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ABSTRACT
Motivation: As an increasing number of protein structures
become available, the need for algorithms that can quantify
the similarity between protein structures increases as well.
Thus, the comparison of proteins’ structures, and their cluster-
ing accordingly to a given similarity measure, is at the core of
today’s biomedical research. In this paper, we show how an
algorithmic information theory inspired Universal Similarity
Metric (USM) can be used to calculate similarities between
protein pairs. The method, besides being theoretically suppor-
ted, is surprisingly simple to implement and computationally
efficient.
Results: Structural similarity between proteins in four different
datasets was measured using the USM.The sample employed
represented alpha, beta, alpha–beta, tim–barrel, globins and
serpine protein types. The use of the proposed metric allows
for a correct measurement of similarity and classification of the
proteins in the four datasets.
Availability: All the scripts and programs used for the prepar-
ation of this paper are available at http://www.cs.nott.ac.uk/
~nxk/USM/protocol.html. In that web-page the reader will find
a brief description on how to use the various scripts and
programs.
Contact: Natalio.Krasnogor@nottingham.ac.uk; dpelta@ugr.es
Supplementary information: The protein datasets used are
collected in http://www.cs.nott.ac.uk/∼nxk/USM/datasets.html.
The calculated similarity values for the proteins used in this
paper can be found in http://www.cs.nott.ac.uk/∼nxk/USM/
similar.html. The clustering of the dataset based on these sim-
ilarity values can be found in http://www.cs.nott.ac.uk/∼nxk/
USM/clustering.html

1 INTRODUCTION
Nowadays researchers who are interested in analysing and
understanding proteins’ sequences, structures and func-
tions have more than 30 genomes at their fingertips.1 The
comparison of proteins’ structures, and their clustering

∗To whom correspondence should be addressed.
1E.g. visit the NCBI site ftp://ncbi.nlm.nih.gov/genbank/genomes.

according to similarity, is a fundamental aspect of today’s
biomedical research.

The comparison of the three-dimensional structures of pro-
tein molecules is a challenging problem. The search for effect-
ive solution techniques for this problem, is justified because
such tools can aid scientists in the development of procedures
for drug design, in the identification of new types of pro-
tein architecture, in the organization of the known universe of
protein structures and can help to discover unexpected evolu-
tionary and functional inter-relations between proteins (Holm
and Sander, 1996; Koehl, 2001). There is yet another import-
ant role for measures of similarity and clustering algorithms:
the evaluation ofab-initio, threading or homology modeling
structure predictions. Hence, any advancement in structural
similarity measures will also impact on structure prediction
and its evaluation methodologies (Siewet al., 2000).

Agreement on which is the best similarity measure to use
is not forthcoming and a variety of structure comparison
methods have been used in classification servers, such as
SCOP (Murzinet al., 1995), DALI (Holm and Sander, 1993),
LGA (Zemla, 2000, http://PredictionCenter.llnl.gov/local/lga;
Zemlaet al., 1999), CATH (Orengoet al., 1997) and others.
Each method is usually based on a particular biological con-
ception of structural similarity and they generally use different
algorithmic strategies. Methodologies based on dynamic pro-
gramming (Taylor, 1999), comparisons of distance matrices
(Holm and Sander, 1993), maximal common sub-graph detec-
tion (Artimiuk et al., 1995), geometrical matching (Wuet al.,
1998), consensus shapes (Chew and Kedem, 2002) and struc-
tures (Leluket al., 2003) are but a few of the available tools
for structural comparison. Most of the existing methods impli-
citly accept that a suitable scoring function can be defined for
which optimum values correspond to the best possible struc-
tural match between two proteins. It is implicitly assumed that,
based on these optimal matches, similarity between protein
structures can be captured.

Approaches based on root-mean-square-distances (e.g.
Maiorov and Crippen, 1994; Cohen and Sternberg, 1980) and
differences of distance matrices (e.g. Holm and Sander, 1996)
sometimes present numerical instabilities; other algorithms
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cannot produce a proper ranking of protein similarities due
to an ambiguous definition of the measure. More recent
approaches that partially address the problems mentioned
above can be found in Lanciaet al.(2001), Zemlaet al.(1999)
and Hubard (1999).

A more recent approach for structural matching was intro-
duced in Goldmanet al. (1999) and extended in Lanciaet al.
(2001), Caprara and Lancia (2002), Carret al. (2002) and
Krasnogor (2003). This method is based on the maximum
alignment (also called overlap) of contact maps. The optimal
alignment of contact maps is the only structural matching
method for which exact upper and lower bounds can be
computed and compared (see references above). However, as
the problem of maximizing the overlap between two contact
maps was shown to be NP-hard (Goldman, 2000; Goldman
et al., 1999) and later (by a different reduction) in Krasnogor
(2002, http://www.cs.nott.ac.uk/∼nxk/papers.html) one is
still required to resort to approximate algorithms for its solu-
tion. Furthermore, the majority of the similarity measures
used by these systems are not ‘metrics’ in the formal sense
of the term.2 A good review of various similarity measures
(37 in total) can be found in May (1999). In this paper, we
introduce the reader to the ‘universal’ similarity metric, that
can be used to capture every other similarity metric for protein
structures. The problem of measuring and clustering together
similar protein structures can be decomposed, on the one hand,
in developing a similarity assessment methodology and, on
the other hand, developing a suitable clustering methodology.
In this paper we are only concerned with the first of the two
issues, while the clustering aspect will be addressed using a
widely available clustering tool-set with the sole purpose of
assessing the measure itself. However, the reader should note
that the appropriate clustering method is as important as the
appropriate measuring method (Koehl, 2001) and that there is
a vast literature related to cluster analysis [see, e.g. Gordon
(1999) and references therein]. We show here for the first time
how the so-called Universal Similarity Metric (USM in the
following section) can be used to compare protein structures.
The question of which is the clustering method that can better
take advantage of this USM is the object of a future paper.

1.1 The Universal Similarity Metric
The USM approximates every possible similarity metric (i.e.
those that exist today and those that are yet to be defined).
At the heart of the USM, which was introduced in Liet al.
(2001) and recently refined in Liet al.(2003), lies the concept
of Kolmogorov complexity. The Kolmogorov complexity
K(·) of an objecto is defined by the length of the shortest
program for a Universal Turing MachineU that is needed to

2 A metric is a non-negative symmetric binary function that satisfies the tri-
angle inequality and is zero only if the objects related by the function are one
and the same.

outputo, i.e.

K(o) = min{|P |, P a program andU(P ) = o}. (1)

It can be shown that the Kolmogorov complexity of an
object depends only on that object and varies at most up to
an additive constant if a different universal Turing machine is
chosen as the reference machine (Li and Vitanyi, 1997). The
Kolmogorov complexity is an objective measure of the amount
of information contained in a given object. A related measure
is the conditional Kolmogorov complexity ofo1 giveno2:

K(o1 | o2) = min{|P |, P a program andU(P ,o2) = o1}.
(2)

Equation (2) measures how much information is needed to
produce object 1 if we knew object 2.

Furnished with these concepts it is possible to show (Bennett
et al., 1998) that the information distance between two objects
is equivalent (up to a logarithmic additive term) to:

ID(o1,o2) = max{K(o1 | o2),K(o2 | o1)}. (3)

Definition 3 is none other than the Kolmogorov–Chaitin–
Solomonof complexity of describing objecto1 giveno2 and
describing objecto2 given o1. Moreover, it can be proved
(Bennettet al., 1998) that it is a proper metric. Various works
have used measures similar in spirit to the one that appears
in Equation (3). Recently Liet al. (2001) produced whole
mitochondrial sequence philogeny using a related concept
while in Bennettet al. (2003) the authors showed how to
infer chain letter evolutionary histories and how to detect
plagiarism in programming assignments by USM. In Varre
et al.(1998) the authors measured the transformation distance
between the genomes of two species by means of comparing
their conditional Kolmogorov complexities, and in Grumbach
and Tahi (1994) the compression ratio of sequences was used
to measure their similarity. Krasnogor (2002) independently
derived Equation (3) to measure the relatedness of different
runs of evolutionary computation simulations. One drawback
of some available measures (e.g. Varreet al., 1998; Grumbach
and Tahi, 1994) is that they are not metrics in the formal
sense. On the other hand, while the measure introduced in
Li et al. (2001) is a proper metric it is not a normalized one3

and hence some unjustified (dis)similarities may be detected.
The Universal Similarity Measure [as introduced in Liet al.
(2003)] is a proper metric, it is universal and also normalized.
The metric is formally defined as:

d(o1,o2) = max{K(o1 | o∗
2),K(o2 | o∗

1)}
max{K(o1),K(o2)} , (4)

whereo∗
1,2 indicates a shortest program foro1(or o2).

3 See Liet al. (2003) for details.
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The universality of the USM is paid by non-computability,
i.e. Kolmogorov complexity is non-computable but only upper
semi-computable. In Sections 2 and 3 we will show how to
approximate the Kolmogorov complexity of protein struc-
tures. To the authors best knowledge this is the first time this
universal metric has been applied to the measurement of pro-
tein structures similarity. For mathematical details and proofs
about the normalization, universality, etc. of this metric please
refer to Liet al. (2003).

2 SYSTEMS AND METHODS
In this paper, we apply the recently discovered ‘USM’ in order
to measure the similarity between pairs of protein structures.

All these inter-pair distances are then stored in a similarity
matrix. The matrix is then fed into an off-the-shelf clustering
methods with outstanding results.

The strength of the method lies not in the particular clus-
tering method or the choice of contact maps (see below) used
to represent the structures but rather in that the USM captures
all previous metrics. That is, all the similarity measures men-
tioned in the introductory section of this paper concentrate
in one or more aspects of the domain in questions (i.e. pro-
teins topological fingerprints) and build upon these features a
‘heuristic’ assessment of similarity. In contrast, USM is ‘uni-
versal’ in a mathematical sense, meaning that for any metric
and any pair of objects (i.e. protein structures in this paper),
within an additive constant, it will coincide with that metric
(whether heuristic or not) on those objects (Liet al., 2003).
That is, this new metric can be used as a robust measure of
similarity in domains where either, there is not enough model-
ling information, or there is no consensus on what aspects are
to be modelled. We used the following protocol to measure
similarity between protein structures:

(1) Choose a protein dataset (we used four different datasets
that are described in the text).

(2) Extract from each pdb file the first chain (if other than
chain ‘A’ is used from the pdb file this is shown in the
text as pdb accession number and a letter, e.g. 1babB).

(3) Produce a contact map for each of the pdb files in
the dataset (the contact maps we used have a distance
threshold of 6.5 Å and distances are measured from the
Cα atoms).

(4) For each pair of protein contact mapsc1, c2, compute
d(c1, c2) using Equation (4) to obtain the similarity
distance between them. Store all inter-distances in a
matrix.

(5) Use an off-the-shelf software to cluster together pro-
teins based on the inter-distances matrix (see text for
details).

In step one we employed four different datasets. The first
one was based on a family of randomly created protein

structures, while the remaining three were based on datasets
recently used in the literature for structure comparison
purposes.

Random dataset:This dataset contained 40 randomly gener-
ated protein structures. The generated set consisted of 500
residues structures to which either alpha-helix, beta-sheet or
alpha–beta content was assigned. This was done by randomly
allocating bands parallel (for alpha content) or perpendicu-
lar (for beta content) to the main diagonal of the associated
contact maps. Additionally, the random alpha and beta fam-
ilies were divided in three sub-families corresponding to low,
medium or high alpha or beta content. A fourth family of struc-
tures with no distinctive features (i.e. totally random) was also
present in the dataset. The dataset was thus composed of: ran-
dom alpha (R500A1_0, R500A1_1, R500A1_2, R500A1_3,
R500A1_4,. . . , R500A3_0, R500A3_1,. . . , R500A3_4),
random beta (R500B1_0, R500B1_1, R500B1_2, R500B1_3,
R500B1_4,. . . , R500B3_0, R500B3_1,. . . , R500B3_4), ran-
dom alpha–beta (R500AB2_0, R500AB2_1, R500AB2_2,
R500AB2_3, R500AB2_4) and random (R500_0, R500_1,
R500_2, R500_3, R500_4).4

Chew–Kedem dataset:This dataset was used in Chew and
Kedem (2002) to assess the quality of a newly proposed
method to measure consensus shapes. These are 36 medium
size proteins of 5 different families: globins (1eca, 5mbn,
1hlb, 1hlm, 1babA, 1babB, 1ithA, 1mba, 2hbg, 2lhb, 3sdhA,
1ash, 1flp, 1myt, 1lh2, 2vhbA, 2vhb), alpha–beta (1aa9, 1gnp,
6q21, 1ct9, 1qra, 5p21), tim–barrels (6xia, 2mnr, 1chr, 4enl),
all beta (1cd8, 1ci5, 1qa9, 1cdb, 1neu, 1qfo, 1hnf) and alpha
(1cnp,1jhg). Protein 2vhb was repeated two times (as 2vhb
and 2vhbA) in order to check whether the USM detects that
the two are identical and induces a cluster where both appear
together.

Skolnick dataset: This dataset was used in various
recent papers related to structural comparison of proteins
(Krasnogor, 2003; Caprara and Lancia, 2002; Carret al., 2002;
Lanciaet al., 2001). We selected here only 39 of these pro-
teins: 1b00A, 1dbwA, 1nat, 1ntr, 1qmpA, 1qmpB, 1qmpC,
1qmpD, 1rn1A, 1rn1B, 1rn1C, 4tmyA, 4tmyB, 3chy, 1bawA,
1byoB, 1kdi, 1nin, 1pla, 2b3iA, 2pcy, 2plt, 1amk, 1aw2A,
1b9bA, 1btmA, 1htiA, 1tmhA, 1treA, 1tri, 3ypiA, 8timA,
1ydvA, 1b71A, 1bcfA, 1dpsA, 1fha, 1ier, 1rcd.

Leluk–Konieczny–Roterman dataset:This is a small dataset
very recently employed in Leluket al.(2003) to test a new sim-
ilarity measure based on geometric parameters of polypeptide
chains: 1ovaA, 1att, 2achA, 2achA, 2achI, 2antL, 7apiA.

4 The nomenclature used is as follows: ‘R500’ stands for 500 residues struc-
tures, ‘A’, ‘B’, ‘AB’ stands for alpha, beta or alpha–beta random contents,
respectively. The numbers ‘1’, ‘2’, ‘3’ after the ‘A’, ‘B’, ‘AB’ stands for low,
medium, high content of the associated features, while ‘_0’, ‘_1’, etc. is an
indication of the particular random instance.
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The pdb files for the proteins in these datasets contain mis-
cellaneous information that is not related to our studies. For
example, fields like ‘Author’ or ‘Remarks’ lines are irrelev-
ant for our purposes and if given to the USM engine then it
would also be included in the calculations of similarity pro-
ducing perhaps a clustering based on authorship rather than
on topology. There are other, more subtle reasons why we
should pre-filter the pdb entries before computing the uni-
versal similarity distances for our datasets (e.g. the atoms’
spatial coordinate system might be very different between
protein pairs). In order to alleviate this we decided to map
the information in the pdb file to a contact map (step three in
the protocol) and use the contact maps as the objects for which
similarities will be computed. The contact map of each protein
captures topological information about the structure and hence
any non-essential information is left out of the USM engine.

The fourth step of the protocol, i.e. the actual calculations
of the similarity between pairs of proteins, is at the core of
this paper and is described in detail in the ‘Implementation’
section.

We use an off-the-shelf clustering method (step five in the
protocol) to visually inspect the resulting distance matrices
of datasets analysed. We run the clustering server located
in http://www2.biology.ualberta.ca/jbrzusto/cluster.php. The
web-server executes a combinatorial hierarchical clustering
process that begins with each structure in a cluster of its own.
When more than one cluster exist then they are combined in
a pairwise fashion, i.e. the two closest clusters are combined
into a new cluster. Then an inter-cluster distance is calculated
between the new cluster and the pre-existing ones. The inter-
cluster distance was calculated as the unweighted arithmetic
average distance (i.e. USM distance) between a protein struc-
ture in one cluster and a protein structure in a second cluster.

3 IMPLEMENTATION
The fourth step in the protocol described in the previous sec-
tion necessitates the implementation of Equation (4) which is
in fact semi-upper computable. In order to use this universal
measurement of similarity we need to find suitable estimators
for the Kolmogorov complexity of the contact maps. In this
paper we followed the methodology used in Liet al. (2003)
and Cilibrasiet al.(2003, http://arxiv.org/archive/cs/0303025)
to estimateK(·). Each contact map is represented as a strings

andK(s) is approximated by the size (i.e. number of bytes) of
the compressed string zip(s), i.e. K(s) ≈ |zip(s)|. In Li and
Vitanyi (1997) the authors show that algorithmic information
is symmetric, hence we can also approximateK(o1 | o2) by
K(o1 · o2) − K(o2) where ‘·’ denotes string concatenation
andK(·) is estimated as mentioned above. The compression
algorithm used was Linux’s ‘compress’ version 4.2.4. Other
compression algorithms, e.g. gzip and bzip2, were also tested
without significant improvements to the similarity metric and,
in the case of the bzip2 compressor with considerable running

time slowdown (≈10 times). We computed the similarities for
every pair of proteins in the four datasets using the method-
ology described above. This step of the protocol isO(n2)

wheren is the number of protein structures to be assessed
(assuming the inter-distance matrix is built from scratch each
time). In terms of wall-clock time, using a Pentium 2.4 GHz
with 512 Mb of RAM and 40 Gb of disk space, each of the
datasets analysed here took around 18 s to approximateK(o)

and 700 s to approximateK(o1 | o2).
As an initial assessment of the practicality of our approach

we computed the USM values for the Random dataset. The
results are depicted in Figure 1. A visual inspection of the
clustering obtained shows that the proposed measure (upon
which the clustering was obtained) correctly captures the
structural features (i.e. alpha, beta, alpha–beta, totally random
content) that are present in the dataset. It is possible to see
that the random instances are classified into four groups, i.e.
all the random proteins with alpha, beta and alpha–beta fea-
tures appear in their own cluster while the totally random
proteins are collected on a fourth cluster. If we focus our
attention within each of the family clusters we can also note
that USM is sensible enough to detect differences between
random instances with low, medium and strong content of
the associated features. As an example of this, consider the
cluster representing the structures with random alpha-helix
content where it is possible to see that the more helical
instances (e.g. R500A3_0, R500A3_1, R500A3_2) are sub-
clustered together as are those instances with medium and
low helical content. A similar situation occurs in the beta
cluster. We repeated similar random experiments with pro-
teins in the range of 300, 400 and 600 residues with similar
results.

The USM values were also computed for the Chew–
Kedem, Skolnick and Leluk–Konieczny–Roterman data-
sets and these matrices are available in our web-site
http://www.cs.nott.ac.uk/∼nxk/USM/similar.html. In order to
test the validity of the USM as a suitable measurement of pro-
tein structural similarity we show in Figure 2 the clustering
obtained for the Chew–Kedem dataset.

As it can be seen, even a very simple clustering techniques
can make good use of the USM. The approach, which requires
very little human intervention, was able to distinguish between
the four groups of proteins (i.e. globins, tim–barrels, alpha–
beta, all beta) and cluster these accordingly.5 Figure 2 is an
almost perfect clustering of the Chew–Kedem proteins. All
the alpha–beta, tim–barrel and globins proteins are adequately
clustered. Protein 1hnf is clustered with the globins but in a
separate branch of the tree. The reason for this is that this
protein is a mainly beta protein (it is marked with a * in the
figure) but belongs to the immunoglobulin type of proteins.
It is surprising that the USM can detect this sort of affinity

5 The length of the tree branches are not proportional to the distances but
rather were set for better visualization in a reduced space.
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Fig. 1. Clustering of randomly generated families of contact maps according to the Universal Similarity Measure. In the picture, only three
out of five random instances for each family are displayed in order to avoid cluttering the graphical representation.
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Fig. 2. Clustering of proteins from the Chew–Kedem dataset according to the Universal Similarity Measure.
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Fig. 3. Equivalent residues for proteins 1ash and 1hlm found by
a genetic algorithm under the MAX-CMO model. Red edges are
contacts between residues along the protein sequence while blue
lines denote equivalent residues across structures.

without human intervention. There are only two (out of 36)
proteins that seems to be misplaced, these are 1jhg and 1cnp.
They were clustered with the beta proteins when they are actu-
ally almost all alpha type of proteins. A closer inspection of
their contact maps reveals that, although they mainly con-
tain alpha-helix features, they do possess turns and, to a lesser
degree, beta-sheet content. These turns and weak beta features
seems to affect the clustering result. An a posteriori max-
imum contact map overlap (as suggested in the next section)
supports this interpretation for their mis-classification. The
distance tables and clustering figures for the other two datasets
are not shown here (due to space limitations) but are access-
ible through our web site. Similar results were found with the
remaining datasets.

4 DISCUSSION
In previous sections we gave mathematical and experimental
evidence that USM can be used to successfully assess pro-
tein structures similarity. The USM seems to be capable of
capturing protein similarities that encompass a variety of
other, more heuristic, criteria in a fully automated way. It
seems that the USM is so robust that even with a rough
guess of parameters it is still possible to deliver good res-
ults. One disadvantage of using USM on its own is that,
although it can differentiate between protein families and
sub-families and measure similarity based on a rigorous math-
ematical definition, it does not give indications of where these
(di)similarities come from. This drawback can be mitigated
by using a two-tier protocol for similarity assessment whereby
USM quickly and reliably captures the similarity among pro-
tein structures and a maximum contact map overlap obtains
a residue equivalence between proteins deemed dissimilar by

USM. The computation of the USM was based on a contact
map representation not only because contact maps are well
suited for capturing topological information but also because
they can be used (a posteriori) to obtain residue alignments
for the proteins in question. Figure 3 shows (some of) the
equivalent residues for proteins 1ash and 1hlm which were
classified as similar proteins by USM.

Several research issues merit further investigation: Which
is the best type of contact map that should be used in conjunc-
tion with USM? What representation is more suitable for the
compression algorithm? Which is the best clustering method?
Perhaps more importantly, data mining the dictionary that is
created during compression of the contact maps could aid in
the discovery of unsuspected relationships between protein
structures. All these issues are being investigated.
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