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Abstract  
Phosphorus (P) is a limiting nutrient in many agroecosystems and, apart from affecting plant growth, can also limit biologi-
cal  N2 fixation (BNF) by leguminous plants. Thus, increasing P supply can have a positive effect on BNF particularly in 
P-deficient soils. Here, we provide new insights into the response of hairy vetch (Vicia villosa), widely adopted as a legume 
cover crop, to P limitations, by comparing the effects of inorganic (Pi) and organic (Po) P supply on plant growth and BNF 
capacity. This was achieved by means of a greenhouse experiment in which rhizobia-inoculated hairy vetch was grown in 
a P-limited agricultural soil and changes in plant growth, nitrogen (N) and P uptake, BNF capacity, and soil phosphatases 
activities were evaluated as a function of Pi and Po inputs, in the form of orthophosphate or phytic acid, respectively. When 
compared to P-deficient conditions where BNF was primarily limited by plant growth rather than directly due to the high 
P costs of symbiotic N fixation, Pi addition substantially enhanced plant growth (threefold), nodule formation (16-fold), 
P acquisition (sixfold), and BNF efficiency (sevenfold). In contrast, even with the addition of the highest dose of Po, the 
increase in plant growth, nodule formation, P acquisition, and BNF capacity (1.7, 3.5, 2.4 and 2.1-fold, respectively) was 
much less expressed, indicating that hairy vetch could only minimally access Po sources over the growth period in order to 
alleviate the P limitation effect on  N2 fixation in under P-deficient conditions. These findings suggest that hairy vetch will not 
be able to provide sufficient BNF for improving soil N inputs in low-fertility cropping systems that rely on organic inputs.

Keywords Legume cover crop · Phosphorus deficiency · Rhizobia · Phytic acid · Stable isotope dilution · Phosphatase 
activity

1  Introduction 

Legume cover crops are often included in agricultural crop-
ping systems for enhancing soil nitrogen (N) availability and 
improving the productivity and sustainability of succeeding 
cash crops under low-input systems (Torbert et al. 1996). 
Apart from increasing inputs of organic matter to the soil, 
growing legumes as winter cover crops may increase the net 
N inputs through biological  N2 fixation (BNF), a process 

that involves the establishment of a symbiotic relationship 
between plants and rhizobia N-fixers hosted in their roots 
(Fageria et al. 2005).

The BNF capacity of a leguminous crop, expressed as 
the proportion of N derived from the atmosphere (%Ndfa) 
by symbiotic association, is known to greatly depend on 
soil fertility (Romanyà and Casals, 2020). Low and high 
N availability can reduce or even suppress BNF either by 
limiting plant photosynthetic capacity (low N; Moreau et al. 
2008; Vitousek et al. 2013) or by reducing %Ndfa due to 
the higher energetic cost of symbiotic fixation compared to 
soil N acquisition (high N; Rastetter et al. 2001; Vitousek 
et al. 2002; Walley et al. 2011). Adequate phosphorus (P) 
nutrition is also an important component of legume pro-
duction systems due to their greater P requirements than 
cereals (Pang et al. 2018). The dependence of symbiotic per-
formance on P availability was reported to depend on the 
overall nutritional status of the soil, with a stronger effect of 
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inorganic P (Pi) addition on BNF in soils with a low P sta-
tus where rhizobia compete with plants for available P, but 
not in P-rich soils (Raji et al. 2019). Soil P availability can 
affect BNF capacity directly by modulating nodule growth, 
formation, and functioning as a result of the high P costs of 
symbiotic N fixation (Divito and Sadras, 2014; Raven 2012) 
or indirectly by affecting plant growth and allocation of pho-
tosynthetically assimilated C to the symbionts (Püschel et al. 
2017; Walley et al. 2011).

Nonetheless, legumes are also known to hold an advan-
tage in P acquisition due to their capability to mobilize spar-
ingly soluble P in the soil through a variety of root mecha-
nisms in order to provide for the great P demand necessary 
to maintain the rhizobial symbiosis (Jakobsen, 1985). Under 
P-limited conditions, leguminous plants have been reported 
to respond by acidification of the rhizosphere, increasing 
the exudation of organic acids, up-regulating the production 
of extracellular phosphatase enzymes, and favoring sym-
biotic mycorrhizal associations (Hinsinger, 2001; Houlton 
et al. 2008; Nasto et al. 2014). In particular, considering 
that organic P (Po) may account for 30–80% of the total P in 
arable soils primarily in the form of inositol phosphates and 
other phosphate monoesters (Turner et al. 2002), the greater 
investment in phosphatase enzymes with respect to non-
N2-fixing species could facilitate P acquisition by catalyzing 
the hydrolysis of organic P esters releasing Pi for uptake by 
plant roots (Olde Venterink, 2011; Tarafdar and Claassen 
1988). However, Png et al. (2017) have recently evidenced 
that the greater root phosphatase activity of legumes, par-
ticularly at low soil P availability, was likely a phylogenetic 
trait of rhizobial legumes rather than being directly related 
to their  N2-fixing capacity. On the other hand, enzymatic 
activity may be hampered by the great chemical stabilization 
of phosphate monoesters, especially inositol phosphates, by 
interaction with mineral surfaces (Celi et al. 2020; Giaveno 
et al. 2010). In this regard, although the specific capability 
of legumes to mobilize sparingly accessible P may represent 
a further advantage for Po recycling compared to other spe-
cies, this has received scant attention.

Various studies have evidenced a positive effect of P 
supply on BNF by  N2-fixing plant species (e.g. Isaac et al., 
2011), with increasing P supply improving nodule number, 
nodule biomass, and BNF rates (Chekanai et al. 2018; Oli-
vera et al. 2004). In particular, Bukovsky-Reyes et al. (2019) 
reported a positive relationship between soil-available P and 
vetch root N content when vetch was P-limited at soil-availa-
ble P contents below 70 mg  kg−1. Hairy vetch (Vicia villosa 
Roth) is widely used in agroecosystems as a winter legume 
cover crop and green manure contributing between 100 and 
230 kg N  ha−1 with biomass incorporation and having a BNF 
capacity over the plant growth period, ranging between 60 
and 100%Ndfa (Parr et al. 2011; Wagger 1989). It has been 
shown to perform better than other vetch species in terms of 

aboveground biomass production, root morphological char-
acteristics, P and K uptake, and  N2-fixing activity (Solangi 
et al. 2019), with an appropriate adaptability to both P-lim-
iting and non-limiting conditions (Anugroho et al. 2010). 
However, little is known on the responses of Vicia villosa 
to P limitations, the consequences for  N2 fixation rates, and 
adaptive plant strategies for coping with nutrient deficien-
cies in low fertility soils. Moreover, whereas most studies 
focused on understanding the effects of Pi availability on the 
mechanisms controlling P acquisition and implications on 
BNF rates under low P supply, there still remains a lack of 
evidence on role of Po sources in controlling BNF in legu-
minous plants. These Po sources may contribute to partially 
offset the dependence on labile Pi to satisfy plant P require-
ments by leguminous plants (Turner 2008).

Based on these considerations, we hypothesized that 
under severe P limitation, (a) improving P supply through 
Pi inputs can favor plant growth and C allocation to the 
root nodules and consequently enhance the BNF capacity 
of hairy vetch plants, while (b) increasing Po inputs can 
only partially alleviate the P limitation effect on  N2 fixa-
tion, because the ability of vetch plants to access organic P 
sources is limited by strong Po fixation processes. We tested 
these hypotheses by growing rhizobia-inoculated hairy vetch 
plants in a P-limited soil and evaluating plant growth, N 
and P uptake, BNF capacity (by isotope dilution), and soil 
enzyme activities related to P cycling, as a function of Pi 
and Po inputs in the form of orthophosphate or inositol 
hexaphosphate, respectively.

2  Materials and Methods

2.1  Experimental Design

The effects of P availability on nutrient uptake and BNF 
capacity of Vicia villosa Roth were evaluated by means of a 
greenhouse pot experiment in which hairy vetch was planted 
in a P-poor agricultural soil (Olsen P < 3 mg  kg−1) amended 
with two levels of added P in the form of mineral (Pi) and 
organic P (Po), as well as an unfertilized control (CNT). The 
experiment was conducted in a fully factorial experimen-
tal design with three sampling times over the plant growth 
period (seeding to flowering stage) and five biological rep-
licates per treatment, and thus comprised a total of 75 pots. 
The plants were seeded in mid-April and were grown for 
10 weeks in 1.2-l pots (containing 800 g of soil) positioned 
randomly in a greenhouse under natural light conditions. 
The duration of the greenhouse experiment covered the same 
plant growth stages as those observed in the field when cover 
crop termination is generally carried out around the flow-
ering stage. The soil used was collected from the topsoil 
(0–30 cm) of an acidic, sandy loam agricultural soil having a 
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pH of 5.0; a clay and sand content of 8.1 and 56.4%, respec-
tively; an available P content (Olsen P) of 2.94 mg  kg−1; 5.1 
and 12.3 mg N  kg−1 of available ammonium and nitrate–N, 
respectively; an organic C content of 6.02 g  kg−1; and a C/N 
ratio of 11.8. Prior to use, the soil was air-dried and passed 
through a 2-mm sieve.

A gradient of P supply was obtained by applying 0 
(CNT), 40 (PiL and PoL) or 120 mg P  kg−1 (PiH and PoH) 
in the form of inorganic  (KH2PO4) or organic P (potassium 
myo-inositol hexaphosphate, < 2% hydrolyzed P) prior to 
planting. These amounts of added P, chosen on the basis 
of adsorption and desorption isotherms of Pi and Po onto 
the agricultural soil used, did not exceed 20 and 2% of the 
maximum sorption capacity for Pi (Langmuir coefficients: 
 Qmax = 655 mg P  kg−1;  KL = 0.52 L μg−1) and Po (Langmuir 
coefficients:  Qmax = 6084 mg P  kg−1;  KL = 0.34 L μg−1), 
respectively, and were therefore completely adsorbed. The 
doses applied were thus intended to obtain soils with a range 
of P nutritional statuses representing the different scenarios 
of available P in agricultural soils. These amounts were 4- to 
tenfold greater that the annual application doses of P with 
mineral or organic (e.g., bovine manure) fertilization gener-
ally applied in conventional cropping systems. The amount 
of Olsen-extractable P in the soil receiving 40 mg P  kg−1 
was equivalent to 12 and 8 mg P  kg−1 for PiL and PoL treat-
ments, respectively, and 62 and 10 mg P  kg−1 for PiH and 
PoH soils receiving 120 mg P  kg−1.

Ten seeds of hairy vetch were planted in each pot, and 
after 10 d these were thinned to 5 plants per pot. All plants 
were inoculated at sowing with a commercial rhizobial inoc-
ulant (ALOSCA® group F; strain WSM1455) that included 
Rhizobium leguminosarum bv. viciae previously tested to be 
compatible with the host plant species. During the growing 
period, a nutrient solution (50 ml) containing 235 mg  L−1 K, 
200 mg  L−1 Ca, 64 mg  L−1 S, 50 mg  L−1 Mg, 0.5 mg  L−1 
B and Mn, and 0.05 mg  L−1 of Zn and Mo was applied 
weekly, while the soil moisture was regularly checked gravi-
metrically and adjusted to around 60% of the water-hold-
ing capacity by adding water to compensate for losses by 
evapotranspiration.

In order to distinguish N uptake by plant via root and 
BNF pathways, and to calculate the BNF capacity of hairy 
vetch as a function of P availability by isotope dilution, a rel-
atively small amount of isotopically labelled N fertilizer was 
applied to each pot as  K15NO3 (10 at% 15 N; 10 mg N  kg−1) 
20 days after seeding (DAS) to prevent potential suppression 
of nodulation at the early stages of plant development.

2.2  Plant and Soil Sampling and Analyses

Five pots per treatment were destructively sampled 30, 50, 
and 70 DAS. During harvesting, hairy vetch plants were 
removed without damaging roots and biomass. The shoots 

were cut at the soil surface, while the roots were carefully 
removed from pots, gently shaken to remove most of the 
soil and subsequently carefully washed in water to remove 
adhered soil particles. Visible nodules growing on the roots 
were collected aseptically and pooled. Fresh samples were 
dried at 65 °C until constant mass, weighed, and then milled 
for subsequent analysis. The soil in the pot was collected 
after plant harvesting, air-dried, and ground (2-mm sieve) 
prior to analyses.

Total N contents and the N isotopic ratio in plant tis-
sues were measured by high-temperature combustion using 
an elemental analyzer (Vario Isotope Select, Elementar 
Analysensysteme GmbH, Hanau, Germany) coupled to an 
isotope ratio mass spectrometer (IsoPrime 100, Elementar 
Analysensysteme GmbH). Total P concentrations in the 
plant shoots, roots, and nodules were determined by sulfuric-
perchloric sample digestion followed by spectrophotomet-
ric analysis using the malachite green method (Ohno and 
Zibilske, 1991). Phosphorus-acquisition efficiency (PAE) 
was calculated as the ratio of total plant P uptake to soil 
available P (P Olsen), while P-utilization efficiency (PUE) 
was calculated as the ratio of dry biomass to P content in the 
plant tissues (Neto et al. 2016).

Soil P fractions were determined by extraction with 0.5 M 
 NaHCO3 (P Olsen) and 10 mM citrate (P Citrate) to repre-
sent plant-available and labile Pi (Kirk 1999; Olsen et al. 
1954), while 0.1 M NaOH + 1 M NaCl (1:1; P NaOH) was 
used to extract less labile Pi sorbed on Fe and Al mineral 
surfaces (Buehler et al. 2002; Cross and Schlesinger 1995). 
The molybdate-reactive phosphate content in the extracts 
was determined spectrophotometrically (Murphy and Riley 
1962). Nitrate and ammonium concentrations in the soil 
were determined by extraction in 1 M KCl followed by 
spectrophotometric quantification using modified Greiss 
and Berthelot methods, respectively, as described by Cucu 
et al. (2014). Isotopic enrichment of the extracted mineral 
N pool was determined by a combination of micro-diffusion 
and 15 N stable isotope analysis (Vario Isotope Select and 
IsoPrime 100) as described by Schleppi et al. (2006), and 
subsequently used to calculate biological N fixation by the 
plants.

2.3  Soil Enzyme Activities

Acid (acP, EC.3.1.3.2) and alkaline (alkP, EC.3.1.3.1) 
phosphomonoesterase activities as well as inositol-P phos-
phatase activity (inositP, EC 3.1.3.25) were determined 
in soil extracts by using fluorogenic substrates, accord-
ing to Cowie et al. (2013). Extracts were obtained with 
a bead-beating procedure using 300 mg of dry soil in 3% 
lysozyme buffer (pH 6.0) as desorbant. After centrifuga-
tion, enzyme activities in the supernatants were assayed 
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fluorometrically in microplates using 4-methyl-umbellif-
eryl based substrates in appropriate buffers, and expressed 
as nmol  g−1  h−1.

2.4  Calculation of BNF

Biological  N2 fixation (BNF) was calculated as the prod-
uct of plant N biomass and the proportion of N derived 
from the atmosphere (%Ndfa). The %Ndfa was calculated 
by isotope dilution (Chalk and Craswell, 2018; Unkovich 
et al., 2008), which compares the isotopic signature of 
the leguminous plant biomass with that of the isotopically 
labelled plant-available soil mineral N pool, according to 
the equation:

where E* is the time-integrated pool enrichment of the soil 
mineral N available for plant uptake and that takes into 
account the exponential decline in the 15N enrichment (atom 
% excess) of the mineral N pool over the plant growth period 
due to the supply of unlabeled N through the mineraliza-
tion of soil organic N. The initial soil mineral N isotopic 
enrichment (E0) and the first-order rate constant (k in  d−1) 
for the decline in the 15N enrichment of the soil mineral N 
pool over the growth period were estimated by fitting the 
change in 15N enrichment (atom% excess) over time (t) into 
the exponential equation:

E* over a specific time interval (i.e., over 30, 50, and 
70 DAS) was obtained by mathematical integration of the 
exponential equation using the formula:

2.5  Statistical Analysis

Prior to analysis of variance (ANOVA), the data sets 
were tested for normality and homogeneity of variance 
by Shapiro–Wilk (p > 0.05) and Levene test (p > 0.05), 
respectively. Any data that were not fit for normal distri-
bution were log-transformed. One-way ANOVA was used 
to assess the effects P forms and doses on all measured 
parameters separately for each sampling time. Significant 
(p < 0.05) differences between means were identified using 
the post hoc Tukey HSD test. All ANOVA analyses were 
performed using SPSS version 19.0 (SPSS Inc., USA).

%Ndfa =

(

1 −
atom % 15N excesslegume

E ∗

)

× 100

E
t
= E0e

−kt

E
∗ =

E0(e
−kt1 − e

−kt2 )

k(t1 − t2)

3  Results

3.1  Soil P Fractions and Available N

Plant-available P during the growth period generally 
reflected the application of P with the different treatments, 
although P availability at 30 DAS was already much lower 
than initial availabilities. Lowest Olsen and citrate-extract-
able P were obtained for the untreated control, while high-
est contents were observed for the Pi-treated soils, with 
PiH showing significantly higher values than PiL (p < 0.05; 
Table 1). Irrespective of the dose, application of Po did 
not result in significantly different Olsen P contents when 
compared to CNT (p > 0.05), while citrate-extractable P 
was slightly higher than CNT (p < 0.05) but not differ-
ent between PoL and PoH treatments (p > 0.05; Table 1). 
These differences were consistent over the entire growth 
period. Most of the Pi applied to the soils was recovered in 
the NaOH-extractable fraction resulting in proportionally 
higher P contents in the PiL and PiH treatments than CNT 
(p < 0.05). On the other hand, NaOH-extractable P in soils 
treated with PoL and PoH was not significantly different 
from CNT (p > 0.05; Table 1).

Soil mineral N contents (sum of ammonium and nitrate 
N) were generally relatively low (< 5  ppm) with lit-
tle or no differences between treatments throughout the 
growth period expect for the earliest sampling time (30 
DAS; data not shown). At this time, mineral N concen-
trations were generally > 5 ppm with highest concentra-
tions of 18.2 mg N  kg−1 measured for PoH, which were 
slightly but significantly higher than that obtained for CNT 
(13.2 mg N  kg−1; p < 0.05).

3.2  Plant Growth and Nodulation

Aboveground biomass was significantly influenced by 
P application over the whole growth period (p < 0.001). 
Application of Pi strongly enhanced shoot growth when 
compared to the control even when applied at low doses, 
and at 70 DAS greatest shoot biomass was observed for 
PiH followed by PiL (Fig. 1a). On the other hand, appli-
cation of Po did not result in significant differences in 
shoot growth (p > 0.05), even though shoot biomass for 
PoH at 70 DAS was slightly greater than CNT (p = 0.084; 
Fig. 1a). Root growth showed a different response to P 
addition when compared to shoot growth. After 50 DAS, 
only PoH showed a significantly greater root biomass with 
respect to all the other treatments including the control 
(p < 0.05), resulting in the highest root:shoot (R/S) ratio 
of 1.5 (Fig. 1a, b). However, these differences were no 
longer observed at 70 DAS when both root biomass and 
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R/S ratios of Po-treated soils were not different from those 
of the control (p > 0.05). Application of Pi did not influ-
ence root growth but resulted in significantly lower R/S 
ratios than the control (0.3–0.6; p < 0.05). Nodulation was 
significantly affected by the application of Pi that always 
led to greater nodule biomass than the control (p < 0.05), 
proportional to the dose of applied P. By day 50, nodule 
biomass was already 6 and 18 times greater than that in the 
control for PiL and PiH, respectively (Fig. 1c). In contrast, 
application of Po did not influence nodulation except for a 
slightly greater nodule biomass observed for PoH after 70 
DAS than the control (p = 0.052).

3.3  Plant P Uptake

With the addition of Pi, vetch plants always showed higher 
total P uptake than the untreated control (Fig. 2a; p < 0.001) 
due to the combined effects of a higher biomass as well 
as a higher P content. This higher P uptake observed for 
both above- and belowground biomass was proportional to 
the amount of applied Pi. The increase in plant P acqui-
sition with increasing P availability however resulted in a 
PAE that was always lower or equal to the control (Fig. 2b), 
and a PUE that was always lower than the control (Fig. 2c) 
throughout the growth period, particularly for PiH. In the 
case of treatment with Po, only application of high doses 
resulted in a plant P uptake after 50 DAS that was slightly 
but significantly higher than that observed for the untreated 

control (p < 0.001; Fig. 2a). This led to a slightly higher PAE 
than both the control and the Pi-treated plants, which was 
however only significant at 50 DAS (p < 0.05). Nonetheless, 
this did not correspond to a higher PUE which was often 
lower than the control, although always higher than that 
observed for plants receiving Pi that was most evident at 70 
DAS, particularly for PoL (Fig. 2).

3.4  Plant N Uptake and BNF Efficiency

Plant N uptake was influenced by the addition of Pi as 
the supply of plant-available P led to an increase in N 
uptake that was proportional to the amount of Pi added. 
This was more appreciable in the shoot N content that 
was significantly higher than the control already by 
day 30 (p < 0.05), while differences in the root N con-
tent were only noted after 70 DAS (Fig. 3; p < 0.05). In 
contrast, application of Po did not affect plant N uptake 
even when applied at high doses, and shoot and root N 
contents were generally similar to those observed in the 
control (p > 0.05), except for a higher root N content in 
plants treated with PoH after 50 DAS (Fig. 3; p < 0.05). 
Similar results were also obtained for the amount of plant 
N derived from the atmosphere through BNF. Applica-
tion of Pi had a positive effect on BNF with shoot Ndfa 
reaching values of around 72–82% by day 70, compared 
to only 40% in the untreated control and 35–55% in the 
Po-treated soils (Table 2). Similar trends were observed 

Table 1  Soil mineral N and soil P fractions as a function of different 
forms (Pi, inorganic P; Po, organic P) and amounts (CNT, no P; L, 
low P; H, high P) of applied P after 30, 50, and 70 days after seed-

ing (DAS). Values represent the mean ± standard error (n = 5), while 
different letters indicate significant differences between treatments 
within each sampling date (p < 0.05)

Treatment P Olsen (mg P  kg−1) P Citrate (mg P  kg−1) P NaOH (mg P  kg−1) NH4
+ (mg N  kg−1) NO3

− (mg N  kg−1)

30 DAS
CNT 1.7 ± 0.1 c 2.1 ± 0.1 d 47.6 ± 0.4 c 4.2 ± 0.4 b 8.9 ± 0.8 ab
PiL 5.9 ± 0.4 b 7.1 ± 0.1 b 76.2 ± 0.4 b 3.1 ± 0.2 b 6.3 ± 0.5 b
PiH 19.8 ± 1.3 a 30.7 ± 0.2 a 153.5 ± 2.8 a 3.6 ± 0.3 b 1.0 ± 0.3 c
PoL 1.7 ± 0.1 c 2.8 ± 0.1 c 50.7 ± 0.4 c 4.7 ± 0.4 b 9.4 ± 0.5 ab
PoH 1.9 ± 0.1 c 2.8 ± 0.1 c 52.6 ± 1.2 c 6.7 ± 0.7 a 11.5 ± 1.3 a
50 DAS
CNT 2.7 ± 0.1 c 2.3 ± 0.1 d 49.4 ± 1.4 c 1.9 ± 0.5 3.1 ± 1.1 a
PiL 7.9 ± 0.1 b 7.3 ± 0.1 b 78.5 ± 1.1 b 1.0 ± 0.1 0.2 ± 0.1 b
PiH 27.0 ± 0.5 a 32.8 ± 0.1 a 137.0 ± 2.1 a 1.6 ± 0.1 0.4 ± 0.1 b
PoL 3.0 ± 0.1 c 2.9 ± 0.1 c 49.0 ± 1.7 c 1.1 ± 0.2 0.5 ± 0.1 b
PoH 3.3 ± 0.1 c 2.9 ± 0.1 c 52.7 ± 1.7 c 1.2 ± 0.2 0.5 ± 0.2 b
70 DAS
CNT 2.0 ± 0.1 c 1.5 ± 0.1 d 47.2 ± 0.7 d 0.9 ± 0.1 ab 0.6 ± 0.3
PiL 7.9 ± 0.1 b 6.1 ± 0.1 b 76.0 ± 0.8 b 1.2 ± 0.2 ab 0.2 ± 0.1
PiH 32.9 ± 1.2 a 27.9 ± 0.2 a 167.7 ± 2.1 a 1.5 ± 0.2 a 0.3 ± 0.1
PoL 2.3 ± 0.1 c 2.2 ± 0.1 c 50.5 ± 0.4 cd 0.9 ± 0.1 ab 0.5 ± 0.2
PoH 3.6 ± 0.1 c 2.3 ± 0.1 c 52.0 ± 0.4 c 0.8 ± 0.1 b 0.2 ± 0.1
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for root Ndfa although the differences were less marked as 
fixed N represented a smaller proportion of total plant N in 
the roots. Here, a maximum of 67–69% Ndfa was observed 
in PiH-treated soils, while the proportions of fixed N in 
the roots of the other treatments were not significantly 
different from the control (Table 2; p > 0.05). Root nod-
ules always showed relatively high contents of fixed N (on 
average 82%) though the difference between treatments 
was not easy to decipher due to a lack of sufficient sample 
for analysis leading to non-replicated results. Nonetheless, 
nodule Ndfa values with the addition of Pi were always 
somewhat larger than the other treatments.

3.5  Phosphatase and Phytase Activities

Soil enzyme activities related to P cycling did not show 
large changes as a function of Pi and Po addition when 
compared to the control (Fig. 4). Enzyme activities were 
generally rather low with acP and alkP activities rang-
ing between 4.8 and 12.1 and 1.4 and 5.5 nmol  g−1  h−1, 
respectively, while inositP activities were always lower 
than 0.2 nmol  g−1  h−1. Data revealed a strong evidence that 
phosphatase activities were affected by P addition only at 
the earliest time (30 DAS; p < 0.005), with highest acP and 
alkP activities observed for the highest dose of Pi. How-
ever, by the end of the growth period, there was hardly any 

Fig. 1  Root and shoot biomass (a), root-to-shoot ratio (b), and nod-
ule biomass (c), as a function of different forms (Pi, inorganic P; Po, 
organic P) and amounts (CNT, no P; L, low P; H, high P) of applied 
P after 30, 50, and 70 days after seeding (DAS). Values represent the 
mean (n = 5), while error bars represent the standard error. Different 
letters indicate significant differences between treatments within each 
sampling date (p < 0.05)

Fig. 2  Root and shoot P acquisition (a), P acquisition efficiency (b), 
and P utilization efficiency (c) as a function of different forms (Pi, 
inorganic P; Po, organic P) and amounts (CNT, no P; L, low P; H, 
high P) of applied P after 30, 50, and 70 days after seeding (DAS). 
Values represent the mean (n = 5), while error bars represent the 
standard error. Different letters indicate significant differences 
between treatments within each sampling date (p < 0.05)
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evidence that enzyme activities related to P cycling were 
in any way influenced by P additions.

4  Discussion

4.1  Influence of Inorganic P Inputs on Plant Growth 
and BNF

Plant growth is generally greatly influenced by soil P avail-
ability, and in leguminous plants, an increase in P availabil-
ity can positively affect BNF rates. This can be due to the 
high P demand of  N2-fixing bacteria as well as to the effect 
of P availability on the plant photosynthetic capacity and 
belowground C allocation to roots and nodules (Divito and 
Sadras 2014, and references within). Similarly, hairy vetch 
growth was strongly limited by low soil P availabilities, such 
that increasing P supply through the addition of Pi resulted 
in a strong positive effect on biomass production, primarily 
through enhanced shoot growth. This inevitably led to hairy 
vetch plants investing less resources towards root develop-
ment (lower R/S ratios), and showing lower P acquisition 
and utilization efficiencies when compared to plants grown 
in P-deficient conditions. As reported by Hidaka and Kitay-
ama (2013), the preferential allocation of P to the shoots 
than the roots under P-sufficient conditions possibly allowed 

the plants to maintain their productivity and growth, reduc-
ing the demand for P.

Increasing N uptake was previously linked with a growth 
response to P supply in various other leguminous crop spe-
cies (e.g., Trifolium repens L. by Almeida et al. 2000 and 
Høgh-Jensen et al. 2002, Medicago spp. by Püschel et al. 
2017). In the presence of readily available P, even hairy 
vetch enhanced  N2-fixation suggesting an increase in the 
plant’s N demand when P was not limiting, as indicated by 
the strong positive relationship between Ndfa and shoot P at 
maturity (i.e., 70 DAS; Fig. 5c). Moreover, the increase in 
nodule biomass with increasing P availability suggests that 
whereas nodulation was strongly P limited under deficient 
conditions, plants allocated more resources to the symbiosis 
with the  N2-fixing bacteria when P was readily available. 
This was reflected in a higher BNF efficiency and a greater 
allocation of fixed N into the aerial parts of the plant, con-
firming our first hypothesis. In contrast, fixed N in the roots 
was rather conservative, in line with the lower shoot-to-root 
C allocation. Nonetheless, even though nodule growth was 
strongly limited under severe P deficiency (≤ 2 ppm Olsen 
P), approximately 40% of the total N assimilated by these 
plants was due to symbiotic  N2 fixation, in line with the 
findings of Almeida et al. (2000) for white clover. BNF 

Fig. 3  Total root and shoot N acquisition and proportion of N derived 
from atmosphere (Ndfa) as a function of different forms (Pi, inorganic 
P; Po, organic P) and amounts (CNT, no P; L, low P; H, high P) of 
applied P after 30, 50, and 70 days after seeding (DAS). Values rep-
resent the mean (n = 5), while error bars represent the standard error. 
Shaded areas represent the proportion of plant N that derives from the 
atmosphere (Ndfa). Different letters indicate significant differences in 
both total shoot and root N between treatments within each sampling 
date (p < 0.05). The same letters apply for shoot and root Ndfa that 
showed similar significant differences as total N, except for differ-
ences in root Ndfa at 30 DAS that were not significant

Table 2  Proportion of N derived from the atmosphere (Ndfa) in the 
shoots, roots, and nodules of hairy vetch as a function of different 
forms (Pi, inorganic P; Po, organic P) and amounts (CNT, no P; L, 
low P; H, high P) of applied P after 30, 50, and 70 days after seed-
ing (DAS). Values represent the mean ± standard error (n = 5), while 
different letters indicate significant differences between treatments 
within each sampling date (p < 0.05)

† Insufficient sample mass for replicated analysis

Treatment Shoot Ndfa (%) Root Ndfa (%) Nodule Ndfa (%)

30 DAS
CNT 76.0 ± 1.7 a 56.8 ± 3.1 ab 86.8†

PiL 72.5 ± 2.1 ab 59.5 ± 2.5 ab 85.7†

PiH 64.7 ± 3.4 b 50.6 ± 3.7 b 83.2 ± 1.6
PoL 78.1 ± 1.0 a 67.4 ± 1.6 a 100.0†

PoH 77.1 ± 2.7 a 67.9 ± 3.5 a 91.8†

50 DAS
CNT 45.1 ± 3.4 c 43.2 ± 2.7 b 73.1†

PiL 58.7 ± 3.2 b 55.1 ± 2.4 ab 77.7 ± 1.9
PiH 82.9 ± 2.5 a 67.4 ± 7.0 a 90.8 ± 1.0
PoL 38.7 ± 2.2 c 41.1 ± 1.9 b 75.4†

PoH 41.5 ± 2.3 c 51.8 ± 5.5 ab 67.8†

70 DAS
CNT 40.3 ± 2.9 c 45.2 ± 1.6 bc 72.4†

PiL 72.1 ± 7.0 ab 59.0 ± 5.1 ab 80.1 ± 3.5
PiH 82.4 ± 4.6 a 69.4 ± 5.9 a 86.6 ± 2.4
PoL 34.7 ± 2.4 c 42.4 ± 1.7 c 56.4†

PoH 56.8 ± 7.4 bc 52.7 ± 2.6 bc 73.9†
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showed a stronger relationship with biomass production 
rather than with Ndfa across all P treatments (Fig. 5a, b), 
confirming that in P-deficient conditions, BNF was primar-
ily regulated by plant growth rather than a direct effect of P 
availability on  N2 fixation. Similar effects of P availability 
on BNF were reported for other vetches like bitter vetch 
(Vicia ervilia) grown in low-fertility soils (Romanyà and 
Casals 2020), although the effects of P deprivation are also 
known to depend on the duration of the stress and plant age 
(Høgh-Jensen et al. 2002).

4.2  Influence of Organic P Inputs on Plant Growth 
and BNF

Evidence on capability of leguminous plants to access 
organic P sources and partially offset the dependence on 
labile inorganic P for satisfying plant P requirements for 
BNF is still scarce. Our results pointed to an increase in BNF 
capacity with increasing P uptake as a result of the addi-
tion Po (at higher application doses; Fig. 5c), even though 
only a minimal increase in plant-available P was recorded. 
Although this effect was much less marked with respect to 
the addition of Pi, it suggests that hairy vetch can to some 
extent access organic P sources for its P requirements, and 
this can partially alleviate the P limitation effect on  N2 fixa-
tion. However, only small increases in total P uptake, plant 
growth, and nodulation were observed after 70 days from the 
application of higher Po doses. These findings, together with 
the slightly higher P acquisition efficiency though lower P 
utilization efficiency compared to the control, suggest that 
although the plants allocated resources to improve P acquisi-
tion from organic forms, this did not lead to a commensurate 
increase in plant growth over the duration of the experiment. 
Consequently, neither plant N uptake nor BNF benefitted 

Fig. 4  Acid phosphatase (a), alkaline phosphatase (b), and phytase 
(c) activity as a function of different forms (Pi, inorganic P; Po, 
organic P) and amounts (CNT, no P; L, low P; H, high P) of applied 
P after 30, 50, and 70 days after seeding (DAS). Values represent the 
mean (n = 5), while error bars represent the standard error. Different 
letters indicate significant differences between treatments within each 
sampling date (p < 0.05)

Fig. 5  Relationships between biological N fixation and (a) above-
ground dry matter, and (b) the proportion of shoot N derived from 
atmosphere (Ndfa) over the whole growth period, and (c) relation-
ship between shoot P and Ndfa at maturity, as a function of different 

forms (Pi, inorganic P; Po, organic P) and amounts (CNT, no P; L, 
low P; H, high P) of applied P. Values in (a) and (b) represent means 
for n = 5 for each sampling time while values in (c) represent single 
samples at 70 DAS
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from the slightly higher P uptake following Po addition, even 
though the proportion of shoot Ndfa was nonetheless higher 
in mature plants receiving the highest dose of Po than the 
control (Fig. 5c; p = 0.05).

The acquisition of P from organic resources by hairy 
vetch over the growth period from seeding to flowering 
under severely P-limited conditions was thus weak, and 
BNF was probably limited by the reduced photosynthetic 
capacity. Although myo-inositol phosphate is a potential 
source of P for plant growth through the up-regulation of 
root phosphatase (Adams and Pate 1992), it represents a 
much poorer P source in soils where availability is strongly 
limited by a preferential interaction with soil minerals (Celi 
and Barberis 2004; Martin et al. 2004). This could have well 
been the case in our experiment where even the highest dose 
of added myo-inositol phosphate was well below the maxi-
mum sorption capacity of the soil used, and did not result 
in any substantial increase in plant-available P pools over 
the duration of the experiment, particularly considering the 
low P and organic C contents of the soil used in this experi-
ment. The availability of adsorbed Po to microorganisms or 
enzymes is known to be limited under low surface coverage 
(Giaveno et al. 2010), while microbial P immobilization in 
P-deficient (and low organic C) soils may also affect the 
release of Pi limiting the contribution of mineralization to 
a plant available P pool (Bünemann 2015). García-López 
et al. (2021) further showed that the adsorption of phos-
phate, deriving from the hydrolysis of Po, on soil minerals 
can also negatively affect plant P uptake even in the presence 
of elevated hydrolytic activity. Due to these constrains, we 
can hypothesize that hairy vetch was induced to adopt and 
protract combined strategies for an efficient activation of 
mechanisms that scavenge the nutrient from minerals.

The application of Po did not lead to the expected 
increase in soil enzyme activities related to P acquisition 
from organic sources, as phosphatase and phytase activi-
ties were generally similar to those observed for the control. 
We speculate that other strategies could have been activated 
by the legume plants to increase nutrient availability under 
P-deficient conditions, such as the release low molecular 
weight organic acids by the roots to increase soil P avail-
ability by ligand exchange or dissolution (Egle et al. 2003; 
O’Sullivan et al. 2021) that were not evaluated in this study. 
Moreover, Olde Venterink (2011) reported that the plasticity 
in root phosphomonoesterase activity of leguminous forbs 
to gradients in P supply was actually less evident under 
severely P-limited conditions, possibly due to the high 
costs in terms of N of enzyme synthesis. Application of Pi 
did however lead to a rapid, albeit temporary, increase in 
soil phosphatase activity though this was probably due to 
a microbial response to the higher P availability that could 
have induced a greater production of extracellular enzymes 
when compared to P-limited conditions (Malik et al. 2012). 

Unlike phosphatase activity in  N2-fixing roots (Nasto et al. 
2014; Png et al. 2017), the relationship between rhizosphere 
soil phosphatase activities and available P may depend on 
the integrated effects of nutrient availability on both plant 
and microbial response, which may also show different 
temporal responses (Solangi et al. 2019), and remain rather 
inconclusive. Andrino et al. (2021) and Santoro et al. (2022) 
showed that even though the production of low molecular 
weight organic acids and protons can favor the release of 
inositol phosphate from mineral surfaces by ligand exchange 
or dissolution (Egle et al. 2003; O’Sullivan et al. 2021), the 
necessity to be subsequently hydrolyzed by phosphatases 
could further delay the incorporation of mobilized P into 
plant tissues compared to Pi sources. From a practical point 
of view, the time required for hairy vetch to benefit from 
Po acquisition strategies is nonetheless constrained by crop 
termination at flowering stage for green manuring before 
sowing of the succeeding cash crop.

5  Conclusions

The effects of inorganic and organic P inputs on Vicia villosa 
growth and  N2-fixing capacity are biologically interesting 
and agronomically relevant, particularly when considering 
the importance of this leguminous cover crop for improving 
organic N inputs and reducing mineral N use in agroeco-
systems. Together our findings confirm that soil N input by 
hairy vetch cover cropping and green manuring is greatly 
dependent on the P nutritional status of soils. When grown in 
P-deficient soils (Olsen P < 3 mg  kg−1) biological  N2 fixation 
(BNF) by hairy vetch was primarily limited by plant growth 
rather than directly due to the high P costs of symbiotic N 
fixation. On the other hand, under high soil P availability 
(Olsen P > 20 mg  kg−1) plant growth, nodule formation, P 
acquisition, and BNF efficiency were all strongly enhanced 
(3-, 16-, 6-, and sevenfold, respectively) when compared to 
P-deficient conditions.

Our findings also suggest that in low fertility cropping 
systems that rely on organic inputs or those having soils 
with a high P sorption capacity, organic P inputs alone will 
not necessarily allow hairy vetch to provide sufficient BNF 
for improving soil N inputs, and their contribution to P recy-
cling is also limited. In fact, even with the addition of high 
doses of organic P, hairy vetch was only minimally able to 
access these organic sources and could only partially allevi-
ate the P limitation effect on plant growth and  N2 fixation, 
under P-deficient conditions. The strategies that could have 
been activated by hairy vetch to increase organic P avail-
ability under P-deficient conditions however remain elusive 
as no notable effects of P addition on rhizosphere soil phos-
phatase activities were observed.
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