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Abstract

In this paper we introduce a new dynamic importance sampling propagation algorithm for

Bayesian networks. Importance sampling is based on using an auxiliary sampling distribution

from which a set of configurations of the variables in the network is drawn, and the perform-

ance of the algorithm depends on the variance of the weights associated with the simulated

configurations. The basic idea of dynamic importance sampling is to use the simulation of a

configuration to modify the sampling distribution in order to improve its quality and so reduc-

ing the variance of the future weights. The paper shows that this can be achieved with a low

computational effort. The experiments carried out show that the final results can be very good

even in the case that the initial sampling distribution is far away from the optimum.
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1. Introduction

In this paper we propose a new propagation algorithm for computing marginal

conditional probabilities in Bayesian networks. It is well known that this problem

is NP-hard even if only approximate values are required [7]. It means that it is
always possible to find examples in which polynomial approximate algorithms pro-

vide poor results, especially if the distributions contain extreme probabilities: there is

a polynomial approximate algorithm if all the probabilities are strictly greater than

zero [8], but its performance quickly deteriorates when the probabilities approach to

zero.

There exist several deterministic approximate algorithms [1–5,13,16,20,21] as well

as algorithms based on Monte Carlo simulation. The two main approaches are:

Gibbs sampling [12,15] and importance sampling [6,8,10,11,18,19,22].
A class of these simulation procedures is composed by the importance sampling

algorithms based on approximate pre-computation [11,18,19]. These methods per-

form first a fast but non-exact propagation, consisting of a node removal process

[23]. In this way, an approximate �a posteriori� distribution is obtained. In the second

stage a sample is drawn using the approximate distribution and the probabilities are

estimated according to the importance sampling methodology [17].

In this paper we start off with the algorithm based on approximate pre-computa-

tion developed in [18]. One of the particularities of that algorithm is the use of prob-
ability trees to represent and approximate probabilistic potentials. Probability trees

have the ability of approximating in an asymmetrical way, concentrating more re-

sources (more branching) where they are more necessary: higher values with more

variability (see [18] for a deeper discussion on these issues). However, as pointed

out in [5], one of the problems of the approximate algorithms in Bayesian networks

is that sometimes the final quality of an approximate potential will depend on all the

potentials, including those which are not needed to remove the variable when per-

forming exact propagation. Imagine that we find that, after deleting variable Z,
the result is a potential that depends on variable X, and we find that this dependence

is meaningful (i.e. the values of the potential are high and different for the different

cases of X). If there is another potential not considered at this stage, in which all the

cases of X except one have assigned a probability equal to zero, then the discrimina-

tion on X we have done when deleting Z is completely useless, since finally only one

value of X will be possible. This is an extreme situation, but it illustrates that even if

the approximation is carried out locally, the quality of the final result will depend on

the global factors. There are algorithms that take into account this fact, as Markov
Chain Monte Carlo, the Penniless propagation method presented in [5], and the

Adaptive Importance Sampling (AIS-BN) given in [6].

In this work, we improve the algorithm proposed in [18] allowing to modify the

approximate potentials (the sampling distribution) taking as basis the samples ob-

tained during the simulation. If samples with very small weights are drawn, the algo-

rithm detects the part of the sampling distribution (which is represented as an

approximate probability tree) that is responsible of this fact, and it is updated in such

a way that the same problem will not occur in the next simulations. Actually, this is a



S. Moral, A. Salmerón / Internat. J. Approx. Reason. 38 (2005) 245–261 247
way of using the samples to obtain the necessary information to improve the quality

of the approximations taking into account other potentials in the problem. Trees are

very appropriate for this task, as they allow to concentrate more efforts in the most

necessary parts, i.e. in the configurations that were more frequently obtained in past

simulations and for which the approximation was not good.
The rest of the paper is organised as follows: in Section 2 it is described how prob-

ability propagation can be carried out using the importance sampling technique. The

new algorithm, called dynamic importance sampling, is described in Section 3. In Sec-

tion 4 the performance of the new algorithm is evaluated according to the results of

some experiments carried out in large networks with very poor initial approxima-

tions. The paper ends with conclusions in Section 5.
2. Importance sampling in Bayesian networks

Throughout this paper, we will consider a Bayesian network in which

X = {X1, . . . , Xn} is the set of variables and each variable Xi takes values on a finite

set Xi. If I is a set of indices, we will write XI for the set {Xiji 2 I}, and XI will denote

the Cartesian product ·i2IXi. Given x 2 XI and J � I, xJ is the element of XJ ob-

tained from x by dropping the coordinates not in J.

A potential f defined on XI is a mapping f : XI ! Rþ
0 , where R

þ
0 is the set of non-

negative real numbers. Probabilistic information will always be represented by

means of potentials, as in [14]. The set of indices of the variables on which a potential

f is defined will be denoted as dom(f).

The conditional distribution of each variable Xi, i = 1, . . . , n, given its parents in

the network, Xpa(i), is denoted by a potential pi(xijxpa(i)) for all xi 2 Xi and xpa(i) 2
Xpa(i). If N = {1, . . . , n}, the joint probability distribution for the n-dimensional ran-

dom variable X can be expressed as

pðxÞ ¼
Y
i2N

piðxijxpaðiÞÞ 8x 2 XN : ð1Þ

An observation is the knowledge about the exact value Xi = ei of a variable. The set of

observations will be denoted by e, and called the evidence set. E will be the set of indi-

ces of the variables observed.

The goal of probability propagation is to calculate the �a posteriori� probability
function pðx0kjeÞ, for all x0k 2 Xk, for every non-observed variable Xk, k 2 N n E. No-

tice that

pðx0kjeÞ ¼
pðx0k; eÞ
pðeÞ 8x0k 2 Xk

and, since pðeÞ ¼
P

x0k2Xk
pðx0k; eÞ, we can calculate the posterior probability if we com-

pute the value pðx0k; eÞ for every x0k 2 Xk and normalise afterwards.

Let H = {pi(xijxpa(i))ji = 1, . . . , n} be the set of conditional potentials. Then,

pðx0k; eÞ can be expressed as
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pðx0k; eÞ ¼
X
x2XN
xE¼e
xk¼x0k

Y
i2N

piðxijxpaðiÞÞ ¼
X
x2XN
xE¼e
xk¼x0k

Y
f2H

f ðxdomðf ÞÞ 8x0k 2 Xk: ð2Þ

If the observations are incorporated by restricting potentials in H to the observed

values, i.e. by transforming each potential f 2 H into a potential fe defined on

domðf Þ n E as fe(x) = f(y), where ydomðf ÞnE ¼ x, and yi = ei, for all i 2 E, then we have,

pðx0k; eÞ ¼
X
x2XN
xk¼x0k

Y
fe2H

feðxdomðfeÞÞ ¼
X
x2XN

gðxÞ 8x0k 2 Xk; ð3Þ

where

gðxÞ ¼
Q

fe2HfeðxdomðfeÞÞ if xk ¼ x0k;

0 otherwise:

�

Thus, probability propagation conveys the estimation of the value of the sum in (3),

and here is where the importance sampling technique is used. Importance sampling

is well known as a variance reduction technique for estimating integrals by

means of Monte Carlo methods (see, for instance, [17]), consisting of transform-

ing the sum in (3) into an expected value that can be estimated as a sample mean.

To achieve this, consider a probability function p�:XN ! [0, 1], verifying that

p�(x) > 0 for every point x 2 XN such that g(x) > 0. Then formula (3) can be

written as

pðx0k; eÞ ¼
X
x2XN ;
gðxÞ>0

gðxÞ
p�ðxÞ p

�ðxÞ ¼ E
gðX�Þ
p�ðX�Þ

� �
8x0k 2 Xk; ð4Þ

where X� is a random variable with distribution p� (from now on, p� will be called the

sampling distribution). Then, if fxðjÞgmj¼1 is a sample of size m drawn from p�, for each

x0k 2 Xk,

p̂ðx0k; eÞ ¼
1

m

Xm
j¼1

gðxðjÞÞ
p�ðxðjÞÞ ð5Þ

is an unbiased estimator of pðx0k; eÞ with variance

Varðp̂ðx0k; eÞÞ ¼
1

m

X
x2XN

g2ðxÞ
p�ðxÞ

 !
� p2ðx0k; eÞ

 !
: ð6Þ

The value wj = g(x(j))/p�(x(j)) is called the weight of configuration x(j).
Minimising the error of an unbiased estimator is equivalent to minimising its var-

iance. As formulated above, importance sampling requires a different sample to esti-

mate each one of the values x0k of Xk. However, in [18] it was shown that it is possible

to use a single sample (i.e. a single set of configurations of the variables XN n E) to
estimate the probability for all the values x0k. In such case, the minimum variance is

reached when the sampling distribution, p�(x), is proportional to g(x). In such case,
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the weights are equal to p(e) for all the configurations and the variance of the esti-

mation of the conditional probability for each x0k 2 Xk is:

Varðp̂ðx0kjeÞÞ ¼
1

m
ðpðx0kjeÞð1� pðx0kjeÞÞ:

This provides very good estimations depending on the value of m (analogously to the

estimation of binomial probabilities from a sample), but it has the difficulty that it is

necessary to handle p(xje), the distribution for which we want to compute the mar-

ginals. Thus, in practical situations the best we can do is to obtain a sampling distri-

bution as close as possible to the optimal one.

Once p� is selected, pðx0k; eÞ for each value x0k of each variable Xk, k 2 NnE can be
estimated with the following algorithm:

Importance Sampling

(1) For j: = 1 to m (sample size)

(a) Generate a configuration x(j) 2 XN using p�.

(b) Calculate the weight:

wj :¼
Q

f2Hfeðx
ðjÞ
domðfeÞÞ

p�ðxðjÞÞ : ð7Þ

(2) For each x0k 2 Xk, k 2 N n E, compute p̂ðx0k; eÞ as the sum of the weights in for-

mula (7) corresponding to configurations containing x0k divided by m.

(3) Normalise the values p̂ðx0k; eÞ in order to obtain p̂ðx0kjeÞ.

The sampling distribution for each variable can be obtained through a process of
eliminating variables in the set of potentials H. An elimination order r is considered

and variables are deleted according to such order: Xr(1), . . . , Xr(n).

The deletion of a variable Xr(i) consists of marginalising it out from the combina-

tion of all the functions in H which are defined for that variable. More precisely, the

steps are as follows:

• Let Hr(i) = {f 2 Hjr(i) 2 dom( f )}.

• Calculate frðiÞ ¼
Q

f2HrðiÞ
f and f 0

rðiÞ defined on dom(fr(i))n{r(i)}, by f 0
rðiÞðyÞ ¼P

xrðiÞ
frðiÞðy; xrðiÞÞ for all y 2 dom(fr(i))n{r(i)}, xr(i) 2 Xr(i).

• Transform H into H n HrðiÞ [ ff 0
rðiÞg.

Simulation is carried out in an order contrary to the one in which variables are

deleted. To obtain a value for Xr(i), we will use the function fr(i) obtained in the dele-

tion of this variable. This potential is defined for the values of variable Xr(i) and

other variables already sampled. The potential fr(i) is restricted to the already ob-

tained values of variables in dom(fr(i))n{r(i)}, giving rise to a function which depends
only on Xr(i). Finally, a value for this variable is obtained with probability propor-

tional to the values of this potential. If all the computations are exact, it was proved

in [11] that we are really sampling with the optimal probability p�(x) = p(xje).



Fig. 1. A probability potential / can be represented either as a table (left) or by an exact tree (center), and

it can be approximated by a tree as in the right side.
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However, the result of the combinations in the process of obtaining the sampling
distributions may require a large amount of space to be stored, and therefore

approximations are usually employed, either using probability tables [11] or proba-

bility trees [18] to represent the distributions. Instead of computing the exact poten-

tials we calculate approximate ones with much fewer values. Then the deletion

algorithm is faster and the potentials need less space. The price to pay is that the

sampling distribution is not the optimal one and the accuracy of the estimations will

depend on the quality of the approximations. The way in which a probabilistic

potential can be approximated by a probability tree is illustrated in 1.
In [11] an alternative procedure to compute the sampling distribution was used.

Instead of restricting fr(i) to the values of the variables already sampled, all the func-

tions in Hr(i) are restricted, resulting in a set of functions depending only on Xr(i).

The sampling distribution is then computed by multiplying all these functions. If

the computations are exact, then both distributions are the same, as restriction

and combination commute. When the combinations are not exact, generally the op-

tion of restricting fr(i) is faster and the restriction of functions in Hr(i) is more accu-

rate, as there is no need to approximate the result of the combination of functions
depending only on one variable, Xr(i).
3. Dynamic importance sampling

Dynamic importance sampling follows the same general structure as our previous

importance sampling algorithms but with the difference that sampling distributions

can change each time a new configuration x(j) is simulated. The algorithm follows the
option of restricting the functions in Hr(i) before combining them when computing

the sampling distribution for Xr(i).

Any configuration of values ðxðjÞrð1Þ; . . . ; x
ðjÞ
rðnÞÞ, is simulated in reverse order, as in the

original importance sampling algorithm: Starting with xðjÞrðnÞ and finishing with xðjÞrð1Þ.

Assume that we have already simulated the values cji ¼ ðxðjÞrðnÞ; . . . ; x
ðjÞ
rðiþ1ÞÞ and that

we are going to simulate a value xðjÞrðiÞ for Xr(i). Let us denote by fcji the result of

restricting potential f to the values of cji , and let f 0
rðiÞ be the function that was com-

puted when removing variable Xr(i) in the elimination algorithm (i.e. the result of
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summing the combination of the potentials containing Xr(i) over all the possible val-

ues of that variable).

The procedure to simulate xðjÞrðiÞ makes some additional computations in order to

assess the quality of the sampling distribution. More precisely the following elements

are computed:

• ðHrðiÞÞcji ¼ ffcji j f 2 HrðiÞg: The result of restricting all the functions in Hr(i) to the

values already simulated.

• qr(i): The result of the combination of all the functions in ðHrðiÞÞcji . This function
can be represented as a vector depending only on variable Xr(i).

• xðjÞrðiÞ: The simulated value for Xr(i) which is obtained by drawing a value with a

probability proportional to the values of vector qr(i). brðiÞ ¼
P

xrðiÞ
qrðiÞðxrðiÞÞ: The

normalisation value of vector qr(i).
• ar(i): The value of potential f 0

rðiÞ when instantiated for the cases in cji .

The dynamic algorithm we propose is based on the next theorem, which states

that, if no approximations have been made, then br(i) must be equal to ar(i).

Theorem 1. Let ar(i) and br(i) be as defined above. If during the elimination process all

the trees have been computed exactly (i.e. none of them has been pruned), then it holds

that

arðiÞ ¼ brðiÞ:
Proof. br(i) is obtained by restricting the potentials in Hr(i) to cji ¼ ðxðjÞrðnÞ; . . . ; x
ðjÞ
rðiþ1ÞÞ,

combining them afterwards, and summing out the variable Xr(i).

On the other hand, ar(i) is the result of combining the potentials in Hr(i), summing
out Xr(i) from the combined potential, and restricting the result to cji .

f 0
rðiÞ is computed by combining the potentials in Hr(i) and then summing out Xr(i).

It means that the computations of ar(i) and br(i) involve the same operations but in a

different order: The restriction to configuration cji is done at the beginning for br(i)
and at the end for ar(i). Nevertheless, if all the computations are exact the results

should be the same, since combination and restriction trivially commute for exact

trees. h

However, combination and restriction do not commute if the potentials involved

have been previously pruned, since one of the pruned values may correspond to con-

figuration cji .
br(i) is the correct value, since in this case the restriction is evaluated before com-

bining the potentials, and thus, no approximation is made when computing it.

Whilst, ar(i) is the value that can be found in potential f 0
rðiÞ, which is combined,

and eventually pruned, before being evaluated for cji . Potential f
0
rðiÞ is the one that

has been used to compute the sampling probabilities of variables X ðjÞ
rðnÞ; . . . ;X

ðjÞ
rðiþ1Þ.

Therefore, if br(i) and ar(i) are very different, it means that configuration cji has been
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drawn with a probability of occurrence far away from its actual value. The worst sit-

uation is met when ar(i) is much greater than br(i). For example, assume an extreme

scenario in which br(i) is equal to zero and ar(i) is large. Then we would be obtaining,

with high probability, a configuration that should never be drawn (its real probabil-

ity is zero). 1 This fact would produce negative consequences, because the weights of
all these configurations would be zero and therefore they would be completely

useless.

If instead of zero values, the exact probability were very small, there would be a

similar scenario, but now the weights would be very small, and the real impact of

these configurations in the final estimation would not be significant. Summing up,

we would be doing a lot of work with very little reward.

Dynamic importance sampling computes the minimum of the values ar(i)/br(i) and

br(i)/ar(i), considering that this minimum is equal to one if ar(i) = 0. If this value is less
than a given threshold, then potential f 0

rðiÞ is updated to the exact value br(i) for the

given configuration cji ¼ ðxðjÞrðnÞ; . . . ; x
ðjÞ
rðiþ1ÞÞ. This potential will be used in the next

simulations, and thus cji will be drawn with a more accurate probability in the future.

If, for example, br(i) is zero, it will be impossible to obtain it again.

Updating the potential does not simply mean to change the value ar(i) by the new

value br(i). The reason is that we should do it only for configuration cji and a single

value on a tree affects to more than one configuration (if the branch corresponding to

that configuration has been pruned and some variables do not appear) and then we
may be changing the values of other configurations different to cji . If br(i) = 0, we

could even introduce zeros where the real exact value is positive, thus violating the

basic property of importance sampling which says that any possible configuration

must have a chance to be drawn. For instance, assume that the branches in a tree

corresponding to configurations c1 and c2 lead to leaves labeled with numbers 0

and 0.1 respectively. Now consider that the tree is pruned replacing both branches

by a single number, for instance, 0.05. In this case, if during the simulation it is found

out that configuration c1 should be labeled with 0, if we just replaced the value 0.05
by 0 we would be introducing a false zero for configuration c2.

In order to avoid the insertion of false zeroes, we must branch the tree represent-

ing f 0
rðiÞ in such a way that we do not change its value for configurations for which

br(i) is not necessarily the actual value. Therefore, the basic problem is to determine a

subset of variables {Xr(n), . . . , Xr(i+1)}, for which we have to branch the node of the

tree associated with f 0
rðiÞ so that only those leaves corresponding to the values of these

variables in cji are changed to the new value.

The first step is to consider the subset of active variables, Ar(i) associated with
potential f 0

rðiÞ. This set represents the variables for which f 0
rðiÞ should be defined if

computations are exact, but potentials are represented by probability trees which

are pruned without error when possible (a node such that all its children are leaves

with the same value is replaced by a single leaf with that value).
1 If we had stored in f 0
rðiÞ the exact value (zero), then, as this value is used to simulate the values of

(Xr(n), . . . , Xr(i+1)), the probability of this configuration should have been zero.
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This set is computed during the variable elimination phase. Initially, Ar(i) is the un-

ion of the domains of all the potentials inHr(i) minusXr(i), which is the set of variables

of potential f 0
rðiÞ if we would have applied a deletion algorithm with potentials repre-

sented by probability tables. But this set can be further reduced: If a variable, say Xj,

can be pruned without error from f 0
rðiÞ (i.e. for every configuration of the other vari-

ables, f 0
rðiÞ is constant on the values of Xr(i)) and all the potentials in Hr(i) containing

this variable have been calculated in an exact way (all the previous computations have

only involved pruning without error) then Xj can be removed from Ar(i).

Though this may seem at first glance a situation difficult to appear in practice, it

happens for all the variables for which there are not observed descendants [18]. All

these variables can be deleted in an exact way by pruning the result to the constant

tree with value 1.0 and this provides an important initial simplification.

Taking Ar(i) as basis, we consider the tree representing f 0
rðiÞ and follow the path

corresponding to configuration cji (selecting for each variable in a node the child cor-

responding to the value in the configuration) until we reach a leaf. Let L be the label

of that leaf and Br(i) be the set of all the variables in Ar(i) which are not in the branch

of the tree leading to leaf L. The updating is carried out according to the following

recursive procedure:

Procedure Update(L,ar(i),br(i),Br(i))

1. If Br(i) = ;,
2. Assign value br(i) to leaf L

3. Else

4. Select a variable Y 2 Br(i)

5. Remove Y from Br(i)

6. Branch L by Y

7. For each possible value y of Y

8. If y is not the value of Y in cji
9. Make the child corresponding to y be a leaf with value ar(i)

10. Else
11. Let Ly be the child corresponding to value y

12. Update(Ly,ar(i),br(i),Br(i))
In this algorithm, branching a node by a variable Y consists of transforming it into

an interior node with a child for each one of the values of the variable. The idea is to

branch as necessary in order to be possible to change the value of f 0
rðiÞ only for the

values of active variables Ar(i) in configuration cji , leaving the values of this potential
unchanged in other cases. Imagine the case of Fig. 2, in which we have arrived to the

leaf in the left with a value of ar(i) = 0.4. Assume also that the variables in Br(i) are X,

Y andZ, each one of them taking values in {0,1} and that the values of these variables

in the current configuration are 1, 0 and 1 respectively. Finally, consider that we have

to update the value of this configuration in the tree to the new value br(i) = 0.6. The

result is the tree in the right side of Fig. 2. Observe that the order in which variables

are selected in Step 4 is not relevant, since at the end all the variables in Br(i) are in-

cluded and the sizes of the trees resulting from different orders are the same.
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Fig. 2. Example of tree updating.
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It must be pointed out that, unlike standard importance sampling, in the dynamic
algorithm that we propose, the configurations in the sample are not independent,

since the sampling distribution used to draw a configuration may be modified

according to the configurations previously simulated. However, the resulting estima-

tor remains unbiased, as stated in the next theorem.

Theorem 2. Let Xk be a non-observed variable and e a set of observations. Then, for

each x0k 2 Xk, the dynamic importance sampling estimator of pðx0k; eÞ, denoted as

p̂ðx0k; eÞ, is unbiased.
Proof. Assume that the sampling distribution, p�, has been updated l times, and let

p�i , i = 1, . . . , l, denote the l sampling distributions actually used in the simulation

process.

Given a sample S = {x(1), . . . , x(m)}, let Si, i = 1, . . . , l, denote the elements in S

drawn from p�i .
Then, according to Eq. (5)

p̂ðx0k; eÞ ¼
1

m

Xm
j¼1

gðxðjÞÞ
p�ðxðjÞÞ ¼

1

m

Xl
i¼1

X
x2Si

gðxÞ
p�i ðxÞ

:

According to Eq. (4), for a fixed p�i , E½gðxÞ=p�i ðxÞ� ¼ pðx0k; eÞ, which means that

gðxÞ=p�i ðxÞ is an unbiased estimator of pðx0k; eÞ.
Therefore, p̂ðx0k; eÞ is the average of m unbiased estimators of pðx0k; eÞ, and thus

p̂ðx0k; eÞ is an unbiased estimator of pðx0k; eÞ. h

Though all the cases in the sample are not independent, this does not imply that
the final variance is higher than when using independent samples. We must take into

account that the dependence lies in the selection of the distribution to sample succes-

sive configurations, but once this distribution is fixed, then the configuration is inde-

pendent of the previous ones. In order to show that this reasoning is correct, we are

going to simplify the scenario by considering a simple change of distribution instead

of several distributions. This result can be easily extended to the general case.



S. Moral, A. Salmerón / Internat. J. Approx. Reason. 38 (2005) 245–261 255
In order to simplify the notation, let us write nS for the unbiased estimation of

pðx0k; eÞ obtained from a given sample S. Let us consider a sample of size 2,

S = {x(1),x(2)}, in which both occurrences are independent and identically distrib-

uted, according to p�. Assume now another sample S 0 = {y(1),y(2)} in which

S0
1 ¼ fyð1Þg is drawn from p�, and that y(1) is used to select a value h of random

parameter H which determines a distribution from the set fp�hgh2XH
. Let us also as-

sume that S0
2 ¼ fyð2Þg is simulated from distribution p�h, which is independent of

y(1) given the value h ofH. This is the case of dynamic importance sampling, in which

past cases are used to estimate the parameters of the sampling distributions, but once

the parameters have been estimated, the cases are selected in an independent way.

The next theorem states that if we manage to choose p�h in such a way that the var-

iance associated with p�h is less than or equal to the variance associated with p�, then

the variance of the estimation associated with the new sample S 0 is not greater than
the variance resulting from S.

Theorem 3. Let S = {x(1),x(2)} be a sample of i.i.d. items drawn from p�. Let

S 0 = {y(1),y(2)} be a sample in which S01 ¼ fyð1Þg is drawn from p�, y(1) is used to select a

value h of H and the corresponding distribution fp�hgh2XH
, where H is a random variable

that depends on y(1), and S02 ¼ fyð2Þg is drawn from p�h, which is independent of y
(1) given

h. Under the above conditions, if for every h 2 XH, Var(nS0
2
) 6 Var(nS0

1
), then

VarðnS0 Þ 6 VarðnSÞ;
where nS 0 is the estimator of pðx0k; eÞ for sample S 0.
Proof. Notice that the variance of an importance sampling estimator obtained with

an independent sample of size m is equal to K/m, where the constant K depends on

the sampling distribution (see Eq. (6)). Let us denote by K and Kh the constants asso-
ciated with p� and p�h respectively.

Then, Var(nS) = K/2, since in this case the sample size is m = 2 and occurrences are

independent.

The variance of nS0 is

VarðnS0 Þ ¼ EnS0 ½ðnS0 � E½nS0 �Þ2�: ð8Þ

Note that nS0 is a random variable, and so it is nS 0�E[nS 0]. Furthermore, H is another

random variable and it is well known that for any two random variables V and W,

whenever their first order moments exist, it holds that EW[EVjW[VjW]] = EV[V].

Therefore, it follows from Eq. (8) that

VarðnS0 Þ ¼ EH½EnS0 jH½ðnS0 � E½nS0 �Þ2jH��

¼ EH EnS0 jH
nS0

1
þ nS0

2

2
� pðx0k; eÞ

� �2

jH
" #" #

; ð9Þ

where we have taken into account that nS0 ¼ ðnS0
1
þ nS0

2
Þ=2 and, since nS0 is unbiased,

E½nS0 � ¼ pðx0k; eÞ. In the equation above, EH means the expectation operator with
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respect to the distribution of random variable H, and EnS0 jH is the expectation with

respect to the sampling distribution of nS 0 conditional on H. Observe that, taking

by notation T ¼
nS0

1
þnS0

2

2
� pðx0k; eÞ

� �2

, it stands that

T ¼ 1

4
n2S0

1
þ n2S0

2
þ 2nS0

1
nS0

2

� �
þ p2ðx0k; eÞ � nS0

1
pðx0k; eÞ � nS0

2
pðx0k; eÞ

and thus, taking into account that for every fixed value of H the samples are inde-

pendent, and that since for every h 2 H the estimator nS0
2
is unbiased, it holds that,

for every h 2 XH, EnS0 jh½nS02 jh� ¼ pðx0k; eÞ, it follows that,

EnS0 jH½T jH� ¼ 1

4
EnS0 jH½n

2
S0
1
jH� þ 1

4
EnS0 jH½n

2
S0
2
jH� þ 1

2
EnS0 jH½nS01 jH�EnS0 jH½nS02 jH�

þ p2ðx0k; eÞ � pðx0k; eÞEnS0 jH½nS01 jH� � pðx0k; eÞEnS0 jH½nS02 jH�

¼ 1

4
EnS0 jH½n

2
S0
1
jH� þ 1

4
EnS0 jH½n

2
S0
2
jH� þ 1

2
pðx0k; eÞEnS0 jH½nS01 jH�

þ p2ðx0k; eÞ � pðx0k; eÞEnS0 jH½nS01 jH� � p2ðx0k; eÞ

¼ 1

4
EnS0 jH½n

2
S0
1
jH� þ 1

4
EnS0 jH½n

2
S0
2
jH� � 1

2
pðx0k; eÞEnS0 jH½nS01 jH�

Now, substituting in Eq. (9), we find that

VarðnS0 Þ ¼ EH½EnS0 jH½T jH��

¼ 1

4
EH½EnS0 jH½n

2
S0
1
jH�� þ 1

4
EH½EnS0 jH½n

2
S0
2
jH�� � 1

2
pðx0k; eÞEH½EnS0 jH½nS01 jH��

¼ 1

4
EnS0 ½n

2
S0
1
� þ 1

4
EH½EnS0 jH½n

2
S0
2
jH�� � 1

2
pðx0k; eÞEnS0 ½nS01 �

¼ 1

4
EnS0 ½n

2
S0
1
� þ 1

4
EH½EnS0 jH½n

2
S0
2
jH�� � 1

2
p2ðx0k; eÞ

¼ 1

4
EnS0 ½n

2
S0
1
� � 1

4
p2ðx0k; eÞ

� �
þ 1

4
EH½EnS0 jH½n

2
S0
2
jH�� � 1

4
p2ðx0k; eÞ

� �

¼ 1

4
VarðnS0

1
Þ þ 1

4
ðEH½EnS0 jH½n

2
S0
2
jH�� � p2ðx0k; eÞÞ

Now, since for every h, EnS0 jH½nS02 jh� ¼ pðx0k; eÞ, we have that

VarðnS0 Þ ¼
1

4
VarðnS0

1
Þ þ 1

4
ðEH½EnS0 jH½n

2
S0
2
jH� � E2

nS0 jH
½nS0

2
jH��Þ

¼ 1

4
VarðnS0

1
Þ þ 1

4
EH½Var½nS0

2
jH��

¼ 1

4
K þ 1

4
EH½KH�

Now, since for every h we have assumed that the variance of nS0
2
(i.e. Kh) is less than

or equal to the variance of nS0
1
, we have,
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VarððnS0 Þ ¼
1

4
K þ 1

4
EH½KH�

6
1

4
K þ 1

4
K ¼ K

2
¼ VarðnSÞ: �
4. Experimental evaluation of the new algorithm

The performance of the new algorithm has been evaluated by means of several

experiments carried out over two large real-world Bayesian networks. The two net-

works are called pedigree4 (441 variables) andmunin2 (1003 variables). The networks
have been borrowed from the Decision Support Systems group at Aalborg Univer-

sity (Denmark) ( http://www.cs.auc.dk/research/DSS/misc.html).

The dynamic importance sampling algorithm, denoted (dynamic is) has been com-

pared with importance sampling without this feature (is), using the same implemen-

tation as in [18]. The new algorithm has been implemented in Java, and included in

the Elvira shell (leo.ugr.es/~elvira) [9].

Our purpose is to investigate whether dynamic is can have a good performance

even in the case that initial approximations are very poor. Thus, in the computation
of the sampling distributions we have carried out a very rough approximation: In all

of the experiments the maximum potential size has been set to 20 values, and the

threshold for pruning the probability trees has been set to � = 0.4. This value of �
indicates that the numbers in a set of leaves of the tree whose difference (in terms

of entropy) with respect to a uniform distribution is less than 40% are replaced by

their average (see [18] for the details about the meaning of � and the way in which

the potentials are limited to a maximum size). This is a very poor approximation

and implies that it is highly likely to obtain configurations with very low weights,
which will give rise to a high variance of the estimators.

The experiments we have carried out consist of 20 consecutive applications of the

dynamic is algorithm. The first application uses the approximate potentials computed

when deleting variables. We consider a threshold to update the potentials of 0.95 (see

Section 3). In each subsequent application of the algorithm we start off with the pot-

entials updated in the previous application. In this way, we expect to have better

sampling distributions each time.

The sample size in each application is very small (50 configurations). We have
chosen such a small sample size in order to appreciate the evolution of the accuracy

of the sampling distributions in each of the 20 applications of the algorithm. The

behaviour of the dynamic algorithm is so good that choosing a larger sample (for

instance, with 2000 configurations) the difference among the 20 runs of the algorithm

would not be significant, because in the first sample, the algorithm is able to find

sampling distributions very close to the optimal.

The accuracy of the estimated probability values is measured as the average of the

mean squared error of the estimated distribution for each non-observed variable in
the network (denoted by MSE in Figs. 3 and 4). The mean squared error of an esti-

mated distribution (p̂) with respect to the exact one (p) is computed as

http://www.cs.auc.dk/research/DSS/misc.html
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MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

ðpðxÞ � p̂ðxÞÞ2
r

:

Due to the small sample size, the variance of the errors is high and therefore we have

repeated the series of applications a high number of times, computing the average of

the errors in all of them in order to reduce the differences due to randomness.

The experiments have been carried out on a Pentium 4, 2.4GHz computer, with

1.5GB of RAM and operating system Suse Linux 8.1. The Java virtual machine used

was Java 2 version 1.4.1. The results of the experiments are reported in Figs. 3 and 4,
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where the error (MSE) is represented as a function of the number of applications of

the dynamic is algorithm (from 1 to 20). The horizontal line is the optimum error: the

error that is obtained when the optimum sampling distribution is used (the variable

elimination phase is carried out without approximations) and with the same param-

eters as dynamic is, i.e. sample size 50.
Since is algorithm always uses the initial sampling distributions without updating

them, and these were poorly approximated, its accuracy is far away from the one

shown by dynamic is. With similar computing times, the MSE for is are 0.22 with

the pedigree4 network and 0.14 with the munin2 network, whilst the worst errors

reached by dynamic is are 0.045 and 0.034 respectively. Furthermore, these errors

are constant in successive application of the algorithm. In other words, algorithm

is requires a much larger sample size to reach the accuracy of dynamic is.

4.1. Discussion of the results

The experiments show that even with a very bad initial sampling distribution,

dynamic is updates the approximate potentials towards potentials with a behaviour

close to the exact ones, just after simulating a few configurations. The updating is

very fast at the beginning, but afterwards the improvement is very slow. This fact

agrees with the results of experiments reported in [20], in which it is shown that in

general the mass of probability is concentrated in some few configurations. When
the sampling probability is updated for these configurations, then the performance

is good.

In order to achieve the accuracy of the exact distribution we need to update a lot

of configurations with little mass of probability. This is a slow process. We have ob-

served that initially the updating of a potential is very frequent, but after a few iter-

ations, the updating of a potential seldom occurs. Another important fact is that

updating is propagated: If we update a potential, this new potential will be the

one that will appear associated with the variables that are deleted afterwards. Then,
the new potential will be the one considered when the condition for updating is eval-

uated. This usually gives rise to new updates.

The updating of potentials does not convey an important increase in time. The

dynamic algorithm is slower than is during the first iterations, but very quickly it be-

comes faster as the sampling distributions are more accurate and the updating pro-

cedure is rarely called. In fact, the only important additional step is the restriction of

potentials in Hr(i) and the combination of them. The restriction of each of the pot-

entials has a complexity proportional to the number of variables in it. As the result-
ing potentials depend only on the variable Xr(i), the complexity of combination is

proportional to the number of cases of this variable.
5. Conclusions

We have introduced a modification over importance sampling algorithms for

probabilistic propagation in Bayesian networks, consisting of updating of the
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sampling distribution taking as basis the configurations we are obtaining during the

simulation. This allows, with little additional time, for the obtainment of good qual-

ity sampling distributions even if the initial ones are bad. Dynamic (or adaptive)

sampling algorithms are not new within the context of Bayesian networks. Perhaps

the most known case is AIS-BN [6]. However, the use of probability trees makes the
convergence much faster (in experiments in [6] thousands of configurations are

considered).

In the future, we plan to modify the dynamic is algorithm to carry out the updat-

ing in a first stage, changing to is afterwards. For this task, we should determine a

point in which updating no longer provides a significant improvement because it oc-

curs very rarely, for configurations of little probability which therefore will appear in

very few occasions afterwards. But perhaps, the most important study will be to eval-

uate until which point it is worth making more effort in the initial approximation or
it is better to make a very bad approximation at the beginning leaving to the updat-

ing phase the responsibility of computing better sampling distributions. The results

of our experiments indicate that surely the second option will be better, but more

extensive experiments comparing both options will be necessary to give a better

founded answer.
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