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Abstract

This paper presents an approximate algorithm to obtain a posteriori intervals of
probability, when available information is also given with intervals. The algorithm uses
probability trees as a means of representing and computing with the convex sets of
probabilities associated to the intervals. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Bayesian networks are graphical structures which are used to represent joint
probability distributions efficiently. The network structure encodes the inde-
pendence relations among the variables. A variety of different tasks can be
performed on Bayesian networks. One of the most common is the computation
of posterior marginals given that the value of some of the variables is known.
This task is called probability propagation. In this way, Bayesian networks are a
powerful tool for building probabilistic Expert systems.

One of the main problems faced when building Bayesian networks is the in-
troduction of a large number of initial exact probabilities. It can be very difficult
for experts to give such a number of precise probabilities. Very often, an expert is
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more comfortable giving an interval of probability rather than a precise proba-

bility. Even if we use a learning algorithm to obtain probabilities, we may only

have small samples for certain configurations of variables in a distribution.

Therefore, it may also be more appropriate to estimate some kind of imprecise

probabilities in this case. For an expert, one of the most natural ways of giving

imprecise probabilities is by means of an interval of probabilities.

In general, the use of imprecise probability models is useful in many situ-
ations. We can highlight the following situations [56]:

e When we have little information to evaluate probabilities [52,53,55].

e When available information is not specific enough. For example, when we
take out balls from an urn with 10 balls, where five are red and five are white
or black (but we do not know the exact number of each one) [21,31,42].

¢ In robust Bayesian inference, to model uncertainty about a prior distribu-
tion [3,22].

e To model the conflict between several sources of information [35,51].
There are various mathematical models for imprecise probability [52,56,57]:

comparative probability orderings [25,26], possibility measures [23,61], fuzzy
measures [28,47,58], belief functions [42,46], Choquet capacities [16,30], inter-
val probabilities [6,59,60], coherent lower previsions [52,57], convex sets of
probabilities [7,15,52,57], sets of desirable gambles [52,57]. Out of all these
models, we think that convex sets of probabilities are the most suitable for
calculating with and representing imprecise probabilities. We think that be-
cause there is a specific interpretation of numeric values [52,54], they are
powerful enough to represent the result of basic operations within the model
without having to make approximations that cause loss of information, as in
interval probabilities [50]. Convex sets are a more general tool for representing
unknown probabilities than intervals: there is always a convex set associated
with a system of probabilistic intervals, but given a convex set there is not
always a proper representation by using intervals. However, interval proba-
bilities are the most natural way in which imprecise probabilities are present in
practice. In this paper, therefore, we will assume that initial probability dis-
tributions are given with interval probabilities, but computations are carried
out by considering their associated convex sets.

Some authors have considered the propagation of probabilistic intervals in
graphical structures [1,24,48,49]. However in the procedures proposed, there is
no guarantee that the calculated intervals are always the same as those ob-
tained by using a global computation. In general, it can be said that calculated
bounds are wider than exact ones. The problem is that exact bounds need a
computation with the associated convex sets of probabilities. This is the ap-
proach followed by Cano et al. [15]. In this paper, they assume that there is a
convex set of conditional probabilities for each configuration of parent vari-
ables in the dependence graph. They raise the problem of calculating imprecise
probabilities as a problem of propagation with convex sets of probability
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distributions. They give a model to compute such probabilities using local
computations. However, working with convex sets may be very inefficient: if we
have n variables and each variable, X;, has a convex set with 4; extreme points
as conditional information, the propagation of the convex set is of the order
O(K TT., h:), where K is the complexity of carrying out a simple probabilistic
propagation. This is so, because convex sets propagation is equivalent to the
propagation of all the global probabilities that can be obtained by choosing an
exact conditional probability in each of the convex sets.

Another solution to the problem of propagating the convex sets associated
to the intervals, is by using an approximate algorithm using combinatorial
optimization techniques such as simulated annealing [9,10], genetic algorithms
[11], and gradient techniques [18,19].

Probability trees [13,41] can be used to represent probability potentials. In
[13], the authors have used probability trees to propagate probabilities effi-
ciently in Bayesian networks using a join tree when resources (memory and
time) are limited. These algorithms always obtain a result, but when resources
are low then results are approximated. Depending on the available time (or
memory), the results will have a greater or smaller error.

In this paper, we propose the use of probability trees to represent the convex
sets associated to the intervals. Probability trees are then used with a propa-
gation algorithm to calculate an a posteriori convex set for a given variable of
interest. From this a posteriori convex set, we can obtain probability intervals
for each case of this variable.

This paper is divided into six sections. In Section 2 we describe the problem
of the propagation of probabilities in Bayesian networks and how it can be
solved by using the variable elimination algorithm [20,34,62]. Section 3 studies
the use of probability trees to represent potentials compactly and how they can
represent context specific independences; we also study how to build and op-
erate with probability trees. In Section 4 we present basic notions about convex
sets of probabilities and their relationships with probability intervals. Section 5
shows how to use probability trees in an approximate method of propagation
with convex sets, a technique to eliminate non-extreme points in the a poste-
riori convex sets and a method to limit the error of the previous approximate
method. Section 6 describes the experiments we have carried out in order to
prove the approximate algorithm. Finally, Section 7 presents the conclusions
and future lines of research.

2. Probability propagation in Bayesian networks
A Bayesian network is a directed acyclic graph where each node represents a

random variable, and the topology of the graph shows the independence relations
between variables (see Fig. 1), according to the d-separation criterion [36].
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Fig. 1. A directed acyclic graph.

Let X = {X),...,X,} be the set of variables in the network. Let us assume
that each variable X; takes values on a finite set U;. For any set U, |U| repre-
sents the number of elements it contains. If 7is a set of indices, we will write X;
for the set {X;|i € I}. N ={l,...,n} will denote the set of indices of all the
variables in the network; thus, Xy = X. The Cartesian product [[._, U; will be
denoted by U;. Given x € U; and J C I, x; will denote the element of U; ob-
tained from x dropping the coordinates which are not in J. Following Shenoy
and Shafer’s [43,44] general terminology, a mapping from a set U; on [0,1] will
be called a valuation defined on U;. In the probabilistic case, valuations are
known as potentials. Suppose V is the set of all our initial valuations (condi-
tional distributions and observations), and s(4) denotes the set of indices of
variables for which / is defined. Given two valuations, /; and 4,, defined on U;
and U/, then the combination of 4, and %, will be a valuation /#; ® ki, defined on
U;u; by means of pointwise multiplication:

hy @ ha(u) =y ()b (u), (1)

where u! is the element obtained from u by dropping the coordinates which are
not in 1.

If 4 is a valuation defined on U; and J C I, then the marginalization of / in
J, h’ is calculated by addition:

WY (u) =" h(v). 2)

vl =u

If F(i) are the parents of X; in the graph, then we have a conditional
probability represented by a valuation, p;, defined on U r; and such that
|F(i) . . . A
pi " = hy, where hy is the identity mapping.
Given the independences encoded by the graph and a probability distribu-
tion p; for each node conditioned on its parents, then there is a unique joint

probability given by:
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= [ pGxilxrey)  ¥x € Uy. 3)
ieN
An observation is the knowledge about the exact value X; = ¢; of a variable.
The set of observations will be denoted by e, and called the evidence set. E will
be the set of indices of the variables observed. Every observation, X; = ¢;, is
represented by means of a valuation which is a Dirac function defined on U, as
Oi(xise) =1 if e, = x;, x; € U;, and 9;(x;;¢;) = 0 if e; # x;.
The aim of probability propagation is to calculate the a posteriori proba-
bility function p(x}|e), for every x; € Uy, where k € {1,...,n} — E.
If we have an evidence set e, then global conditional probability verifies that

p(xle) Z (Hp, (x| H5 (xi; e ) (4)

Xp= ejce

In fact, we have the following equality:

plx,Ne) = Z (Hp, (xXilxF @) H5 Xi;e;) > (5)

xkfx ejce

The vector of values (p(x} Ne)|x, € Uy) will be denoted as Ry.

Propagation algorithms calculate the a posteriori probability functions
p(x;|e) for each variable X; by making a local computation. The variable
elimination algorithm is one of the most popular algorithms to obtain a pos-
teriori information using local computations. This algorithm was indepen-
dently proposed by Shafer and Shenoy [43,44], Zhang and Poole [62] and
Dechter [20]. The algorithm is as follows:

Algorithm 1 (Variables elimination).
Input: A variable X; and a set of valuations V'
Output: An a posteriori valuation R;
1. Repeat the following step until all j # k are deleted:
Let je{l,...,n}, j#k Consider J={heV:jes(h)} and
L =s(®J) —{j}. Then V'is transformed into

v —su{(@meh)} (6)
2. Then, R, = @hlh € V.

3. Probability trees

A probability distribution has traditionally been represented as a table,
using a vector of real numbers. This representation is exponential in the
number of parameters (number of variables in the distribution).



6 A. Cano, S. Moral | Internat. J. Approx. Reason. 29 (2002) 1-46

Definition 1 (Probability tree). A probability tree 7 [5,8,13,27,32,37,41,45,62]
for a set of variables X; is a directed labeled tree, where each internal node
represents a variable X; € X; and each leaf node represents a real number » € R.
Each internal node will have as many outgoing arcs as possible values as the

variable it represents has. We define the size of a tree by the number of leaves it
has.

A probability tree can be used to represent a probability distribution, or in
general any valuation for the set of variables X;. For example, the probability
tree in Fig. 2 represents the conditional distribution of such a figure.

A probability tree 7 on variables X; represents the valuation 4 : U; — R if
for each x; € U; the value /(x;) is the number stored in the leaf node that is
obtained starting at the root node and selecting for each inner node labeled
with X; the child corresponding to coordinate x;. The valuation represented by
tree 7 will be denoted by %5 (x;).

Probability trees are particularly useful when there are regularities in
probability distributions. These regularities can be used to make a compact
representation of distributions. Regularities in distributions generate asym-
metric independences also known as context-specific independences.

Definition 2 (Context-specific independence [5]). Let Xi be a set of variables. A
context on Xy is an assignment of one value to each variable in Xk, that is to
say a configuration xg of variables in Xx. Two contexts are incompatible if there
is a variable that has been assigned different values in the contexts. Otherwise
they are compatible.

Let X;, X;, X; and Xx be four disjoint sets of variables. X; and X are in-
dependent given X; in context Xy = xg, noted as I.(X;; X;| X ; Xx = xx), if

P()(I‘XLanzXK = xK) = P()(I‘XLaXK ZXK)

X1 X2 X3| P(X1 X2 X3) X,

111 [ 3

112 |5

121 | 4

122 4 X X
211 |7 3 !
212 | 5 / \ /\
221 | 6

222 |6 X 6

/T

Fig. 2. A conditional probability distribution and an associated probability tree.
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whenever P(X;, X, Xx = xx) > 0. When X} is empty, it can be said that X; and
X, are independent in context Xx = xi.

As an example, in Fig. 2 we can see that 7.(X;; X;|X; = 2) but it is not true
that 7.(X;; X;3]X> = 1). Probability trees exploit these independences making the
size of the representation more compact.

If 7 is a probability tree representing a valuation h on the set of variables
X;, the set of variables that label inner nodes in 7 will be denoted Var(7).
This set must obey Var(7) C X;.

Definition 3 (Restricted tree). Given a probability tree 7, representing a val-
uation /4 on the set of variables X;, a set of variables X; C X;, and a configu-
ration x, € U;, 7% =) denotes the restriction of 7 to the values of x; of the
variables in X}, i.e. the tree obtained by substituting in .7~ every node corre-
sponding to variables X;, k € J by subtrees .7, children of X} corresponding to
)(k = Xk-

For example, if 7 is the tree in Fig. 2, then 7%= is the probability tree
shown in Fig. 3.

Each node of the tree, and in particular its leaves, is characterized by a
configuration of values X; = x;, where J C [. The variables in X, are the
variables in the path from the root to the node and the values of the
variables correspond to the branches we have to follow in order to arrive at
the node.

3.1. Constructing probability trees
Cano and Moral [8] present a methodology to build a probability tree

from a probability table. This methodology is used to represent conditional
distribution of probabilities using trees, but it can be used to represent any

/\
/\

Fig. 3. A restricted probability tree 7X%1=1 being .7 the tree in Fig. 2.
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valuation, in particular a convex set of probabilities. Cano and Moral [8] also
propose a way of approximating potentials with limited size.

Given a potential ¢ over a set of variables X;, the goal is to get an associated
tree, 7 4, for ¢. If the size of the tree is greater than a given maximum, we shall
try to get the best approximation to ¢ by means of a tree  with a size lower
than that maximum. The approximation should contain the same normaliza-
tion factor, ie. > ., T (x) = > oy, P(x).

Let p> and p, be the proportional probability distributions to 4~ and ¢,
respectively, then the distance from the tree 7 to a potential ¢ is measured by
Kullback—Leibler’s cross-entropy [33] of ps and py:

D(6.7) = Dlpsups) =+ 3 polo) log 2247 )

xreUsy (XI)

Proposition 1 [8]. Let ¢ be a potential over a set of variables X;, and J C 1. If a
tree T is such that every leaf 7= contains the value > @)/ Ur- ], then
I minimizes the cross-entropy between any tree with the same normalization
factor and the same structure ' as 7 and ¢.

According to this proposition, given any structure .7 °, the best approx-
imation to a potential ¢ with that structure is achieved by putting in
each leaf the average of the values of ¢ for the configurations of the vari-
ables leading to that leaf. The problem is that, in general, the construction
of an optimal structure 7 * is a combinatorial problem, which is difficult to
solve.

The Cano and Moral methodology [8] to build a probability tree is based on
the methods for inducing classification rules from examples. One of these
methods is Quinlan’s ID3 algorithm [38], that builds a decision tree from a set
of examples.

The process of constructing a tree consists of choosing, given a tree J with
structure 7 *, the branch to be expanded and the variable to be placed in the
new node. Thls selection is made in such a way that the distance to the po-
tential is minimized. If a leaf node in .7 " is defined by the values X; = x, the
structure obtained from 7" by expanding the leaf defined by X; = x with the
variable X; is denoted by 7 "(X; = x,X;), and the corresponding tree by
T (X; = x,X;). At each moment, both the branch and the variable are selected
in order to minimize the distance to ¢, i.e.

I 'we say that two trees 7| and 7, have the same structure, 7 *, if they contain the same inner
nodes and differ, at most, in the numbers placed in the leaves.
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D(7 (X; = x,X,), ¢) = min{D(7 (X =x", Xp), )}, (8)
where X, =x' isaleafof 7  and k' €I —J'.
The following proposition [8] shows an easy way of computing that mini-
mum.

Proposition 2. The pair (X; = x,X;) minimizing expression (8) is the one which
maximizes the measure of information

Inf(XJ = X,Xk|¢)) = SXJ:X . (log |Uk‘ — lOgSXJ:X) — E[XA|XJ = x], (9)

where

SXJ:X = Z ¢(Z)

Zj=x
EXGLX, =x] = = % (X, = x)log ¢ (4, =),
yeUx
PO =x) =D (x).
zj=x

zy=y

The measure of information Inf(X; = x, X;|¢) gives the distance from a tree
J to a potential ¢ before and after expanding the branch X; = x with variable
Xi. The proposition above means that we must select branches leading to
configurations with high probability, and variables with small entropy. The
reason is that by expanding in this way, we shall obtain leaves with different
and important probability values. This is very intuitive, since we are interested
in representing only different values; very similar values can be represented by
just one, corresponding to their average.

With this, one procedure to construct an exact tree is to select nodes max-
imizing function Inf. The procedure would finish when, for every branch
X; = x, the values of ¢ are uniform, i.e. ¢(y) = ¢()/) for all y,y’ € U; such that
vy =y, = x. The idea therefore is to include nodes until no new information is
provided by adding new nodes.

Cano and Moral [8] propose different alternatives for constructing an ap-
proximate tree. One of the alternatives consists in adding nodes until an exact
representation is obtained or a maximum number of nodes is reached.

Another option is to construct the entire tree and bound it afterwards. If 7~
is such a tree, a bounding consists of selecting a node such that all its children
are leaves and replacing it and its children by one node containing the average
of the values of the leaf nodes being removed. We have two ways of performing
a bounding:

1. Remove nodes while a maximum is exceeded. The selection of a node will be
determined by that pair (X; =x,X;) minimizing the measure
Inf(X; = x, X;|¢$), i.e. the pair minimizing the increment of the distance to
potential ¢.
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2. Remove nodes determined by pairs (X; = x,X;) such that

Inf(X; = x, X;|¢) < 4, (10)

where 4 is a threshold for the increment of the distance. The bounding would
finish when there are no more pairs verifying condition (10).

3.2. Operations with probability trees

Propagation algorithms require three operations over potentials: restriction,
combination and marginalization. In this section we describe the algorithms
proposed by Cano and Moral [12] for performing these operations. Kozlov and
Koller [32] and Salmerdn et al. [13] also provide procedures to carry out the
basic operations on trees, but they take the structure on one of the trees as a
basis and start branching it according to the structure of the other tree. Here
the structures of both trees will be mixed. This is more appropriate if we carry
out an approximate computation.

The Restriction operation is trivial, and it has been already described in
Definition 3. We shall therefore concentrate on combination and marginaliza-
tion:

Given two trees .7 | and 7, associated to potentials ¢, and ¢,, respectively,
the following algorithm computes a tree associated to ¢ = ¢, - ¢, (combina-
tion).

Algorithm 2 (COMBINE(J 1,9 »)).
1. Start with an empty list .Z..
2. Create a tree node 7, initially with no label.
3. Select a variable X; € Var(7 ) UVar(7,).
4. Insert node {{J{,7,},7,,X;} into list Z..
5. While &, is not empty,
(a) Removeanode {{7;, 7 ;}, 7 ,, X} from £ and make X, the label of 7
(b) For each x € Uy,
i. Create a tree node 7, initially with no label and make it a child of 7,..
ii. Let L; and L; be the labels of the root nodes of .7 fR %= and ff(X“x).
iii. If L; and L; are numbers, let L = L; - L;. Make L the label of T,,.
iv. Otherwise,
A. Select a variable X; € Var 7 R=) UVar(TR(X“x)).
B. Insert node {{7 F%= Xk*x T 1, X;} into list Z...
6. Return 7,.

We will denote the combination of trees by the symbol ®. With this, the
algorithm above returns a tree 7, =97 | ® 7 ,.

Given a tree J associated to a potentlal ¢ defined over a set of variables X,
the following algorithm computes a tree associated with ¢'Y~}) with i € I.
That is to say, it removes variable X; from 7.
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Algorithm 3 (MARGINALIZE(T , X;)).
1. Let L be the label of the root node of 7
2. If Lis a number,
(a) Create a node 7, with label L - |Uj|.
3. Otherwise, let X, = L.
(a) If X; = X, then 7, = ADD_CHILD(T, X)).
(b) Otherwise,
i. Create a node .7, with label L.
ii. For each x € Uk
A. Make ), = MARGINALIZE (T **~=9 X.) the next child of 7~
4. Return 7,.

This algorithm uses procedure ADD_CHILD(Z,X;), which replaces node
X;, by the addition of the subtrees that are children of X;. X; must be the root of
7 . The procedure is as follows:

Algorithm 4 (ADD_CHILD(7, Xy)).
1. Start with an empty list &,,.
2. Create a tree node 7, initially without label.
3. Let Ly,...,L; be the labels of the roots of Z®X=x) 7 RIG=x) " \jith
7= Ukl
4.1f Ly,...,L; are numbers, make L = L; +--- + L; the label of .7,
5. Otherwise,
(a) Select a variable X; € Var(Z7 %=1y ... U Var(7 =),
(b) Insert node {{7" X“”l) TR 7 XY into list 2,
(c) While £, is not empty,
i. Remove a node {{7,..., 7.}, 7 X} from Z,,.
ii. Make X; the label of 7
iii. For each x € U,
A. Create a node 7 initially without label, and make it a child of 7.
B. Let L, ..., L, be the labels of the roots of "R(X’_X>, o 5'f(X1:x).
C.IfLy,.. Lh are numbers, make L = Ly + - - - + L, the label of 7
D. Otherwise
e Select a variable X, € Var(7 (X’ U UVar(fRX’ .

e Add node {{F7%%=) fh“' ">},,7,,Xm} to L,

K

6. Return 7,.

In the algorithm above, we have used two lists, %, for combination and %,
for addition of trees in marginalization. Each node {{7 |, 7,},7,X;} of .,
represents two subtrees that must be combined, storing the result in  and
placing variable X; as the root label. Analogously, each node {{77,..., 7},
7 ,X;} of &, contains j subtrees that must be added, storing the result in 7~
and labeling the root node with variable X;.
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The operations described above are exact, i.e. they do not limit the size of
the resulting tree. However, for exact computations a recursive algorithm is
simpler and has a similar complexity. This way of organizing computations in
which we keep a list of remaining computations that are scattered in different
parts of the result tree, is more appropriate for approximate computations.
Different procedures are obtained according to the selected variable to be
placed as root of the subtrees combination or addition, and according to the
way we extract elements from lists %, or %,,. The idea consists in placing the
most informative variables at the top of the tree, or making the most important
computations first. This is achieved if at every step the tree is expanded by the
branches minimizing the distance to the resulting potential.

To determine the variable to be placed in the root of the result tree, all the
variables of the trees we are operating with could be considered. But this is very
time-consuming and in our experiments we have only evaluated the roots of
each one of the combined trees. We have assumed that if these trees have been
correctly built, then these are really the most informative variables in each one
of them.

In the case of constructing a tree from a probability table, we have com-
puted a measure of information for each possible variable X; that can be put in
each possible branch X; = x. This information was calculated in an exact way,
because we had the exact potential (the probability table). We do not now have
the exact potential when we build the tree, the result of combining two trees or
marginalizing a variable in a tree. The exact potential is just what we are
computing. So, the best we can do is to take an estimation of the information
value in the following way [8]:

1. Combination. Let ¢, and ¢, be the potentials to be combined. The informa-
tion value of a variable X; in a branch X; = x is measured as:

Inf'(X) =, Xl - 6,) = Inf (X = x, X}~
)l
X Inf(X, = x, X; | p¥ o= ) (11)

2. Marginalization. Let ¢ be the potential to be marginalized over 7 — {i}. The
information value of a variable X, in a branch X; = x is measured as:

Inf’ (X, - x,Xk|¢“*{f}) — Inf<X, — x,Xk|¢R<XF’C>”). (12)

According to this, we have two alternatives to obtain approximate results
for a threshold of a given size:

e Once the threshold has been surpassed, each of the remaining branches
(those determined by the elements of .. or ¥,,) are approximated by car-
rying out the corresponding operation in the average of all the values corre-
sponding to that branch. For example, in the case of combination, in
addition to the condition in step 5 of Algorithm 4, we must also check that
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the maximum size has not been reached. When the maximum size is reached,
list . contains several elements. Each one of these elements represents two
trees that must be combined, putting the result at a leaf of the output tree.
To do this, we approximate each one of these trees by its average value, and
we put the product of such values in the corresponding leaf of the output
tree. The case of marginalization is solved in the same way, but now product
is replaced by addition.

¢ Generate the entire tree and bound it afterwards, in the same way as when
constructing a new tree.

4. Basic notions about convex set of probability distributions

Let us assume that we have a population Q and an n-dimensional variable
(X1,X5,...,X,) defined on @, and such that each X; takes its values on a finite
set U;. In the previous section, we saw that the information about the variables
in / was a conditional probability distribution of a node giving its parents in the
graph. A piece of information relating the variables in / will now be a closed,
convex set, H, of mappings:

p:U — Ry

with a finite set of extreme points. Every mapping is given by the vector of
values (p(u)),.,,- For example, Fig. 4 shows graphically, with the use of a
system of triangular coordinates, a convex set for variable X with three possible
values (u;, us, u3). This convex set has four extreme points (py, p, ps, ps)-

If H is a convex set of mappings on U;, with extreme points,
Ext(H) ={p1,...,p}, and J C [ then the marginalization of H to J is the
convex set given by

HY =CH{p/,....p"}, (13)

where CH stands for the convex hull.

If H is a convex set of mappings in U;, and H’ is a convex set in U, with
Ext(H) ={p1,....»}, Ext(H") = {p},...,p;}. Then the combination of H and
H' will be a convex set of mappings in Uy;, H ® H' given by

HQH =CH{pi-p\,....p1 P}y Pk Plsee Dk - P} (14)

If H is a convex set of mappings in U, and H’ is a convex set in Uj, then
H N H' (intersection) is the convex set of mappings p defined on Uy, verifying
that p'/ € H and p“ € H'.

If H is an a priori piece of information about (X, Y), that is to say a convex
set of probability distributions on U x V, then the marginal of H for X, H*, is
HW.
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~ P(u3)

Fig. 4. An example of a convex set given by its extreme points (py, .. ., ps).

The conditional information about Y, given X, will be a closed, convex set,
HYX, of mappings, p: U x V — [0, 1], verifying

Zp(u,v) =1 YuelU

vel
and with a finite set of extreme points, Ext(H"™) = {p\,...,p;}.
Given H* and H'™ then H = HX ® H"W is the global information about
(X,Y).

Given H = CH{p, ..., p:} for X. If we know X belongs to A, then the result
of conditioning is H|A = CH{p(-|4) : p € H,p(4) # 0}.

For convex sets we will use the so-called strong conditional independence as a
notion of independence. See De Campos and Moral [7] and Couso et al. [17]
for a detailed study of definitions of independence in convex sets. If H¥'7Z is a
global convex set of probabilities for (X, Y,Z), we say that X and Y are con-
ditionally strong independent given Z if and only if, HY"4 = H** @ H'? or
HX,Y,Z :HY’Z ®HX\Z'

4.1. Propagation of convex sets of probabilities

The propagation of convex sets of probabilities is completely analogous to
the propagation of probabilities. The procedures are the same. Here, we only
describe the main differences and more details can be found in [15]. Valuations



A. Cano, S. Moral | Internat. J. Approx. Reason. 29 (2002) 1-46 15

are convex sets of possible probabilities, with a finite number of extreme points.
A conditional valuation is a convex set of conditional probability distributions.
An observation of a value for a variable will be represented in the same way as
in the probabilistic case.

The combination of two convex sets of mappings is the convex hull of the set
obtained by combining a mapping of the first convex set with a mapping of the
second convex set (repeating the probabilistic combination for all the points of
the two convex sets).

The marginalization of a convex set is defined by marginalizing each of the
mappings of the convex set.

With these operations, we can carry out the same propagation algorithms as
in the probabilistic case. The formulae are the same, but a valuation is now a
convex set (represented by its extreme points) and the operations of combi-
nation and marginalization are the same as in the probabilistic case repeated
for all the extreme points of the operated sets.

The result of the propagation for a variable, X;, will be a convex set of
mappings from U, in [0,1]. For the sake of simplicity, let us assume that this
variable has two values: x},x7. The result of the propagation is a convex set on
R? of the form of Fig. 5 and that will be called R;.

The points of this convex set, Ry, are obtained in the following way: if P is a
global probability distribution, formed by selecting a fixed probability for each
convex set, then associated to this probability, we shall obtain a point
(t1,t2) € Ry, where

ti = P(x; Ne),
th=P(x;Ne),

(15)

and e is the given evidence or family of observations.

0|

Fig. 5. Propagated convex set, R;.



16 A. Cano, S. Moral | Internat. J. Approx. Reason. 29 (2002) 1-46

The projection of the point (¢,%) on the line ¢, +# = 1 is equivalent to
dividing by P(e) and gives rise to a normalized probability distribution:
P(xile) =t;/(ti + 1), i=1,2.

So, the final intervals [a, b] associated to x; can be calculated in the following
way:

a=1inf{t;/(ty + &) | (1, t2) € Ry},
b=sup{t:/(ti +0)[(t,t2) € Ri},
that is to say, the interval given by the infimum and supremum of the condi-
tional probabilities. This conditioning does not take likelihood information

into account, but it is the most used in literature. In this paper, we try to
calculate uncertainty intervals calculated according to this conditioning.

(16)

4.2. Convex sets and intervals

As we mentioned in Section 1, we have tried to solve the problem of
propagation in dependence graphs where each initial conditional information
is given by an interval of probability instead of an exact value of probability.
The problem is that intervals of probability are a less general model than
convex sets of probabilities [14,21]. The reason is that in the interval proba-
bilities model we only know the bounds for events, and for convex sets we can
specify bounds for every linear combination of the probabilities of the ele-
mentary events. However, we can obtain the convex sets associated to the
initial informations (interval of probabilities), and then do computations using
these convex sets and finally obtain the associated a posteriori intervals.

Intervals are a particular case of general restrictions. If we have a variable X
taking values on a finite set U, then a convex set of probabilities, H, can be
given by a set of linear restrictions, R. Each element in » € R is an inequality:

rEZuup(u)gﬂ. (17)
uclU

For a convex set, H, we can use the representation given by a finite set of
points including its extreme points or the one given by a finite set of restrictions
defining it. In both cases, it is preferable for the representation to be minimal:
1.e. the points are the extreme points and the set of restrictions is minimal. In
this paper, we will use the representation given by a finite set of points because
it is more appropriate for the operations (marginalization and combination) we
need to do with convex sets.

In general, to obtain the extreme points of the convex set associated to a set
of probability intervals we can use the following algorithm. In this algorithm it
is assumed that U = {uy,...,u,}. Prob is a list of the extreme probabilities
found so far, and p is the current partial probability (this means that
o(u;) < p(u;) < B(u;) Vi, but not necessarily the restriction ), p(u;) = 1). Expl is
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a set of already explored nodes, and 1 is the amount of probability that has not
yet been assigned: 1 — 3", p(u;). Max(Expl) returns the index with the higher
value in the set of explored nodes.

The initialization steps are:

Algorithm 5. Initialization
1. Prob « ()
2. Expl — ()
31 =30 uw)
4. Fori=1tondo
plu;) — o(u;)

Then we call Getprob(p, 4, Expl) which calculates and appends the extreme
probabilities to Prob.

Algorithm 6. [Getprob(p, 4, Expl)]
1. For i = 1 to Max(Expl) do
If not belong(i, Expl)
Then If 1 < p(u;) — o(u;)
Then
v — p)
pu;) — p(u;) + 2
Append(p, Prob)
plu;) —v
2. For i = Max(Expl) + 1 to n do
If B(u;) — o(u;) > 0
Then
If 2< Bu;) — a(u;)
Then
v p(u;)
p(u;) — p(u;) + 2
Append(p, Prob)
pl) — o
Else
v p(u;)
plu;) — Blu;)
Getprob(p, A — B(w;) + o(u;), Expl U {i})
plui) — v;

This algorithm uses an implicit search tree where each node is a partial
probability and a child node represents a refinement of its parent node
by increasing one component p(u;). The leaf nodes are the extreme proba-
bilities.
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Example 1 (Extreme points associated to a global information given with inter-
vals). Suppose we have a variable X taking values on the set U = {uy, up, u3, us}
and the intervals given by the following restrictions:

| Uy U Uus Uy
o 0.2 0.15 0.4 0.1
p 0.25 0.3 0.45 0.15

then if we apply Algorithm 6 we will obtain the following possible extreme
points:

up 125 Uus Uy
)2 0.25 0.25 0.40 0.10
§23 0.25 0.20 0.45 0.10
» 0.25 0.20 0.45 0.15
P4 0.25 0.20 0.40 0.15
Ds 0.20 0.30 0.40 0.10
D 0.20 0.25 0.45 0.10
)z 0.20 0.20 0.45 0.15
Ds 0.20 0.25 0.40 0.15
Suppose X; = {X;,...,X;} is a set of random variables taking values on the

finite set U; = Uy x --- x U; and Y a random variable taking values on a finite
set V. Then, if we have a conditional distribution P(Y|X;) given with proba-
bility intervals, we must apply Algorithm 6 for each u; € U; to obtain the
global convex set H'" That is to say, if Ext,, is the set of extreme points of the
convex set associated to the distribution P(Y|X = u;) which we obtained with
Algorithm 6, then the global convex set can be obtained with the following
Cartesian product:

Ext(H") = H Ext,,. (18)

ureUy

Example 2 (Extreme points associated to the conditional information given with
intervals). Let us suppose two random variables X and Y taking values on the
sets U{uy,up} and V{vy,v,}, respectively. Suppose we have the conditional
information P(Y|X) given with the following set of probability intervals:

up 125}

%} (%] %} (%]
o 0.2 0.7 0.4 04
p 0.3 0.8 0.6 0.6

If we apply Algorithm 6 for X = u;, we obtain the convex set H"¥=" This
convex set has the following extreme points:
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| U1 (%)
» ‘ 0.2 0.8
y2) 0.3 0.7

Equally, for X = u, we obtain the convex set H'¥=* with the following
extreme points:

| U1 U2

With these two partial informations we can build the global information
H"¥ using formula (18). We obtain the following extreme points:

| (u1, 1) (u1,02) (12, 01) (u2,02)
hy 0.2 0.8 0.4 0.6
hy 0.2 0.8 0.6 0.4
h3 0.3 0.7 0.4 0.6
hy 0.3 0.7 0.6 0.4

5. Using probability trees in the propagation of convex sets

In this section we will examine how probability trees can be used to make
propagation of convex set more efficient. In order to do so, we can represent
each initial conditional convex set "™ with a probability tree. We can then
apply the same propagation algorithm described in Section 2 for the proba-
bilistic case.

To use probability trees in the propagation of convex sets, we can transform
the problem into an equivalent one. For each variable X;, we originally give a
valuation for this node conditioned to its parents. This valuation is a convex set
of conditional probability distributions, #; = {p,...,p;}. We then add a new
node, T;, with / cases {1,...,/}. This node is made a parent of variable X; in the
dependence graph. On this node we consider that all the probability distribu-
tions are possible, that is to say, the valuation for this node is a convex set with
[ extreme points, each one degenerated in one of the possible cases of 7;. The
probability of X; given its parents is now a unique, determined probability
distribution. If F(X;) are the original parents of X; then the conditional prob-
ability of X; given F(X;) U T; is determined in the following way: given 7; = k
then the conditional probability of X; given F(X;) is p;. We can verify that the
structure of the problem does not change with this transformation. The only
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thing that has happened is that our lack of knowledge about the conditional
probabilities is now explicit with the help of an additional node expressing all
the possible conditional probability distributions. Nothing is known about this
node. We suppose that the domain of 7' will be Ur. Moreover, if T takes n
possible values, then we suppose that Uy = {1,...,n}. The idea is to keep the
different values of T as parameters in the problem.

Suppose we want to find a compact representation for the global conditional
convex set ¥, and we know which are the extreme points of each one of the
convex sets H'i=u,

In Example 2 the global information H'¥ is represented by four points of
the global convex set. Each point is a vector with four real numbers. So, we
need 16 real numbers to represent H'¥. A first approximation to use proba-
bility trees will be to put the transparent variable 7 at the root of the proba-
bility tree. This variable 7 will have as many cases as the points which our
representation of H”¥ has (four points in Example 2). Each child of this node
will be the probability tree that represents each one of the points of "™, In
Fig. 6, we can see the probability tree that represents the extreme points of
H"X_ In this probability tree an extreme point is found fixing 7T to one of its
possible values.

A more compact representation can be obtained if we use a transparent
variable T,, for each u, € U;. That is to say, we associated a transparent
variable for each configuration u; € U, of the set of variables X;. 7,, will have as
many cases as the number of extreme points which HY¥=% has. The reduction
in the representation is obtained by taking asymmetric independences among
these transparent variables into account. It is obvious that:

IC<Y;TMI‘X:L{J,M]7/:M]) : VI/I[G U]. (19)

A compact probability tree can then be built by putting the variables of X; in
the upper levels of the tree, and then the corresponding transparent variable. A
leaf node of this provisional probability tree represents a configuration u; of Xj.
Next, for each leaf node, we put the transparent variable 7,, associated to the

AN

X

AN AN

Y

ANAAAAADN

2 .8 3 7 4 6 3 7 6 4

Fig. 6. Probability tree that represents H'™ in Example 2.
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/\ /\

/\ /\ /\

4 6
Fig. 7. A compact probability tree for #”¥ in Example 2.

configuration u; that this leaf node represents. Finally, each 7,, will have as
many children as the number of extreme points which HY=% has. Each one of
these children will be the tree that represents one of the extreme points of
HYWi=u Fig. 7 shows the probability tree built so far, for convex set of Ex-
ample 2. This new probability tree only needs eight real numbers to represent
the same information as the tree of Fig. 6.

In this new tree, a point of the global convex set ' can be found by fixing
all transparent nodes 7,, to one of its values.

5.1. Using probability trees to eliminate non-extreme points

In Section 4.1 we saw that the result of a propagation algorithm with convex
sets of probabilities for a variable X, is a convex set of mappings from U; in
[0, 1]. This convex set was denoted by R;. If we use probability trees to rep-
resent every convex set in the propagation algorithm, then R, will also be
represented by a probability tree 7,. See Fig. 8 for an example of the prob-
ability tree .7, representing the result of a propagation algorithm for a variable
X with three possible values {u;,uy,us}. Variables of 7, will be X; and a set of
transparent variables Ty.

Extreme points of R; can be obtained from 7, fixing each one of the
transparent variables (parameters) in .7 ; to a value. In this way, it is possible to
obtain the same point more than once. Furthermore, some of these points will
be non-extreme points because they can be obtained from a lineal combination
of other points. For example, Table 1 shows the points obtained from the
probability tree of Fig. 8. This table shows that point (0.2,0.4,0.25) appears at
the third and fourth row, and point (0.3,0.4,0.25) appears at the seventh and
eighth row. Repeated points appear because the tree can be express asymmetric
independences that the table cannot express. For example, the probability tree
of Fig. 8 shows that I.(X; 73| T>» = 2). Table 1 can reflect this independence, and
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X

AN

1 15

Fig. 8. Resulting probability tree for variable X.

Table 1
Points from the probability tree of Fig. 8
T T T uj uy us
1 1 1 0.2 0.4 0.1
1 1 2 0.2 0.4 0.15
1 2 1 0.2 0.4 0.25
1 2 2 0.2 0.4 0.25
2 1 1 0.3 0.4 0.1
2 1 2 0.3 0.4 0.15
2 2 1 0.3 0.4 0.25
2 2 2 0.3 0.4 0.25

points (0.2,0.4,0.25) and (0.3,0.4,0.25) will appear twice. Table 1 contains
two points (0.2,0.4,0.15) and (0.3,0.4,0.15) that are not extreme points be-
cause they can be obtained from a lineal combination of (0.2,0.4,0.1) and
(0.2,0.4,0.25) for (0.2,0.4,0.15), and from (0.3,0.4,0.1) and (0.3, 0.4, 0.25) for
(0.3,0.4,0.15).

We have designed an algorithm which solves the two previous problems
(repeated points, and non-extreme points that are lineal combination of oth-
ers). This algorithm can be decomposed in three different situations. Let us
suppose we have a probability tree .7, representing the a posteriori convex set
for variable X; of a propagation algorithm.

In the first situation, suppose that X; is at the root node of .7, (then the rest
of the variables will be transparent). Furthermore, suppose that there are no
common transparent variables among children trees of the root.

The probability tree in Fig. 8 verifies these conditions. In this situation, we
can obtain a simpler probability tree 77, which represents the same a posteriori
convex set, with the following algorithm:
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Algorithm 7 (Findl1 SimplerTree(T 1)).
Input: A probability tree .7, with target variable X; at the root node and
with no common transparent variables among children of the root.
Return: A simpler probability tree .7, representing the same a posteriori in-
formation.
1. Put X, at the root node of a new tree 9,;(
2. For each u; in Uy
e Get min and max values of leaf nodes of 7
e If min and max are different:
o Put a new transparent variable 7,, as the child of the root node of 7,
corresponding to the branch X; = uy.
o Put two leaf children to node 7,, and label these children with min

a‘R Xi=uy)

and max.
° Otherwise put a node labeled with min value as the child of the root
node of 7, corresponding to the branch X = u.

/

3. Return 7,

If we apply Algorithm 7 to the tree in Fig. 8 then we obtain the simpler tree
in Fig. 9. From the tree in Fig. 9 we obtain the points in Table 2 instead of
those in Table 1.

In a second situation, suppose X; is also at the root node of .77, but we now
have common transparent variables among children of the root node. In Fig. 10
we can see a probability tree verifying this situation.

Algorithm 8 (Find2SimplerTrees(T i, Tc)).
Input: A probability tree .7, with target variable X} at the root node and a
set Tc of common transparent variables among children of the root.
Return: A set Set 7/ of simpler probability trees 7, representing the same a
posteriori convex set for X;.
1. Make Set, 7 an empty set.
2. IfTcis not empty:
e Take a transparent variable T from T¢.
e For each value ¢; of T
o Get 7 RI=)
o Append trees returned by Find2SimplerTrees(7 *"=" T, — T) to the
S€t7'
3. OtherW|se append tree returned by Find1SimplerTree(7 ;) to the Set 71
4. Return Set 71

For example, if we apply Algorithm 8 to the tree in Fig. 10 we will obtain the
trees in Fig. 11. From these two trees, we obtain the points in Table 3.

In the third situation, variable X; can appear at any node of 7. For ex-
ample, the tree in Fig. 12 represents a general situation. The algorithm that
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ANA

Fig. 9. Simpler tree associated to tree in Fig. 8.

Table 2
Points of the a posteriori convex set obtained with tree in Fig. 9
T T uy uy u3
1 1 0.2 0.4 0.1
1 2 0.2 0.4 0.25
2 1 0.3 0.4 0.1
2 2 0.3 0.4 0.25
X

4

/N

2 25

AN
A

Fig. 10. A probability tree verifying conditions of the second situation.

solves this general situation does a depth traversal of .7 starting at the root
node. The output of this algorithm is a set of equivalent, simpler probability
trees. The traversal is stopped in a branch under two conditions. First, if a leaf
node is visited, labeled with a real number r. This means that we have found a
point (r,...,r) corresponding to a uniform distribution. In this case, we add a
tree with only one node labeled with r to the set of output trees. Second, if
variable X; is found then we call to Algorithm 8 with the subtree in which X; is
the root obtaining a set of equivalent, simpler trees.
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\ V/ \ \\
1 15 \
2 3 25 3
Fig. 11. Output trees from applying Algorithm 8 to tree in Fig. 10.
Table 3
Points of the a posteriori convex set obtained with trees in Fig. 11
T T; u u u3 T u Uy s
1 1 0.2 0.4 0.1 1 0.25 0.4 0.25
1 2 0.2 0.4 0.15 2 0.3 0.4 0.25
2 1 0.3 0.4 0.1
2 2 0.3 0.4 0.15

The following algorithm solves the general situation:

Algorithm 9 (Find3SimplerTrees(T )).
Input: A probability tree .7, with a set of transparent variables and variable

X;.

Return: A set Set of simpler probability trees 7~ . representing the same a
posteriori convex set for X;.

1.
2.

5.

Make Setj; an empty set

If the root of 7 is labeled with a real number r append to Sety/k a tree
with a node labeled with r

Otherwise, if the root of 77 is labeled with a transparent variable T
For each ¢t € Ur

o Append trees returned by Find3SimplerTrees(7 f(T:’

Otherwise, if the root of I is a target variable X}

Search the set of common transparent variables T among children of the
root node.

Append trees returned by Find2SimplerTrees(7 ;, Tc) to Set s,

Return Setf/k

') to Set

If we apply Algorithm 9 to the tree in Fig. 12 we will obtain the points in

Table 4.

Transformations of this section can be applied in intermediate steps of
propagation. In these steps we have a set of valuations, each represented by a
probability tree. When we have a probability tree 7 in which one of its sub-
trees has only transparent variables, then we can transform J into a new tree
Z" in which the subtree is replaced by a transparent node with two children



26 A. Cano, S. Moral | Internat. J. Approx. Reason. 29 (2002) 1-46

2

Fig. 12. A general a posteriori probability tree obtained as output of a propagation algorithm.

Table 4

Points of the a posteriori convex set in Fig. 12

up U us
0.2 0.4 0.1
0.2 0.4 0.15
0.3 0.4 0.1
0.3 0.4 0.15
0.25 0.4 0.25
0.3 0.4 0.25
0.25 0.25 0.25
0.25 0.3 0.25

labeled with the min and the max values of the old subtree. We have been able
to prove in practice that this transformation in intermediate steps of propa-
gation enormously reduces the amount of non-extreme points in the a poste-
riori convex set.

5.2. Getting and bounding the error of approximate intervals

In Section 3 we saw how to work with approximate probability trees in the
probabilistic case, obtaining a posteriori approximate information. This allows
us to solve more difficult problems in an approximate way than with the use of
exact trees. In that section, we looked at how to use probability trees to
propagate convex sets of probabilities. Approximated probability trees can
also be used to propagate convex sets of probabilities. Approximations can be
made when we build the tree from the original information, i.e. conditional
information found in the dependence graph. Approximations can also be made
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in operations with valuations: marginalization and combination. In both cases,

approximations will be made using the same criterion as in the probabilistic

case (Proposition 2). Moreover, Proposition 1 will be used to calculate the
value that approximates a given subtree. In this section, we will see how to give

a bound on the resulting errors when we use approximate probability trees in

the propagation of convex sets of probabilities.

To bound the resulting errors, we used two new values at each leaf node in
probability trees. If previously we only have one value » € R, we now add the
values 7min, 7max € R at each leaf node. These values inform us about the in-
terval in which the true value can oscillate. When a branch of the tree has not
been approximated then 7y, rmax and r will be equal. But when it is approx-
imated then r will be between 7y, and r.¢. Let us examine how to calculate ry;,
and ry.x Wwhen we build a tree from original information, when we combine two
trees and when we do a marginalization on a tree.

o Construction of trees. In this case, an approximation is made when several
values in the true valuation are substituted by only one value r in the tree,
according to Proposition 1. Let /2 be a valuation on a set of variables Xj.
Suppose we are building a tree . for & and we are going to approximate
a set of values of i with only one value r. This set of values is denoted by
R&=w) - representing the restriction of valuation % to configuration
X; =uy, ie. the values in i which are compatible with configuration
X; = u;. Then, according to Proposition 1, r will be calculated as the average
of AR&=uw) p - and ry. Will be calculated as:

Fain = min ARX=w)
uy

Fnax = max A=), (20)
uy

o Combination of trees. Suppose we are going to combine two trees 7 ; and
7. In Section 3 we studied two methods for making an approximated com-
bination of these trees:

o Generate entire resulting tree and prune it afterwards to the desired size.
In this case, at each leaf node 7, 7y, and 7, Will be calculated as in the
construction of the tree.

o Stop expanding the resulting tree at a given size. Suppose that we must
put the result of the product of 7 ; and .7 ; at a leaf of the output tree,
but we have no more space. Therefore, at that leaf node we put an ap-
proximate real number r, calculated as explained at the end of Section
3. Fmin and rp. are calculated as:
Fmin = MIN 7 () X MiN 7min (7 ),

(21

Fmin = MAX Fmax (7 ;) X MAX Fax (7 ),

where rpin () and rp.x () represent the set of 7y, and ry,, values of tree 7,
respectively.
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See Example 3 for how these approximations are made.

e Marginalization in trees. Again we have the same two possibilities. In both
cases, the solution is completely analogous to combination, replacing the
product by addition.

Example 3 (Getting ryin and rmax in combination of trees). Suppose that the
output tree, resulting from combining two trees 7 | and J ,, has reached the
maximum size. At this moment, the output tree is shown on the left of Fig. 13.
After making the approximation, we obtain the output tree on the right-hand
side of Fig. 13.

After applying a propagation algorithm we obtain a tree as in Fig. 14. From
this tree we can obtain two kinds of intervals for each case of the target
variable:

e Those obtained with the set of points extracted with the r values of leaf
nodes, and using formula (16). These intervals will in general be approxi-
mated intervals. The set of points are extracted from the tree using the algo-
rithms detailed in Section 5.1.

e Those obtained using the ry,;, and ry.x values.

Let us now examine how to get a set of points from the 7, and r. values
of leaf nodes of an output probability tree. In order to do so, we can apply the
same algorithms described in Section 5.1 for r values, but now in Algorithm 7
min and max are calculated as:

. . R(X,.=u;
min = min #pin (fk< k "A))’

22
g RXe=uy) ( )
max = maxX rmax | 7 .
X
//// \\\
// \\
X ;/// N
T T
A A
/
P / / \
X /
N / AN
/ / 4 N
/ b 175 175 Y 325
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Fig. 13. Left tree represents an unfinished output tree resulting from combining two trees and right
tree represents the same tree after making the approximations.
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Fig. 14. An output tree obtained as result of a propagation algorithm using approximated oper-
ations.

The intervals obtained with r;, and rp,, values will be wider than those
obtained with the r values, and are useful to bound its error, that it approxi-
mated, and exact intervals will be contained in these intervals.

6. Experimental results

In order to study the behavior of our propagation algorithm using ap-
proximated probability trees to carry out the operations, we have done some
experiments using four independence graphs: Boerlage92 [4], Boblo [39,40],
Car Starts (a somewhat large network contributed by Sreekanth Nagarajan
based on the automobile belief network that D. Heckerman et al. presented in
[29]) and Alarm [2]. These graphs can be found in the literature for the
probabilistic case, i.e. at each node we have a conditional probability distri-
bution. Propagation on these networks is not very difficult from a probabilistic
point of view.

We have transformed each probability p into a randomly chosen probability
interval. This makes the problem of exact propagation very difficult to solve,
since it amounts to making a tremendous number of probabilistic propaga-
tions: 9.007199 x 10" in Boerlage92, 4.529848 x 10 in Boblo, 5.242888 x 10°
in Car Starts and 1.713495 x 10” in Alarm. To transform each probability p
into an interval we use the following procedure: for each p we select a uniform
number r from the interval [0,max{p,1— p,d}] with d<1 being a given
threshold (we have used d = 0.1). Then p is transformed into the interval
[p — r,p+r]. This way of selecting the interval ensures that p — r > 0. More-
over, when p = 0.0 or p = 1.0 we will obtain [0.0,0.0] or [1.0, 1.0], respectively.
We have used a variables elimination algorithm (Algorithm 1) applied to the
case of a convex set of probabilities. In the experiments, combination and
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marginalization are carried out using different maximum sizes for the output

probability trees. Depending on the way we have performed these operations,

we can distinguish two kinds of experiments:

e PropWithTD1. Combination and marginalization are carried out by con-
structing the output tree to a given threshold size.

e PropWithTD3. Combination and marginalization are carried out in an exact
way, and are then pruned to a given threshold size.

Experiments have been run on an Intel Pentium II (400 MHz) computer
with 384 MB of RAM and the Linux RedHat operating system with kernel
2.0.36. Algorithms have been implemented in C language.

Propagation algorithm gives us an output probability tree as in Fig. 14.
From the output tree we have calculated two sets of points using algorithms
described in Section 5.1:

e Those obtained with the r values. From these points we can obtain an
approximate interval [/,u] for each case of the variable of interest using
formula (16).

e Those obtained with the ry,;, and r,.x values. From these points we again ob-
tain an interval [/, umax| for each case of the variable of interest, that
bounds the error in previous approximated intervals. These intervals are cal-
culated again using formula (16).

Experiments have been carried out for different variables of interest and
with some or none of the observations in the other variables (see Table 5). The
following configurations are used:

e Boerlage92
o Boel: Variable of interest is “TD: Tom™. No observations.

o Boe2: Variable of interest is “MT: Molly”. No observations.

o Boe3: Variable of interest is “TD: Tom”. Observation at “TR: Tom”.

e Boblo
o Bobl: Variable of interest is “factor 1 (F1)”. No observations.

o Bob2: Variable of interest is “factor 1 (F1)”. Observations at variables

“pheno st 1 dam™, “pheno st 2 dam” and “pheno true sire”.

e Car Starts
o Carl: Variable of interest is “Engine starts”’. No observations.

o Car2: Variable of interest is “Engine starts”. Observations at variables

“Alternator” and “Lights”.

o Alarm
o Alal: Variable of interest is “BP”’. No observations.

o Ala2: Variable of interest is “BP”’. Observations at variables “LVFAI-

LURE”, “PULMEMBOLUS” and “ARTCO2”.

We have only calculated intervals [/,u] and [In, max] for the first case of
one of the variables of the network (variable of interest). In each trial,
we registered the computer time in seconds (¢, in tables) used by the algo-
rithm.
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Table 5
The four networks used in experiments

Boerlage92 network Car Starts network

Alarm network Boblo network

6.1. Results and discussion

It has been argued that in Bayesian networks, it is not necessary to worry
about the correctness of initial probabilities as the final results are very in-
sensitive to small modifications of numbers. Our experiments show that this is
not true. We have cases in which the final probabilities are in the interval
[0.12,0.22], interval [0.90,0.95], interval [0.22,0.53], or in the interval
[0.17,0.34]. Substituting the initial imprecise probabilities for one single value
implies that the final a posteriori probabilities are numbers in these intervals.
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There is no guarantee of the position of these numbers in the intervals, and it is

possible that they are very close to one of the extremes. Therefore, computing

the final a posteriori interval probabilities is necessary if we want our final
decisions to take into account the imprecision in the values of probability.

Regarding the performance of the approximate algorithms in this paper, we
have observed two different situations:

e There are situations in which the approximate interval and the interval
[/min, #max] are equal or very similar. In this case, we can be sure that this
is the final a posteriori conditional interval. This happens in simple problems
(Figs. 15 and 17) from a probabilistic point of view. However, the problem is
not simple if we consider the number of different global probability distribu-
tions that should have been propagated for an exact solution of the problem
(from 5.242888 x 10° in Car Starts to 1.713495 x 10% in Alarm). This is due
to the fact that we have added imprecision in all the values of probability.
The problem would have been much simpler if almost all the probabilities
had an exact value, even with more complex networks.

e In other situations the approximate interval is relatively small while the up-
per interval [/iin, Umax] 1S very uninformative. In this case, we cannot be sure
that the approximate interval really represents the real variation of the a
posteriori probabilities and the method does not provide reliable informa-
tion. These experiments also explain some comments about propagation
of imprecise probabilities [48]: it has been said that the intervals tend to
be [0, 1]. These intervals are only calculated given a lower and upper value
for each value of a set of variables. In our system, this amounts to removing
all the transparent variables and keeping only the minimum and maximum
for the potentials. This is a very poor approximation which can be repre-
sented with small-sized trees (the size of a single probabilistic propagation).
So, if we often obtain [0, 1] intervals even with the stronger approximation
procedures of this paper, it is very natural to get them with the usual weaker
procedures.

Regarding the two basic procedures which we have applied in our ap-
proximation algorithms (PropWithTD1, which builds approximate trees until
a given size while making computations, and PropWithTD3, which computes
in an exact way and approximates afterwards), we have found that the latter
provides better results in general but it needs more memory to carry out exact
computations and in some complicated networks only PropWithTD1 has been
applicable for this reason.

7. Conclusions

In this work we have adapted an algorithm that propagates with probability
distributions to the case of the interval of probabilities. Intervals are transformed
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into convex sets of probabilities, to carry out operations without losing infor-

mation. Convex sets of probabilities are represented using probability trees with

the help of transparent variables. We have presented some techniques that make
propagation even more efficient exploiting asymmetric independences among
transparent variables. We have also studied a technique to eliminate non-extreme
points from the output of a propagation algorithm. This technique can also be
applied in intermediate steps of propagation. Finally in our experimental work,
we have proved our propagation algorithm using approximated operations with
probability trees. This allows difficult problems to be solved in an approximate
way. To bound the error committed in experiments we have used the method
presented in Section 5.2. The experiments show that this method is promising,
because we can control the accuracy of the a posteriori intervals with the size of
the tree. Furthermore, intervals [/, 4max] can inform us if we have obtained
exact intervals for a given size of probability trees. If we have not obtained exact
final intervals and we have more time, we can try with a greater limit for the tree.

The experiment in this paper should be interpreted as a first step in the
computation of final a posteriori intervals. The algorithms could be improved
in the following directions:

e Applying a reduction of the trees by removing convex combinations in inter-
mediate steps of the algorithm and not only at the end when computing the
final convex set.

e Applying global optimization procedures such as simulated annealing to
maximize and minimize conditional probabilities for the different values of
the transparent variables following the approach in [10].

e Adapting measures of information in the approximation of trees to the case
of transparent variables. Now, the approximation procedure is based on
considering that all the variables are of the same nature: probabilistic vari-
ables. However, transparent variables have a different behavior and approx-
imations could follow different criteria.
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Appendix A

Tables 6-14 and Figs. 15-21 show the experimental results of our approx-
imated algorithms.
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Table 9
Intervals and time using PropWithTD1 with configuration Bobl in the Boblo network
20000 30000 40000 50000 60000
/ 0.5 0.5 0.5 0.5 0.5
u 0.5 0.5 0.5 0.5 0.5
L imin 0.000402 0.000402 0.000333 0.000333 0.000333
Umax 0.999597 0.999597 0.999666 0.999666 0.999666
t 44234 7092.4 8627 10294
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| —
u -
022 b %‘7-_7*7'77777'77777'77H—
= A
;Eg 02 | g
:; 018 | g
2 o | ,
014 b ,
012 o -
%7 020000 40000 60000 50000 100000 120000 140000 160000 180000 200000
Maximum tree size
0.26 ‘ ‘ ‘ ‘ ‘ ‘ ‘ :
e
024 L T x min @ ]
. .
022 | e e R X
‘g 018 | ,
2 ol ,
0.14 B
012 | R ]

01 670000 20000 30000 40000 50000 60000 70000 50000 90000 100000
Maximum tree size
Fig. 15. Intervals with PropWithTD1 and PropWithTD3 algorithms with configuration Boel in the
Boerlage92 network (Table 6).
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Table 10
Intervals and time using PropWithTD1 algorithm with configuration Bob2 in the Boblo network
20000 30000 40000 50000 60000
/ 0.5 0.429848 0.429848 0.475508 0.479056
u 0.550398 0.552048 0.552048 0.552055 0.543777
I imin 0.0 0.0 0.0 0.0 0.0
Unmax 1.0 1.0 1.0 1.0 1.0
t 1218 2436 4956 9650 14179
1 ‘ ‘ ‘ ‘ ‘
| o
Imilfw ;i
umax -x -
0.8
g 0.6~
é 0.4
02+ — — — — — —— ——— ———— — —-—— = e pp—
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Fig. 16. Intervals with PropWithTD1 and PropWithTD3 algorithms with configuration Boe2 in the

Boerlage92 network (Table 7).
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Table 11

Intervals and time using PropWithTD1 (a) and PropWithTD3 (b) algorithms with configuration
Carl in the Car Starts network

20000 30000 40000 50000 60000
(@)
/ 0.901337 0.901329 0.901327 0.901327 0.901327
u 0.957187 0.957197 0.957197 0.957197 0.957197
Lnin 0.901322 0.901323 0.901323 0.901323 0.901323
Umnax 0.958928 0.958928 0.958928 0.958928 0.958928
t 764 1301 1494 1799 2048
(b)
/ 0.496910 0.496910 0.496910 0.496910 0.496910
u 0.957758 0.957758 0.957765 0.957765 0.957765
Lnin 0.041273 0.041273 0.041273 0.041273 0.041273
Umnax 0.958727 0.958726 0.958726 0.958726 0.958726
t 530 700 1177 1088 1332
Table 12

Intervals and time using PropWithTD1 (a) and PropWithTD3 (b) algorithms with configuration
Car2 in the Car Starts network

20000 30000 40000 50000 60000

(a)

/ 0.177708 0.177707 0.176318 0.176318 0.176318

u 0.343760 0.343762 0.343762 0.343762 0.343762
Limin 0.174571 0.174571 0.174571 0.174571 0.174571
Unmax 0.348653 0.348653 0.348653 0.348653 0.348653

t 1044 1469 1892 2341 2785

(b)

/ 0.177744 0.176601 0.176586 0.175635 0.176718

u 0.345960 0.345960 0.346113 0.348650 0.348656

L nin 0.174024 0.1730291 0.173029 0.173029 0.174024
Unmax 0.349661 0.349516 0.349661 0.351259 0.351259

t 667 787 875 1094 1807
Table 13

Intervals and time using PropWithTD1 algorithm with configuration alal in the Alarm network

20000 30000 40000 50000 60000 100 000

/ 0.331890 0.332938 0.333333 0.330522 0.330522 0.330522
u 0.336223 0.333333 0.333333 0.335667 0.335667 0.335667
Lnin 0.0 0.0 0.0 0.0 0.0
Unmax 1.0 1.0 1.0 1.0 1.0

t 3260 13584 22434 30440 103281
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Table 14
Intervals and time using PropWithTD1 algorithm with configuration ala2 in the Alarm network
20000 30000 40000 50000 60000 100000
/ 0.329612 0.328413 0.328363 0.328381 0.328381 0.328675
u 0.333956 0.333877 0.333877 0.333876 0.333876 0.333834
Lnin 0.0 0.0 0.0 0.0 0.0 0.0
Unmax 1.0 1.0 1.0 1.0 1.0 1.0
[A 3377 6447 11588 19844 29699 78024
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Fig. 17. Intervals with PropWithTD1 and PropWithTD3 algorithms with configuration Boe3 in the
Boerlage92 network (Table 8).
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