really useful,
since they increase our knowledge and improve classifier accuracy. By definition,
a positive certainty factor is obtained for a rule A = C when conf(A = C) >
support(C). This constraint indicates that the use of the rule A = C' improves
the classification model which would result from using a default class (at least
with respect to C in the training set). That idea can be used to prune association
rules which do not verify the above requirement, which can be expressed as
P(ANC) > P(A) N P(C). That rule pruning can be viewed as a ‘usefulness
criterion’ which reduces the number of candidate association rules which can
become part of the classification model



Rule Evaluation in Separate-and-Conquer Classifiers 597

3 Experimental Results Using ART

Some experiments have been perform to check the influence of the rule evalua-
tion measure on the process of building a classification model. We have tested
different criteria using the ART [3] classification model as a test bed, since ART
does not requires any specific measure to evaluate the rules the ART classifier
is built from. Our experiments try to estimate the suitability of the measures
proposed in the previous section, using 10-folded cross validation and the same
datasets which were used in [3]. In all our experiments with ART, we used a
5% minimum relative support threshold and the automatic threshold selection
heuristics described in [3]. Table [[] summarizes our results.

The following observations can be made from the results we have obtained:

— The usefulness criterion proposed in 2] consistently improves ART clas-
sification accuracy. Moreover, it improves accuracy without modifying the
evaluation measure used during the association rule mining process (that is,
the rule confidence). However, this increased accuracy comes at a cost: the
increased complexity of the resulting classifier. The resulting ART tree has
more leaves and, therefore, training time is somewhat higher since the train-
ing dataset must be scanned more times to build the classifier. This result
is just an incarnation of the typical trade-off between classifier accuracy and
classifier complexity.

— Certainty factors do not improve ART overall performance, probably due to
some of their counterintuitive properties (see section [2I).

— As we could expect from the properties analyzed in the previous section, the
use of conviction achieves results which are similar to the results obtained
by using certainty factors. From a classification point of view, conviction
and certainty factors are equivalent when it is interesting to include a given
association rule in the classification model, as was mentioned in section 21
— The use of the interest measure (section [2)) leads to the results we could
expect in ART: since this measure is not bounded, the automatic threshold
selection criterion in ART does not work properly. Perhaps, the additive
tolerance margin might be replaced by a multiplicative tolerance factor. Even
then, the definition of the interest measure makes it difficult to establish an
initial desirable interest value. Such value might depend on the particular
problem and, therefore, the use of the interest measure is not practical in
ART. Bounded measures, such as confidence or certainty factors, will be
preferred.

— The same rationale applies to Hellinger’s divergence (section [2). Even when
its range is bounded, the interpretation and comparison of Hellinger’s diver-
gence values make this measure impractical in classification models such as
ART. In fact, no acceptable classification models were built by ART because
it is hard to establish an initial desirable value for Hellinger’s divergent (a
prerequisite to make use of ART automatic parameter setting).
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Table 1. Experiment summary using different rule evaluation criteria

Confidence Usefulness CF Conviction Interest Hellinger

Accuracy (10-CV) 79.22% 83.10% 77.67% 77.719% 53.711%  48.05%
Training time 18.5s 22.4s  12.7s 10.7s 2.9s 1.8s
Tree topology

- Leaves 36.9 50.0 285 30.0 4.2 1
- Internal nodes 18.3 252  16.2 17.3 2.6 0
- Average depth 7.41 8.71 7.39 7.33 2.12 1.00
I/O operations

- Records 36400 50100 33100 26700 20300 7000
- Scans 63 89 55 59 11 3

Table 2. Datasets used in our experiments (from the UCI Machine Learning Reposi-
tory)

Dataset Records Attr Classes
AUDIOLOGY 226 70 24
CAR 1728 7 4
CHESS 3196 36 2
HAYES-ROTH 160 5 3
LENSES 24 6 3
LUNG CANCER 32 57 3
MUSHROOM 8124 23 2
NURSERY 12960 9 5
SOYBEAN 683 36 19
SPLICE 3175 61 3
TICTACTOE 958 10 2
TITANIC 2201 4 2
VOTE 435 17 2

4 Conclusions

In summary, from all the measures we discussed above, only certainty factors
and the so-called usefulness criterion are good alternatives to confidence when
building ART classification models. Conviction also achieves good results, al-
though certainty factors are preferred since they are equivalent to conviction in
the cases the classification process is more interested in (and certainty factors
are bounded).

Despite the experimental results, it should be noted that all rule evaluation
criteria have their home grounds and their use might be suitable depending
on what the user intends to obtain. The availability of a wide variety of rule
evaluation measures is a good signal, since it provides us a toolkit to draw on.
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Moreover, the use of a measure or another does not affect the computational

cost of the rule discovery process. When building classification models such as
ART, that cost is proportional to the classification model complexity. Therefore,
the study of alternative rule evaluation measures keeps its interest. Such mea-
sures are just criteria at our disposal which can be used to guide the knowledge
discovery process according to the particular goals and needs of a given problem.
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