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Abstract: Trace elements are micronutrients that are required in very small quantities through diet but
are crucial for the prevention of acute and chronic diseases. Despite the fact that initial studies demon-
strated inverse associations between some of the most important essential trace elements (Zn, Cu,
Se, and Mn) and cardiovascular disease, several recent studies have reported a direct association
with cardiovascular risk factors due to the fact that these elements can act as both antioxidants and
pro-oxidants, depending on several factors. This study aims to investigate the association between
plasma and urine concentrations of trace elements and cardiovascular risk factors in a general popula-
tion from the Mediterranean region, including 484 men and women aged 18–80 years and considering
trace elements individually and as joint exposure. Zn, Cu, Se, and Mn were determined in plasma
and urine using an inductively coupled plasma mass spectrometer (ICP-MS). Single and combined
analysis of trace elements with plasma lipid, blood pressure, diabetes, and anthropometric variables
was undertaken. Principal component analysis, quantile-based g-computation, and calculation of
trace element risk scores (TERS) were used for the combined analyses. Models were adjusted for
covariates. In single trace element models, we found statistically significant associations between
plasma Se and increased total cholesterol and systolic blood pressure; plasma Cu and increased
triglycerides and body mass index; and urine Zn and increased glucose. Moreover, in the joint
exposure analysis using quantile g-computation and TERS, the combined plasma levels of Zn, Cu,
Se (directly), and Mn (inversely) were strongly associated with hypercholesterolemia (OR: 2.03;
95%CI: 1.37–2.99; p < 0.001 per quartile increase in the g-computation approach). The analysis of
urine mixtures revealed a significant relationship with both fasting glucose and diabetes (OR: 1.91;
95%CI: 1.01–3.04; p = 0.046). In conclusion, in this Mediterranean population, the combined effect of
higher plasma trace element levels (primarily Se, Cu, and Zn) was directly associated with elevated
plasma lipids, whereas the mixture effect in urine was primarily associated with plasma glucose. Both
parameters are relevant cardiovascular risk factors, and increased trace element exposures should be
considered with caution.

Keywords: zinc; copper; selenium; manganese; cardiovascular risk factors; mixture; quantile-g-
computation

Antioxidants 2022, 11, 1991. https://doi.org/10.3390/antiox11101991 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox11101991
https://doi.org/10.3390/antiox11101991
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0001-8072-3791
https://orcid.org/0000-0002-1044-4858
https://orcid.org/0000-0002-0130-2006
https://orcid.org/0000-0003-4558-0988
https://orcid.org/0000-0001-6719-9358
https://orcid.org/0000-0002-4518-8495
https://orcid.org/0000-0001-6803-2584
https://orcid.org/0000-0002-0413-8432
https://orcid.org/0000-0002-2366-4104
https://doi.org/10.3390/antiox11101991
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11101991?type=check_update&version=2


Antioxidants 2022, 11, 1991 2 of 29

1. Introduction

Essential trace elements, also known as trace minerals, are micronutrients that are
needed in very small amounts through diet but are critical for the prevention of acute
and chronic diseases [1,2]. Furthermore, because each essential trace element is linked
to multiple enzymes, deficiency of one of these elements can contribute to a variety of
metabolic abnormalities and clinical conditions such as diabetes, metabolic syndrome,
and cardiovascular diseases, among many others [1–7]. Even though recent research has
demonstrated the significance of the essential trace element in common diseases, nutritional
advice has focused on deficiencies that can occur in both acute and chronic diseases and
knowledge on the potential risk effects of increased dietary intakes or supplements still
remains limited [5–13]. Essential trace element classification varies slightly depending
on the criteria considered [1–4]. The World Health Organization classified zinc (Zn), copper
(Cu), selenium (Se), manganese (Mn), chromium (Cr), cobalt (Co), iodine (I), and molyb-
denum (Mo) as essential trace elements in 1973 [2]. Other elements, such as iron (Fe) and
boron (B), were later added to this classification (Frieden’s Classification in 1981) [2]. In this
study, we will focus on four essential trace elements that are frequently investigated for
their relationship with cardiovascular risk factors (Zn, Cu, Se, and Mn). Having a significant
function as dietary antioxidant micronutrients, these trace elements are cofactors in a large
number of enzymes that participate in the antioxidant defense system and are related to
changes in the body’s homeostatic mechanisms, especially inflammation and oxidative
stress, which are vital for optimum health [14–18].

In addition to foods, these trace elements can also be obtained from drinking water
and environmental/occupational exposures [19–23]. However, it has been estimated that
in the general population, diet is the primary factor strongly influencing daily intake of these
essential elements [24,25]. Meat and meat products have been reported as the main dietary
source of Zn exposure in many countries [20,26–30]. Other items supplying greater Zn
in Western diets include cereals, milk and dairy products, nuts, and seeds [31,32]. Cereals,
followed by fresh fruits and vegetables, were considered to be the main sources of Cu
in Mediterranean subjects [32–34]. In other populations, fruits, nuts, and cereals, in addition
to tap water have been informed as good sources of dietary Cu [30,35]. Cereals and meat
are the leading sources of Se intake in Mediterranean and Western populations, followed by
fish, seafood, organ meats, nuts, milk, and dairy products [31–34,36]. Foods richest in Mn
are nuts and seeds, cereals, seafood, legumes, fruits, chocolate, coffee, and tea [34,37–39].
However, in addition to the trace elements naturally present in foods, it has been reported
that the use of multimineral supplements is the most significant dietary determinant of their
intake in certain populations [40,41]. Due to public perceptions that the deficiency of certain
minerals is linked to diseases, the usage of multivitamin/multimineral supplements has
expanded over the past few decades [42,43]. The initial studies demonstrating the important
antioxidant properties of the trace elements Zn, Cu, Se, and Mn [44–48] as well as the links
between deficiencies of these trace elements and several diseases [49–54], contributed to
this perception.

However, high levels of these trace elements may have adverse effects, including toxic-
ity [55–58]. Thus, caution is required when increasing their intakes given the harmful effects
when present in quantities exceeding those physiologically necessary. Thus, Zn acts as a pro-
oxidant at a range of concentrations [59]. Zn excess as well as deficiency are pro-oxidant
conditions. High concentrations of Zn have been linked to zinc inhibition of antioxidant
enzymes, which result in increased reactive oxygen species formation. The thresholds deter-
mining the Zn concentrations that affect its function as a pro-antioxidant and a pro-oxidant
have not been properly established [60]. Excessive Cu exposure tends to result in the over-
production of reactive oxygen species, which can cause oxidative-stress-induced cellular
damage [61]. High blood selenium levels can lead to selenosis [62]. High Mn levels have
been associated with increased oxidative stress and induced neurodegeneration [63,64].
The ability of Mn to enhance oxidative stress is due to the transition of its oxidative state
+2 to +3, which increases its pro-oxidant capacity [65]. However, the current emphasis is
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on the chronic effect of moderately high concentrations of these elements, given the growing
evidence of an increased risk of cardiometabolic diseases such as diabetes, hypertension,
dyslipidemias, and some cardiovascular outcomes [66–77]. Despite the large number of
studies [66–76] that show a direct relationship between Se, Cu, Zn, or Mn and cardiovas-
cular risk factors, there are other studies that show no associations or even an inverse
relationship [51,78–84]. Many factors can contribute to the disparities in the findings of
various studies. The most important are population characteristics (sex, age, geographical
origin, diet, pathologies, or even genetic factors), as well as the measurement used to assess
trace element levels. Several investigations have been conducted to assess the amount of
trace elements provided by the diet [3,21,27,29–39,71,78,81]. However, it is well known
that the content of trace elements in food varies greatly depending on the composition
of the soil, water, and the environment [2]. As a result, it is preferable to use other, more
objective measures of Zn, Cu, Se, and Mn status, such as analyzing their concentrations
in biological samples [85–91]. For each trace element, there are different types of biomarkers
in blood, plasma, urine, hair, adipose tissue, and nails. Each has its own set of advantages
and disadvantages [86–94]. Plasma/serum concentrations are the most commonly used,
though there may be differences between studies.

Therefore, in the new era of personalized nutrition, greater emphasis must be placed
on the characteristics of the population analyzed as well as on the proper interpretation of
the biomarkers used in each study [95]. The majority of published studies have concentrated
on trace element analyses separately. However, the significance of analyzing several
combined trace elements in what is known as “mixture” analysis has been emphasized
because the concentration of one element can influence the effects of the other [96–100].
Accordingly, current recommendations insist on conducting these combined analyses using
novel statistical methodologies [101–103]. With this context in mind, our goals are as
follows: (1) To investigate the single associations between trace element concentrations
in plasma and the main cardiovascular risk factors in a general Mediterranean population.
(2) To analyze these single associations in urine. (3) To conduct combined analyses of
the associations between trace elements and cardiovascular risk factors in this population
using three approaches—principal components analysis, quantile-based g-computation,
and the calculation of so-called trace element risk scores (TERS).

2. Materials and Methods
2.1. Study Design and Participants

We conducted a cross-sectional analysis on 484 Caucasian participants in the OBENUTIC-
Mineral study [104], a sub-study consisting of 500 persons preselected from the OBENUTIC
study. OBENUTIC stands for Obesity, Nutrition, and Information and Communication
Technologies. It is an open case-control study of the general population of Valencia, Spain
(consisting of men and women aged 18 to 80), without sex and age pairing [105]. Cases were
obese subjects (body mass index (BMI) ≥ 30 kg/m2) and the controls were unpaired non-
obese individuals recruited from the same region. Pregnancy or breastfeeding, invalidating
physical or psychological disorders, cancer diagnosis, thyroid changes, Cushing disease,
suffering from infectious/contagious disease, excessive alcohol use, or use of other drugs
were exclusion factors. Focusing on the OBENUTIC-Mineral study [104], we preselected
a sub-set of 500 individuals who were consecutively recruited in the OBENUTIC study over
a 22-month period. A total 492 participants provided enough biological samples (plasma
and urine) for the trace element determinations. We found 8 samples with extreme values
that differed from other observations, indicating potential measurement errors or other
incidents related to sample handling. These samples were deemed outliers and were thus
excluded. Therefore, 484 participants were included for statistical analysis. The investiga-
tion was conducted at the Department of Preventive Medicine and Public Health, School of
Medicine, University of Valencia, Valencia. Participants provided written informed consent,
and the protocol and methods were approved by the Human Research Ethics Committee
of the University of Valencia, Valencia (reference number: H1488282121722; 06/04/2017).
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2.2. Demographic, Anthropometric, Biochemical, Clinical, and Lifestyle Variables

A standardized questionnaire previously used in our studies [105,106] was employed
to collect socio-demographic information, clinical variables, medication use, and lifestyle
variables. According to the World Health Organization, a current smoker was considered
as someone who smokes any tobacco product at least once a day. Non-smokers included
both never smokers and former smokers [104]. A validated 14-item scale was used to
assess adherence to the Mediterranean diet [107]. Based on our previous results [107],
subjects were classified as having low Mediterranean diet adherence (less than 9 points)
or high adherence (9 or more points). Participants’ heights were measured using a stan-
dard stadiometer built into the scales (SECA Mod 220. Seca Deutschland Gmbh and Co.
Kg., Hamburg, Germany). Calibrated scales (TANITA-BC-420-S, Tanita UK Ltd., Middle-
sex, UK) were used to determine weight [104]. BMI was calculated by dividing weight
in kilograms by height in meters squared. Obesity was defined as having a BMI greater
than 30 kg/m2. Using an anthropometric tape, the waist circumference was measured
halfway between the lowest rib and the iliac crest. Waist circumference of 102 cm in men
or 88 cm in women was considered high. An automatic sphygmomanometer was used to
measure systolic and diastolic blood pressures (Omron HEM-705CP, OMRON Healthcare
Europe B.V., Hoofddorp, The Netherlands). Hypertension was defined as having a sys-
tolic blood pressure of 140 mmHg or a diastolic blood pressure of 90 mmHg or being on
antihypertensive medication.

After a 12 h overnight fast, blood samples were collected. Centrifugation was used
to obtain plasma samples, and standard biochemical analyses were performed the same
day. Furthermore, plasma samples were kept at −80 ◦C for future analyses (i.e., Zn, Cu,
Se, and Mn determinations). In a certified clinical laboratory, fasting plasma glucose,
total cholesterol, HDL-cholesterol, and triglyceride concentrations were determined using
previously described enzymatic methods [104] (Olympus AU5400. Beckman Coulter, CA,
USA), and LDL-cholesterol was estimated using the Friedewald equation. Plasma creatinine
was tested with the Jaffé method, uric acid was determined with the uricase method,
and aspartate aminotransferase was assessed with a standard method implemented on
a multi-autoanalyzer manufactured by Roche Diagnostics (Basel, Switzerland). Diabetes
was defined as having a fasting glucose level of 126 mg/dL or being on diabetes medication).
For hypercholesterolemia, we used total cholesterol and LDL-cholesterol. First, we defined
total hypercholesterolemia as having total cholesterol levels ≥ 200 mg/dL or taking lipid-
lowering drugs. Second, we defined high LDL cholesterol levels as LDL ≥ 160 mg/dL or
taking lipid-lowering medications. In addition, a first voided urine sample was collected
on the same day as the blood sample and stored at −80 ◦C for later analysis.

2.3. Zn, Cu, Se, and Mn Determinations

Determination of Zn, Cu, Se, and Mn total content in plasma and urine samples was
performed using an inductively coupled plasma mass spectrometer (ICP-MS) (Agilent 7500.
Agilent Technologies, Tokyo, Japan) fitted with a Meinhard type nebulizer (Glass Expansion,
Romainmotier, Switzerland) and equipped with a He collision cell. A Milli-Q system
(Millipore, Bedford, MA, USA) was used to obtain deionized water (18 MΩ). All reagents
(Ammonium Hydroxide Solution, Butanol, EDTA, Triton X-100, NHO3, and HCl) used
were of the highest available purity. A standard solution of 100 µg/L of Li, Mg, Sc, Co, Y, In,
Ce, Ba, Pb, Bi, and U in 1% (v/v) HNO3 was prepared from a 1.000 mg/dL multi-element
stock standard solution (Merck & Co. Inc., Whitehouse Station, NJ, USA) and used for daily
optimizing of the ICP parameters as previously described [104]. Single-element standard
solution for ICP-MS containing 1.000 µg/mL of Cu, Zn, Mn, and Se (Merck & Co. Inc.,
Whitehouse Station, NJ, USA). The plasma samples were previously prepared with a basic
solution containing ammonium hydroxide, butanol, EDTA, and triton X-100 [108,109].
Urine samples were previously prepared with an acidic solution containing 1% NHO3
and 0.5% HCl. Calibration curves were prepared using Ga as an internal standard and by
the dilution of stock solutions of 1.000 mg/dL in 1% HNO3. The accuracy of this method
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was evaluated by comparison with certified reference materials Seronorm™ Trace Elements
Serum and Seronorm™ Trace Elements Urine (Billingstad, Norway) and by recovery studies
of spiked samples with multi-element standards. The calculated recovery was between
95% and 105% in all cases. We used the mean of five separate determinations.

2.4. Statistical Analysis for Individual and Combined Associations

We examined the normality of the continuous variables and performed natural loga-
rithmic transformation on all the essential trace element variables determined in plasma
and in urine. The triglyceride variable in plasma was also logarithmically transformed for
statistical testing. Descriptive analyses for socio-demographic, anthropometric, clinical,
biochemical, and lifestyle data were carried out. To compare means in continuous variables,
the T-test and ANOVA analysis were used. The Spearman correlation test was used to
examine correlations between trace element levels in plasma and urine. First, we analyzed
the association between each plasma/urine trace element and the corresponding cardio-
vascular risk factor individually. As cardiovascular risk factors, we considered plasma
lipid concentrations (total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides);
blood pressure (SBP and DBP); and fasting plasma glucose, BMI, and waist circumfer-
ence (all of them as continuous variables). In addition, we analyzed some cardiovascular
risk factors as categorical variables (sex, age groups, hypertension, diabetes, hypercholes-
terolemia, and high waist circumference) using the cut-off points previously defined. We
fitted generalized linear models to examine the individual relationships between plasma or
urine trace elements (Zn, Cu, Se, and Mn) and cardiovascular risk factors as continuous
variables. We used logistic regression models to estimate the odds ratios (OR) and 95%
confidence intervals (CI) associated with categorical variables as cardiovascular risk factors.
For both the linear and logistic models, potential confounders were adjusted sequentially
as follows: Model 1, unadjusted model; Model 2, model adjusted for age and sex; Model 3,
model adjusted for age, sex, obesity, and medications (lipid-lowering, antihypertensive,
or hypoglycemic drugs) when appropriate. When indicated, additional adjustments for
smoking and adherence to the Mediterranean diet were made.

Second, we explored the combined association between trace elements and cardio-
vascular risk factors. As there is currently no consensus on the optimal statistical method
for mixtures [99,102], we used 3 approaches to compare results: (a) principal component
analysis, (b) quantile-based g-computation, and (c) calculation of the so-called TERS. (a) We
performed a factor analysis on the plasma or/and urine trace elements (Zn, Cu, Se, Mn)
to determine the latent multidimensionality by identifying a potentially smaller number
of unobserved (latent) variables termed factors. We calculated the Kaiser–Meyer–Olkin
(KMO) value and Bartlett’s test (homogeneity of variance). Utilizing principal component
analysis, components were extracted. In the factor analysis, we determined the ideal num-
ber of components using the Kaiser criterion (components with eigenvalues greater than 1).
We used orthogonal rotation (varimax) to clarify the factors. The varimax method aims
to reduce the number of variables with a high loading on a single latent component [110].
For each participant, the scores of the obtained factors were generated, and these scores
were subsequently utilized as latent variables of combined trace elements in the correspond-
ing association analyses shown in results. (b) We also applied the new method so-called
quantile-based g-computation [103] for the combined analysis of the plasma/urine trace
elements to go one step further than the principal component analysis by summarizing
the effect of the complex mixture as a global exposure, creating a single score. This can
be achieved by the weighted quantile sum (WQS) regression [111]. However, the WGS
regression has several limitations [102]. Therefore, we used here the quantile-based g-
computation [103], a new modeling technique that builds on WQS regression by inte-
grating its estimation procedure with g-computation but by estimating the parameters
of a marginal structural model and overcoming the assumption of unidirectionality of
the WQS, in addition to other advantages [103]. Plasma and urine trace elements (Ln trans-
formed) were preprocessed (standardized) by scaling all of the variables (mean = 0; SD = 1).
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Quartiles were selected for analysis. Positive and negative associations for each trace
element were identified. Either linear or logistic models were fitted for continuous or cate-
gorical dependent variables (cardiovascular risk factors) taking into account the positive or
negative associations. Quantile-based g-computation was implemented using the qgcomp
package [103] (version 2.8.6, 2022) with R studio (R Foundation for Statistical Computing,
Vienna, Austria). Unadjusted and multivariate adjusted models (Models 1, 2, and 3) were
computed, and the regression coefficients and p-values were estimated. (c) Lastly, taking
into account the complexity of the quantile-based g-computation method, we proposed
a simple method known as TERS and based on a similar procedure used to generate the un-
weighted genetic risk scores [112]. Plasma and urine trace elements were preprocessed for
categorical scaling according to their respective tertiles. From the individual trace element
models, we computed the directionality of the effect and identified the tertiles associated
with an increased risk for cardiovascular risk factors overall. Separate tertiles of Zn, Cu, Se,
and Mn plasma and urine were used to generate additive TERS. The highest-risk tertile was
assigned a value of 2, while the lowest-risk tertile was assigned a value of 0. The middle
tertile was given a score of 1. This variable ranged from 0 (lower risk) to 8 (higher risk),
depending on the trace element concentration (low or high) for plasma or urine. Then,
general linear or logistic regression models (unadjusted and adjusted for covariates) were
fitted for the TERS and cardiovascular risk factors. SPSS Statistics for Windows Ver. 26 was
used to analyze the data (IBM Corp., Armonk, NY, USA). All tests were two-tailed and
p-values < 0.05 were considered statistically significant.

3. Results
3.1. General Characteristics of the Population

The general demographic, clinical, biochemical, and lifestyle characteristics of the stud-
ied population by sex are summarized in Table 1. Likewise, Table 1 shows the plasma
and urine concentrations of the trace elements studied (Zn, Cu, Se, and Mn). This sample
was recruited from the general Mediterranean population (aged 18 to 80 years) and was
relatively healthy.

There were no statistically significant differences by sex (p = 0.520) between men and
women (a mean age of 46.28 years). Table 1 also shows the mean values of cardiovascu-
lar risk factors, such as plasma lipids (total cholesterol, LDL-cholesterol, HDL-cholesterol,
and triglycerides), blood pressure (SBP and DBP), fasting glucose, and anthropometric mea-
surements by sex. Diabetes prevalence (5.4%) was low. The prevalence of hypercholes-
terolemia, obesity, or hypertension was higher. Zn levels were 15.94 ± 3.45 µmol/L in plasma
and 5.60 ± 4.26 µmol/L in urine, with both fluids containing more Zn in men (p < 0.001). Cu
in plasma averaged 25.50 ± 6.70 µmol/L, while in urine it was 0.13 ± 0.07 µmol/L. Women
had higher plasmatic Cu levels than men (p < 0.001), whereas men had higher urinary Cu
levels (p = 0.042). Plasma Se concentration was 1.19 ± 0.19 µmol/L and urinary Se concen-
tration was 0.37 ± 0.21 µmol/L, with statistically significant differences by sex only in urine
(p = 0.01). Finally, plasma Mn levels were 74.86 ± 38.40 nmol/L and urine Mn levels were
7.66 ± 6.30 nmol/L, with no statistically significant differences by sex observed.

Table S1 displays the correlation (Spearman rho coefficients) and p-values between
Zn, Cu, Se, and Mn levels in plasma and urine. Zn levels in plasma were found to be
significantly and directly related to Zn levels in urine (rho = 0.232; p < 0.001). There
were only marginally significant correlations between plasma and urine levels for Cu
(rho = 0.089; p = 0.052) and Se (rho = 0.082; p = 0.071). There was a statistically significant
inverse correlation between Mn plasma and urine levels (rho = −0.141; p = 0.003).
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Table 1. General characteristics of the study population by sex.

Total (n = 484) Men (n = 160) Women (n = 324) p

Age (years) 46.28 ± 13.73 45.69 ± 14.75 46.58 ± 13.21 0.520
BMI, kg/m2 27.87 ± 5.44 29.17 ± 4.92 27.23 ± 5.58 <0.001
SBP, mmHg 124.81 ± 17.32 132.70 ± 15.88 120.90 ± 16.67 <0.001
DBP, mmHg 78.52 ± 10.87 82.38 ± 12.11 76.60 ± 9.66 <0.001

Total-cholesterol, mg/dL 211.94 ± 40.43 204.78 ± 38.86 215.47 ± 40.78 0.006
LDL-cholesterol, mg/dL 137.82 ± 32.71 137.22 ± 32.21 138.10 ± 32.99 0.781
HDL-cholesterol, mg/dL 59.65 ± 14.13 50.89 ± 11.03 63.94 ± 13.50 <0.001

Triglycerides, mg/dL 108.68 ± 58.15 122.55 ± 66.79 101.85 ± 52.16 <0.001
Fasting glucose, mg/dL 94.91 ± 19.57 99.07 ± 23.08 92.87 ± 17.25 0.003

Creatinine, mg/dL 0.76 ± 0.18 0.94 ± 0.19 0.10 ± 0.01 <0.001
Uric acid, mg/dL 5.31 ± 1.42 6.43 ± 1.25 4.76 ± 1.15 <0.001

Aspartate aminotransferase, U/L 25.31 ± 10.44 29.77 ± 1.13 23.11 ± 7.00 <0.001
Obesity prevalence (%) 32.01 39.62 28.21 0.012

Hypercholesterolemia (%) 35.7 39.9 33.6 0.186
High LDL-cholesterol (%) 35.65 36.09 63.91 0.186

Hypertension (%) 68.13 25.23 74.77 <0.001
Type 2 diabetes (%) 5.41 8.50 3.88 0.039

Antihypertensive drugs (%) 16.85 28.67 11.18 <0.001
Hypolipidemic drugs (%) 14.47 19.33 12.14 0.040

Antidiabetic drugs (%) 3.25 4.67 2.57 0.235
High adherence MD (%) 1 49.78 32.29 67.71 0.948

Current smokers % 20.09 16.21 21.90 0.118
Plasma Zinc, µmol/L 15.94 ± 3.45 16.64 ± 3.50 15.59 ± 3.38 0.010
Urine Zinc, µmol/L 5.60 ± 4.26 7.07 ± 4.82 4.87 ± 3.74 <0.001

Plasma Copper, µmol/L 25.59 ± 6.70 21.90 ± 4.23 27.43 ± 6.95 <0.001
Urine Copper, µmol/L 0.13 ± 0.07 0.14 ± 0.067 0.12 ± 0.07 0.042

Plasma Selenium, µmol/L 1.19 ± 0.19 1.21 ± 0.21 1.18 ± 1.87 0.089
Urine Selenium, µmol/L 0.37 ± 0.21 0.42 ± 0.22 0.35 ± 0.20 0.010

Plasma Manganese, nmol/L 74.86 ± 38.40 73.68 ± 40.49 75.45 ± 37.37 0.631
Urine Manganese, nmol/L 7.66 ± 6.30 7.38 ± 3.63 7.80 ± 7.28 0.393

Values are mean ± SE for continuous variables and % for categorical variables; p: p-value for the comparisons
(means or %) between men and women. BMI indicates body mass index. SBP indicates systolic blood pressure.
DBP indicates diastolic blood pressure. Obesity prevalence: BMI ≥ 30 kg/m2. Hypercholesterolemia: Total-
cholesterol ≥ 200 mg/dL or hypolipidemic drugs or high LDL-cholesterol (LDL-cholesterol ≥ 160 mg/dL or
drugs). Hypertension: [antihypertensive drug or SBP ≥ 140 mmHg or DBP ≥ 90 mmHg]. Type 2 diabetes:
Antidiabetic drug or glucose ≥ 126 mg/dL. 1: High adherence to the Mediterranean diet (MD), 9 or more points
in the 14-item score.

3.2. Individual Associations of Trace Elements in Plasma and in Urine with Cardiovascular
Risk Factors

Table 2 shows the associations between Zn, Cu, Se, and Mn plasma levels (considered
separately) and cardiovascular risk factors as continuous variables. Three different models
were considered (unadjusted, adjusted for sex and age, and additionally adjusted for
obesity and medications where appropriate).

No statistically significant associations were found between plasma levels of Zn and
cardiovascular risk factors. However, some associations were obtained for the Cu plasma
levels. In the model adjusted for all of the covariates, statistically significant direct asso-
ciations were found between plasma Cu levels and plasma triglyceride concentrations
(p < 0.001). Additional adjustments for smoking and Mediterranean diet adherence had
no effect on the statistical significance of the associations (not shown). Similarly, higher
plasma Cu levels were associated with higher BMI and waist circumference (both p < 0.05).
However, plasma Se had the most significant positive associations with total cholesterol
(p < 0.001), LDL-cholesterol (p < 0.001), and HDL-cholesterol (p < 0.001) plasma concentra-
tions, which remained statistically significant after multivariate adjustment in model 3 and
after additional adjustment for smoking and adherence to the Mediterranean diet. In addi-
tion, Se had a weaker positive association with SBP (p = 0.030). Plasma Mn was inversely
associated with plasma lipids, SBP, DPB, and anthropometric variables in the unadjusted
models. However, after adjusting for covariates, these associations were no longer statisti-
cally significant. When we considered cardiovascular risk factors as categorical variables,
including sex and age (Table S2), we found that both plasma Zn and Cu showed highly
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significant differences between men and women, even after adjusting for age and other
covariates. However, the plasmatic levels of Se and Mn did not present these differences
by sex, with the differences by age being more important for them (p < 0.05). Plasma Se
showed a highly significant association with hypercholesterolemia (p < 0.001), while Cu
was associated with an increased risk of abdominal obesity after adjusting for age and
sex (p = 0.022). Table 3 displays the associations between Zn, Cu, Se, and Mn urine levels
(considered separately) and cardiovascular risk factors as continuous variables.

Table 2. Single association between plasma levels of trace elements and cardiovascular risk factors
(as continuous).

Plasma Zn Plasma Cu

Variable/Statistic r (p-Value) 1 r (p-Value) 2 r (p-Value) 3 r (p-Value) 1 r (p-Value) 2 r (p-Value) 3

Total-cholesterol (mg/dL) 0.014 (0.763) 0.057 (0.245) 0.061 (0.212) 0.120 (0.008) 0.075 (0.124) 0.091 (0.062)
LDL-cholesterol (mg/dL) 0.017 (0.703) 0.029 (0.548) 0.036 (0.465) 0.025 (0.587) 0.015 (0.754) 0.029 (0.559)
HDL-cholesterol (mg/dL) −0.009 (0.852) 0.111 (0.022) 0.093 (0.062) 0.224 (<0.001) 0.031 (0.523) 0.091 (0.061)

Triglycerides (mg/dL) 0.009 (0.838) −0.002 (0.971) 0.034 (0.490) 0.090 (0.048) 0.238 (<0.001) 0.191 (<0.001)
SBP (mmHg) 0.063 (0.166) 0.016 (0.748) 0.055 (0.242) −0.063 (0.172) 0.102 (0.035) 0.073 (0.124)
DBP (mmHg) 0.044 (0.338) −0.022 (0.654) −0.014 (0.778) −0.019 (0.672) 0.116 (0.017) 0.076 (0.107)

Glucose (mg/dL) −0.049 (0.283) −0.061 (0.212) 0.026 (0.602) −0.023 (0.609) 0.049 (0.318) 0.076 (0.120)
BMI (kg/m2) −0.031 (0.498) −0.077 (0.114) ___ 0.059 (0.198) 0.172 (<0.001) ___

Waist Circumference (cm) 0.010 (0.831) −0.043 (0.376) ___ −0.045 (0.323) 0.159 (0.001) ___

Plasma Se Plasma Mn

Variable r (p-value) 1 r (p-value) 2 r (p-value) 3 r (p-value) 1 r (p-value) 2 r (p-value) 3

Total-cholesterol (mg/dL) 0.224 (<0.001) 0.237 (<0.001) 0.245 (<0.000) −0.105 (0.022) −0.069 (0.156) −0.029 (0.552)
LDL-cholesterol (mg/dL) 0.194 (<0.001) 0.191 (<0.001) 0.209 (<0.001) −0.108 (0.018) −0.072 (0.141) −0.024 (0.624)
HDL-cholesterol (mg/dL) 0.186 (<0.001) 0.265 (<0.001) 0.253 (<0.001) −0.045 (0.330) −0.076 (0.120) −0.073 (0.135)

Triglycerides (mg/dL) −0.032 (0.484) −0.065 (0.183) −0.069 (0.155) 0.013 (0.781) 0.077 (0.116) 0.060 (0.218)
SBP (mmHg) 0.140 (0.002) 0.074 (0.131) 0.103 (0.030) −0.099 (0.031) −0.045 (0.361) −0.054 (0.274)
DBP (mmHg) 0.050 (0.273) −0.010 (0.841) 0.028 (0.574) −0.111 (0.016) −0.058 (0.229) −0.046 (0.331)

Glucose (mg/dL) 0.036 (0.432) −0.055 (0.260) −0.065 (0.183) 0.012 (0.802) 0.096 (0.048) 0.043 (0.378)
BMI (kg/m2) −0.025 (0.578) −0.105 (0.031) ___ −0.114 (0.013) −0.058 (0.231) ___

Waist Circumference (cm) 0.011 (0.818) −0.110 (0.023) ___ −0.096 (0.037) −0.033 (0.492) ___

Values are correlation coefficients (r) and p-values. Trace elements were ln-transformed. 1: unadjusted p-value;
2: p-value adjusted by sex and age; 3: p-value adjusted by sex, age, obesity, and medication when appropriate.
r: Pearson; SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index.

Table 3. Single association between urine levels of trace elements and cardiovascular risk factors
(as continuous).

Urine Zn Urine Cu

Variable/Statistic r (p-Value)1 r (p-Value)2 r (p-Value)3 r (p-Value)1 r (p-Value)2 r (p-Value)3

Total-cholesterol (mg/dL) −0.060 (0.182) 0.023 (0.639) 0.033 (0.497) −130 (0.004) −0.053 (0.277) −0.053 (0.278)
LDL-cholesterol (mg/dL) −0.028 (0.535) 0.012 (0.806) 0.026 (0.590) −0.093 (0.039) −0.033 (0.498) −0.036 (0.461)
HDL-cholesterol (mg/dL) −0.210 (<0.001) −0.068 (0.163) −0.075 (0.123) −0.153 (0.001) −0.123 (0.011) −0.109 (0.026)

Triglycerides (mg/dL) 0.127 (0.005) 0.129 (0.008) 0.120 (0.014) 0.004 (0.922) 0.068 (0.164) 0.042 (0.387)
SBP (mmHg) 0.029 (0.528) −0.023 (0.644) −0.007 (0.956) −0.089 (0.052) −0.045 (0.357) −0.038 (0.431)
DBP (mmHg) 0.032 (0.482) −0.022 (0.654) −0.017 (0.740) −0.077 (0.092) −0.039 (0.418) −0.048 (0.317)

Glucose (mg/dL) 0.127 (0.005) 0.188 (<0.001) 0.131 (0.007) 0.039 (0.388) 0.140 (0.004) 0.075 (0.123)
BMI (kg/m2) 0.029 (0.523) 0.012 (0.798) ___ −0.037 (0.419) 0.033 (0.503) ___

Waist Circumference (cm) 0.064 (0.157) 0.033 (0.492) ___ −0.044 (0.333) 0.040 (0.407) ___

Urine Se Urine Mn

Variable r (p-value) 1 r (p-value) 2 r (p-value) 3 r (p-value) 1 r (p-value) 2 r (p-value) 3

Total-cholesterol (mg/dL) −0.108 (0.017) 0.014 (0.771) −0.004 (0.933) 0.079 (0.091) 0.054 (0.272) 0.045 (0.358)
LDL-cholesterol (mg/dL) −0.055 (0.227) 0.047 (0.337) 0.029 (0.555) 0.086 (0.067) 0.058 (0.235) 0.052 (0.285)
HDL-cholesterol (mg/dL) −0.070 (0.121) −0.015 (0.757) −0.022 (0.658) −0.018(0.706) −0.001 (0.989) −0.016 (0.740)

Triglycerides (mg/dL) −0.129 (0.004) −0.082 (0.093) −0.088 (0.070) 0.056 (0.234) 0.019 (0.697) 0.022 (0.652)
SBP (mmHg) −0.113 (0.013) −0.071 (0.142) −0.049 (0.312) 0.114 (0.015) 0.087 (0.074) 0.074 (0.123)
DBP (mmHg) −0.100 (0.027) −0.058 (0.236) −0.062 (0.199) 0.072 (0.123) 0.048 (0.325) 0.036 (0.455)

Glucose (mg/dL) −0.081 (0.073) 0.012 (0.800) 0.016 (0.743) 0.072 (0.124) 0.029 (0.557) 0.024 (0.628)
BMI (kg/m2) −0.072 (0.110) 0.015 (0.752) ___ 0.039 (0.400) 0.009 (0.086) ___

Waist Circumference (cm) 0.064 (0.157) 0.033 (0.492) ___ −0.044 (0.333) 0.040 (0.407) ___

Values are correlation coefficients (r) and p-values. Trace elements were ln-transformed. 1: unadjusted p-value;
2: p-value adjusted by sex and age; 3: p-value adjusted by sex, age, obesity, and medication when appropriate.
r: Pearson; SBP: systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index.
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Three different models were considered (unadjusted, adjusted for sex and age, and ad-
ditionally adjusted for obesity and medications where appropriate). Interestingly, when
we use these biomarkers in urine, the associations with the same cardiovascular risk factors
differ from those found in plasma. This could explain some of the differences in pub-
lished studies based on the biomarker used to determine the status of the trace elements
of interest. Thus, Zn in urine was significantly associated (p = 0.007) with fasting plasma
glucose even after multivariable adjustment for covariates. No significant association was
detected between plasma Zn and plasma glucose (p = 0.602) in the same individuals. Cu
in urine was inversely associated with HDL-cholesterol (p = 0.026) in the multivariable
adjusted model and we did not detect the association with triglycerides and BMI found
in plasma. Likewise, Se levels in urine were not associated with the higher total choles-
terol or LDL-cholesterol that were strongly observed in plasma. No relevant associations
were detected between Mn in urine and the cardiovascular risk factors analyzed. When
we consider cardiovascular risk factors as categorical variables, including sex and age
(Table S3), we detected differences by sex and age for urinary Zn, Cu, and Se, showing
the importance of the adjustment for sex and age when analyzing further associations for
these trace elements. The only relevant association in urine was detected between Zn and
diabetes, which remained statistically significant even after adjustment for sex, age, obesity,
and medications (p = 0.036). The corresponding OR in the adjusted model was OR = 3.27;
95%CI: 1.60–6.68, per unit increment of urine Zn concentration (ln units).

3.3. Associations between Combined Trace Elements in Plasma and Cardiovascular Risk Factors

To conduct combined analyses of the associations between trace elements in plasma
and cardiovascular risk factors, we used three approaches: principal components analysis,
quantile-based g-computation, and the calculation of TERS.

3.3.1. Principal Component Analysis for Plasma

A factor analysis of the main components, based on the plasma concentration of Zn,
Cu, Se, and Mn was undertaken to better understand the latent structure underlying these
trace elements. The KMO measure and the Bartlett test of sphericity reached statistical
significance (p < 0.001). Following the Kaiser criterion of extracting factors with eigenvalues
>1, three factors were extracted (Table 4). The first three factors or principal components
(PC) cumulatively accounted for 84.1% of the total variance. PC1 explained 32.9% of
the total variance, PC2 explained 25.9%, and PC3 explained 25.3%.

Table 4. Combined analysis of plasma trace elements. Principal component analysis.

Variable PC1 PC2 PC3

Eigenvalues 1.315 1.034 1.014
PTV 1 (%) 32.9 25.9 25.3

Cumulative PTV (%) 32.9 58.7 84.07
Loadings 2 (rotate)

Zn 0.825 0.207 −0.133
Cu −0.001 0.031 0.988
Se 0.791 −0.259 0.141

Mn −0.015 0.965 0.034

PC: Principal component; PTV: Percentage of total variance; 1: A varimax rotation was carried out. 2: The largest
loadings are shown in boldface.

The PCs may be interpreted as new uncorrelated variables whose characteristics
represent those constituent trace elements with the largest loadings. Having undertaken
the varimax transformation to better identify the components, we observed (Table 4) that
PC1 presented positive high factor loadings with plasma Zn (0.825) and plasma Se (0.791)
and can be identified as the component that mainly represented plasma Zn and Se levels.
PC2 was heavily loaded with Mn (0.965) whilst PC3 was heavily loaded with Cu (0.988).
Figure 1 shows the principal component analysis loading plots for the rotated (varimax
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rotation) components for this analysis. It can be seen that Mn levels were less associated
with the other trace elements. Further, Cu presented a particular association pattern.
Therefore, we focused our combined trace element analysis on PC1, mainly representing
the combined pattern of plasma Zn and Se. Then, we analyzed the association between
PC1 and cardiovascular risk factors. In model 3 adjusted for covariates, PC1 (Zn and Se)
was directly and significantly associated with total cholesterol (p < 0.002), LDL-cholesterol
(p = 0.007), HDL-cholesterol (p < 0.001), and SBP (p = 0.048). No significant associations
were found for fasting glucose, DBP, BMI, or waist circumference.

Antioxidants 2022, 11, 1991 11 of 31 
 

 

 
Figure 1. Principal component analysis loading plots for the rotated (varimax rotation) components 
for the combined plasma trace elements (Zn, Cu, Se, and Mn) in the studied population. PC: 
principal component. 

3.3.2. Quantile-Based g-Computation for Plasma 
This new approach allows us to estimate the joint effects of the combination (mixture) 

of plasma Zn, Cu, Se, and Mn on the cardiovascular risk factors. First, we analyzed the 
cardiovascular risk factors (continuous variables) as separate outcomes. This is a 
parameter-based, generalized-linear-model-based g calculation implementation to 
estimate the result change of a quantile while increasing all exposures in a specific mixture 
[103]. We considered quartiles for all the scaled trace elements as indicated in Methods. 
We fitted unadjusted models and models sequentially adjusted for sex and age, and 
additionally adjusted for sex, age, obesity, and medications when applicable (model 3). 
For the overall exposure, we calculated the so-called “overall mixture effect from quantile 
g-computation” (psi1). This effect (regression coefficient) is interpreted as the effect on the 
outcome of increasing every exposure by one quartile, conditional on covariates [103]. g-
computation does not require a “directional homogeneity” assumption that all exposures 
are related to the results in the same direction. This model is achieved by classifying the 
trace elements into quartiles, coded as 0, 1, 2, and 3, and fitting a linear model. The effect 
of each trace element can be positive or negative, and depending on this, a weight is given 
[103]. The estimated quantile g of the exposure response is the sum of the regression 
coefficients of the included exposures. If the effects of the trace elements have different 
directions, the weight is interpreted as the positive (or negative) part of the influence in 
the global estimation. Although we fitted unadjusted and adjusted models, only the 
results corresponding to the adjusted model 3 are presented. Figure 2 shows the overall 
mixture effect estimates of trace element contributions to the outcome (psi1 beta 
coefficients, 95% CIs, and the p-values) for the combined association between plasma Zn, 
Cu, Se, and Mn and plasma lipid levels (as continuous variables). Panels A, B, C, and D 
show the results for the outcome’s total cholesterol, LDL-cholesterol, HDL-cholesterol, 
and triglycerides, respectively. Models were adjusted for sex, age, obesity, and 
medications when appropriate. Figure 2 also shows the weights representing the 
proportion of the positive or negative partial effect for each trace element in the quantile 
g-computation model for each outcome variable. The results of the quantile g-
computation combined exposure model analysis showed that the combined plasma Zn, 
Se, Cu, and Mn trace elements were significantly associated with plasma total cholesterol 
(p<0.001) (panel A), with a combined effect of increasing 0.25 (95%CI: 0.11–0.39) units the 
outcome per one quartile increase in trace element concentration (z-score normalized). Zn, 
Se, and Cu presented positive weights, whereas Mn had a negative weight. 
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3.3.2. Quantile-Based g-Computation for Plasma

This new approach allows us to estimate the joint effects of the combination (mixture)
of plasma Zn, Cu, Se, and Mn on the cardiovascular risk factors. First, we analyzed the car-
diovascular risk factors (continuous variables) as separate outcomes. This is a parameter-
based, generalized-linear-model-based g calculation implementation to estimate the result
change of a quantile while increasing all exposures in a specific mixture [103]. We consid-
ered quartiles for all the scaled trace elements as indicated in Methods. We fitted unadjusted
models and models sequentially adjusted for sex and age, and additionally adjusted for
sex, age, obesity, and medications when applicable (model 3). For the overall exposure,
we calculated the so-called “overall mixture effect from quantile g-computation” (psi1).
This effect (regression coefficient) is interpreted as the effect on the outcome of increasing
every exposure by one quartile, conditional on covariates [103]. g-computation does not
require a “directional homogeneity” assumption that all exposures are related to the results
in the same direction. This model is achieved by classifying the trace elements into quartiles,
coded as 0, 1, 2, and 3, and fitting a linear model. The effect of each trace element can be pos-
itive or negative, and depending on this, a weight is given [103]. The estimated quantile g
of the exposure response is the sum of the regression coefficients of the included exposures.
If the effects of the trace elements have different directions, the weight is interpreted as
the positive (or negative) part of the influence in the global estimation. Although we fitted
unadjusted and adjusted models, only the results corresponding to the adjusted model 3
are presented. Figure 2 shows the overall mixture effect estimates of trace element contri-
butions to the outcome (psi1 beta coefficients, 95%CIs, and the p-values) for the combined
association between plasma Zn, Cu, Se, and Mn and plasma lipid levels (as continuous
variables). Panels A, B, C, and D show the results for the outcome’s total cholesterol,
LDL-cholesterol, HDL-cholesterol, and triglycerides, respectively. Models were adjusted
for sex, age, obesity, and medications when appropriate. Figure 2 also shows the weights
representing the proportion of the positive or negative partial effect for each trace element
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in the quantile g-computation model for each outcome variable. The results of the quantile
g-computation combined exposure model analysis showed that the combined plasma Zn,
Se, Cu, and Mn trace elements were significantly associated with plasma total cholesterol
(p<0.001) (panel A), with a combined effect of increasing 0.25 (95%CI: 0.11–0.39) units
the outcome per one quartile increase in trace element concentration (z-score normalized).
Zn, Se, and Cu presented positive weights, whereas Mn had a negative weight.
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Figure 2. Overall mixture effect estimates and the weights of trace element contributions to the out-
come (psi1 beta coefficients, 95% confidence intervals (CI), and p-values) for the combined association
of plasma Zn, Cu, Se, and Mn with plasma lipid levels: total cholesterol (panel A), LDL-cholesterol
(panel B), HDL-cholesterol (panel C), and triglycerides (panel D) as continuous variables.

These plots are simple to understand when all of the weights are on the same side of
the null because the weight corresponds to the proportion of the overall effect from each
exposure. However, the weights could go either way, indicating that some exposures are
beneficial and others are harmful. Thus, the weights in Figure 2 correspond to the propor-
tion of the overall effect in a particular direction, which may be small (or large) compared
to the overall “mixture” effect.

It is critical to remember that the left and right sides of the plot should not be compared
because the length of the bars corresponds to the size of the effect only relative to other
effects in the same direction. The size of the overall effect is represented by the darkness
of the bars; in this case, the bars on the right (positive) side of the plot are darker because
the overall “mixture” effect is positive and statistically significant in panels A, B, (beta = 0.21;
95%CI: 0.07–0.35; p = 0.004) and C (beta = 0.20; 95%CI: 0.07–0.33; p = 0.004), corresponding
to total cholesterol, LDL-cholesterol, and HDL-cholesterol). The combined association
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with plasma triglycerides (panel D) did not reach statistical significance (beta = 0.07;
95%CI: 0.08–0.21; p = 0.364). As a result of the shading, one can make informal comparisons
between the left and right sides (Figure 2): a large, darkly shaded bar indicates a larger
independent effect than a large, lightly shaded bar.

Figure 3 shows the overall mixture effect estimates and the weights of trace element
contributions to the outcome (psi1 beta coefficients, 95%CIs, and the p-values) for the com-
bined association between plasma Zn, Cu, Se, and Mn and SBP (panel A), DBP (panel B),
fasting glucose (panel C), and BMI (panel D) as continuous variables. Models adjusted
for sex, age, obesity, and medications. No statistically significant association between
the combined mixture and SBP (p = 0.213), DBP (p = 0.610), fasting glucose (p = 0.913),
or BMI (p = 0.181) were detected. Likewise, when waist circumference was considered as
the outcome using the same approach, no statistically significant combined association was
found (beta: 0.086; 95%CI: −0.032–0.153; p = 0.153).
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Figure 3. Overall mixture effect estimates and the weights of trace element contributions to the out-
come (psi1 beta coefficients, 95% confidence intervals (CI), and p-values) for the combined association
of plasma Zn, Cu, Se, and Mn with SBP (panel A), DBP (panel B), fasting glucose (panel C), and BMI
(panel D) as continuous variables. Multivariable adjusted model.

Next, using the quantile-based g-computation approach, we then assessed cardiovascu-
lar risk factors as categorical variables. The joint effect of Zn, Cu, Se, and Mn was associated
with an increased probability of having high total cholesterol (OR: 2.03; 95%CI: 1.37–2.99;
p < 0.001) and high LDL-cholesterol (OR: 2.15; 95%CI: 1.45–3.03; p = 0.001). Zn, Cu, and Se
all had positive weights, but Mn had negative weights. There were no significant associa-
tions seen for hypertension or diabetes.
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3.3.3. Calculation of TERS for Plasma

Due to the seeming complexity of the quantile-based g-computation method, we de-
veloped a simple method based on additive scores to summarize the combined influence
of trace elements, as given in the Methods section. For category scaling, we first deter-
mined the tertiles of plasma concentrations for each element (Table 5). On the basis of
the individual associations between plasma trace elements and cardiovascular risk fac-
tors as continuous variables, we computed the directionality of the effect and determined
the tertiles associated with an increased risk for cardiovascular risk factors. For each trace
element, the tertile with the highest risk was assigned a value of 2, while the tertile with
the lowest risk was assigned a value of 0.

Table 5. Tertiles for plasma concentrations of Zn, Cu, Se, and Mn in the studied population.

T1 Plasma T2 Plasma T3 Plasma

Zn (µmol/L) Lower to 14.78 14.79 to 16.80 16.81 to higher
CU (µmol/L) Lower to 22.64 22.65 to 26.75 26.76 to higher
Se (µmol/L) Lower to 1.11 1.12 to 1.25 1.25 to higher
Mn (nmol/L) Lower to 61.94 61.94 to 88.08 88.08 to higher

T1: Tertile 1; T2: Tertile 2; T3: Tertile 3.

The score for the middle tertile was 1. We built a global additive TERS for plasma
(the same TERS for each cardiovascular risk factor) and examined the combined trace
element influence on each cardiovascular risk factor. In this TERS, we computed a direct
effect increasing cardiovascular risk for Zn, Cu, and Se (scored as 0, 1, and 2 for tertile
1, tertile 2, and tertile 3, respectively). Due to the identified inverse effect for Mn, this
trace element was scored inversely (2 for tertile 1, 1 for tertile 2, and 0 for tertile 3). With
these scores, the plasma TERS variable for additive combined effect ranged from 0 (lower
risk) to 8 (higher risk), depending on the trace element concentration (low or high). Then,
unadjusted and adjusted general linear or logistic regression models were built for the TERS
and cardiovascular risk variables. Table 6 displays correlation coefficients and p-values
for the association between the combined score for Zn, Cu, Se, and Mn in plasma and
the continuous cardiovascular risk factors.

Table 6. Combined association between plasma levels of trace elements (Zn, Cu, Se, and Mn) and
cardiovascular risk factors (as continuous). Trace elements risk score (TERS) approach.

TERS Plasma

Model 1 Model 2 Model 3

Variable/Statistic r (p-Value) 1 r (p-Value) 2 r (p-Value) 3

Total-cholesterol (mg/dL) 0.265 (<0.001) 0.219 (<0.001) 0.210 (<0.001)
LDL-cholesterol (mg/dL) 0.214 (<0.001) 0.178 (<0.001) 0.173 (<0.001)
HDL-cholesterol (mg/dL) 0.207 (<0.001) 0.186(<0.001) 0.177 (<0.001)
Triglycerides (mg/dL) 0.036 (0.427) 0.000 (0.994) 0.006 (0.900)
SBP (mmHg) 0.124 (0.006) 0.107 (0.022) 0.110 (0.019)
DBP (mmHg) 0.089 (0.049) 0.063 (0.176) 0.052 (0.256)
Glucose (mg/dL) 0.002 (0.961) 0.064 (0.159) −0.036 (0.442)
BMI (kg/m2) 0.115 (0.011) 0.074 (0.115) ___
Waist Circumference (cm) 0.090 (0.049) 0.063 (0.181) ___

Values are correlation coefficients (r) and p-values; 1: unadjusted p-value; 2: p-value adjusted by sex and age;
3: p-value adjusted by sex, age, obesity, and medication when appropriate. r: Pearson coefficient; SBP: systolic
blood pressure; DBP: diastolic blood pressure; BMI: body mass index. In the combined TERS analysis, plasma
tertiles of Zn, Cu, Se, and Mn were considered and scored (as 0, 1, or 2) for the additive score taking into account
the direct or inverse risk effect: Zn, Cu, and Se were scored directly, and Mn was scored inversely.

Models 1, 2, and 3 were fitted. We detected a statistically significant association
between the combined plasma TERS and total cholesterol (p < 0.001), LDL-cholesterol
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(p < 0.001), and HDL-cholesterol (p < 0.001) using model 3 (adjusted for sex, age, obesity,
and medications when applicable). There were no statistically significant associations
found with glucose at fasting, BMI, waist circumference, and DBP.

These results were comparable to those obtained earlier utilizing the quantile-based
g-computation method for plasma. However, we found statistically significant findings for
SBP when utilizing the TERS method (p = 0.019) but none when utilizing the quantile-based
g-computation (p = 0.213).

3.4. Associations between Combined Urinary Trace Elements and Cardiovascular Risk Factors

Using the same methodology as analyses performed on plasma, we have also inves-
tigated the combined effects of trace elements on urine. However, we will not describe
the results in such detail as there are more limitations to using trace element concentrations
in urine as good biomarkers than in plasma, and the results may be more biased.

3.4.1. Principal Component Analysis for Urine

A factor analysis of the main components based on urine concentration of Zn, Cu,
Se, and Mn was undertaken to better understand the latent structure underlying these
trace elements. The KMO measure and the Bartlett test of sphericity reached statistical
significance (p < 0.001). Following the Kaiser criterion of extracting factors with eigenvalues
>1 (2.233 and 1.003, respectively), two factors were extracted. The two factors, or PCs,
cumulatively accounted for 80.8% of the total variance. PC1 explained 55.8% of the total
variance and PC2 explained 25.1%. Having undertaken the varimax transformation to
better identify the components, PC1 presented positive high factor loadings with urine
Zn (0.811), urine Cu (0.908), and urine Se (0.865) and can be identified as the component
that mainly represented the combined Zn, Cu, and Se levels. PC2 was heavily loaded
with Mn (0.999), representing this trace element clearly separated from the others. Then,
we analyzed the association between PC1 in urine and cardiovascular risk factors. In model
3 adjusted for covariates, PC1 was only significantly and directly associated with fasting
glucose (p = 0.02). No significant associations were found for plasma lipids, blood pressure,
BMI, or waist circumference.

3.4.2. Quantile-Based g-Computation for Urine

We estimated the joint effects of the combination (mixture) of urine Zn, Cu, Se and Mn
on cardiovascular risk factors. First, we analyzed the cardiovascular risk factors (continuous
variables) as separate outcomes. As stated in Methods, we considered quartiles for all scaled
trace elements in urine. We fitted unadjusted models and models sequentially adjusted
for sex and age, and additionally adjusted for sex, age, obesity, and medications, when
appropriate (model 3). For the overall exposure, we calculated the “overall mixture effect
from quantile-based g-computation” (psi1) [103]. Table 7 shows the overall mixture effect
estimates of trace elements contributions to the outcome (psi1 beta coefficients, 95%CIs,
and the p-values) for the combined association between urine Zn, Cu, Se, and Mn and
plasma lipid levels (total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, SBP,
DBP, BMI, and waist circumference). We only found statistically significant combined
associations for plasma glucose (Beta: 0.14; 95%CI: 0.03–0.26; p = 0.014).
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Table 7. Overall combined effect of trace elements (Zn, Cu, Se, and Mn) in urine and cardiovascular
risk factors. Based on quantile-g-computation approach.

Cardiovascular Risk
Factor β 95%CI p1

Total-cholesterol (mg/dL) 0.084 0.084, −0.035 0.168
LDL-cholesterol (mg/dL) 0.061 0.061, −0.064 0.340
HDL-cholesterol (mg/dL) −0.068 −0.068, −0.176 0.222
Triglycerides (mg/dL) 0.031 0.031, −0.089 0.615
SBP (mmHg) 0.022 0.022, −0.086 0.687
DBP (mmHg) −0.001 −0.001, −0.109 0.986
Glucose (mg/dL) 0.147 0.147, 0.030 0.014
BMI (kg/m2) 2 0.084 0.084, −0.004 0.061
Waist Circumference (cm) 2 0.010 0.010, −0.113 0.872

β: psi1 g-computation coefficient; CI: Confidence interval; 1: p-value adjusted for sex, age, obesity, and medication
when appropriate; 2: p-value adjusted for sex and age.

Figure 4 shows the overall mixture effect estimates and the weights of trace urinary
element contributions to the fasting glucose for fasting glucose in the adjusted model.
The weights were positive for Zn, Cu, and Mn. Se presented a negative weight.

Antioxidants 2022, 11, 1991 16 of 31 
 

 

Table 7. Overall combined effect of trace elements (Zn, Cu, Se, and Mn) in urine and cardiovascular 
risk factors. Based on quantile-g-computation approach. 

Cardiovascular Risk Factor β 95% CI p 1 
Total-cholesterol (mg/dL) 0.084 0.084, −0.035 0.168 
LDL-cholesterol (mg/dL) 0.061 0.061, −0.064 0.340 
HDL-cholesterol (mg/dL) −0.068 −0.068, −0.176 0.222 
Triglycerides (mg/dL) 0.031 0.031, −0.089 0.615 
SBP (mmHg) 0.022 0.022, −0.086 0.687 
DBP (mmHg) −0.001 −0.001, −0.109 0.986 
Glucose (mg/dL) 0.147 0.147, 0.030 0.014 
BMI (kg/m2) 2 0.084 0.084, −0.004 0.061 
Waist Circumference (cm) 2 0.010 0.010, −0.113 0.872 
β: psi1 g-computation coefficient; CI: Confidence interval; 1: p-value adjusted for sex, age, obesity, 
and medication when appropriate; 2: p-value adjusted for sex and age. 

Figure 4 shows the overall mixture effect estimates and the weights of trace urinary 
element contributions to the fasting glucose for fasting glucose in the adjusted model. The 
weights were positive for Zn, Cu, and Mn. Se presented a negative weight. 

 
β = 0.147; 95%CI: 0.03, 0.26; p = 0. 014 

Figure 4. Overall mixture effect estimates (psi1 beta coefficients, 95% confidence intervals, and p-
values) and the weights of trace elements contributions to the fasting glucose l levels for the 
combined association with urine Zn, Cu, Se, and Mn. Adjusted model. 

Next, using the quantile-based g-computation approach, we assessed the association 
of the trace elements in urine with diabetes as a categorical variable. The joint effect was 
associated with an increased probability of having diabetes (OR: 1.91; 95%CI: 1.01–3.92; p 
= 0.046 in the adjusted model 3). Zn, Cu, and Mn had positive weights and Se had a 
negative weight. 

3.4.3. Calculation of TERS for Urine 
We calculated the additive scores to summarize the combined influence of trace 

elements in urine, as given in the Methods section. For category scaling, we first 
determined the tertiles of urine concentrations for each element (Table S4). On the basis 
of the individual associations between urine trace elements and cardiovascular risk factors 
as continuous variables, we computed the directionality of the effect and determined the 
tertiles associated with an increased risk for cardiovascular risk factors. For each trace 
element, the tertile with the highest risk was assigned a value of 2, while the tertile with 
the lowest risk was assigned a value of 0. 

The score for the middle tertile was 1. We constructed a global additive TERS for 
urine (the same TERS for each cardiovascular risk factor) and analyzed the combined 

Figure 4. Overall mixture effect estimates (psi1 beta coefficients, 95% confidence intervals,
and p-values) and the weights of trace elements contributions to the fasting glucose l levels for
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Next, using the quantile-based g-computation approach, we assessed the association
of the trace elements in urine with diabetes as a categorical variable. The joint effect was
associated with an increased probability of having diabetes (OR: 1.91; 95%CI: 1.01–3.92;
p = 0.046 in the adjusted model 3). Zn, Cu, and Mn had positive weights and Se had
a negative weight.

3.4.3. Calculation of TERS for Urine

We calculated the additive scores to summarize the combined influence of trace
elements in urine, as given in the Methods section. For category scaling, we first determined
the tertiles of urine concentrations for each element (Table S4). On the basis of the individual
associations between urine trace elements and cardiovascular risk factors as continuous
variables, we computed the directionality of the effect and determined the tertiles associated
with an increased risk for cardiovascular risk factors. For each trace element, the tertile
with the highest risk was assigned a value of 2, while the tertile with the lowest risk was
assigned a value of 0.

The score for the middle tertile was 1. We constructed a global additive TERS for urine
(the same TERS for each cardiovascular risk factor) and analyzed the combined influence
of trace elements on each cardiovascular risk factor. In this TERS, a direct effect increasing
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cardiovascular risk was estimated for Zn, Cu, and Se (scored as 0, 1, and 2 for tertile 1,
tertile 2, and tertile 3, respectively), and an inverse effect was estimated for Se (2 for tertile
1, 1 for tertile 2, and 0 for tertile 3). Depending on the trace element concentration (low or
high), these scores ranged from 0 (lower risk) to 8 (higher risk) for the urine TERS variable
for additive combined effect. Then, unadjusted and adjusted general linear or logistic
regression models were built for the urine TERS and cardiovascular risk variables. Table S5
displays correlation coefficients and p-values for the association between the combined
score for Zn, Cu, Se, and Mn in urine and the continuous cardiovascular risk factors.
Models 1, 2, and 3 were fitted. We detected a statistically significant association between
the combined TERS in urine and fasting plasma glucose (p < 0.001) in the same direction and
comparable with that obtained earlier using the quantile-based g-computation. However,
we obtained additional significant associations of the TERS score with HDL-cholesterol
and triglycerides.

3.5. Associations between Combined Plasma and Urine Trace Elements with Cardiovascular
Risk Factors

Finally, we explored the joint association of plasma and urine biomarkers for trace
elements (Zn, Cu, Se, and Mn) and cardiovascular risk factors. For this combined analysis,
we only used the quantile-based g-computation approach. Using the same methodology
described in Methods, we used quartiles and estimated the “overall mixture effect from
quantile g-computation” (psi1) [103]. Only statistically significant results were obtained
for plasma total cholesterol and LDL-cholesterol. Figure 5 shows the association coef-
ficients and the weights for the plasma and urine trace elements and total cholesterol
in plasma (panel A) and LDL-cholesterol (panel B) in the model adjusted for sex, age,
obesity, and medications.
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4. Discussion

In this cross-sectional study conducted on a Spanish Mediterranean population aged
between 18 and 80 years, statistically significant associations were identified between
plasma and/or urine concentrations of essential trace elements (Zn, Cu, Se, and Mn) and
highly prevalent cardiovascular risk factors. There is currently much controversy about
the protective or risk role of these essential trace elements on cardiovascular risk factors and
diseases. This is because studies conducted on this topic over the past few decades have
yielded inconsistent results [69–98]. Numerous variables [50,55–60] can impact the different
results of studies in this field. Among these are the characteristics of the population, such
as age, gender, the presence of various pathologies, and geographical origin. Additionally,
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genetic factors can be relevant. Our research was focused on four essential trace elements
(Zn, Cu, Se, and Mn) mostly obtained from diet [2]. When comparing the results of different
investigations, it is also important to know if the population evaluated had high or low con-
centrations of the trace elements examined, because depending on these levels, the effects
can be different [79–91]. In our Mediterranean population, the presence of these essential
trace elements is relatively high [83,97,113]. Particularly significant is the methodology for
evaluating exposure to trace elements from food or other sources [114–116]. Considering
that the geographical origin influences the trace element content of foods, various biomark-
ers in biological samples are preferred as more objective measures. However, there is
controversy regarding the optimal biomarkers for each trace element [87–94]. We measured
the concentrations of Zn, Cu, Se, and Mn in plasma and urine at the same time. This gives
us an advantage over other studies that only look at one type of biomarker. Moreover,
the majority of previous research has concentrated on the analysis of trace element asso-
ciations in isolation. However, it is known that the effect of these trace elements can be
joint, enhancing or inhibiting each other [95,96,98,99], which is why statistical analyses
of association taking into account the combinations of these elements have recently been
recommended [101,102]. Several methodological approaches have been proposed for this,
and it is advised to utilize a combination of them because there is no consensus regarding
the most successful [99]. A number of more traditional investigations have employed
principal component analysis [110] for investigating the combined effect of trace elements.
However, this approach has several limitations and is being superseded by alternative
solutions employing more artificial intelligence algorithms and other methods includ-
ing shrinkage methods (least absolute shrinkage and selection operator, elastic network
model, adaptive elastic-net model), Bayesian kernel machine regression, WQS regression,
and quantile-based g-computation [97,100,102,103,111,117–120]. In our population, we an-
alyzed the associations between trace elements and cardiovascular risk factors using both
the single-trace-element approach and the combined-trace element approach. For the
combined analysis, we used three approaches including principal component analysis,
quantile-based g-computation, and a simple score method so-called TERS. Using quantile-
based g-computation, our study is the first to apply the combined analysis of trace elements
and their association with cardiovascular risk factors in a Mediterranean population.

Before discussing the obtained results in greater detail, it is necessary to comment
on some descriptive aspects of the population’s characteristics and the concentrations of
the studied biomarkers. In this Mediterranean population, the mean plasma Zn concen-
trations are comparable with those observed in a previous study conducted in southern
Spain [121] and higher [122–124] or lower [125] than those described in other studies. Cu
values in this Mediterranean population are slightly higher than those reported in southern
Spain [126] and in other populations [124,127]. Mean plasma levels of Se are comparable to
previous studies [124,126,128,129]. In the case of Mn, mean plasma values in this Mediter-
ranean population are within the range provided by several authors [130–132], higher than
those described in some previous studies [124,126,129], and lower than those observed by
Shen et al. [128].

In urine, mean Zn values for this population are lower than those reported in the EPIC
study [124] in Brazil and [133], but slightly higher than those reported by [134] in women
in the United States and in a previous study in Spain [97]. Cu concentrations in the urine
of this Mediterranean population are higher than those reported by [124], comparable
with those observed by [97], and lower than those found by [133,135,136]. The mean
values for urinary Se are higher than those reported by [133,135,136] but lower than those
reported by [134]. Likewise, Mn concentrations in urine were lower than those reported
by [133,136,137] but comparable with those reported by [134].

When comparing the results of different studies, it is also crucial to examine the demo-
graphic features of the population. In our sample, we looked at differences in trace element
based on sex and age. In several of the biomarkers studied, we found statistically significant
differences between the sexes, but the most relevant were the sex differences in plasma



Antioxidants 2022, 11, 1991 18 of 29

levels of Zn and Cu. These findings are consistent with previous studies [121,126,138–141].
Regarding urinary concentrations by sex, in our study, we observed that urinary excre-
tion of Zn, Cu, and Se is higher in men. No sex-specific differences were noted for Mn.
Once more, no consensus has been found in the literature. In a comprehensive review
on urinary excretion of Se, it can be observed that there is a lack of agreement and that
urinary Se in men and women shows great variation depending on the study characteristics
and the geographical area and content in food [124,142]. Other authors did not observe
significant differences in urinary excretion of Se between men and women [143].

The analysis of differences in the plasma concentrations of the trace elements with age
revealed that Zn and Cu do not vary significantly in the present study, whereas plasma
Se increased and plasma Mn decreased with age. However, the information available
in the literature on this subject is contradictory. Some authors reported increases in Zn with
age [138], while others report decreases [121,140,141]. In the case of Cu, some authors report
increases with age [140,141], similar to Se [126,138–140]; however, [144] found very low Se
levels in very elderly people. In the case of plasma Mn, our findings agree with those of
some researchers [124,140], whereas other authors found increases with age [144,145] or no
changes [126]. Regarding changes in urinary content of the trace elements with age, in our
case it was found that Zn, Cu, and Se decreased with age, with no significant variations
for Mn. Although there is no total agreement on urinary changes of these elements with
age, the trend for the excretion of Se to decrease with age has been described by other
authors [143] and has been linked to greater likelihood of the malnutrition and organic
damage that come with age [146]. However, in a study undertaken in Brazil, a negative
correlation between serum concentrations of several minerals and age was reported, but no
significant differences were observed in urine levels by age [147]. Due to these potential
differences by sex and age, we adjusted the models of the associations with cardiovascular
risk factors for these two variables in subsequent statistical analyses to avoid a possible
confounding effect.

Since plasma concentrations of Zn, Cu, Se, and Mn are the most widely used and
accepted biomarkers for these trace elements [86–93], we began our investigation into
the relationship between trace elements and cardiovascular risk factors by analyzing
plasma levels of these elements. In this Mediterranean population, correlations between
plasma concentrations and urine concentrations of these biomarkers were found to be
quite weak. Depending on the biomarker utilized, these low correlations may account for
the disparity in results across published studies [48–84]. Although the majority of pub-
lished studies analyzed plasma, serum, or blood concentrations, other studies used urine
biomarkers [97,124,127–133]. In the single-trace-element association analysis, we identified
a number of statistically significant associations between cardiovascular risk factors and
trace elements. Multivariable adjusted models revealed a statistically significant association
between plasma Cu and plasma triglycerides, as well as plasma Cu and BMI or waist
circumference. However, there was no statistically significant association between plasma
Zn levels and the cardiovascular risk factors investigated. No significant associations
were obtained for plasma Zn concentrations in the multivariable adjusted model despite
the fact that some inverse associations were detected in the unadjusted model. There is
currently no agreement on the plasma levels of these elements and their relationship with
circulating lipids, blood pressure, fasting glucose, BMI, and/or cardiovascular disease.
Rotter et al. [148] positively correlated Zn with circulating triglycerides and Se with to-
tal cholesterol, LDL-cholesterol, and triglycerides. Other authors inversely related low
circulating levels of Zn with systemic inflammatory activity [80], and with dyslipidemia
in the presence of hypertension and hypercholesterolemia [149]. High Cu levels have been
linked with hypertriglyceridemia in newborns [150], cardiovascular risk [77], and a pos-
itive correlation between Cu levels and total cholesterol and HDL-cholesterol has been
described [151]. However, other authors found no correlation between plasma Cu and Zn
and lipid parameters [125,152]. Several studies demonstrate a positive correlation between
elevated plasma zinc levels and diabetes or glucose at fasting [153,154]. However, in this
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Mediterranean population, no significant associations were found between plasma Zn
levels and these parameters. Other authors found no association between diabetes and
the levels of Zn or other trace elements [148,151], even an inverse association with glycated
hemoglobin has been reported [155]. Interestingly, despite not detecting statistically signifi-
cant associations between plasma Zn concentrations and fasting glucose or diabetes risk,
we identified a highly significant positive association between urine Zn concentrations
and these parameters in our population. Many other studies have found a link between
urinary Zn concentrations and glycemia/diabetes [94,155–157]. However, the mechanisms
underlying this association between Zn concentrations in urine and fasting glucose, but not
in plasma, remain unclear. It has been reported that individuals with insulin-dependent
diabetes have approximately doubled urinary zinc excretion than controls [158]. This is
paradoxical because it has been reported that Zn may help reduce the onset or progression
of type 2 diabetes through a variety of mechanisms involving both insulin secretion and
peripheral tissue action [159]. However, a suggested mechanism to explain the increased
concentrations in urine is that high plasma glucose levels may interfere with the active trans-
port of Zn in renal tubule cells, increasing Zn excretion from the body through urine [160].
However, more research is needed. Additional prospective epidemiological and mechanis-
tic studies should be conducted to better elucidate the associations of Zn plasma and urine
levels with fasting glucose and type 2 diabetes risk [161].

We found the most statistically significant and consistent associations between se-
lenium in plasma and plasma lipid concentrations, primarily total cholesterol and LDL-
cholesterol concentrations. Despite the fact that selenium was once assumed to be a po-
tent cardiovascular-protective antioxidant with inverse associations with cardiovascular
risk factors [79], numerous studies published in populations from the United States, Eu-
rope, and even Asia have observed direct associations between higher plasma concentra-
tions of selenium and increases in plasma concentrations of total cholesterol and LDL-
cholesterol [51,66–68,72,82,162]. Although our results are consistent with observational
epidemiological research conducted in the so-called Se replete populations, the mechanism
by which greater plasma Se concentrations are linked to hypercholesterolemia remains
unclear. It is feasible that a U-shaped link exists between plasma Se concentrations and
hypercholesterolemia, in that both low and high Se concentrations would have negative
effects on plasma lipids [163,164]. A Se deficit may correlate to a decreased general syn-
thesis of selenoproteins, and this may correspond to an increased oxidative stress and its
repercussions in the lipid metabolism (alteration in redox balance, altered protein function,
and abnormalities in cardiovascular relevant lipid signaling pathways, among others).
Similarly, high plasma Se levels may be associated with the maximal activation of particular
selenoproteins, resulting in a compensatory response towards the pro-oxidant effects of Se
as well as unfavorable effects in some lipid signaling pathways [164].

In addition to the strong associations between plasma Se and hypercholesterolemia,
we detected a statistically significant association between plasma Se and SBP in our Mediter-
ranean population. However, we did not detect significant associations with fasting glucose
or diabetes. Other researchers have found associations between plasma Se and blood pres-
sure or diabetes but the findings are inconsistent [67,70,71,79,82]. In the single-trace-element
study, plasma Mn was not significantly associated with any cardiovascular risk factor but
presented inverse coefficients with many of them. It has been described that the highest Mn
serum levels are associated with a lower presence of prediabetes and diabetes in elderly
Chinese women but this correlation is found in men when Mn levels are moderate [131].

Regarding BMI and waist circumference, we detected several statistically significant
associations with plasma levels in the single-trace-element analysis. However, the as-
sociations were in opposite directions (direct associations for plasma Cu and inverse
associations for Se). Published studies were also contradictory for plasma trace elements
and anthropometric variables, reporting inverse, null, or direct relationships depending
on the population [121,126,148,153,154,162,165–168].
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In the combined-trace-element analysis, we used three approaches: a principal compo-
nent analysis, the quantile-based g-computation, and the construction of a simple score
so-called TERS. We conducted the combined analysis with the three approaches sepa-
rately for plasma and urine and compared the results. Finally, we used the quantile-
based g-computation to jointly analyze plasma and urine biomarkers. Quantile-based
g-computation is a novel method proposed to specifically address the inherent complexities
of high-dimensional mixture data and to estimate the joint effect of the analyzed chem-
icals [103]. It builds upon previous mixture-based regression models such as weighted
quantile sum regression [111]. However, quantile-based g-computation has more ad-
vantages, including that does not require a directional homogeneity assumption that all
exposures have an effect in the same direction, as modeled in other approaches [102]. Al-
though in the last two years a number of studies employing this approach for the combined
analysis of exposure to trace elements have been published [98–100,117,118,169], its use is
still limited, and there are few published relationships with cardiovascular risk variables to
which we can compare our findings. The results of our study’s combined analysis of trace
element biomarkers in plasma using quantile-based g-computation were very enlightening.
We were able to detect several statistically significant combined associations using this
method. Among them is the joint association of the trace elements studied with total choles-
terol and LDL-cholesterol concentrations. Perhaps most notably, it has made it possible
to easily identify heterogeneity in the associations of different trace elements in combined
analyses. We found that none of the cardiovascular risk factors investigated in the combined
analysis had all of the trace elements acting in the same direction, increasing the risk. There
are elements that, depending on the risk factor studied, have an inverse or direct influence.
For example, in the case of total cholesterol, Se, Cu, and Zn all contribute to an increase
in risk, whereas Mn decreases it. We were able to validate these findings by using TERS,
a new method based on a score of tertiles of trace element concentrations in urine that
we developed. In urine, the combined analysis using the quantile-based g-computation
approach was very informative regarding the joint exposure effect and yielded statistically
significant results for fasting glucose concentrations and diabetes. Again, heterogeneity
among the trace elements was detected (Se inversely related and the others directly related).
This significant association was also detected in our TERS approach. Finally, we explored
the joint association between plasma and urine biomarkers with cardiovascular risk factors
and observed statistically significant results for total cholesterol and LDL-cholesterol, re-
vealing a strong association. Given the effects of these plasma lipids and fasting glucose
on cardiovascular risk, a better understanding of the individual and combined effects of
plasma and urine biomarkers is required for more personalized nutritional advice.

Our research has both strengths and limitations. Among the study’s strengths is that
it was conducted on a well-defined general population, which included participants aged
18 to 80 years from a Mediterranean country. In addition, potential confounders have been
accounted for in the statistical models. Moreover, we used both a single-trace-element
statistical approach and a combined approach to capture the joint influence on the car-
diovascular risk variables analyzed. Nonetheless, our study has a number of limitations.
The first limitation is that it is a cross-sectional study, from which no causal inferences can
be drawn. Similarly, because this is an epidemiological study, we do not analyze the po-
tential mechanisms underlying the statistical relationships identified. Further mechanistic
research is required to comprehend the potential mechanisms underlying each statistical
association reported. Another limitation is the number of trace materials studied. We
investigated Zn, Cu, Se, and Mn; however, it is well known that Fe is another essential trace
element that plays a key role in oxidative-stress- and age-related diseases [170,171]. Fe is
vital to numerous biological functions, and Fe deficiency or excess can result in a variety
of medical conditions related to cardiovascular risk factors or diseases. However, more
research is needed at the population level due to the mixed results [172–175]. It would
have been highly interesting to add iron concentration analysis in this Mediterranean
population, both for its research as a separate trace element and in the combined joint
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analysis; therefore, it will be evaluated for further research. Another limitation of the study
is that oxidative stress biomarkers have not been determined. Currently, the so-called
derivatives-reactive oxygen metabolites (d-ROMs) [176–178] are an emerging biomarker of
oxidative stress, and their measurement would have offered highly interesting information
to relate it to the concentrations of trace elements and to the investigated cardiovascular risk
factors. Finally, we did not analyze the genetic factors that may influence cardiovascular
risk, which is still another limitation of our study. Several genetic polymorphisms are
currently known to be associated with higher concentrations of plasma lipids (i.e., polymor-
phisms in the APOE gene determining LDL-c levels), blood glucose (i.e., polymorphisms
in the TCF7L2 gene), body mass index (i.e., polymorphisms in the FTO gene), and other
cardiovascular risk factors [179–183]. More recently, associations of cardiovascular risk
factors with microbiota-related polymorphisms have been reported [184]. For all of these
reasons, it would have been interesting to investigate if markers of higher or lower genetic
risk can modulate the effect of the trace element concentrations on cardiovascular risk
phenotypes. A bigger sample size is required for these gene–environment interaction
investigations; therefore, we will continue to work in the future.

5. Conclusions

In this Mediterranean population, we examined the single and combined association
of four essential trace elements (Zn, Cu, Se, and Mn), for which relevant antioxidant effects
have been documented, with cardiovascular risk factors, using both the plasma and urine
biomarkers. In the single-trace-element analysis, both inverse and direct relationships be-
tween these elements and plasma lipids, blood pressure, fasting glucose, or anthropometric
factors were observed. The direct associations suggested that larger concentrations may
have a pro-oxidant effect increasing some cardiovascular risk factors. However, as this is
an observational epidemiological study, no causal or mechanistic conclusions can be drawn.
In addition, we examined the effect of joint exposure to trace elements on the cardiovas-
cular risk factors and found some statistically significant joint associations. In plasma,
the combined effect of higher plasma trace element levels (mostly Se, Cu, and Zn) was
directly related with elevated plasma lipids, whereas the mixture effect in urine (mainly
driven by Zn) was primarily associated with plasma glucose. Both parameters are relevant
cardiovascular risk factors, suggesting that higher exposures to trace elements should
be considered with caution. Nonetheless, in the combined mixture effect analysis utiliz-
ing the quantile-based g-computation approach, we identified some trace components
in the mixture that were inversely linked with cardiovascular risk variables (i.e., plasma
Mn for plasma lipids and urinary Se for fasting glucose). Therefore, additional research
employing experimental studies including assessment of genetic factors and oxidative
stress biomarkers is necessary to better comprehend the balance or imbalance between
trace elements that increase or decrease cardiovascular risk factors.
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