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Abstract

Quanti®ed statements are used in the resolution of a great variety of problems.

Several methods have been proposed to evaluate statements of types I and II. The

objective of this paper is to study these methods, by comparing and generalizing them.

In order to do so, we propose a set of properties that must be ful®lled by any method of

evaluation of quanti®ed statements, we discuss some existing methods from this point of

view and we describe a general approach for the evaluation of quanti®ed statements

based on the fuzzy cardinality and fuzzy relative cardinality of fuzzy sets. In addition,

we discuss some concrete methods derived from the mentioned approach. These new

methods ful®ll all the properties proposed and, in some cases, they provide an inter-

pretation or generalization of existing methods. Ó 2000 Elsevier Science Inc. All rights

reserved.

1. Introduction

Quanti®ed sentences are used in a large number of applications for repre-
senting assertions and/or restrictions about the number or percentage of ob-
jects that verify a certain property. These assertions and/or restrictions are one
of the most used by humans in their reasoning processes. Because of this, some
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authors have tried to de®ne a mathematical model for the representation of this
knowledge in the ®eld of AI by using the theory of fuzzy sets. The ®rst ap-
proach was described in [28] by Zadeh. Since then, quanti®ed sentences have
been used in the resolution of several problems. One of the ®elds where
quanti®ed sentences have been more applied is that of ¯exible database que-
rying. There is a large amount of literature on this topic, such as [3,7,15,17].
Quanti®ed sentences have been applied in other ®elds such as pattern recogi-
tion, inductive learning, aggregation and decision making among others. Pa-
pers as [28±30,18,8±11,25] are some examples. Applications of quanti®ed
sentences in the ®eld of expert systems are discussed in [13], where there is a
section devoted to the applications of quanti®ed sentences. In the ®eld of data
mining, quanti®ed sentences have been used for example in [22]. We will use
quanti®ed sentences to develop data mining applications. In general, quanti®ed
sentences are a useful approximate reasoning tool for solving problems where
linguistic quanti®ers and natural languages are used in the representation of
our knowledge.

Quanti®ed sentences are usually classi®ed into two classes, called type I
sentences and type II sentences. A type I sentence is a sentence of the form:

Q of X are A;

where X � fx1; . . . ; xng is a ®nite set, Q a linguistic quanti®er and A a fuzzy
property de®ned over X.

A type II sentence can be described in general as:

Q of D are A;

where D is also a fuzzy property over X. Obviously, type I sentences are a
special case of type II sentences where D � X . The following are examples of
each type of sentences:

Type I : Most of the students are young:

Type II : Most of the efficient students are young:

In these examples, the set X is a ®nite set of students, the quanti®er is ``Most'',
the set A is the property ``young'' and the set D is the property ``e�cient''.

Two kinds of linguistic quanti®ers are taken into consideration in the
evaluation of quanti®ed sentences: these are called absolute and relative
quanti®ers. They are de®ned as possibility distributions, over the non-negative
integers and the real interval �0; 1�, respectively. Absolute quanti®ers represent
fuzzy integer quantities or intervals. Examples of this type are ``approximately
5'' and ``between 2 and 4''. Relative quanti®ers represent fuzzy proportions.
Some examples are ``Many'', ``Most'' and ``All''. Although relative quanti®ers
are de®ned over the real interval �0; 1� for simplicity, in fact only values of the
rational interval �0; 1� are used in the evaluation.
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There are four possible combinations (type of sentence, type of quanti®er).
Each possible combination is evaluated in a slightly di�erent way by any ex-
isting method of evaluation. In [12] sentences and quanti®ers are related as
follows: (type I, absolute); (type II, relative). In fact, one type II sentence with
an absolute quanti®er can be transformed into an equivalent type I sentence in
the following way: ``Q of D are A'' with Q an absolute quanti®er is equivalent
to ``Q of X are A \ D''. But in our opinion, it is important to add the pair (type
I, relative) to the problem of the evaluation of sentences. Some of the better
studied methods of evaluation focus on this case.

Evaluation of quanti®ed sentences tries to obtain an accomplishment degree
in the real interval �0; 1� for the sentence. Di�erent methods have been pro-
posed to perform the evaluation of quanti®ed sentences following this ap-
proach. Methods for the evaluation of type I sentences are described in
[30,18,19,1,2,4]. Methods for type II sentences are described in [30,21,17,4,5].
We will talk brie¯y about these methods in this paper. Some other methods
obtain a real interval or a fuzzy set as the accomplishment degree for the
sentences, see [14] for example, and will not be mentioned in this paper. Our
®rst objective in this work is to de®ne what we consider some appropriate
properties for any method of evaluation of quanti®ed sentences that obtains a
real value as the accomplishment degree, and to study and compare the existing
methods from this point of view. The ®nal objective is to de®ne new methods to
perform the evaluation according to the properties de®ned.

The contents of the paper are structured as follows. In Section 2, we give a
set of properties to be ful®lled by any method of evaluation. In Section 3, we
show the existing methods for the evaluation of type I and type II sentences.
Section 4 is devoted to the description of the approach we use to de®ne new
methods, along with previous de®nitions of cardinalities of fuzzy sets and their
properties. Section 5 shows new methods for the evaluation of type I sentences.
In Section 6, we de®ne new methods for the evaluation of type II sentences.
Section 7 contains our conclusions and future work.

2. Appropriate properties for sentence evaluation methods

Every existing method of evaluation is de®ned according to a di�erent
approach or measure. The validity of any method comes from the seman-
tic validity of the selected approach or measure when performing the
evaluation. Despite this, any method is required to ``work well'' in the sense
that the results obtained are somehow appropriate and coherent with what we
expect. In this section, we propose what we consider some appropriate
properties to be ful®lled by any method of evaluation. They are not intended to
be a closed set of properties but a collection of known cases and intuitive
constraints.
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2.1. Properties for the evaluation of type I sentences (Q of X are A)

Property 2.1.1 (Crisp case). If A is crisp, then the (known) result of the evalu-
ation must be

Q
Aj j
Xj j

� �
if Q is relative, and

Q Aj j� �
if Q is an absolute quantifier.

Property 2.1.2. Evaluation must be coherent with fuzzy logic in the case of
quantifiers ``exist'' and ``all''. The sentence ``Q of X are A'' with Q� $ can be
represented and evaluated using fuzzy logic asW

xi 2 X
A�xi�

with the fuzzy union performed by a t-conorm (usually the maximum), and in the
case Q � 8 the evaluation must beV

xi 2 X
A�xi�

with the fuzzy intersection performed by a t-norm.

Property 2.1.3. Evaluation must be coherent with quantifiers inclusion. Given
Q � Q0 (Q is more restrictive than Q0), Eval (``Q of X are A'') 6 Eval (``Q0 of X are
A''), where Eval (c) with c a quantified sentence is the result obtained from the
evaluation of c. Intuitively, it is more difficult to fit Q than to fit Q0 in the evaluation.

Property 2.1.4. Evaluation must be time-efficient (as much as possible). We
consider time-efficient an efficiency between O�n� and O�n logn�, n � jX j.

Property 2.1.5. Evaluation must not be too ``strict'', i.e. given a quantifier defined
over the set H � fp=qjp 2 f0; . . . ; ng; q 2 f1; . . . ; ngg, with Q 6� ; and Q 6� H ,
we must be able to find a fuzzy set A so that the evaluation of the sentence is not
in f0; 1g. The convenience of this property and the problems that can be derived if
we do not require, it can be seen in Section 3.1.

Property 2.1.6. Evaluation must allow us to use any quantifier, i.e. any possibility
distribution over the non-negative integers or over the real interval �0; 1�. There
are many quantifiers with clear semantics that fall outside the group of ``coherent
quantifiers'' used by many methods (see Section 3.2). We shall see an example in
this work.
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2.2. Properties for the evaluation of type II sentences (Q of D are A)

Property 2.2.1 (Crisp case). If A and D are crisp, then the (known) result of the
evaluation must be

Q
A \ Dj j

Dj j
� �

:

We assume Q is relative.

Property 2.2.2. In the case D � X and for relative quantifiers, the resulting
evaluation method is a valid method for the evaluation of type I sentences. Type I
sentences are, in fact, a special case of type II sentences where D � X , so in this
case the evaluation method of type II sentences must be a valid evaluation method
of type I sentences.

Property 2.2.3. Evaluation must be time-efficient (as much as possible), i.e. O�n�
or O�n logn�.

Property 2.2.4. If D � A and D is a normal set then the evaluation method must
return the value Q (1). This is an intuitive property (the percentage of D that are
A is 100%).

Property 2.2.5. If D \ A � ; then the evaluation method must return the
value Q (0). This is also an intuitive property (the percentage of D that are A is
0%).

Property 2.2.6. Evaluation must be coherent with fuzzy logic in the case of the
quantifier ``exist'' and ``all'', givingW

xi 2 X
A�xi� ^ D�xi�� �

and V
xi 2 X

D�xi�� ! A�xi��

using some t-conorm for the union and a t-norm for the intersection, and! being
a fuzzy implication.

Property 2.2.7. Evaluation must allow us to use any quantifier, i.e. any possibility
distribution over �0; 1�.
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Property 2.2.8. Evaluation must not be too ``strict'', i.e. given a quantifier
Q in the rational interval �0; 1� with Q 6� ; and Q 6� H � fp=q with
p 2 f0; . . . ; ng and q 2 f1; . . . ; ngg we must be able to find fuzzy sets A and D so
that the evaluation of the sentence is not in f0; 1g.

3. Some existing methods for the evaluation of quanti®ed sentences

Given a quanti®ed sentence of type I ``Q of X are A'', with X � fx1; . . . ; xng a
®nite crisp set and A a fuzzy set over X, the following are some existing
methods to perform the evaluation of the sentence.

3.1. Type I sentences

3.1.1. Zadeh's method
ZadehÕs method [30] is based on the use of the non-fuzzy cardinality

R-count, also called power. In the case of relative quanti®ers, the ®nal evalua-
tion is

ZQ�A� � Q
P �A�

Xj j
� �

;

where P�A� is the power of A de®ned in Section 4.1.1. For absolute quanti®ers
we have

ZQ�A� � Q P �A�k k� �;
where jP�A�j is the integer part of the real number P �A�.

This method ful®lls all properties of Section 2.1 except Properties 2.1.5 and
2.1.2. As a counterexample for Property 2.1.5, in the case of universally
quanti®ed sentences, the evaluation is 1 if and only if A � X , and 0 in any other
case. The case of the quanti®er $ is similar, the evaluation being 0 if and only if
A � ;. As a counterexample for Property 2.1.2 we have the case
A � f0=x1; 0:5=x2g for the quanti®er exists. The result obtained using ZadehÕs
method is 1, but there is no t-conorm such that 0 _ 0:5 � 1 (every t-conorm
veri®es that 0 _ a � a). For the quanti®er all, one counterexample is
A � f1=x1; 0:9=x2g. The result obtained by ZadehÕs method is 0, but there is no
t-norm such that 1 ^ 0:9 � 0 (every t-norm veri®es 1 ^ a � a). The e�ciency of
the method is O�n�, n being equal to jX j.

3.1.2. Yager's method based on OWA operators
This method de®ned in [19] only considers the case of relative and non-

decreasing quanti®ers verifying Q�0� � 0, Q�1� � 1 (the so-called ``coherent
quanti®ers''). A coherent family of quanti®ers is a set of quanti®ers
fQ1; . . . ;Qng verifying Q1 � 8, Qn � 9 and Qi � Qi�1. By Property 2.1.2,
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sentences with quanti®ers Q1 � 8 and Qn � 9 are evaluated by means of a t-
norm and a t-conorm, usually min and max. The evaluation of sentences with
other quanti®ers of a coherent family can be performed by means of an OWA
operator. Any OWA operator gives a result between min and max, and the
coe�cients of the operator are obtained from the quanti®er and the value
n � jX j in the following way, that guarantees Property 2.1.3:

wi � Q�i=n� ÿ Q��iÿ 1�=n�; i 2 f1; . . . ; ng and Q�0� � 0:

Finally, the evaluation of the sentence is

YQ�A� �
Xn

i�1

wibi;

where bi is the ith largest value of belongingness to the fuzzy set A. In the
following, this will be the meaning of bi.

This method ful®lls every property of Section 2.1 except Property 2.1.6.
Property 2.1.4 is powered if we consider that for every quanti®er Q of a co-
herent family and every value n we calculate and save the values of the coef-
®cients wi. If the values of A are arranged in descending order, the e�ciency is
O�n�. If not, the best e�ciency is O�n logn�. Although Property 2.1.6 is not
veri®ed by this method by the requirement of the quanti®er to be coherent,
sentences with some kind (not all) of non-coherent quanti®ers can be evaluated
by means of semantic equivalences with sentences where the quanti®er is the
``antonym'' of the original quanti®er and the fuzzy set is the complement of A.
This method is described in [23,13].

3.1.3. Yager's non-OWA family of methods
Yager [18] proposes to perform the evaluation of type I sentences in the

following way:

Y 0Q�A� � max
C�X
^1 Q

Cj j
n

� �
; ^2

xi2C
A xi� �

� �
:

The last expression is applied in the case of relative quanti®ers, and

Y 0Q�A� � max
C�X
^1 Q Cj j� �; ^2

xi2C
A xi� �

� �
for absolute quanti®ers. In both cases, ^1 and ^2 are two t-norms.

Some concrete members of this family of methods are studied by Yager [18].
Among them, we can remark the case where ^1 � ^2 � min. In this case, the
method obtained for relative quanti®ers is

Ym0Q�A� � max
C�X

min Q
Cj j
n

� �
; min

xi2C
A xi� �

� �
:
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The expression for absolute quanti®ers is similar. The properties of this method
will be discussed in the next section.

3.1.4. Methods based on the Choquet and the Sugeno integrals
The use of the Choquet and the Sugeno integrals for the evaluation of

quanti®ed sentences is described among others in [1,2]. As in previous methods,
the evaluation is restricted to the case of coherent quanti®ers. In the case of
relative quanti®ers, the method based on ChoquetÕs integral is de®ned by the
expression

CQ�A� �
Xn

i�1

bi � �Q�i=n� ÿ Q��iÿ 1�=n�

and the method based on SugenoÕs integral is expressed as

SQ�A� � max
16 i6 n

min�Q�i=n�; bi�;

where, as in previous cases, bi is the ith largest value of A.
The following properties hold:

Property 3.1.4.1. The method based on the Choquet integral is the OWA-based
method of Yager. This is obvious and is shown in [1,2].

Property 3.1.4.2. The method based on the Sugeno integral is the method
Ym0Q of Section 3.3, as shown in [1], and hence is a member of the family of
methods Y0Q.

Proof (Relative quantifier, for absolute quantifier is similar).

Ym0Q�A� � max
C�X

min Q
Cj j
n

� �
; min

xi2C
A xi� �

� �
� max

16 i6 n
max

Cj j�i
min Q

Cj j
n

� �
; min

xi2C
A xi� �

� �� �
� max

16 i6 n
min Q

i
n

� �
; max

Cj j�i
min
xi2C

A xi� �
� �� �

� max
16 i6 n

min Q
i
n

� �
; L A; i� �

� �
� max

16 i6 n
min Q

i
n

� �
; bi

� �
� SQ�A�;

where L�A; i� is de®ned in [6] as the possibility that ``the cardinality of A is at
least i''. In the same paper, we show that L�A; i� � bi. We give the de®nition of
L�A; i� in Section 4.1.3, Property 4.1.3.1.
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This method ful®lls Properties 2.1.2±2.1.5. The e�ciency is O�n logn� if A is
not arranged in decreasing order, and O�n� otherwise. Properties 2.1.1 and
2.1.6 are in con¯ict, because Property 2.1.1 is ful®lled only if the quanti®er is
coherent. The following is a counterexample: let X � fx1; x2; x3g and
A � f1=x1; 1=x2; 0=x3g and let Q�0� � 0; Q�1=3� � 1; Q�2=3� � 0; Q�1� � 0.
Clearly, Q is not non-decrecient, and hence Q is not coherent. We then have
SQ�A� � maxfmin�1; 1�;min�0; 1�;min�0; 0�g � 1, while jAj � 2 and then the
expected result by Property 2.1.1 must have been Q�2=3� � 0, so Property 2.1.1
is not ful®lled when Q is not coherent.

3.2. Type II sentences

The evaluation of type II sentences is slightly more complex than the eval-
uation of type I ones. There are fewer methods for type II sentences than for
type I sentences. Given a quanti®ed sentence of type II Q of D are A, with D
and A two fuzzy sets over X, X being a ®nite set, the following are some
methods to perform the evaluation of the sentence.

3.2.1. Zadeh's method
ZadehÕs method is described in [30], and can be seen as an application of the

cardinality approach. The case D � ; is not evaluable. This method obtains the
relative cardinality of A with respect to D as (see Section 4.2.1)

P �A=D� � P �A \ D�
P �D� ;

where P is the power (R-count). The intersection is usually obtained via the
minimum.

The evaluation of the sentence is, ®nally

ZQ�A=D� � Q P �A=D�� � � Q
P �A \ D�

P �D�
� �

:

It is easy to prove that ZadehÕs method veri®es Property 2.2.1. When D � X ,
we have ZQ�A=X � � ZQ�A�, so Property 2.2.2 is ful®lled. The e�ciency of the
method is O�n�, so Property 2.2.3 is also ful®lled. Properties 2.2.4, 2.2.5 and
2.2.7 are easy to prove. Property 2.2.6 is not ful®lled, because we have shown
that in the case D � X , the remaining method for the evaluation of type I
sentences is ZQ(A), and this method does not ful®ll the coherency with logic.
The same counterexamples used in Section 3.1.1 are valid here. For the same
reason, the method does not ful®ll Property 2.2.8. A counterexample similar to
that of ZadehÕs method for the evaluation of type I sentences can be shown
using the quanti®ers ``exists'' and ``all'' in the case D � X .
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3.2.2. Yager's method based on OWA
YagerÕs proposal is described in [21] and is based on the OWA operator

where the parameters wi are calculated from Q and D. This method is de®ned
for coherent and relative quanti®ers. The parameters of the OWA operator are
calculated as

wi � Q�Si� ÿ Q�Siÿ1� i 2 f1; . . . ; ng;
where

Si � 1

d

Xi

j�1

ei and d �
Xn

k�1

ek

and ek is the ith smallest value of belongingness to D and S0 � 0.
The ®nal evaluation of the sentence is

YQ�A=D� �
Xn

i�1

wici;

where ci is the ith largest value of belongingness to the fuzzy set qD _ A.
The method does not ful®ll Property 2.2.5. As a counterexample,

let A � f1=x1; 0=x2g and D � f0=x1; 0:7=x2g. Let Q � 9. The obtained result
using YagerÕs method is 0.3, while the expected value was 0. Property 2.2.4 is
not ful®lled. As a counterexample, let A � f1=x1; 0:9=x2g and D �
f1=x1; 0:5=x2g and Q�x� � x. Clearly D � A and D is normalized so the expected
value is Q�1� � 1, but the result obtained by YQ is 0.93. Property 2.2.6 is not
ful®lled by the method for the quanti®er ``exists'', and the last counterexample
is also a counterexample for this property (any t-norm t veri®es t�x; 0� �
t�0; x� � 0 and there is no t-conorm tc such that tc�0; 0� � 0:3). Property 2.2.6
for the quanti®er ``all'' is ful®lled by this method, using the minimum and the
implication qD _ A. Obviously, Property 2.2.7 is not ful®lled by this method.
YagerÕs method ful®lls the rest of properties of Section 2.2, although the e�-
ciency must be improved by storing values of wi for every tuple �Q;D; n�.

3.2.3. Method of Vila, Cubero, Medina and Pons
The main advantage of this method, described in [17], is the e�ciency O�n�,

together with a non-strict evaluation. The method uses the degree of ``orness''
de®ned by Yager [19] for coherent quanti®ers. This value is de®ned in the real
interval �0; 1� and provides the degree of neighborhood of one quanti®er to the
quanti®er $. By de®nition, orness�9� � 1 and orness�8� � 0. Any coherent
quanti®er between $ and " has associated a degree in �0; 1�. Using the orness
and the logic evaluation of the sentences ``" of D are A'' and ``$ of D are A'',
the evaluation of ``Q of D are A'' is given by

VQ�A=D� � oQ max
x2X
�D�x� ^ A�x�� � �1ÿ oQ�min

x2X
�A�x� _ �1ÿ D�x��;
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where oQ is the orness Q de®ned by

oQ �
Xn

i�1

nÿ i
nÿ 1

� �
� Q i=n� �� ÿ Q �i� ÿ 1�=n��:

This method only ful®lls Properties 2.2.3, 2.2.6 (easy to check), and 2.2.7.

4. The cardinality approach for the evaluation of sentences

Our approach for the evaluation of type I sentences is to obtain the accom-
plishment degree of a sentence by means of the degree of compatibility between
the quanti®er and the cardinality of the fuzzy set A. The mentioned approach for
the evaluation of quanti®ed sentences is used for the evaluation of type I sen-
tences. Type II sentences can be evaluated by obtaining the compatibility be-
tween the ``relative cardinality'' of A with respect to D, and the relative quanti®er
Q. The crisp relative cardinality of A with respect to D is the percentage of ele-
ments of D that are elements of A. Some of the methods described in Section 3
can be interpreted in terms of this approach as we shall see in Section 4.4.

In this approach, one method of evaluation of quanti®ed sentences is given by
three elements: the schema of representation of the cardinality of a fuzzy set, the
method of calculus of the cardinality, and the method for obtaining the com-
patibility between cardinality and quanti®er. One usual way of representing the
cardinality of a fuzzy set is by means of a scalar value, either integer or real.
Another way of representation of the cardinality of a fuzzy set is the so-called
``fuzzy cardinality''. This consists of representing the cardinality as a fuzzy set
over the non-negative integers. Several methods to calculate the cardinality
using one or another of these schemas have been developed. In Section 4.1, we
will look brie¯y at some of the most important existing methods related to
sentence evaluation, and we also describe several new recently proposed
methods. Methods for the representation and calculation of the relative cardi-
nality of fuzzy sets are also described in Section 4.2. We will brie¯y talk about
the calculus of the compatibility between cardinality and quanti®er in Section 4.3.

4.1. Cardinality of a fuzzy set

The following are some measures of the cardinality of a fuzzy set.

4.1.1. Power (R-count)
This is an example of a scalar-valued measure of the cardinality of a fuzzy

set. This measure was de®ned by De Luca and Termini. Given a fuzzy set A
over a ®nite set X � fx1; . . . ; xng, the Power of A, P �A�, is de®ned as

P �A� �
X
xi2X

A�xi�:
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4.1.2. Zadeh's ®rst method
The fuzzy cardinality Z(A) is de®ned as follows:

Z�A; k� � 0 if does not exist a jAaj � k;j
sup a jAaj � kjf g otherwise:

�

4.1.3. Method ED
This method is de®ned in [6] as a member of a more general family of

cardinalities.

De®nition 4.1.3.1. Let X � fx1; . . . ; xng and A a fuzzy set over X. First, we
de®ne the possibility that at least k elements of X belong to A, L�A; k�, as

L�A; k� �
1; k � 0
0; k > n
�

�i1;...;ik�2Ik

�A�xi1� 
 � � � 
 A�xik ��; 16 k6 n;

8><>:
where Ik is the set of k-tuples of indexes de®ned by

Ik � �i1; . . . ; ik� j i1

�
< i2 < � � � < ik with ij 2 f1; . . . ; ng 8j 2 f1; . . . ; kg	

and Å and 
 are a t-conorm and a t-norm, respectively.

Property 4.1.3.1. Let Å and 
 be the maximum and the minimum, respectively.
Then

L�A; k� � bk 8k 2 f1; . . . ; ng;
where bk is the kth largest value of belongingness of an element to the fuzzy set A.

Proof. Every t-norm is non-decreasing, so the largest value between the ex-
pressions 
bA�xi1�; . . . ;A�xik �c will be 
bb1; . . . ; bkc � bk, because we are using
the minimum as t-norm. We are using the maximum as t-conorm, so
L�A; k� � bk.

De®nition 4.1.3.2. We de®ne the possibility that exactly k elements of X belong
to A, E�A; k�, as

E�A; k� � L�A; k� 
 L�A; k � 1�;
where 
 is any t-norm and the bar stands for a fuzzy complement.

The expression of E de®nes a family of fuzzy cardinalities. Some existing
methods, such as the Dubois±Prade method, ZadehÕs FECount and RalescuÕs
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method, are proved to be members of the family E in [6]. The following is a new
method of the family E de®ned in the same paper.

De®nition 4.1.3.3. The fuzzy cardinality ED is a member of the family E that
employs the maximum and minimum in the de®nition of L and LukasiewiczÕs t-
norm and the standard negation in the de®nition of E. The expression of the
method is

ED�A; k� � bk ÿ bk�1

with b0 � 1 and bn�1 � 0.

Proof. By Property 4.1.3.1 when using max±min with L, we have L�A; k� � bk.
Using in E LukasiewiczÕs t-norm and the standard negation we have

ED�A; k� � maxfbk � �1ÿ bk�1� ÿ 1; 0g
� maxfbk ÿ bk�1; 0g
� bk ÿ bk�1: �

As pointed out in [6], this method can be interpreted as a probabilistic
measure of the cardinality of A, while other methods such as Zadeh's ®rst
method (see Section 4.1.2) are possibilistic measures.

Property 4.1.3.3. The method ED verifiesXn

i�0

ED�A; i� � 1:

Proof.Xn

i�0

ED�A; i� � �b0 ÿ b1� � �b1 ÿ b2� � �b2 ÿ b3� � � � � � �bnÿ2 ÿ bnÿ1�

� �bnÿ1 ÿ bn� � �bn ÿ bn�1�
� b0 ÿ bn�1 � 1: �

4.1.4. The Dubois±Prade method
Dubois and Prade de®ne the set of crisp representatives of a fuzzy set as

R�A� � S A1 � S � Support�A�jf g:
This set is an alternative representation of a fuzzy set by a set of crisp sets
di�erent to that of the representation theorem based on a-cuts, but verifying
the same properties. The degree of representativity of a given set S of R�A� is
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pA�S� � inf lA�u� u 2 Sjf g S 2 R�A�
0 S 62 R�A�:

�
Finally, the fuzzy cardinality of the fuzzy set A is given by

DP�A; k� � sup pA�S� Sj jjf � kg k 2 1; . . . ; nf g:
In [6], we show that one alternative de®nition of DP is as follows:

DP�A; k� � 0; k < A1j j;
bk; k P A1j j:

�

4.2. Relative cardinality of fuzzy sets

The relative cardinality of one set A with respect to a set D is a measure of
the percentage of elements of D that are also elements of A. In general, it can be
described as follows:

Rel Card �A=D� � Card �A \ D�
Card �D� :

4.2.1. Zadeh's method
Zadeh de®nes the relative cardinality of a fuzzy set A with respect to a fuzzy

set D as:

P �A=D� � P �A \ D�
P �D� ;

where P is the Power de®ned in Section 4.1.1, and the intersection is performed
by means of the minimum.

4.2.2. Method ES
This method is de®ned in [6]. Let A and D be two fuzzy sets over X, D being

a normal fuzzy set. Let

M�A� � a 2 �0; 1� 9xi 2 X such that A�xi�jf � ag
and let

M�A=D� � M�A \ D� [M�D�
and let

CR�A=D� � A \ D� �a
�� ��

Daj j such that a 2 M�A=D�
� �

:
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Then, the relative cardinality of A with respect to D, ES�A=D�, is de®ned as

ES�A=D; c� � max a 2 M�A=D� cj
�

� A \ D� �a
�� ��

Daj j
�
8c 2 CR�A=D�:

If D is not a normal fuzzy set, we ®rst normalize D and scale the fuzzy set A\D
using the same factor used in the normalization of D, before we begin the
process.

4.2.3. Method ER
This method is also de®ned in [6]. Let A and D be two fuzzy sets over X, D

being a normal fuzzy set. Let M�A=D� � fa1; . . . ; amg be the set of represen-
tative a-cuts de®ned in the last section, with 1 � a1 < a2 < � � � < am < am�1

� 0. Let

C�A=D; ai� �
j A \ D� �ai

j
jDai j:

Then, the relative cardinality of A with respect to D, ER�A=D�, is de®ned as

ER�A=D; c� �
X

c�C�A=D;ai�
ai� ÿ ai�1� 8c 2 CR�A=D�:

If D is not a normal fuzzy set, we ®rst normalize D and scale the fuzzy set A\D
using the same factor used in the normalization of D, before we begin the
process.

As pointed out in [6], this method can be interpreted as a probabilistic
measure of the relative cardinality between A and D, while method ES is a
possibilistic one.

4.3. Compatibility of fuzzy sets

The way we obtain the degree of compatibility between cardinality and
quanti®er depends on the schema we are using to represent the cardinality.
When we use a scalar value, the compatibility is obtained by evaluating the
quanti®er at the point given by the cardinality. The way we perform this must
take into account the type of the scalar value (integer or real) and the type of
quanti®er (absolute or relative). Absolute quanti®ers can be evaluated for in-
teger values, and relative quanti®ers can be evaluated for real ones. However,
we can obtain the compatibility between an integer cardinality c and a relative
quanti®er Q by evaluating Q�c=jX j�.

When we use a fuzzy set, the degree of compatibility between the cardinality
and the quanti®er is usually calculated as

�
i2 0;...;nf g

�Q�i� 
 C�A; i��
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for type I sentences with absolute quanti®ers, where C�A; i� is the possibility
that i is the cardinality of A, and 
 and Å are a t-norm and a t-conorm, re-
spectively. Similarly for type II sentences with relative quanti®ers, we have

�
c��p=q� p;q2Z

�Q�c� 
 C�A=D; c��;

where C�A=D; c� is the possibility that c is the relative cardinality of A with
respect to D, and

�
i2 0;...;nf g

�Q�i=n� 
 C�A; i��

for type I sentences with relative quanti®ers (we assume that
C�A=X ; i=n� � C�A; i�, with n � jX j).

4.4. Interpretation of some existing methods in terms of the cardinality approach

4.4.1. Zadeh's method for type I sentences
ZadehÕs method represents the cardinality of A by means of a scalar value.

The cardinality is calculated by means of the power of A (Section 4.1.1). Fi-
nally, the compatibility between cardinality and quanti®er is obtained evalu-
ating the quanti®er at the point given by the cardinality.

4.4.2. Yager's method based on OWA for type I sentences
This method (and hence the method based on the Choquet fuzzy integral)

can be interpreted in terms of the cardinality approach. The cardinality used is
the method ED of De®nition 4.1.3.3. We obtain the compatibility degree be-
tween the quanti®er and the fuzzy cardinality ED by means of the Lukasiewicz
t-conorm l�x; y� � minfx� y; 1g and the product as the t-norm. The interpr-
etation is shown in Section 5.2, Property 5.2.1 of this paper, and the obtained
method is called GD. This method is equal to YagerÕs method only for co-
herent quanti®ers, and is an extension that allows the use of any other quan-
ti®er.

4.4.3. Method based on the Sugeno fuzzy integral
This method can be interpreted as the compatibility degree between the

fuzzy cardinality of Dubois±Prade (see Section 4.1.4) and the quanti®er, by
using max±min composition as follows

SQ�A� � max
16 i6 n

min�Q�i=n�;DP�A; k��:

We assume, as does the method based on the Sugeno fuzzy integral, that the
quanti®er is coherent.
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Proof. We shall discuss two cases:
(a) Let jA1j � 0: Then, DP�A; k� � bk for all k 2 f1; . . . ; ng, so

max16 i6 n min�Q�i=n�; DP�A; i�� � max16 i6 n min�Q�i=n�; bi� � SQ�A�:
(b) Let jA1j � c > 0. Then DP�A; c� � bc � 1 and DP�A; i� � 0 for all i < c.

Then

max
16 i6 n

min�Q�i=n�;DP�A; i��

� max max
16 i<c

min�Q�i=n�;DP�A; i��; max
c6 i6 n

min�Q�i=n�;DP�A; i��
� �

� max
c6 i6 n

min�Q�i=n�;DP�A; i��:

On the other hand,

SQ�A� � max
16 i6 n

min�Q�i=n�; bi�

� max max
16 i<c

min�Q�i=n�; 1�; max
c6 i6 n

min�Q�i=n�; bi�
� �

:

As Q is coherent, Q is non-decrecient and then

max
16 i<c

min�Q�i=n�; 1� < min�Q�c=n�; bc� � min�Q�c=n�; 1�;
so

SQ�A� � max
c6 i6 n

min�Q�i=n�; bi�
� max

c6 i6 n
min�Q�i=n�;DP�A; i��

� max
16 i6 n

min�Q�i=n�;DP�A; i��: �

4.4.4. Zadeh's method for type II sentences
ZadehÕs method represents the relative cardinality of A with respect to D by

means of a scalar value. The relative cardinality is calculated by means of the
method described in Section 4.2.1. Finally, the compatibility between the relative
cardinality and the quanti®er is obtained by evaluating the quanti®er at the point
given by the cardinality, as was the case of ZadehÕs method for type I sentences.

5. New methods for the evaluation of type I sentences

5.1. The family G of methods based on the cardinality approach

This family of methods is related to the family E of cardinalities described in
De®nition 4.1.3.2. The family G of methods of evaluation of type I sentences is
given by

GQ�A� � �
i2 0;...;nf g

E�A; i�� 
 Q�i��
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for absolute quanti®ers, and

GQ�A� � �
i2 0;...;nf g

E�A; i�� 
 Q�i=n��

for relative quanti®ers. This is a direct application of the cardinality approach.

Property 5.1.1. The family G of methods verifies Property 2.1.1 of evaluation of
type I sentences.

Proof (Absolute quantifiers, for relative quantifiers is similar). If A is crisp, then
by the property of any method of the family E (see [6])

E�A; i� � 0; i 6� Aj j;
1; i � Aj j;

�
and by the properties of every t-norm

E�A; i� 
 Q�i� � 0; i 6� Aj j;
Q�i�; i � Aj j:

�
Finally, by the properties of every t-conorm

GQ�A� � Q Aj j� �: �

Property 5.1.2. The family G of methods verifies Property 2.1.6, i.e. it does not
require any property from the quantifier to be used in the evaluation.

Property 5.1.3. The family G of methods verifies Property 2.1.3, because any
t-norm and any t-conorm are non-decreasing functions in their arguments.

5.2. The method GD

This method belongs to the family G, and is based on the fuzzy cardinality
method ED of the family E (see De®nition 4.1.3.3). Using the product as the
t-norm and the Lukasiewicz t-conorm in the expression of the compatibility G,
the method GD is de®ned by

GDQ�A� �
Xn

i�0

ED�A; i� � Q�i�

for absolute quanti®ers, and

GDQ�A� �
Xn

i�0

ED�A; i� � Q�i=n�

for relative quanti®ers.
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Proof. When using product and the Lukasiewicz t-conorm, we obtain the ex-
pression

GDQ�A� � min
Xn

i�0

ED�A; i�
(

� Q�i�; 1

)
:

By Property 4.1.3.3
Pn

i�0 ED�A; i� � 1 , and obviously Q�i� 2 �0; 1� 8i and
ED�A; i� 2 �0; 1� 8i, so

Pn
i�0 ED�A; i� � Q�i�6 1, and hence GDQ�A� �Pn

i�0 ED�A; i� � Q�i�: �

The proof is similar for relative quanti®ers.

Property 5.2.1. If Q is a relative and a coherent quantifier, then

GDQ�A� � YQ�A� � CQ�A�;

i.e. the method GD is the method of Yager based on the OWA operator. As a
consequence, we can see Yager's method based on OWA as belonging to the
family G in the case of relative and coherent quantifiers. This allows us to give an
interpretation of Yager's method in terms of the cardinality approach.

Proof.

GDQ�A� �
Xn

i�0

ED�A; i� � Q�i=n�

�
Xn

i�0

bi� ÿ bi�1� � Q�i=n�

� b0� ÿ b1� � Q�0� � b1� ÿ b2� � Q�1=n� � � � � � bnÿ1� ÿ bn�
� Q��nÿ 1�=n� � bn� ÿ bn�1� � Q�1�

� fknown bn�1 � 0gb0 � Q�0� � b1 � Q�1=n�� ÿ Q�0�� � b2

� Q�2=n�� ÿ Q�1=n�� � � � � � bn � Q �n�� ÿ 1�=n� ÿ Q�1��
� fknown Q is coherent and hence Q�0� � 0g

�
Xn

i�1

bi � Q i=n� �� ÿ Q �i� ÿ 1�=n�� � YQ�A�: �

Hence the method GD can be seen as a generalization of YagerÕs method
based on OWA that can be used with any quanti®er (and hence ful®lling
Property 2.1.6). This method also ful®lls Properties 2.1.1, 2.1.3 and 2.1.6 be-
cause GD is a method of the family G, and it is easy to see that Property 2.1.5 is
also ful®lled. The e�ciency is O�n logn� if we do not have the fuzzy set A ar-
ranged in decreasing order, and O�n� otherwise. Therefore, method GD ful®lls
all properties of Section 2.1.
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5.3. The method ZS

This method is based on the cardinality approach. The fuzzy cardinality
measure used is ZadehÕs ®rst method

Z�A; k� � 0 if does not exist a jAaj � k;j
sup a jAaj � kjf g otherwise:

�
The compatibility between cardinality and quanti®er is calculated by means of
the max±min composition using the cardinality approach in the following
way:

ZSQ�A� � max
k2 0;...;nf g

min Z�A; k�;Q�k�� �

for absolute quanti®ers, and

ZSQ�A� � max
k2 0;...;nf g

min Z�A; k�;Q�k=n�� �

for relative quanti®ers.
It is easy to see that method ZS ful®lls Properties 2.1.5 and 2.1.6. Method

ZS ful®lls every property of Section 2.1, as we show by the following prop-
erties.

Property 5.3.1. The method ZS fulfills Property 2.1.1.

Proof. Let A be a crisp set. Then

Z�A; k� � 1; k � Aj j;
0; k 6� Aj j

�
and then for absolute quanti®ers we have

ZSQ�A� � Q Aj j� �

and for relative quanti®ers

ZSQ�A� � Q
Aj j
Xj j

� �
: �

Property 5.3.2. The method ZS fulfills Property 2.1.2.

Proof. The quanti®ers $ and " are de®ned as follows:

9�x� � 0; x � 0;
1 otherwise;

�
8�x� � 1; x � 1;

0 otherwise:

�
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Then

�8� ZS8�A� � max
k2 0;...;nf g

min Z�A; k�; 8�k=n�� �

� Z�A; n�
� sup a Aaj jjf � ng
� min A�xi� xi 2 Xjf g:

�9� ZS9�A� � max
k2 0;...;nf g

min Z�A; k�; 9�k=n�� �

� max
k2 1;...;nf g

min Z�A; k�; 9�k=n�� �

� max
k2 1;...;nf g

Z�A; k�

� max
k2 1;...;nf g

sup a j Aaj j� � k�

� max
k2 1;...;nf g

max A�xi� j AA�xi�
�� ��ÿ � k

�
� max A�xi� xi 2 Xjf g: �

Property 5.3.3. The method ZS fulfills Property 2.1.3 because max and min are
non-decreasing functions in their arguments.

Property 5.3.4. Let

M�A� � a 2 �0; 1� 9xij 2 X such that A�xi�f � ag [ 1f g:
Then the method ZS has the following alternative expression:

ZSQ�A� � max
a2M�A�

min a ; Q Aaj j� �� �

for absolute quantifiers, and

ZSQ�A� � max
a2M�A�

min a ; Q
Aaj j
Xj j

� �� �
for relative quantifiers. This equivalence avoids obtaining Z(A) explicitly.

Proof. Let S(A) be the support of Z(A), i.e.

S�A� � k 2 0; . . . ; nf g 9a 2 M�A� such that jAajjf � kg:
Then

ZSQ�A� � max
k2 0;...;nf g

min Z�A; k�;Q�k�� �

� max
k2S�A�

min max a jAajjf� � kg;
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Q�k�� � max
k2S�A�

max
jAaj�k

min a; Q�k�� �
� �

� max
a2M�A�

min a; Q jAaj� �� �: �

The proof for relative quanti®ers is similar. The e�ciency of the calculation
of the equivalent expression is O�n logn� if A is not arranged and O�n� oth-
erwise. Hence, method ZS ful®lls Property 2.1.4.

Property 5.3.5. If Q is a coherent quantifier, then the method ZS is the method S
based on the Sugeno integral, i.e.

ZSQ�A� � SQ�A� � Ym0Q�A�:
Hence, the method ZS can be seen as a generalization of the method S that can be
used with any quantifier (and hence fulfilling Property 2.1.6) without any conflict
with Property 2.1.1.

Proof. We shall discuss two cases:
1. Let bi 6� bj 8i; j 2 1; . . . ; nf g. Then it is easy to see that

Z�A; k� � bk8k 2 f1; . . . ; ng. Under these conditions,

ZSQ�A� � max
k2 0;...;nf g

min Z�A; k�;Q�k=n�� �

� max
k2 1;...;nf g

min Z�A; k�;Q�k=n�� �
fbecause Q is coherent and hence Q�0� � 0g

� max
k2 1;...;nf g

min bk;Q�k=n�� � � SQ�A�: �

2. Let h be the number of groups of repeated values of bi. Let li be the length
of the group i, i 2 f1; . . . ; hg. Let ci be the ®rst index of the group i. Then the
values of belongingness to A arranged in decreasing order are as follows:

fb1; . . . ; bc1
; . . . ; bc1�l1

; . . . ; bc2
; . . . ; bc2�l2

; . . . ; bch ; . . . ; bch�lh ; . . . ; bng
with bci � bci�1 � � � � � bci�liÿ1 � bci�li 8i 2 1; . . . ; hf g:

It is easy to see that

Z�A; k� �
bk; k 2 BH � f1; . . . ; c1 � l1; c2 � l2; . . .

�only ci � li� . . . ; ch � lh; . . . ; ng;
0 otherwise;

8><>:
because in fact, Z�A; k� calculate the cardinality of every a-cut of A and assigns
to that cardinality the possibility a, and all possible a-cuts of A are of the form
Abj with j 2 BH.
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Then, we have

SQ�A� � max
k2f1;::;ng

min�Q�k=n�; bk�
� max

k2BH
min�Q�k=n�; bk�
fbecause Q is coherent and hence Q is non-decrecientg

� max
k2BH

min�Q�k=n�; Z�A; k��
� max

k2f1;...;ng
min�Q�k=n�; Z�A; k��

� fbecause if Z�A; k� � 0;min�Q�k=n�; Z�A; k�� � 0

and the final maximum calculation does not changeg
� max

k2f0;...;ng
min�Q�k=n�; Z�A; k��

� fbecause Q is coherent and henceQ�0� � 0;

and therefore the maximum does not changeg
� ZSQ�A�: �

The following is a counterexample for the case where Q is not a coherent
quanti®er. Let A � f1=x1; 1=x2; 0:2=x3g and Q�0� � 0;Q�1=3� � 0:8;Q�2=3� �
0:5;Q�1� � 0:2. Clearly, Q is not coherent. Then Z�A� � f0=0; 0=1; 1=2; 0:2=3g.
It is easy to check that ZSQ�A� � 0:5 while SQ�A� � 0:8.

5.4. Some examples of application of the discussed methods

We shall use the following ®ve quanti®ers (Fig. 1), that can be de®ned as
follows:

Fig. 1. Five relative quanti®ers.
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All�x� � 0; x < 1;
1; x � 1;

�
Exists�x� � 0; x � 0;

1; x > 0;

�
Most�x� � x:

Half�x� � 2� x; x < 0:5;
2� �1ÿ x�; x P 0:5;

�
At Least Half�x� � 2� x; x < 0:5;

1; x P 0:5:

�
The quanti®er Half must be interpreted as ``approximately half'', and is not
coherent. The remaining four quanti®ers are coherent. Because of this, meth-
ods that work with coherent quanti®ers will not be used for the quanti®er Half.

Example 5.4.1. Let A be the fuzzy set of Fig. 2. The results obtained using some
of the methods and the ®ve quanti®ers de®ned before are shown in Table 1.

A � f0:8=x1; 0:66=x2; 0:58=x3; 0:54=x4; 0:43=x5; 0:4=x6g:
We can see that ZQ is a strict method for the quanti®ers Exists and All. The
value for SQ is calculated for the quanti®er Half although this method is not
de®ned for working with non-coherent quanti®ers. Method YQ cannot be
evaluated for the quanti®er Half. Moreover, we can see that for
Q �Most; ZQ�A� � YQ�A� � GDQ�A�. We can show that this equality always
holds.

Fig. 2. Fuzzy set A for Example 5.4.1.

Table 1

Evaluation of Example 5.4.1

Method Quanti®er

All Exists Most Half At Least Half

ZQ(A) 0 1 0.5683 0.863 1

YQ�A� � CQ�A� 0.4 0.8 0.5683 ± 0.68

GDQ(A) 0.4 0.8 0.5683 0.223 0.68

Ym0Q�A� � SQ�A� 0.4 0.8 0.54 0.66 0.66

ZSQ(A) 0.4 0.8 0.54 0.66 0.66
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Proof. First, we have shown that if Q is coherent, YQ�A� � GDQ�A�. As ``Most''
is coherent, this part is done. Secondly, let Q �Most; i:e: Q�x� � x. Then we
have ZQ�A� � �P �A�=n� � P �A�=n and

YQ�A� �
X

biwi

and

wi � Q�i=n� ÿ Q��iÿ 1�=n� � �i=n� ÿ ��iÿ 1�=n� � 1=n8i;
so

YQ�A� � �1=n�
X

bi � P �A�=n � ZQ�A�: �

Example 5.4.2. Let A be the fuzzy set de®ned in Fig. 3. The results obtained
using some of the methods and the ®ve quanti®ers de®ned before are shown in
Table 2.

A � f1=x1; 1=x2; 1=x3; 1=x4; 1=x5; 0:9=x6g:
We have calculated again the value for SQ(A) with Q�Half and in this ex-
ample we can see that this method is not appropriate for evaluating non-
coherent quanti®ers like Half, because it is obvious that there are more than
three elements (the half) in A, so the evaluation cannot be 1.

Fig. 3. Fuzzy set A for Example 5.4.2.

Table 2

Evaluation of Example 5.4.2

Method Quanti®er

All Exists Most Half At Least Half

ZQ(A) 0 1 0.983 0.033 1

YQ�A� � CQ�A� 0.9 1 0.983 ± 1

GDQ(A) 0.9 1 0.983 0.033 1

Ym0Q�A� � SQ�A� 0.9 1 0.9 1 1

ZSQ(A) 0.9 1 0.9 0.33 1
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Example 5.4.3. Let A be the fuzzy set de®ned in Fig. 4. The results obtained
using some of the methods and the ®ve quanti®ers de®ned before are shown in
Table 3.

A � f0:5=x1; 0:5=x2; 0:5=x3; 0:5=x4; 0:5=x5; 0:5=x6g:

This example shows that ZQ can o�er a strict evaluation even with quanti®ers
distinct of All and Exists. In this case, for the quanti®er Half we have
P �A�=n � 3=6 � 0:5 and Half�0:5� � 1, but it seems to be clear that the fuzzy
set A can only have 0 or 6 elements, because if we consider that for example
x1 2 A, then x2 2 A because A�x1� � A�x2�, x3 2 A because A�x1� � A�x3�, etc.
and the same consideration holds if x1 62A, so we cannot say that there are
exactly 3 elements of A. One interpretation of this behaviour of ZQ can be that
the cardinality P(A) has problems when adding several little values, because it
obtains a value of cardinality that can be unrealistic (in this case, P �A� � 3).
These problems can a�ect the behaviour of ZQ. As the fuzzy cardinalities ED
and ES used by GDQ and ZSQ only consider 0 and 6 as possible cardinalities of
A and Q�0� � Q�6� � 0 when Q�Half, then the evaluation obtained is 0, and
that seems to be reasonable. For more discussion about the properties of the
discussed cardinalities see [6].

Fig. 4. Fuzzy set A for Example 5.4.3.

Table 3
Evaluation of Example 5.4.3

Method Quanti®er

All Exists Most Half At Least Half

ZQ(A) 0 1 0.5 1 1

YQ�A� � CQ�A� 0.5 0.5 0.5 ± 0.5

GDQ(A) 0.5 0.5 0.5 0 0.5

Ym0Q�A� � SQ�A� 0.5 0.5 0.5 0.5 0.5

ZSQ(A) 0.5 0.5 0.5 0 0.5
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We can also see that ZQ is strict for the coherent quanti®er ``At least the
half'' in this example, due to the same reasons as in the case of ``Half''. We can
see again that SQ is not appropriate when using Q�Half.

6. New methods for the evaluation of type II sentences

6.1. Generalization of the method GD to type II sentences

A ®rst attempt to generalize the method GD to type II sentences was pro-
posed in [4] and it was called G. The aim of this method is to provide a non-
strict method (Property 2.2.8) that ful®lls Properties 2.2.2 (when D � X , we
have the method GD for type I sentences), 2.2.3 �O�n logn��, and 2.2.6 (co-
herent with logic). First, we de®ne the fuzzy set f �A=D;Q� as

lf �A=D;Q��xi� � oQ�D�xi� ^ A�xi�� � �1ÿ oQ��D�xi� ! A�xi��
and the evaluation of the sentence Q of D are A is obtained from the evaluation
of the sentence ``Q of X are f �A=D;Q�'' using the method GD of Section 4.2, i.e.

GQ�A=D� � GDQ�f �A=D;Q��:
However, this method does not ful®ll all the properties of Section 2.2. More-
over, this method was not based on the cardinality approach.

The generalized method GD is de®ned as the compatibility between the
fuzzy relative cardinality ER and the quanti®er Q by means of the product and
the Lukasiewicz's t-conorm as follows:

GDQ�A=D� �
X

c2CR�A=D�
ER�A=D; c� � Q�c�:

Property 6.1.1. The method GD verifies Property 2.2.1.

Proof. Let A and D be two crisp sets. Then, by de®nition M(A/D)� {1} so
m� 1 and a1 � 1 and a2 � 0 and then CR�A=D� � fC�A=D; 1�g i.e.

CR�A=D� � A \ Dj j
Dj j

� �
:

Therefore, ER�A=D; c� � 0 8c 6� C�A=D; 1� and

ER�A=D� � 1
jA \ Dj
jDj

�� �
and ®nally

GDQ�A=D� � Q
A \ Dj j

Dj j
� �

: �
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Property 6.1.2. The method GD for the evaluation of type II sentences in the case
D � X is the method GD for the evaluation of type I sentences described in
Section 5.2, and hence fulfills Property 2.2.2.

Proof. We have proved in [6] that if D � X then

ER A=X ;
k
n

� �
� ED�A; k�:

Then we have

GDQ�A=X � �
X

c2CR�A=D�
ER�A=X ; c� � Q�c�

�
X

k2f0;...;ng
ER�A=X ; k=n� � Q�k=n�

fbecause jX j � n and if c � k=n 62 CR�A=X �
then ER�A=X ; c� � 0g

�
X

k2f0;...;ng
ED�A; k� � Q�k=n� � GDQ�A�: �

Property 6.1.3. The method GD has the equivalent expression

GDQ�A=D� �
X

ai2M�A=D�
�ai ÿ ai�1� � Q�C�A=D; ai�

so the efficiency of the method is O�n� if A and D are arranged in decreasing
order, and O�n logn� otherwise. This equivalent expression avoids calculating
ER (A/D) explicitly; moreover, GD fulfills Property 2.2.3.

Proof.

GDQ�A=D� �
X

c2CR�A=D�
ER�A=D; c� � Q�c�

�
X

c2CR�A=D�

X
c�C�A=D;ai�

�ai

 
ÿ ai�1�

!
� Q�c�

�
X

c2CR�A=D�

X
c�C�A=D;ai�

�ai ÿ ai�1� � Q�C�A=D; ai��
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� fby definition of CR �A=D�;
every c has associated at least one aig

�
X

ai2M�A=D�
�ai ÿ ai�1� � Q�C�A=D; ai��: �

Property 6.1.4. The method GD fulfills Property 2.2.4.

Proof. Let D Í A. Then A \ D � D and hence M�A=D� � M�D� and 12M(D)
(D is normalized). Moreover, CR�A=D� � f1g and hence ER�A=D� � f1=1g, so
®nally GDQ�A=D� � Q�1�: �

Property 6.1.5. The method GD fulfills Property 2.2.5.

Proof. Let A \ D � ;. Then, M�A=D� � M�D� and 12M(D) (D is normalized).
Moreover, CR�A=D� � f0g and hence ER�A=D� � f1=0g, so ®nally
GDQ�A=D� � Q�0�: �

Property 6.1.6. The method GD fulfills Property 2.2.6 for the quantifier $ by
means of the t-conorm max and the t-norm min, i.e.

GD9�A=D� � max
xi2X

min A�xi�;D�xi�� �:

Proof. We shall proceed in two steps:

($.1) Firstly, we will show that

ER�A=D; 0� � 1ÿmax
xi2X

min A�xi�;D�xi�� �:

By de®nition of M(A/D), maxxi2X min A�xi�;D�xi�� � � max�A \ D� 2 M�A=D�.
So, 9j 2 f1; . . . ;mg such that max�A \ D� � aj.

Let i < j. Then, �A \ D� � ;, so A \ D� �aj

��� ��� � 0 and hence C�A=D; aj� � 0.

Let i P j. Then �A \ D� 6� ; and hence C�A=D; aj� > 0. Then

ER�A=D; 0� �
X

C�A=D;ai��0

�ai ÿ ai�1� �
X
i<j

�ai ÿ ai�1�

� �a1 ÿ a2� � �a2 ÿ a3� � � � � � �ajÿ1 ÿ aj� � �a1 ÿ aj�
� 1ÿ aj � 1ÿmax�A \ D�
� 1ÿmax

xi2X
min A�xi�;D�xi�� �:
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($.2) Secondly, we have

GD9�A=D� �
X

c2CR�A=D�
ER�A=D; c� � 9�c�

�
X

c2CR�A=D�; c>0

ER�A=D; c�

�
X

c2CR�A=D�
ER�A=D; c�

 !
ÿ ER�A=D; 0�

� fER is a probabilistic measureg

� 1ÿ 1

�
ÿmax

xi2X
min A�xi�;D�xi�� �

�
� max

xi2X
min A�xi�;D�xi�� �: �

For the quanti®er ", we have

GD8�A=D� �
X

C�A=D;ai��1

ai� ÿ ai�1�;

i.e. the probability that the relative cardinality of A with respect to D is 1, and
hence the probability that D Í A. At this moment, we conjecture that this value
can be expressed as Property 2.2.6 requires, we hope to o�er a proof of this
conjecture in a future paper.

Property 6.1.7. The method GD fulfills Property 2.2.7, i.e. any quantifier can be
used and there is no conflict with any other property.

Property 6.1.8. The method GD fulfills Property 2.2.8.

Proof. We must ®nd fuzzy sets A and D so that the evaluation of the sentence is
not crisp.
1. If Q is not crisp, then two integers exist p < q so that 0 < Q�p=q� < 1. Let

c � p=q. We de®ne A and D as follows: A � f1=x1; . . . ; 1=xp; 0=xp�1;
. . . ; 0=xng and D � f1=x1; . . . ; 1=xP ;1=xp�1; . . . ; 1=xq; 0=xq�1; . . . ; 0=xng. Then
M�A=D� � f1g; CR�A=D� � fcg; ER�A=D� � f1=cg and GDQ�A=D�
� Q�c� with 0 < Q�c� < 1:

2. If Q is crisp, then let Q�0� � w 2 f0; 1g. As Q 6� ; and Q ¹ [0, 1], then two
integers exist p < q so that Q�p=q� � 1ÿ w (i.e. if Q�0� � 0 then
Q�p=q� � 1 and if Q�0� � 1 then Q�p=q� � 0). Let 0 < a < 1 and let
c � p=q. Then, let A and D be the following: A � fa=x1; . . . ; a=xp;
0=xp�1; . . . ; 0=xng and D � f1=x1; . . . ; 1=xp; 1=xp�1; . . . ; 1=xq; 0=xq�1; . . . ;
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0=xng. Then, M�A=D� � f1; ag, and CR�A=D� � f0; p=qg, and ®nally
ER�A=D� � f�1ÿ a�=0; a=cg, so ®nally GDQ�A=D� � w� �1ÿ a� ��1ÿ w�
�a, i.e. if w � 0 then GDQ�A=D� � a, and if w � 1 then GDQ�A=D� �
1ÿ a , with 0 < a < 1 and 0 < �1ÿ a� < 1: �

6.2. A possibilistic method for the evaluation of type II sentences

This method was described in [5]. It is based on the cardinality approach,
and uses the relative cardinality ES described in Section 4.2.2. The resulting
method, also called ZS, is de®ned as follows

ZSQ�A=D� � max
c2CR�A=D�

min ES�A=D; c�;Q�c�� �

i.e. the cardinality approach using max±min composition to obtain the com-
patibility between the (fuzzy) relative cardinality and the quanti®er.

Property 6.2.1. The method ZS verifies Property 2.2.1.

Proof. Let A and D be two crisp sets. Then, by de®nition M(A/D)� {1} and
then

CR�A=D� � A \ Dj j
Dj j

� �

therefore

ES�A=D� � 1
jA \ Dj
jDj

�� �
and ®nally

ZSQ�A=D� � Q
A \ Dj j

Dj j
� �

:

Property 6.2.2. The method ZS for the evaluation of type II sentences in the case
D � X is the method ZS for the evaluation of type I sentences described in
Section 5.3, and hence fulfills Property 2.2.2.

Proof. We have proved in [6] that if D � X then

ES A=X ;
k
n

� �
� Z�A; k�:
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Let S(A) be the support of A. Then

ZSQ�A=X � � max
c2CR�A=X �

min ES�A=X ; c�;Q�c�� �

� max
k2S�A�

min ES A=X ;
k
n

� �
;Q�k=n�

� �
� max

k2S�A�
min Z�A; k�;Q�k=n�� �

� max
k2 0;...;nf g

min Z�A; k�;Q�k=n�� � � ZSQ�A�: �

Property 6.2.3. The method ZS has the equivalent expression

ZSQ�A=D� � max
a2M�A=D�

min a;Q
�A \ D�a
�� ��

Daj j
� �� �

so the efficiency of the method is O�n� if A and D are arranged in decreasing
order, and O�n logn� otherwise. This equivalent expression avoids calculating
ES(A/D) explicitly; moreover, ZS fulfills Property 2.2.3.

Proof. Analogous to Property 5.3.4.

ZSQ�A=D� � max
c2CR�A=D�

min ES�A=D; c�;Q�c�� �

� max
c2CR�A=D�

min max a 2 M�A=D� c

������
� A \ D� �a
�� ��

Daj j
�
; Q�c�

�
� max

c2CR�A=D�
max

c� A\D� �aj j
Daj j

min a;Q�c�� �

� max
a2M�A=D�

min a;Q
A \ D� �a
�� ��

Daj j
� �� �

: �

Property 6.2.4. The method ZS fulfills Property 2.2.4.

Proof. Let D Í A. Then A \ D � D and hence M�A=D� � M�D� and 1 2 M�D�
(D is normalized). Moreover, CR�A=D� � f1g and hence ES�A=D� � f1=1g, so
®nally ZSQ�A=D� � Q�1�: �

Property 6.2.5. The method ZS fulfills Property 2.2.5.

Proof. Let A \ D � ;. Then, M�A=D� � M�D� and 1 2 M�D� (D is normalized).
Moreover, CR�A=D� � f0g and hence ES�A=D� � f1=0g, so ®nally
ZSQ�A=D� � Q�0�: �
Property 6.2.6. The method ZS fulfills Property 2.2.6 for the quantifiers $ and ".
In the first case, by means of the t-conorm max and the t-norm min, i.e.
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ZS9�A=D� � max
xi2X

min A�xi�;D�xi�� �:

In the second case, by means of the t-norm min and a family of implications

ZS8�A=D� � a � min
xi2X

Ia D�xi�;A�xi�� �;

where Ia�d; a� is defined by

Ia�d; a� �
1; d 6 max�a; a�; d < 1;
a; a6 a < d < 1;
a otherwise:

8<:
We will show that Ia is a fuzzy implication for all a2 [0, 1] in Appendix A.

Proof.

�9� ZS9�A=D� � max
a2M�A=D�

min a ; 9 �A \ D�a
�� ��

Daj j
� �� �

� max a 2 M�A=D� �A \ D�a 6� ;
��� 	

� max
xi2X

�A \ D��xi�f g
� max

xi2X
min A�xi�;D�xi�� �f g:

�8� Let X 1 � x 2 X j A�x� < D�x�f g and let X 2 � X n X 1: We will make the
proof in four steps :
�8:1� Firstly; we will show that 9x0 2 X so that ZS8�A=D� � A�x0�:

· Let ZS8�A=D� � 1: Then A1 � D1 6� ; and 9x0 2 X so that A�x0� � D�x0� �
1 � ZS8�A=D�:

· Let ZS8�A=D� < 1: Then X 1 6� ; �if X 1 � ; then D � A and by Property
6:2:4; ZS8�A=D� � 8�1� � 1� and

ZS8�A=D� � max
a2M�A=D�

min a; 8 A \ D� �a
�� ��

Daj j
� �� �

� max a 2 M�A=D�j �A \ D�a � Da

� 	
� max

x2X
a 2 a�x�; d�x�f g such that �A \ D�a � Da

� 	
� max

x2X
a 2 a�x�; d�x�f g such that �AjX 1 \ DjX 1�a [ �AjX 2 \ DjX 2�a
�

� �DjX 1�a [ �DjX 2�ag:

By de®nition of X 2; AjX 2 \ DjX 2 � DjX 2 so we can say ZS8�A=D� �
maxx2X 1fa 2 fa�x�; d�x�g such that �AjX 1 \ DjX 1�a � �DjX 1�ag. We know
A�x� < D�x�8x 2 X 1; so ZS8�A=D� � maxx2X 1fa � a�x� such that �AjX 1 \ DjX 1�a
� �DjX 1�ag and x0 � maxx2X 1fa�x�j �AjX 1\DjX 1�a � �DjX 1�ag:
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�8:2� Secondly, we will show that if ZS8�A=D� � a then
minx2XfIa�D�x�;A�x��gP a.

Let us suppose minx2XfIa�D�x�;A�x��g � A�x1� < a: Then by de®nition of
Ia; D�x1� � 1: But then x1 2 D1 and hence x1 2 Da: By de®nition of
a; Aa \ Da � Da; so x1 2 Aa; and hence A�x1�P a (contradiction), so we con-
clude minx2XfIa�D�x�;A�x��gP a:
�8:3� Thirdly, we will show that 9x0 2 X so that if ZS8�A=D� � a then

Ia�D�x0�;A�x0�� � a:
· Let a � 1: Then by �8:1� 9x0 2 X so that A�x0� � D�x0� � 1: Then,

Ia�D�x0�;A�x0�� � I1�1; 1� � 1 � a:
· Let a < 1: Then by �8:1� 9x0 2 X 1 � X so that A�x0� � a: As

x0 2 X 1; A�x0� < D�x0�; so we have A�x0� � a < D�x0�:
1. Let D�x0� � 1: Then, Ia�D�x0�;A�x0�� � Ia�1; a� � a:
2. Let D�x0� < 1: Then we have A�x0� � a < D�x0� < 1; so by de®nition
Ia�D�x0�;A�x0�� � a:

�8:4� Finally, we have shown in �8:2� that minx2XfIa�D�x�;A�x��gP a and in
�8:3� that 9x0 2 X so that if ZS8�A=D� � a then Ia�D�x0�;A�x0�� � a; so we have
ZS8�A=D� � a � minxi2X Ia�D�xi�;A�xi��: �

Property 6.2.7. The method ZS fulfills Property 2.2.7, i.e. any quantifier can be
used and there is no conflict with any other property, except in the case of a crisp
quantifier verifying Q�0� � Q�1� � 1, as will be discussed in Property 6.2.8.

Property 6.2.8. The method ZS fulfills Property 2.2.8 except in the case that Q is
a crisp quantifier and Q�0� � Q�1� � 1.

Proof. We must ®nd fuzzy sets A and D so that the evaluation of the sentence is
not crisp.
1. If Q is not crisp, then two integers exist p < q so that 0 < Q�p=q� < 1. Let

c � p=q. We de®ne A and D as follows: A � f1=x1; . . . ;
1=xp;0=xp�1; . . . ; 0=xng and D � f1=x1; . . . ; 1=xp; 1=xp�1; . . . ; 1=xq;0=xq�1; . . . ;
0=xng. Then M�A=D� � f1g, CR�A=D� � fcg, ES�A=D� � f1=cg and
ZSQ�A=D� � Q�c�:

2. If Q is crisp and Q�0� < 1, then we consider two cases:
(a) Q�0� > 0. Then we de®ne A � ; and D � X � f1=x1; . . . ; 1=xng. Hence
M�A=D� � f1g; CR�A=D� � f0g; ES�A=D� � f1=0g and ZSQ�A=D� � Q�0�:
(b) Q�0� � 0. By hypothesis of Property 2.2.8, Q 6� ; and hence two
integers exist p < q so that Q�p=q� � 1 (Q is crisp). Let c � p=q
and let 0 < a < 1. We de®ne A and D as follows: A � fa=x1; . . . ; a=xp;
0=x� p � 1; . . . ; 0=xng and D � f1=x1; a=x2; . . . ; a=xp; a=xp�1; . . . ; a=xq;0=xq�1;
. . . ; 0=xng. Then M�A=D� � f1; ag; CR�A=D� � f0; cg;ES�A=D� � f1=0; a=cg
and ZSQ�A=D� � maxfmin�1;Q�0��; min�a;Q�c��g � min�a;Q�c�� � a:
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3. If Q is crisp and Q�1� < 1 then we consider two cases:
(a) Q�1� > 0. Then we de®ne A � D � Xf1=x1; . . . ; 1=xng. Then
M�A=D� � f1g; CR�A=D� � f1g; ES�A=D� � f1=1g and ZSQ�A=D� � Q�1�:
(b) Q�1� � 0. By hypothesis of Property 2.2.8, Q 6� ; and hence two
integers exist p < q so that Q�p=q� � 1 (Q is crisp). Let c � p=q and let
0 < a < 1. We de®ne A and D as follows: A � f1=x1; a=x2 . . . ; a=xp;0=xp�1

; . . . ; 0=xng and D � f1=x1; a=x2; . . . ; a=xp;a=xp�1; . . . ; a=xq;0=xq�1; . . . ; 0=xng:
Then M�A=D� � f1; ag; CR�A=D� � f1; cg; ES�A=D� � f1=1; a=cg and
ZSQ�A=D� � maxfmin�1;Q�1��; min�a;Q�c��g � min�a;Q�c�� � a: �

The question is, what could be the semantic of a crisp quanti®er having
Q�0� � Q�1� � 1? We think that this strange case will not be used in practice,
so that this ``exception'' does not a�ect the ful®llment of Property 6.2.8 by the
method ZS.

6.3. Some examples of application of the discussed methods

We shall use the quanti®ers of Fig. 1, as in Section 5.4.

Example 6.3.1. Let A and D be the fuzzy sets de®ned in Fig. 5. The results
obtained using some of the methods and the ®ve quanti®ers de®ned before are
shown in Table 4.

A � f1=x1; 1=x2; 1=x3; 1=x4; 1=x5; 0:9=x6g
D � f0:3=x1; 0:4=x2; 0:8=x3; 1=x4; 0:1=x5; 0:2=x6g:

In this example, D Í A and D is normalized, so for every quanti®er Q the ex-
pected result is Q (1), i.e. All (1)� 1, Exists (1)� 1, Most (1)� 1, Half (1)� 0
and At Least Half (1)� 1. We can see that only ZQ, GDQ and ZSQ verify this
property in general. The rest of the methods fail in this example for quanti®ers
All and Most.

Fig. 5. Fuzzy sets A and D of Example 6.3.1.
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Example 6.3.2. Let A and D be the fuzzy sets de®ned in Fig. 6. The results
obtained using some of the methods and the ®ve quanti®ers de®ned before are
shown in Table 5.

A � f0=x1; 0=x2; 0=x3; 1=x4; 1=x5; 1=x6g;
D � f1=x1; 1=x2; 0:1=x3; 0=x4; 0=x5; 0=x6g:

In this example, we can see that method YQ does not ful®ll Properties 2.2.6-$
and 2.2.5, because as A \ D � ; then the evaluation must be Q (0), and we have
All (0)�Exists (0)�Most (0)�Half (0)�At Least Half (0)� 0.

Fig. 6. Fuzzy sets A and D of Example 6.3.2.

Table 4

Evaluation of Example 6.3.1

Method Quanti®er

All Exists Most Half At Least Half

ZQ(A/D) 1 1 1 0 1

YQ(A/D) 0.9 1 0.964 ± 1

VQ(A/D) 0.9 1 0.95 ± 0.98

GDQ(A/D) 1 1 1 0 1

ZSQ(A/D) 1 1 1 0 1

Table 5

Evaluation of Example 6.3.2

Method Quanti®er

All Exists Most Half At Least Half

ZQ(A/D) 0 0 0 0 0

YQ(A/D) 0 0.9 0.042 ± 0.085

VQ(A/D) 0 0 0 ± 0

GDQ(A/D) 0 0 0 0 0

ZSQ(A/D) 0 0 0 0 0
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Example 6.3.3. Let A and D be the fuzzy sets de®ned in Fig. 7. This example
has been extracted from [21]. The results obtained using some of the methods
and the ®ve quanti®ers de®ned before are shown in Table 6.

A � f0:8=x1; 0:4=x2; 0:9=x3; 1=x4; 1=x5g;
D � f0:6=x1; 0:3=x2; 1=x3; 0=x4; 0:1=x5g:

In this example we can see that ZQ is too strict with the quanti®er All.

7. Conclusions and future works

In this paper, we propose a (not closed) set of appropriate properties to be
ful®lled by any method of evaluation of type I and type II sentences. We have
discussed some existing methods from this point of view. For type I sentences,
some of the existing methods are satisfactory with respect of most of the
properties related to the evaluation, although they are restricted to relative and
coherent quanti®ers. For type II sentences, the existing methods are not
satisfactory in the evaluation, and are also restricted to coherent quanti®ers (as
we discussed in Section 1, type II sentences are evaluated only for relative

Fig. 7. Fuzzy sets A and D of Example 6.3.3.

Table 6

Evaluation of Example 6.3.3

Method Quanti®er

All Exists Most Half At Least Half

ZQ(A/D) 0 1 0.95 0.1 1

YQ(A/D) 0.7 1 0.775 ± 0.85

VQ(A/D) 0.7 0.9 0.8 ± 0.86

GDQ(A/D) 0.9 0.9 0.9 0 0.9

ZSQ(A/D) 0.9 0.9 0.9 0 0.9
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quanti®ers). We have chosen the cardinality approach to obtain new methods
that ful®ll all the properties we have considered, and we have also interpreted
these methods in terms of the cardinality approach.

We have shown that our method GD for type I sentences is a generalization
of YagerÕs method based on OWA (that is, the method based on the Choquet
fuzzy integral) that allows the use of any quanti®er, wether coherent or not,
and that can be used with absolute quanti®ers. We have also shown that our
method ZS for type I sentences is a generalization of the method based on the
Sugeno fuzzy integral that allows using the same quanti®ers as GD. Both
methods GD and ZS ful®ll Properties 2.1.1±2.1.6 for every absolute and rel-
ative quanti®er. These methods use some new de®nitions of fuzzy cardinality
de®ned in [6]. Another contribution has been an interpretation of the method
based on the Sugeno integral by means of the cardinality approach using
Dubois±Prade fuzzy cardinality and max±min composition.

Our contribution for the evaluation of type II sentences are the methods ZS
and GD for type II sentences, which are e�cient and non-strict methods of
evaluation, ful®lling Properties 2.2.1±2.2.8 that we propose for every relative
quanti®er. They are also based on the cardinality approach, using new
de®nitions of fuzzy relative cardinality proposed in [6]. Tables 7 and 8 show the
methods discussed and proposed in this paper together with the proper-
ties ful®lled by each one. An ``X'' means that the method ful®lls the property.

Type I sentences: As we discussed before, the e�ciency of the methods GD
and ZS can be improved to O�n� if the fuzzy set A is arranged in non-increasing
order.

Table 7

Properties of type I sentences evaluation methods

Method 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6

Zadeh X X O�n� X

Yager-OWA X X X O�n log n� X

GD X X X O�n logn� X X

ZS X X X O�n logn� X X

Table 8

Properties of type II sentences evaluation methods

Method 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6.-$ 2.2.6.-" 2.2.7 2.2.8

Zadeh X X O�n� X X X

Yager X X O�n logn� X X

Vila O�n� X X X

GD X X O�n logn� X X X ? X X

ZS X X O�n logn� X X X X X X
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Type II sentences: The same consideration can be made with respect to the
e�ciency and the ordering of the fuzzy sets A and D. The e�ciency of the
methods GD and ZS is O�n� if D and A are arranged in non-increasing order.

We have developed two methods for every type of quanti®ed sentence, one
probabilistic method (GD) and one possibilistic method (ZS) that generalize
the existing probabilistic (Choquet) and possibilistic (Sugeno) approaches for
the evaluation of type I sentences to type II sentences and any type of quan-
ti®er. These methods are based on new de®nitions of fuzzy cardinalities that are
also related in terms of generalization. Schema (Fig. 8) shows the relation
between the methods and between the cardinalities. The meaning of the arrows
X ® Y is ``X generalizes Y''.

Future works will focus on the e�cient implementation of the new methods
proposed and its use in database tasks and applications such as ¯exible query
and data mining, where some new models which we are developing are based
on the evaluation of quanti®ed sentences. Another future work will be to ®nd
the relation between method GD and Property 2.2.6-".

Appendix A

We will show that the family of functions Ia de®ned in Property 6.2.6 is a
family of fuzzy implications. One fuzzy implication is a function with
�0; 1� � �0; 1� ! �0; 1� verifying the following ®ve properties (see [16]):
1. Let c6 b. Then, I�c; x�P I�b; x�;
2. Let c6 b. Then, I�x; c�6 I�x; b�;
3. I�0; x� � 1;

Fig. 8. Relations among methods of evaluation, with their corresponding cardinalities.
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4. I�1; x� � x;
5. I�b; I�c; x�� � I�c; I�b; x��:

The family Ia is de®ned as follows:

Ia�d; a� �
1; d 6 max�a; a�; d < 1;
a; a6 a < d < 1;
a otherwise;

8<:
where a2 [0, 1].

Property A.1. Let c6 b. Then, we consider three cases:
(a) Let Ia�c; x� � 1. Then it is obvious that I�c; x�P I�b; x�:
(b) Let Ia�c; x� � a. Then, x 6 a < c< 1, so x 6 a < b 6 1.

If b� 1 then Ia(b,x)� x 6 a� Ia(c,x).
If b < 1 then x 6 a < b < 1 so Ia(b,x)� a� Ia(c,x).

(c) Let Ia�c; x� � x. There are only two possibilities:
If c � 1 then b � 1 and then Ia�b; x� � x � Ia�c; x�:
If c < 1 and c > a and x > a, then b > a and then Ia�b; x� � x � Ia�c; x�:

Property A.2. Let c6 b. Then, we consider three cases:
(a) Let Ia�x; b� � 1. Then it is obvious that I�x; b�P I�x; c�:
(b) Let Ia�x; b� � a. Then c 6 b 6 a < x < 1, so Ia�x; b� � a � Ia�x; c�:
(c) Let Ia�x; b� � b. Then there are three possibilities:

If x � 1 then Ia�x; c� � c6 b � Ia�x; b�:
If x < 1 and x > a and b P c > a then Ia�x; c� � c6 b � Ia�x; b�:
If x < 1 and x > a and b P aP c then Ia�x; c� � a6 b � Ia�x; b�:

Property A.3. Ia�0; x� � 1 because 06 max�x; a� and 0 < 1:

Property A.4. Ia�1; x� � x because if d � 1 then Ia�d; a� � a:

Property A.5. We must prove that Ia�b; Ia�c; x�� � Ia�c; Ia�b; x��. We shall con-
sider six cases:

1. Let Ia�c; x� � Ia�b; x� � 1. Then, Ia�b; Ia�c; x�� � Ia�b; 1� � 1 and
Ia�c; Ia�b; x�� � Ia�c; 1� � 1:

2. Let Ia�c; x� � 1 and let Ia�b; x� � x < 1. Then, Ia�b; Ia�c; x�� � Ia�b; 1� � 1
and Ia�c; Ia�b; x�� � Ia�c; x� � 1:

3. Let Ia�c; x� � Ia�b; x� � x < 1. Then Ia�b; Ia�c; x�� � Ia�b; x� � x and
Ia�c; Ia�b; x�� � Ia�c; x� � x:

4. Let Ia�c; x� � 1 and let Ia�b; x� � a < 1. Then, Ia�b; Ia�c; x�� � Ia�b; 1� � 1.
On the other hand, Ia�c; x� � 1 so c6 max�x; a� and c < 1. Moreover,
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Ia�b; x� � a so x6 a < b < 1 and hence max�x; a� � a < 1, so we have
c6 max�a; a� and c < 1 so Ia�c; Ia�b; x�� � Ia�c; a� � 1:

5. Let Ia�c; x� � Ia�b; x� � a < 1. Then x 6 a < b < 1 and x 6 a < c < 1 so
a � a < b < 1 and a � a < c < 1 and hence Ia�c; Ia�b; x�� � Ia�c; a� � a
and Ia�b; Ia�c; x�� � Ia�b; a� � a:

6. Let Ia�c; x� � x < 1 and let Ia�b; x� � a < 1. Then x 6 a < b < 1 and
Ia�b; Ia�c; x�� � Ia�b; x� � a. On the other hand, as Ia�c; x� � x < 1 then we have
either c > max�x; a� or c � 1.

Let c � 1. Then Ia�c; Ia�b; x�� � Ia�c; a� � Ia�1; a� � a:
Let c > max�x; a� and c < 1. Then we have x 6 a < c < 1 (we knew
x 6 a < b < 1) and hence Ia�c; x� � a, so x � a and hence
Ia�c; Ia�b; x�� � Ia�c; a� � Ia�c; x� � x � a:

Table 9 is a summary of the six cases discussed before.
The rest of the cases are symmetrical with respect to these six cases (inter-

changing b and c).
This family of implications also veri®es another property:

Property A.6. Ia�x; x� � 1 (identity principle). We shall discuss two cases:
Let x < 1. Then x6 max�x; a� and x < 1 so Ia�x; x� � 1:
Let x � 1. Then by Property A.4, Ia�1; 1� � 1:

Special cases are as follows:
1. If a � 0 then we obtain

I0�d; a� � 1; d 6 a;
a; d > a;

�

which is called a G�odel implication. This is an R-implication. An R-implication
can be de®ned by means of the expression

Table 9

Possible cases for Property A.5

Ia�c; x� Ia�b; x� Ia�b; Ia�c; x�� Ia�c; Ia�b; x��
1 1 1 1

1 x 1 1

x x x x

1 a 1 1

a a a a
x a a a
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I�d; a� � sup xjt�d; x�f 6 ag;

t being a continuous t-norm. For this G�odel implication, t is the minimum.
Since the greatest t-norm is the minimum, this implication is the greatest lower
bound of R-implications.

2. If a � 1, then we obtain the implication

I1�d; a� � 1; d < 1;
a; d � 1;

�

which is considered as the least upper bound of the class of R-implications (see
[20]) although it cannot be de®ned using a continuous t-norm by means of the
expression de®ned before. Nevertheless, a non-continuous t-norm exists so that
I1 can be de®ned by means of the expression for R-implications. This is the
drastic intersection

t�x; y� �
x; y � 1;

y; x � 1;

0 otherwise:

8><>:
In fact, it can be shown that any implication of the family Ia can be de®ned by
means of the expression for R-implications using the following family of (non-
continuous in general) t-norms:

ta�x; y� �
y; x � 1;

x; y � 1;

min�x; y�; a < x; y < 1;

0 otherwise;

8>><>>:
so that Ia�d; a� � supfxjta�d; x�6 ag.
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