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ABSTRACT

Motivation: As an increasing number of protein structures
become available, the need for algorithms that can quantify
the similarity between protein structures increases as well.
Thus, the comparison of proteins’ structures, and their cluster-
ing accordingly to a given similarity measure, is at the core of
today's biomedical research. In this paper, we show how an
algorithmic information theory inspired Universal Similarity
Metric (USM) can be used to calculate similarities between
protein pairs. The method, besides being theoretically suppor-
ted, is surprisingly simple to implement and computationally
efficient.

Results: Structural similarity between proteins in four different
datasets was measured using the USM. The sample employed
represented alpha, beta, alpha—beta, tim—barrel, globins and
serpine protein types. The use of the proposed metric allows
for a correct measurement of similarity and classification of the
proteins in the four datasets.

Availability: All the scripts and programs used for the prepar-
ation of this paper are available at http://www.cs.nott.ac.uk/
~nxk/USM/protocol.html. In that web-page the reader will find
a brief description on how to use the various scripts and
programs.

Contact: Natalio.Krasnogor@nottingham.ac.uk; dpelta@ugr.es
Supplementary information: The protein datasets used are
collected in http://www.cs.nott.ac.uk/~nxk/USM/datasets.html.
The calculated similarity values for the proteins used in this
paper can be found in http://www.cs.nott.ac.uk/~nxk/USM/
similar.html. The clustering of the dataset based on these sim-
ilarity values can be found in http://www.cs.nott.ac.uk/~nxk/
USM/clustering.html

1 INTRODUCTION

Nowadays researchers who are interested in analysing aridral match between two proteins. Itisimplicitly assumed that,
understanding proteins’ sequences, structures and funbased on these optimal matches, similarity between protein

tions have more than 30 genomes at their fingettig$he
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according to similarity, is a fundamental aspect of today’s
biomedical research.

The comparison of the three-dimensional structures of pro-
tein moleculesis a challenging problem. The search for effect-
ive solution techniques for this problem, is justified because
such tools can aid scientists in the development of procedure
for drug design, in the identification of new types of pro-
tein architecture, in the organization of the known universe of
protein structures and can help to discover unexpected evolu-©
tionary and functional inter-relations between proteins (Holm
and Sander, 1996; Koehl, 2001). There is yet another import- 5
ant role for measures of similarity and clustering algorithms:
the evaluation ofb-initio, threading or homology modeling
structure predictions. Hence, any advancement in structural
similarity measures will also impact on structure prediction
and its evaluation methodologies (Siewal.,, 2000).

Agreement on which is the best similarity measure to use g
is not forthcoming and a variety of structure comparison
methods have been used in classification servers, such a$
SCOP (Murziret al,, 1995), DALI (Holm and Sander, 1993),
LGA (Zemla, 2000, http://PredictionCenter.linl.gov/local/lga;
Zemlaet al,, 1999), CATH (Orenget al., 1997) and others.
Each method is usually based on a particular biological con-
ception of structural similarity and they generally use different
algorithmic strategies. Methodologies based on dynamic pro-
gramming (Taylor, 1999), comparisons of distance matrices &
(Holm and Sander, 1993), maximal common sub-graph detec-©
tion (Artimiuk et al,, 1995), geometrical matching (Wt al.,
1998), consensus shapes (Chew and Kedem, 2002) and stru
tures (Leluket al, 2003) are but a few of the available tools
for structural comparison. Most of the existing methods impli-
citly accept that a suitable scoring function can be defined for >
which optimum values correspond to the best possible struc- S
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structures can be captured.

comparison of proteins’ structures, and their clustering Approaches based on root-mean-square-distances (e.gsS

*To whom correspondence should be addressed.
1E.g. visit the NCBI site ftp://ncbi.nim.nih.gov/genbank/genomes.

Maiorov and Crippen, 1994; Cohen and Sternberg, 1980) and™
differences of distance matrices (e.g. Holm and Sander, 1996)
sometimes present numerical instabilities; other algorithms
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cannot produce a proper ranking of protein similarities dueoutputo, i.e.
to an ambiguous definition of the measure. More recent _
approaches that partially address the problems mentioned K (o) = min{|P|, P aprogram and/(P) =o}. (1)

above can be found in Lanaéal.(2001), Zemlat al.(1999) ) g
and Hubard (1999). It can be shown that the Kolmogorov complexity of an 35

A more recent approach for structural matching was intro-2PJect depends only on that object and varies at most up to?
duced in Goldmaet al.(1999) and extended in Lanai al an additive constant if a different universal Turing machine is &

(2001), Caprara and Lancia (2002), Catral. (2002) and chosen as the reference machine (Li and Vitanyi, 1997). The3

. . . 3
Krasnogor (2003). This method is based on the maximun%(qlmogorqvcomple?aty|§ an ot')Jecuve.measure of the amount =
alignment (also called overlap) of contact maps. The optima?f information contained in a given object. A related measure g

alignment of contact maps is the only structural matchingS the conditional Kolmogorov complexity of giveno: §
method for which exact upper and lower bounds can be =
computed and compared (see references above). However, ag . 3
L = min{|P|, P a program and/(P, = 01}. o

the problem of maximizing the overlap between two contact (01]02) Pl prog (P,02) 01}(2) e
maps was shown to be NP-hard (Goldman, 2000; Goldman ] ) o g
et al, 1999) and later (by a different reduction) in Krasnogor Eduation (2) measures how much information is needed tog
o

ol

(2002, http://www.cs.nott.ac.ukhxk/papers.html) one is Produce object1ifwe knew object2. >
still required to resort to approximate algorithms for its solu- Furnishedwith these conceptsitis possible to show (Bennett;,
tion. Furthermore, the majority of the similarity measures®t al, 1998) that the information distance between two objects 3

used by these systems are not ‘metrics’ in the formal sensé €auivalent (up to a logarithmic additive term) to:

of the term? A good review of various similarity measures

(37 in total) can be found in May (1999). In this paper, we ID(01,02) = max{K (01] 02), K (02] 01)}- ()
introduce the reader to the ‘universal’ similarity metric, that Definition 3 is none other than the Kolmogorov—Chaitin—
can be used to capture every other similarity metric for proteing 51omonof complexity of describing objeet given o, and
structures. The problem of measuring and clustering terthEHescribing objecb, given o1. Moreover, it can be proved
similar protein structures can be decomposed, on the one han@ennettet al, 1998) that it is a proper metric. Various works
in developing a similarity assessment methodology and, o}aye ysed measures similar in spirit to the one that appear
the other hand, developing a suitable clustering methodology, Equation (3). Recently Lét al. (2001) produced whole

In this paper we are only concerned with the first of the twoiiochondrial sequence philogeny using a related concep
issues, while the clustering aspect will be addressed using\@nile in Bennettet al. (2003) the authors showed how to
widely available clustering tool-set with the sole purpose Ofinfer chain letter evolutionary histories and how to detect

assessing the measure itself. However, the reader should n Rgiarism in programming assignments by USM. In Varre

appropriate measuring method (Koehl, 2001) and that there i§gyeen the genomes of two species by means of comparing’
a vast literature related to cluster analysis [see, .9. GOrdofeir conditional Kolmogorov complexities, and in Grumbach 3
(1999) and references therein]. We show here for the first img 4 Tapj (1994) the compression ratio of sequences was used
how the so-called Universal Similarity Metric (USM in the {4 measure their similarity. Krasnogor (2002) independently =
following section) can be used to compare protein structuregyerived Equation (3) to measure the relatedness of diﬁerentg-

The question of which is the clustering method that can betteg s of evolutionary computation simulations. One drawback &
take advantage of this USM is the object of a future paper. ot some available measures (e.g. Varal, 1998; Grumbach

. T . and Tahi, 1994) is that they are not metrics in the formal
11 TheUniversal Similarity Metric sense. On the z)ther hand, )\//vhile the measure introduced i
The USM approximates every possible similarity metric (i.e.Lj et al. (2001) is a proper metric it is not a normalized &ne
those that exist today and those that are yet to be defineddnd hence some unjustified (dis)similarities may be detected
At the heart of the USM, which was introduced inéfial. ~ The Universal Similarity Measure [as introduced ineltial.

(2001) and recently refined in et al.(2003), lies the concept  (2003)] is a proper metric, it is universal and also normalized.
of Kolmogorov complexity. The Kolmogorov complexity The metric is formally defined as:

K (-) of an objecto is defined by the length of the shortest
program for a Universal Turing Machirié that is needed to
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max{K (01| 03), K (02| 07)}
max{K (01), K (02)}

: 4

d(01,02) =
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— - — - — ~whereo? , indicates a shortest program fai(or 07).
2 A metric is a non-negative symmetric binary function that satisfies the tri- 12 prog foy( 2)

angle inequality and is zero only if the objects related by the function are one
and the same. 3 See Liet al.(2003) for details.
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The universality of the USM is paid by nhon-computability, structures, while the remaining three were based on datasets
i.e. Kolmogorov complexity is non-computable but only upperrecently used in the literature for structure comparison
semi-computable. In Sections 2 and 3 we will show how topurposes.

approximate the Kolmogorov complexity of protein Stuc- gangom datasefrhis dataset contained 40 randomly gener-
tures. To the authors best knowledge this is the first time thigeq protein structures. The generated set consisted of 500
universal metric has been applied to the measurement of proagjques structures to which either alpha-helix, beta-sheet or
tein structures similarity. For mathematical details and prOOf%lpha—beta content was assigned. This was done by randomlyc;t
about the normalization, universality, etc. of this metric pleaseallocating bands parallel (for alpha content) or perpendicu- 3
refer to Liet al. (2003). lar (for beta content) to the main diagonal of the associated§

contact maps. Additionally, the random alpha and beta fam-
2 SYSTEMS AND METHODS ilies were divided in three sub-families corresponding to low,

In this paper, we apply the recently discovered ‘USM'’ in ordermedium or high alpha or beta content. Afourth family of struc-
to measure the similarity between pairs of protein structuresiures with no distinctive features (i.e. totally random) was also
All these inter-pair distances are then stored in a similarityPresentin the dataset. The dataset was thus composed of: ra
matrix. The matrix is then fed into an off-the-shelf clustering dom alpha (R500A1_0, R500A1_1, R500A1_2, R500A1_3,
methods with outstanding results. R500A1_4,..,R500A3_0, R500A3_1,.,R500A3 4),
The strength of the method lies not in the particular clusY@ndom beta (R500B1_0, R500B1_1, R500B1_2, R500B1_3,

tering method or the choice of contact maps (see below) uségd>00B1_4, .., R500B3_0, R500B3_1, ., R500B3_4), ran-

to represent the structures but rather in that the USM capturétom alpha—beta (R500AB2_0, R500AB2_1, R500AB2_2,
all previous metrics. That is, all the similarity measures menfR500AB2_3, RS00AB2_4) and random (R500_0, R500_1,
tioned in the introductory section of this paper concentratdR500_2, R500_3, R500_4).

in one or more aspects of the domain in questions (i.e. prochew—Kedem dataseThis dataset was used in Chew and
teins topological fingerprints) and build upon these features &edem (2002) to assess the quality of a newly proposed
‘heuristic’ assessment of similarity. In contrast, USM is ‘uni- method to measure consensus shapes. These are 36 mediu
versal’ in a mathematical sense, meaning that for any metrigize proteins of 5 different families: globins (1eca, 5mbn,
and any pair of objects (i.e. protein structures in this paper)1hlb, 1him, 1babA, 1babB, 1ithA, 1mba, 2hbg, 2lhb, 3sdhA,
within an additive constant, it will coincide with that metric 1ash, 1flp, 1myt, 11h2, 2vhbA, 2vhb), alpha—beta (1aa9, 1gnp,
(whether heuristic or not) on those objects dtial, 2003). 6921, 1ct9, 1qra, 5p21), tim—barrels (6xia, 2mnr, 1chr, 4enl), &
That is, this new metric can be used as a robust measure afl beta (1cd8, 1ci5, 1ga9, 1cdb, 1neu, 1gfo, 1hnf) and alphaS
similarity in domains where either, there is not enough model{1cnp,1jhg). Protein 2vhb was repeated two times (as 2vhb 3
ling information, or there is no consensus on what aspects atgnd 2vhbA) in order to check whether the USM detects that &
to be modelled. We used the following protocol to measurehe two are identical and induces a cluster where both appear"g‘)L

umoq
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similarity between protein structures: together.
(1) Choose aprotein dataset (we used four different datase®k0Inick - dataset: This dataset was used in various
that are described in the text). recent papers related to structural comparison of proteins

(Krasnogor, 2003; Caprara and Lancia, 2002; €tat., 2002;

o , - . Lanciaet al,, 2001). We selected here only 39 of these pro-
;:ha;m Agjsbused frqm the pr flleéh|$| |?tshown TbthbeB eins: 1b00A, 1dbwA, 1nat, 1ntr, 1gmpA, 1gmpB, 1gmpC,
ext as pdb accession humber and a letier, €.9. ] a ~1gmpD, 1rnl1A, 1rn1B, 1rn1C, 4tmyA, 4tmyB, 3chy, 1bawA,

(3) Produce a contact map for each of the pdb files impyoB, 1kdi, 1nin, 1pla, 2b3iA, 2pcy, 2plt, lamk, law2A,

the dataset (the contact maps we used have a distang@gopA, 1btmA, 1htiA, 1tmhA, 1treA, 1tri, 3ypiA, 8timA,
threshold of 6.5 A and distances are measured from theydvA, 1b71A, 1bcfA, 1dpsA, 1fha, lier, 1rcd.

C, atoms).

(2) Extract from each pdb file the first chain (if other than

) ) Leluk—Konieczny—Roterman datas€his is a small dataset

(4) For each pair of protein contact mapscz, COmMpute  yery recently employed in Lelubt al.(2003) to test a new sim-
d(c1,¢2) using Equation (4) to obtain the similarity jarity measure based on geometric parameters of polypeptide
distance between them. Store all inter-distances in @pains: 1ovaA. 1att. 2achA. 2achA. 2achl. 2antl 7apiA.
matrix.

(5) Use an off-the-shelf software to cluster together pro-
teins based on the inter-distances matrix (see text 'Ok The nomenclature used is as follows: “R500' stands for 500 residues struc-

220Z JaquiaAoON O UO Jasn Seiousld) Se| ap BLOISIH - BpeuRlS) ap

details). tures, ‘A, ‘B', ‘AB’ stands for alpha, beta or alpha—beta random contents,

. . respectively. The numbers ‘1’, ‘2, ‘3’ after the ‘A, ‘B’, ‘AB’ stands for low,
In step one we employed four different datasets. The firsfyedium, high content of the associated features, while *_0', *_1', etc. is an

one was based on a family of randomly created proteinindication of the particular random instance.
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The pdb files for the proteins in these datasets contain migime slowdown €10 times). We computed the similarities for
cellaneous information that is not related to our studies. Foevery pair of proteins in the four datasets using the method-
example, fields like ‘Author’ or ‘Remarks’ lines are irrelev- ology described above. This step of the protocobi&:?) -
ant for our purposes and if given to the USM engine then itwheren is the number of protein structures to be assessed2
would also be included in the calculations of similarity pro- (assuming the inter-distance matrix is built from scratch eachz
ducing perhaps a clustering based on authorship rather thdaime). In terms of wall-clock time, using a Pentium 2.4 GHz
on topology. There are other, more subtle reasons why weith 512 Mb of RAM and 40 Gb of disk space, each of the
should pre-filter the pdb entries before computing the uni-datasets analysed here took around 18 s to approxikh@te
versal similarity distances for our datasets (e.g. the atomsand 700 s to approximat€ (o | 02).
spatial coordinate system might be very different between As an initial assessment of the practicality of our approach 2
protein pairs). In order to alleviate this we decided to mapwe computed the USM values for the Random dataset. The%
the information in the pdb file to a contact map (step three irresults are depicted in Figure 1. A visual inspection of the £ 8
the protocol) and use the contact maps as the objects for whiatiustering obtained shows that the proposed measure (upoé
similarities will be computed. The contact map of each proteinwhich the clustering was obtained) correctly captures the2
captures topological information about the structure and hencgtructural features (i.e. alpha, beta, alpha—beta, totally randorm
any non-essential information is left out of the USM engine. content) that are present in the dataset. It is possible to see

The fourth step of the protocaol, i.e. the actual calculationshat the random instances are classified into four groups, i.e&
of the similarity between pairs of proteins, is at the core ofall the random proteins with alpha, beta and alpha—beta fea=
this paper and is described in detail in the ‘Implementation’tures appear in their own cluster while the totally random
section. proteins are collected on a fourth cluster. If we focus our

We use an off-the-shelf clustering method (step five in theattention within each of the family clusters we can also note 2
protocol) to visually inspect the resulting distance matricegshat USM is sensible enough to detect differences between%
of datasets analysed. We run the clustering server locate@ndom instances with low, medium and strong content of 3
in http://www2.biology.ualberta.ca/jbrzusto/cluster.php. Thethe associated features. As an example of this, consider the!
web-server executes a combinatorial hierarchical clusteringluster representing the structures with random alpha- hel|x_\
process that begins with each structure in a cluster of its owrcontent where it is possible to see that the more hel|caI§
When more than one cluster exist then they are combined imstances (e.g. R500A3_0, R500A3_1, R500A3_2) are sub-&
a pairwise fashion, i.e. the two closest clusters are combinedustered together as are those instances with medium an@
into a new cluster. Then an inter-cluster distance is calculatebw helical content. A similar situation occurs in the beta <
between the new cluster and the pre-existing ones. The intecluster. We repeated similar random experiments with pro-
cluster distance was calculated as the unweighted arithmetteins in the range of 300, 400 and 600 residues with S|m|lar
average distance (i.e. USM distance) between a protein strucesults.
ture in one cluster and a protein structure in a second cluster. The USM values were also computed for the Chew-— o

Kedem, Skolnick and Leluk-Konieczny—Roterman data- o

sets and these matrices are available in our web-site3
3 IMPLEMENTATION http://www.cs.nott.ac.ukfnxk/USM/similar.html. In order to
The fourth step in the protocol described in the previous sectest the validity of the USM as a suitable measurement of pro-
tion necessitates the implementation of Equation (4) which igein structural similarity we show in Figure 2 the clustering
in fact semi-upper computable. In order to use this universabbtained for the Chew—Kedem dataset.
measurement of similarity we need to find suitable estimators As it can be seen, even a very simple clustering techniquesﬁ
for the Kolmogorov complexity of the contact maps. In this can make good use of the USM. The approach, which requires?
paper we followed the methodology used indtial. (2003)  very little human intervention, was able to distinguish between 3 o
and Cilibrasetal.(2003, http://arxiv.org/archive/cs/0303025) the four groups of proteins (i.e. globins, tim—barrels, alpha— 2.
to estimateX (-). Each contact map is represented as a siring beta, all beta) and cluster these accordifghigure 2 is an
andK (s) is approximated by the size (i.e. number of bytes) ofalmost perfect clustering of the Chew—Kedem proteins. All
the compressed string Zip), i.e. K(s) ~ |zip(s)|. InLiand the alpha—beta, tim—barrel and globins proteins are adequatelg
Vitanyi (1997) the authors show that algorithmic information clustered. Protein 1hnf is clustered with the globins but in a =
is symmetric, hence we can also approxim&t@; |o2) by  separate branch of the tree. The reason for this is that thiss
K (01 - 02) — K(02) where " denotes string concatenation protein is a mainly beta protein (it is marked i * in the
andK (-) is estimated as mentioned above. The compressiofigure) but belongs to the immunoglobulin type of proteins.
algorithm used was Linux’s ‘compress’ version 4.2.4. Otherlt is surprising that the USM can detect this sort of affinity
compression algorithms, e.g. gzip and bzip2, were also tested
without significantimprovements to the similarity metric and, 5 the length of the tree branches are not proportional to the distances but
in the case of the bzip2 compressor with considerable runningather were set for better visualization in a reduced space.
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R500A1_1
R500A3_0
_R500A1_2 -
R500A1_0 R500A3_2
R500A3_1
R500A2_1
= | R500A2_0
R500A2_2

Alpha content random contact maps

Beta content random contact maps

R500AB2_0

R500AB2_2
R500AB2_1 Alpha-Beta content random contact maps

R500_0

R500_2
R500_1 Totally random contact maps

Fig. 1. Clustering of randomly generated families of contact maps according to the Universal Similarity Measure. In the picture, only tl

out of five random instances for each family are displayed in order to avoid cluttering the graphical representation.

* Beta

+ Alpha 1neu * 2vhbA ~
~ Globins

# Tim—Barrel 1cd8 * 2vhb ~
" Alpha—Beta

— 1chr #

laa9 "
2mnr #
L Jct9 ° igra *
5p21 "

1gnp "

6021 "

Fig. 2. Clustering of proteins from the Chew—Kedem dataset according to the Universal Similarity Measure.
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D USM. The computation of the USM was based on a contact
/ map representation not only because contact maps are well
4 =S - suited for capturing topological information but also because
they can be used (a posteriori) to obtain residue alignments2
for the proteins in question. Figure 3 shows (some of) the 2
equivalent residues for proteins lash and 1him which were§
classified as similar proteins by USM.

Several research issues merit further investigation: Which§
is the best type of contact map that should be used in conjunc=
tion with USM? What representation is more suitable for the 15
compression algorithm? Which is the best clustering method?g’
Perhaps more importantly, data mining the dictionary that is &
created during compression of the contact maps could aid ing-
N the discovery of unsuspected relationships between proteirg

S~ structures. All these issues are being investigated. IS

1 p

Fig. 3. Equivalent residues for proteins lash and 1him found byACKNOWLEDEGEMENTS
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