Multiobjective RBFNNs Designer for Function
Approximation: An Application for Mineral
Reduction

Alberto Guillén, Ignacio Rojas, Jesis Gonzélez, Héctor Pomares, L.J. Herrera
and Francisco Ferndndez

University of Granada

Abstract. Radial Basis Function Neural Networks (RBFNNs) are well
known because, among other applications, they present a good perfor-
mance when approximating functions. The function approximation prob-
lem arises in the construction of a control system to optimize the process
of the mineral reduction. In order to regulate the temperature of the
ovens and other parameters, it is necessary a module to predict the final
concentration of mineral that will be obtained from the source materials.
This module can be formed by an RBFNN that predicts the output and
by the algorithm that designs the RBFNN dynamically as more data is
obtained. The design of RBFNNs is a very complex task where many
parameters have to be determined, therefore, a genetic algorithm that
determines all of them has been developed. This algorithm provides sat-
isfactory results since the networks it generates are able to predict quite
precisely the final concentration of mineral.

1 Introduction

Many dynamic optimization problems can be found during the process of the
nickel production with the CARON technology. These problems require reach-
ing a balance between the immediate gaining and the optimum behavior of the
systems through the time. As an example, it can be considered the process of
the mineral reduction. In this process, an expenditure of technologic petroleum
is used to establish the thermic profile for the ovens that determine the dif-
ferent chemist reactions for the correct process. This is a complex task that
nowadays requires a human operator to take decisions based on his experience
and intuition. Therefore, it would be very helpful if a support decision system
can be designed and implemented. Figure 1 shows the input, output and con-
trol variables that will be used to characterize the model. All these variables are
registered by a SCADA system that generates the data used for the experiments.

The problem consists in the optimization of the necessities of the technologi-
cal petroleum through the analysis of the data dynamically obtained. Since there
are several necessities, we are tackling a multiobjective optimization problem.
These kind of problems do not have an unique solution since the set of solutions
cannot be completed sorted because, for some cases, it is impossible to decide

which solution is better. The set of solutions that cannot be improved is know
as the optimal Pareto.

The mineral reduction process can be characterized by the following func-
tions:

— Extractions = f; (Input mineral, Oven temperature, Reducing agents)

— Oven temperatures = fo (Input mineral, Chamber temperatures)

— Reducing agents = f3 (Input mineral, Additive petroleum, Petroleum in
chambers)

The problem then consists in the learning of the three different functions that
relate the input vectors with the corresponding output. This is possible since
the data will be measured directly from the source, and once these functions are
learned, it will be possible to generate new values not defined in the training
sets that will help to take decisions in order to optimize the process.

Figure 2 shows an hybrid process for the dynamic optimization. In the
process, there is a module that has to approximate the behavior of the system
in order to predict it and to give this information to the Neuro-programming
optimization module that will provide the information to take decisions.

Most of the dynamic neuro-programming methods start with an initial se-
quence of control actions that are used to compute an initial value of the fitness
function that will be used. This initial situation can be improved by modifying
the the initial control actions. The algorithm proposed in this paper will be used
in the function approximation module shown in Figure 2. This module has to
include a predictor element, the RBFNN, and an algorithm that designs the net-
work since the number of inputs vectors grows dynamically each 8 hours. This
time frame is big enough to be able to use a genetic algorithm that will design
a RBFNN that will approximate the input data.

The algorithm presented in this paper is able to design this kind of networks
providing excellent results as it will be shown in the experiment section.

2 RBFNN description

The problem to be tackled consists in designing an RBFNN that approximates

a set of given values. The use of this kind of neural networks is a common

solution since they are able to approximate any function [10, 11]. Formally, a

function approximation problem can be formulated as, given a set of observations

{(zp;yx); k= 1,...,n} with yp, = F(x) € R and x;, € IRY, it is desired to obtain
n

a function F so Y ||lyx — F(xx)||? is minimum. The purpose of the design is
k=1

to be able to obtain outputs from input vectors that were not specified in the
original training data set.

An RBFNN F with fixed structure to approximate an unknown function F’
with n entries and one output starting from a set of values {(xr; yx); k= 1,...,n}
with yp = F(xx) € IR and x5, € IRY, has a set of parameters that have to be
optimized:

Material Preparation Reduction Ovens Area Lixivation and Washing
Area Area

Mineral Reduction

Oxidated Mineral System Reduced Mineral
NiO(s) and 3Fe,0, Herreshoff Ovens Metallic Ni and Fe

N CARON
Co Technology Extractable Ni %
Si02%,

Extractable Co %
MgO % Ni Production
H20% Co Production
Humidity

Tonnage

Reductor Agents CO and H,

Aditive Petroleum and Incomplete Combustion in
Chambers

Density at 15°C
Caloric Value
Sulphur %
Coal %
Asfaltenos %

Fig. 1. Mineral reduction process

F(xi;C R, 2) =Y daw;cjry) - 2 (1)
j=1

where C' = {ey,...,cn} is the set of RBF centers, R = {ry,...,r,,} is the set
of values for each RBF radius, 2 = {{21,...,82,,} is the set of weights and
¢(xg; cj,7;) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is
continuous, differentiable, it provides a softer output and improves the interpo-
lation capabilities [2,13].

The procedure to design an RBFNN starts by setting the number of RBF's
in the hidden layer, then the RBF centers ¢; must be placed and a radius r; has
to be set for each of them. Finally, the weights {2; can be calculated optimally
by solving a linear equation system [4].

3 Multiobjective Algorithm for Function Approximation:
MOFA

This section describes the algorithm that could be used in the prediction and
function approximation module within the system described in the previous

Function

Appoximation
Module

70)

- X(i
X(i-1) Dynamic Neuro- !

I Programming I SYSTEM IS S
Optimization Module Y(i)

W(i): system inputs, X{i): system statusfoutput, ¥(i): control agent action

Fig. 2. Hybrid process for the dynamic optimization

section. This algorithm is based in the popular multiobjective non-dominated
sorting genetic algorithm in its second version (NSGA-II) [3]. The two objectives
in the algorithm are to obtain the network with the smallest error and with the
smallest number of RBFs. The bigger the networks become, the more expensive
is its manipulation within the genetic algorithm, making it run very slowly and
the network must be retrained each 8 hours. This section will introduce the new
elements that have been incorporated to fit the original algorithm to the design
of RBFNNS.

3.1 Representing RBFNN in the Individuals

As it was shown in the Introduction, to design an RBFNN it is needed to specify:

1. the number of RBFs

2. the position of the centers of the RBF's
3. the length of the radii

4. the weights for the output layer

The individuals in the population of the algorithm will contain the first three
elements in a vector of real numbers. Instead of including the weights, the ap-
proximation error is stored in order to save computational effort by the time the
individuals will be compared.

In the following subsections the concept of local error of an RBF will be
referred. The local error is defined as the sum of the errors between the real

output and the output generated by the RBFNN but, instead of considering all
the input vectors, only the ones that activate each RBF will be selected. To
know if an input vector activates a neuron, its activation function is calculated
for each input vector and if it is higher than a determined threshold, the input
vector activates the neuron.

3.2 Initial Population

The initial population is generated using clustering algorithms in order to supply
good individuals that will make easier and faster to find good solutions. These
clustering algorithms are:

— Fuzzy C-means (FCM): This clustering algorithm [1] performs a fuzzy par-
tition of the input data where the same input vector can belong to several
clusters at the same time with a membership degree.

— Improved Clustering for Function Approximation (ICFA): this algorithm [5]
uses supervised clustering in order to identify the areas where the function
is more variable. To do this, it defines the concept of estimated output of a
center to assign a value for the center in the output axis.

— Possibilistic Centers Initializer (PCI) and Fuzzy-Possibilistic Clustering for
Function approximation (FPCFA): these algorithms [6] modify the way the
input vectors are shared between the centers of the clusters. In the ICFA
algorithm, a fuzzy partition was defined. In these two algorithms the fuzzy
partition is replaced by the ones used in [14] and in [9] respectively.

There are also included individuals generated randomly in order to not to
loose diversity in the population.

After this initialization of the population, very few iterations of a local search
algorithm (Levenberg— Marquardt [8]) are run and the results are concatenated
to the population. This have been proved to improve the quality of the results
because the population becomes more diverse since the clustering algorithms are
quite robust and could generate individuals that are too similar.

The size of the RBFNNs belonging to the first generation should be small
for two reasons:

1. make the initialization as fast as possible

2. allow the genetic algorithm to determine the sizes of the RBFNNs from
an incremental point of view, saving the computational effort that would
suppose to deal with big networks from the first generations.

The cross operators will have the chance to increment the number of RBFs
and with the mutation operators there will be the possibility of removing useless
RBF's.

3.3 Crossover operators

The original crossover operator over a binary or real coded chromosome can-
not be performed with the individuals of this algorithm because each groups of
genes have different meanings. Two crossover operators were designed for these
individuals, and experimentally it was concluded that the application of both
operators with the same probability provided better results than applying only
one of them.

Crossover operator 1: Neurons exchange This crossover operator, con-
ceptually, would be the most similar one to the original crossover. Since the
individuals represent an RBFNN with several neurons, the cross of two individ-
uals will be the result of exchanging one neuron. This is exchange is represented
in Figure 3. The advantages of this crossover operator is that it exploits the ge-
netic material of each individual without modifying the structure of the network,
the other advantage is its simplicity and efficiency.

Crossover operator 2: Addition of the neuron with the smallest error
This operator consists in the addition of the neuron with the smallest local error
belonging to the other individual and it is represented in Figure 3. If the neuron
with the smallest local error is very similar to another in the other network, the
neuron with the second smallest error is chosen and so on. This operator will
give the opportunity to increase the number of RBFs in one individual, allowing
the algorithm to explore more topologies. A refinement step is performed right
after the crossing, this refinement consists in the prune of the RBFs which does
not influence the output of the RBFNN, to do this, all the weights that connect
the processing units to the output layer are calculated and the neurons that do
not have a significant weight will be removed.

—

Crossover 1 Crossover 2

Fig. 3. Crossover operators 1 and 2

3.4 Mutation Operators

The mutation operators proposed for this algorithm can be separated in two
categories:

— mutations without any knowledge
— mutations using expert knowledge

The mutation without any knowledge refers to those changes that are per-
formed in a random way, those changes can affect both the structure and the
parameters of the RBFNNs. The objective of these operators is to add ran-
domness in the search process to avoid the convergence to local minima. The
mutation operators with expert knowledge are mutations that affect also the
structure and the parameters of the RBFNNs but using some information in
such a way that the changes won’t be completely random. As it occurs with the
crossover operators, if we divide these subset of mutation operators and perform
different runs, the results obtained are worse than if we run the algorithm using
both kind of mutation operators.

Mutations without any knowledge. There are four operators that are com-
pletely random:

— The first one is the deletion of an RBF in one random position over the input
vectors space setting his radio also with a random value. All the random
values are in the interval [0,1] since the input vectors and their output are
normalized.

— The second operator is the opposite to the previous one, deleting an exist-
ing RBF. This mutation must be constrained and not be applied when the
individual has less than two neurons.

— The third one adds to all the coordinates of a center a random distance
which value is chosen in the interval [-0.5,0.5].

— The forth one has exactly the same behavior than the third one but changing
the value of the radius of the selected RFB.

The two fist operators modify the structure of the network meanwhile the
third and the forth modify the parameters of the network. The third and the
fourth operators refer to the real coded genetic algorithms as presented in [7].

Mutations with expert knowledge. These mutation operators use the in-
formation provided by the output of the function to be approximated. As the
previous operators, these will take care of the structure of the network, adding
and removing RBFs in a RBFNN, and will also modify the value of the para-
meters of the RBFs. The operators are:

— The first operator inserts one RBF in the position of the input vector with the
highest error. To select this position the output of the RBFNN is calculated
and then it is compared with the output of the target function, the center
will be placed in the position of the point where the difference between the
real output and the generated output is greater.

— The second operator removes one RBF from the RBFNN, the RBF to be
removed is the one with less local error. This could seem not too logical
at first, but it allows to keep more diversity in the population since one of
the cross operators adds the neuron of the individual with less local error,
so combining this to elements, the genes will remain in the population but
avoiding redundant elements and allowing to search for new areas in the
input vector space.

— The third operator consists in the application of a local search algorithm
(Levenberg-Mardquardt) to tune the positions of the centers and their radii
but being aware that with these movements the error will be decreased for
sure. This operator must be used carefully and only few iterations should be
done, otherwise the population will converge too fast to a local minima.

4 Experiments

The data used in the experiments were obtained by measuring the following
parameters from the real system:

— Inputs: Ni, Fe, Co, Si, Mg, Ton, Temp Ovens (9), Output: Additive petroleum
index

The data were obtained measuring each 8 hours the different elements, so
the prediction of the next value must be done in 8 hours time, the proposed
genetic algorithm is able to provide appropriate results in that time frame. For
the experiments, it was used the data obtained in 70 days so the size of the data
set has 210 instances of 26 variables each. From this 210 instances, 180 were
used for training and the rest for test.

The algorithm proposed in this paper will be compared with other evolu-
tionary strategy presented in [12] where the authors propose a new evolutionary
procedure to design optimal RBFNNs. It defines a self-organizing process into a
population of RBF's based on the estimation of the fitness for each neuron in the
population, which depends on three factors: the weight and width of each RBF,
the closeness to other RBFs, and the error inside each RBF width. The algo-
rithm also uses operators that, according to a set of fuzzy rules, transform the
RBFs. All these elements allowed the authors to define cooperation, speciation,
and niching features in the evolution of the population.

Table 1 shows respectively the approximation errors using the training set
and the test set. The two evolutionary algorithms are compared also with the
CFA algorithm that was designed specifically to perform the initialization step
in the design of RBFNN for function approximation. Once the algorithms were
executed a local search algorithm was applied to their results. These tables show
how the proposed algorithm overcomes the other approaches when approximat-
ing the training data and the test data set. The other two algorithms are able to
approximate the training set with a very small error when many RBF's are used,
however, when they try to approximate the test data, the error increases signif-
icantly. The networks generated by the proposed algorithm have the ability of

approximating the training error quite precisely but without loosing generality
so the test error is still small, not like when the other algorithms are used.

Table 1. Mean of the approximation error (NRMSE) for the training and test data

Training Test
RBFs CFA Rivera MOFA RBFs CFA Rivera MOFA
3 0.623 0.428 0.282 3 4.963 4.963 1.995

0.566 0.327 0.140 4 1.204 2.235 0.954
0.590 0.313 0.170 5 1.644 1.382 1.405
0.182 0.169 0.0140 7 1309 1.410 0.870
0.061 0.054 3.333e-5 8 1.495 1.403 0.047
9 0.006 0.007 6.264e-6 9 1479 1.339 0.047
10 0.003 0.002 4.513e-6 10 1.125 1.129 0.047
11 0.026 0.006 4.385e-6 11 1.128 1.105 0.043
12 0.017 0.002 2.946e-6 12 1.024 0.995 0.045
13 0.004 0.001 2.939e-6 13 0.730 0.755 0.047
14 8.264e-4 4.854e-5 2.896e-6 14 0.830 0.520 0.030
16 6.264e-4 3.644e-5 2.527e-6 16 0.519 0.312 0.029

00 ~1 Ut i

5 Conclusions

This paper has presented a system that can be used to control and optimize
the mineral extraction from source materials. One of the modules that builds
the system is in charge of predicting the final amount of extracted mineral from
empirical data obtained previously. The module consists in an RBFNN, that
is able to predict quite precisely the real output of material, and in a genetic
algorithm that trains the network within the time frame required by the system.
A multiobjective genetic algorithm that designs the RBFNNs for the prediction
module was presented, obtaining a very good performance when it was compared
against other techniques for the design of RBFNN.

Acknowledgements This work has been partially supported by the Spanish
CICYT Project TIN2004-01419 and the European Commission’s Research In-
frastructures activity of the Structuring European Research Area programme,
contract number RII3-CT-2003-506079 (HPC-Europa)

References

1. J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York, 1981.

10.

11.

12.

13.

14.

A. G. Bors. Introduction of the Radial Basis Function (RBF) networks. OnLine
Symposium for Electronics Engineers, 1:1-7, February 2001.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Com-
putation, 6(2):182-197, 2002.

J. Gonzélez, I. Rojas, J. Ortega, H. Pomares, F.J. Ferndndez, and A. Diaz. Multi-
objective evolutionary optimization of the size, shape, and position parameters of
radial basis function networks for function approximation. IEEE Transactions on
Neural Networks, 14(6):1478-1495, November 2003.

A. Guillén, I. Rojas, J. Gonzélez, H. Pomares, L..J. Herrera, O. Valenzuela, and
A. Prieto. Improving Clustering Technique for Functional Approximation Problem
Using Fuzzy Logic: ICFA algorithm. Lecture Notes in Computer Science, 3512:272—
280, June 2005.

A. Guillén, I. Rojas, J. Gonzéalez, H. Pomares, L.J. Herrera, O. Valenzuela, and
A. Prieto. A possibilistic approach to rbfn centers initialization. Lecture Notes in
Computer Science, 3642:174-183, 2005.

F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algorithms:
operators and tools for the behavioural analysis . Artificial Intelligence Reviews,
12(4):265-319, 1998.

D. W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear In-
equalities. STAM J. Appl. Math., 11:431-441, 1963.

N. R. Pal, K. Pal, and J. C. Bezdek. A Mixed C-Means Clustering Model. In
Proceedings of the 6th IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE’97), volume 1, pages 11-21, Barcelona, July 1997.

J. Park and J. W. Sandberg. Universal approximation using radial basis functions
network. Neural Computation, 3:246-257, 1991.

T. Poggio and F. Girosi. Networks for approximation and learning. In Proceedings
of the IEEE, volume 78, pages 1481-1497, 1990.

A. J. Rivera Rivas, J. Ortega Lopera, I. Rojas Ruiz, and M. J. del Jesus Daz.
Co-evolutionary Algorithm for RBF by Self-Organizing Population of Neurons.
Lecture Notes in Computer Science, (2686):470-477, June 2003.

I. Rojas, M. Anguita, A. Prieto, and O. Valenzuela. Analysis of the operators
involved in the definition of the implication functions and in the fuzzy inference
proccess. International Journal of Approximate Reasoning, 19:367-389, 1998.

J. Zhang and Y. Leung. Improved possibilistic C—means clustering algorithms.
IEEE Transactions on Fuzzy Systems, 12:209-217, 2004.

