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Abstract. As a result of the use of OLAP technology in new fields of 
knowledge and the merge of data from different sources, it has become 
necessary for models to support this technology. In this paper, we propose a 
new multidimensional model that can manage imprecision both in dimensions 
and facts. Consequently, the multidimensional structure is able to model data 
imprecision resulting from the integration of data from different sources or even 
information from experts, which it does by means of fuzzy logic. 

1 Introduction 

Ever since the appearance of the OLAP technology ([5]), there have been various 
proposals to support its special needs, and in particular, two different approaches have 
been documented. The first of these extends the relational model to support the 
structures and operations which are typical of OLAP, and the first proposal of such a 
type can be found in [9]. Since then, there have been other proposals (e.g. [10]), and 
most of the present relational systems include extensions to represent datacubes and 
operate on them. The second approach is to develop new models using a 
multidimensional view of the data. Many authors have proposed models in this way 
([1, 3, 4, 12]).  

In the early 70s, the need for flexible models and query languages to manage the 
ill-defined nature of information in DSS was identified ([8]). Nowadays, the 
application of the OLAP technology to other knowledge fields (e.g. medical data) and 
the use of semi-structured sources (e.g. XML) and non-structured sources (e.g. plain 
text) has made these requirements on the models even more important. The systems 
now need to manage imprecision in the data, and more flexible structures are needed 
to represent the analysis domain. New models have appeared to manage incomplete 
datacubes ([7]), imprecision in the facts ([11]), and the definition of facts using 



 

 

different levels in the dimensions ([13]). In addition, these models continue to use 
rigid hierarchies and this makes it extremely difficult for certain domains to be 
modelled.  Consequently, this could result in the loss of information when we need to 
merge data from different sources with incompatibilities in their schemata. 

In this paper, we propose a new multidimensional model which is able to handle 
imprecision in hierarchies and facts by using fuzzy logic. The use of fuzzy hierarchies 
enables the structures of the dimensions to be defined to the final user more 
intuitively, thereby allowing a more intuitive use of the system. Furthermore, this 
allows information to be merged from different sources with incompatibilities in their 
structures, or even information given by experts to be used in order to improve the 
multidimensional schema. In the next section, we shall introduce classical 
multidimensional models as an introduction to presenting our approach. Then, in the 
third section we shall include an example of the structure proposed to show how to 
apply the operations on the multidimensional structure. The final section presents the 
main conclusions and future work 

2 Multidimensional Model 

In this section, we shall present our proposed multidimensional model.  Firstly, we 
shall introduce what we have called the classical models (these being the first 
documented models). Secondly, we shall define the multidimensional structure for 
managing imprecision. We shall then include the basic operations on the 
multidimensional models (roll-up, drill-down, dice, slice and pivot), and show how 
these are applied on the fuzzy structure. 

2.1 Classical Multidimensional Models 

In classical multidimensional models, we can distinguish two different types of 
data: on one hand, we have the facts being analysed, and on the other, the dimensions 
are the context for the facts. Hierarchies may be defined in the dimensions. The 
different levels of the dimensions allow us to access the facts at different levels of 
granularity. In order to do so, classical aggregation operators are needed (maximum, 
minimum, average, etc). 

The defined hierarchies use many-to-one relations, so one element in a level can 
only be grouped by a single value of each upper level in the hierarchy. This makes the 
final structure of a datacube rigid and well defined in the sense that given two values 
of the same level in a dimension, the set of facts relating to these values have empty 
intersection. 

The normal operations (roll-up, drill-down, dice, slice and pivot) are defined on 
this structure. 



 

 

2.2 Multidimensional  Structure 

Definition 1. A dimension is a tuple d=(l,≤d,l┴,l┬)  where l={li, i=1,…,n} such that 
each li is a set of values and li∩lj=Ø if i≠j, and ≤d is a partial order relation between 
the elements of l. l┴ and l┬ are two elements in l such that lli ∈∀  id ll ≤⊥ and 

Τ≤ ll di . 
Each element li is called a level. In order to identify level l of dimension d, we shall 

use d.l. The two special levels l┴ and l┬ shall be called the base level and top level, 
respectively. The partial order relation in a dimension gives the hierarchical relation 
between the levels. 

Fig. 1. Example of an age hierarchy 
 
In Figure 1, you can see a definition of an age hierarchy. The definition of the 

dimension as we have presented it would be Age = ({Age, Group, legal age, All},≤Age, 
Age, All), and the relation Age ≤Age Age, Group ≤Age Group, Legal age ≤Age Legal age, 
All ≤Age All, Age ≤Age Group, Age ≤Age Legal age, Age ≤Age All, Group ≤Age All and 
Legal age  ≤Age All. 

  
Definition 2. For each dimension d, the domain is dom(d)=U il . 

In the above example, the domain of the dimension Age is dom(Age)={1,…,100, 
Young, Adult, Old, Yes, No, All}. 

 
Definition 3. For each li, the set 

}/{ idkdjkidjijjl lllllllllH
i

≤≤¬∃∧≤∧≠= , (1) 

and we call this the set of children of level li. 
Using the same example of the dimension on the ages, the set of children of the 

level All is HAll={Group, Legal age}. In all the dimensions we define, for the base 
level, this set will be always the empty set, as you can see from the definition. 

 
Definition 4. For each li, the set 

}/{ jdkdikjdijijl lllllllllP
i

≤≤¬∃∧≤∧≠=  , (2) 

and we call this the set of parents of level li. 
On the hierarchy we have defined, the set of parents of level Age is PAge={Legal 

age, Group}. In the case of the top level of a dimension, this set will always be the 
empty set. 

 

All = { All } = l┬ 

Group = {Young, Adult, Old } 

Age = {1,…,100} = l┴ 

Legal age = {Yes, No} 



 

 

Definition 5. For each pair of levels li and lj such that 
ilj Hl ∈ , we have the relation 

[ ]1,0: →× jiij llµ , and we call this the kinship relation. 
The degree of inclusion of the elements of a level in the elements of their parent 

levels can be defined using this relation. If we only use the values 0 and 1 and one 
element is only included with degree 1 for a single element of its parent levels, this 
relation represents a crisp hierarchy. Following the example, the relation between the 
levels Legal age and Age is of this type. The parent relation in this situation is 
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If we relax these conditions and allow values to be used in the interval [0,1] without 
any other limitation, we have a fuzzy hierarchical relation. This allows several 
hierarchical relations to be represented more intuitively. An example can be seen in 
Figure 2 where we present the group of ages according to linguistic labels. 
Furthermore, this fuzzy relation allows hierarchies to be defined in which there is 
imprecision in the relationship between elements in different levels. In this situation, 
the value in the interval shows the degree of confidence in the relation. 
 
Definition 6. For each pair of levels li y lj of the dimension d such 
that ijidj llll ≠∧≤ , the relation [ ]1,0: →× jiij llη  is defined as 
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where ⊕ y ⊗ are a t-conorm and a t-norm, respectively, or operators from the families 
MOM or MAM defined by Yager ([15]), which include the t-conorms and t-norms, 
respectively. This relation is called the extended kinship relation. 

This relation gives us information about the degree of relation between two values 
in different levels in the same dimension. In order to obtain this value, it considers all 
the possible paths between the elements in the hierarchy. Each one is calculated by 
aggregating the kinship relation between elements in two consecutive levels using a t-
norm. The final value is then the aggregation of the result of each path using a t-
conorm. By way of example, we will show how to calculate the value of ηAll, 

Age(All,25). In this situation, we have two different paths. Let us look at each: 

 
Fig. 2. Kinship relation between levels Group and Age 

1 100
20 35 55 70

Young Adult Old



 

 

 
Fig. 3. Example of the calculation of the extended kinship relation. a) path All – Legal age – 
Age b) path All – Group – Age 

 
• All – Legal age – Age. In Figure 3.a, you can see the two ways to 

get to 25 from All passing the level legal age. The result of this path 
is (1⊗ 1)⊕ (1⊗ 0). 

• All – Group – Age. This situation is very similar to the previous one. 
In Figure 3.b, you can see the three different paths going through 
the level Group. The result of this path is (1⊗ 0.7)⊕ (1⊗ 0.3)⊕ (1⊗ 
0). 

We must now aggregate these two values using a t-conorm in order to obtain the 
result. If we use the maximum as the t-conorm and the minimum as the t-norm, the 
result is ((1⊗1)⊕ (1⊗ 0)) ⊕ ((1⊗ 0.7)⊕ (1⊗ 0.3)⊕ (1⊗ 0)) =(1⊕ 0)⊕ (0.7⊕ 0.3⊕ 0) 
=1⊕ 0.7 = 1 , so the value of ηAll,Age(All,25) is 1, which means that the age 25 is 
grouped by All in the level All with grade 1. 
 
Definition 7. We say that any pair (h,α) is a fact when h is an m-tuple on the 
attributes domain we want to analyze, and α∈[0,1]. 

The management of uncertainty in the facts is carried out using a degree of 
certainty with each one. This degree of certainty allows us to use values in analysis 
that might be interesting to the decisor but which imply imprecision. The value α of 
each pair controls the influence of the fact in the analysis. 

 
Definition 8. An object of type history is the recursive structure 
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where Ω is the recursivity clause, F is the fact set, lb is a set of levels (l1b,…,lnb), A is 
an application from lb to F, G is an aggregation operator, and H’ is a structure of type 
history. 

The role of this structure will be clear after the operations have been defined in the 
next section. 
 
Definition 9. A datacube is a tuple C=(D,lb,F,A,H) such that D=(d1,…,dn) is a set of 
dimensions, lb=(l1b,…,lnb) is a set of levels such that lib belongs to di,  F = RUØ where 
R is the set of facts and Ø is a special symbol, H is an object of type history, and A is 



 

 

an application defined as FllA nbb →×× ...: 1 , giving the relation between the 
dimensions and the facts defined. 

If for ),...,( 1 naaa =
r

, =)(aA
r

Ø, this means that no fact is defined for this 
combination of values. 

 
Definition 10. We say that a datacube is basic if ),...,( 1 ⊥⊥= nb lll  and H= Ω. 

Having defined the structure, we shall now show how to translate a 
multidimensional schema into our model. An example of a multidimensional model is 
shown in Figure 4. In this schema, we want to analyze the sales in a company. The 
broken lines represent the fuzzy relation between the levels, i.e. the relations take 
values in the entire interval [0,1]. It is possible to see how three dimensions are 
considered: Time, Product and Customer. This schema translated into our model 
corresponds to Csales=({customer, product, time}, {(price, amount)}UØ,A,Ω). In order 
to complete the definition, we need the dimension structures: Customer = ({Age, 
Legal Age, Group, All}, ≤Customer, Age, All), Product = ({Product, Category, Provider, 
Quality, All}, ≤Product, Product, All), Time = ({Date, Month, Holiday, All},≤Time, Date, 
All) and the application A that gives the relation between the dimensions and the facts: 
A: Age x Product x Date →  {(price, amount)}UØ . 

2.3 Operations 

Once we have defined the multidimensional structure, we need the basic operations 
to work with it. In this section, we shall define the operations to change the level in 
the hierarchies (roll-up and drill-down) as well as the selection (dice), projection 
(slice) and pivot. First, two preliminary concepts are needed. 

 
Definition 11.  An aggregation operator is a function G(B) where 

}),/(),{( FhhB ∈= αα  and the result is a tuple (h’, α’). 
The parameter of an aggregation operator can be seen as a fuzzy bag ([6]) since it 

concerns a collection of elements (the facts) which can be repeated, with each having 
a value in the [0,1] interval (the α defined in the tuples). 

 
Definition 12. For each value a in a level li, we have the set 
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This set includes all the facts that are in any way related to value a, and this is all we 
need to introduce the operations and to apply them on the fuzzy multidimensional 
structure proposed. 



 

 

Fig. 4. Example of multidimensional schema 
 
Definition 13. The result of applying roll-up on dimension di, level lr (lr≠l┴), using 
the aggregation operator G on a datacube C=(D,lb,F,A,H) is another datacube 
C’=(D,l’b,F’,A’,H’) where l’b=(l1b,…,lr,…,lnb), 

)}),(),...,,...,(),/()),(,({(),...,,...,(' 11 ααηα bacaAFbcabGaaaA narbn =∧∈⊗= , F’ is 
the range of A’, and H’=(A, lb, F, G, H). 

 
Definition 14. The result of applying drill-down on a datacube C=(D,lb,F,A,H) 
having H=(A’,l’b,F’.H’) is another datacube C’=(D,l’b,F’,A’,H’). 

After the definition of the drill-down operation, we can see the role of the structure 
history inside our proposal. This recursive structure enables us to return at any time to 
the previous state before the roll-up was applied. Consequently, loss of information is 
prevented as you progress up the hierarchy. 

 
Definition 15. The result of applying dice with the condition β on level lr of 
dimension di in a datacube C=(D,lb,F,A,H) is another datacube C’=(D’,l’b,F’,A’, Ω) 
where D’={d1,…,d’i,…,dn} where di’=(li’, ≤di,lb,lT) having l’={lj/lb≤dilj} and 
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Definition 16. The result of applying slice on dimension di using the aggregation 
operator G in a datacube C=(D,lb,F,A,H) is another datacube C’=(D’,lb’,F’,A’, Ω) 
where D’=(d1,…,di-1,di+1,…,dn), lb’=(lib,…,li-1b,li+1b,…,lnb), 

)}),(),...,,,,...,(/),({(),...,,,...,(' 111111 αα haaxaaxAhGaaaaA niinii =∃= +−+− , and F’ is the 
range of A’. 

 
Definition 17. The result of applying pivot on dimensions di and dj in a datacube 
C=(D,lb,F,A,H) is another datacube C’=(D’,lb’,F,A’,Ω) where D’=(d1,…,di-1 
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,dj,di+1,…,dj-1,di,dj+1,…,dn), lb’=( l1b,…,li-1b,ljb,li+1b,…,lj-1b,lib,lj+1b,…,lnb), and 
),...,,,,...,,,,...,(),...,,,,...,,,,...,(' 1111111111 njijijinjjjiii aaaaaaaaAaaaaaaaaA +−+−+−+− = . 

Although we now have the operations to work with the structure proposed, this 
structure can represent objects that are not suitable for the operations defined above. 
We must therefore say when a datacube is valid to work with it. 
 
Definition 18. A datacube is valid if it is basic or has been obtained by applying a 
finite number of operations on a basic datacube. 

2.4 User View 

We have presented a structure that manages imprecision by means of fuzzy logic. 
We need to use aggregation operators on fuzzy bags in order to apply some of the 
operations presented. Most of the methods previously documented give a fuzzy set as 
a result. As this situation can make the result difficult to understand and use in a 
decision process, we propose a two-layer model: one of the layers is the structure 
presented in the previous section; and the other is defined on this, and its main 
objective is to hide the complexity of the model and provide the user with a more 
understandable result. In order to do so, we propose the use of a fuzzy summary 
operator that gives a more intuitive result but which keeps as much information as 
possible. Using this type of operator, we shall define the user view. 

 
Definition 19. Given a summary operator M, we define the user view of a datacube 
C=(D,lb,F,A,H) using M as the structure CM=(D,lb,FM,AM) where 
AM(a1,…,an)=M(A(a1,…,an)) and FM is the range of AM. 

We can define as many user views of a datacube as the number of summary 
operators used. Therefore, each user can have their own user view with the most 
intuitive view of data according to their preferences by using a datacube. As an 
example of this type of operator, we can use the one proposed in [2]. This operator 
proposes the use of the fuzzy number that best fits, in the sense of fuzziness, the fuzzy 
set or fuzzy bag. 

3 Example 

Once we have defined the fuzzy structure and the operations on it, we shall present 
an example of a simple multidimensional schema in order to show the application of 
operations on it. This example will be modelled using the classical multidimensional 
or crisp model to show the differences between both approaches. We will use the 
schema in Figure 4.  

In the fuzzy case, the dimension Customer is the fuzzy hierarchy on ages which we 
have used previously. The remaining elements in both the fuzzy and the crisp case are 
shown in Figure 5, with the exception of the partial order relations which are clear in 
the schema. Here we see the first differences between both approaches when we 
model the levels group and holiday. In the crisp case, these concepts are modelled 



 

 

using intervals on the ages and dates, respectively. In our approach, we use linguistic 
labels. The facts used in the example and their relation with the values in the 
dimension are shown in Table 1. If the user wants to know “the average amount of 
sales at Christmas for the different age groups and the quality of the provider”, the 
sequence of operations to apply is: 
1.    dice on the dimension time, in the level holiday with the condition β(x)=“x is 

Christmas“. 
2. roll-up in the dimension time and level holiday, dimension product and level 

quality and dimension customer and level group, using the aggregation operator 
average on the amount. 

 

 
Fig. 5. Dimension structures for the multidimensional schema 

In order to apply the roll-up operation, we need the average aggregation operator. 
Although we can use the classical operator in the crisp case, in the fuzzy model we 
need an operator that works with fuzzy bags. In the example, we have used the 
operators proposed by Rundensteiner ([14]) for a fuzzy relational model. The 
adaptation of these operators to our approach is simple: if R is an aggregation operator 
defined by Rundensteiner, the operator GR for our approach is defined as 
GR(h)=(R(h),1). 

We need another operator to show the results in the fuzzy case. We have used the 
linguistic summary ([2]) as the summary operator. The results in both approaches are 
shown in the Tables 2-4. When analyzing the results, we need to bear in mind the 
differences between both approaches. Therefore, when the user gets the result in the 
crisp case, for example for the group young, the results correspond to the query “the 
average amount of sales in the interval [22-dic,6-jan] by the customer with ages in 
the interval [0,25] and the quality of the provider”. In the fuzzy case, the user gets a 
result which is closer to his/her concept of Christmas and youth. 



 

 

If we want to refine the results in order to obtain “the maximum average amounts 
sold by age groups”, we need to apply slice on the dimensions Products and Time, 
using the maximum aggregation operator. The result is shown in Table 5. 

The results obtained in each case are different. This occurs because the values 
involved in each calculation and their importance are different in both approaches. In 
the crisp case, all the values inside the intervals have the same weight in the 
aggregation process. In the fuzzy model, on the other hand, the values at the edges of 
the concepts do not have the same importance as the values in the kernel in the final 
result. We can also see the role of the user view in the fuzzy model. The 
multidimensional structure proposed is based on fuzzy logic and the results shown to 
the user are fuzzy sets which are difficult to understand. The user view helps to 
interpret the results, showing the information obtained in a more expressive and 
understandable way to the user (using a fuzzy number and the associated linguistic 
expression in each case). 

Table 1. Data in the datacube example 
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1 milk 23-dec 19 10 1 1 13 bread 6-jan 17 3 2 1 
2 meat 7-jan 40 18 3 1 14 meat 22-dec 65 6 3 1 
3 bread 10-jan 45 1 5 1 15 cheese 2-jan 52 10 2 1 
4 juice 28-dec 75 2 2 1 16 bread 27-dec 66 5 2 1 
5 cheese 3-jan 20 5 1 1 17 cheese 04-jan 70 5 3 1 
6 milk 10-jan 20 1 5 1 18 bread 24-dec 60 3 6 1 
7 bread 25-dec 22 3 1 1 19 bread 10-jan 65 4 4 1 
8 bread 1-jan 55 5 2 1 20 milk 03-jan 64 5 2 1 
9 juice 28-dec 23 4 3 1 21 cheese 10-jan 15 5 5 1 
10 bread 6-jan 75 6 4 1 22 cheese 28-dec 40 3 5 1 
11 milk 23-dec 78 3 3 1 23 bread 02-jan 65 4 5 1 
12 meat 29-dec 40 18 2 1 24 milk 26-dec 23 5 5 1 

4 Conclusions 

In this paper, we have presented a new multidimensional model. The main 
contribution of this new model is that it is able to operate on data with imprecise facts 
and hierarchies. Classical models impose a rigid structure that makes it difficult for 
information from different sources to be merged if there are incompatibilities in the 
schemata. Our model can handle these problems by means of fuzzy logic which 
allows our proposal to carry out the integration, relaxing the schemata in order to 
obtain a new one that covers the others and attempting to preserve as much 
information as possible. In addition, our model can manage information given by 
experts which is often imprecise. This data can be used to improve the 
multidimensional schema so that it may be used by the final user in the decision 
process. Another advantage is that it can model situations to users more naturally so 
that they can access the information more intuitively. 



 

 

Table 2. Result of applying dice on the dimension Time, on the level Holiday with the 
condition β(x)=“x is Christmas“ over C. In the fuzzy case, the value shown is the new α of the 
fact. In the crisp case, X means that this fact satisfies the condition. 

Fact 1 2 3 4 5 6 7 8 9 10 11 12 
Fuzzy 1 0.9 0.6 1 1 0.6 1 1 1 1 1 1 
Crisp X - - X X - X X X X X X 
Fact 13 14 15 16 17 18 19 20 21 22 23 24 

Fuzzy 1 1 1 1 1 1 0.6 1 0.6 1 1 1 
Crisp X X X X X - X X - X X X 

 Table 3. Result of applying roll-up in the dimension Time on the level Holidays, dimension 
Product and level Quality and dimension Customer and level Group in the datacube C’ in the 
fuzzy case. Time dimension is not shown due to the fact that there is only one value  

 Product 
 Good Medium Bad 

Customer C’’ C’’M C’’ C’’M C’’ C’’M 

Young 
{1/1 0.6/3, 
0.4/3.67, 

0.2/3.33},1 

(1,1,0,1.5) 
“greater 
than 1” 

{1/1, 0.6/3, 
0.3/2.88},1 

(1,1,0,1.45) 
“greater than 

1” 

{1/2, 
0.6/1.5, 

0.2/2.4},1 

(2,2,0.5,0.39) 
“around 2” 

Adult 

{1/2, 
0.9/2.5, 
0.6/3.4, 

0.5/3.33, 
0.2/3.3},1 

(2,2,0,1.19) 
“greater 
than 2” 

{1/3.5, 
0.6/3.33, 

0.3/3.44},1 

(3.5,3.5,0.17,0) 
“a bit less than 

3.5” 

{1/2, 0.8/4, 
0.5/3.8, 

0.4/3.33, 
0.2/3.3},1 

(2,2,0,1.6) 
“grater than 

2” 

Old 
{1/3, 

0.5/2.67, 
0.2/2.6},1 

(3,3,0.4,0) 
“a bit less 

than 3” 

{1/2, 
0.8/2.5, 

0.3/3.22},1 

(2,2,0,1.22) 
“greater than 

2” 

{1/4, 0.6/3, 
0.5/3.75, 
0.3/4.2, 

0.2/3.71},1 

(4,4,0.29, 
0.19) 

“around 4” 

Table 4. Result of applying roll-up in the dimension Time on the level Holiday, dimension 
Product and level Quality and dimension Customer and level Group in the datacube C’ in the 
crisp case  

 Product 
Customer (Age group) Good Medium Bad 

Young 3 2 1.5 
Adult 2 3.5 4 
Old 3 2.5 3.7 

Table 5. Result of applying slice on the dimensions Product and Time in the datacube C’’  

 Fuzzy Crisp 
Customer C’’’ C’’’M Fact 

Young {1/2, 0.6/1.5, 0.2/2.4, 0.6/3, 0.3/2.88, 
0.4/3.67, 0.2/3.33},1 

(2,2,0.5,1.3) 
“around 2” 3 

Adult {1/3.5, 0.8/4, 0.6/3.8, 0.6/3.33, 0.3/3.44, 
0.5/3.67},1 

(3.5,3.5,0.17,0.5) 
“around 3.5” 4 

Old {1/4, 0.6/3, 0.5/3.75, 0.3/4.2, 0.2/3.71, 
0.3/3.22},1 

(4,4,0.99,0.2) 
“around 4” 3,7 

 
In order to complete the model, we need to study the properties of the operations 

on the structure. Another line is to develop a graphical means of representing the 
results of the operations so that the information obtained may be read more 



 

 

intuitively. To finish the decision process, we need to study the integration process so 
as to obtain a formal way to merge data from different sources, including experts´ 
knowledge. 
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