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Abstract
The feedstock seasonality has been poorly studied in the anaerobic digestion process. The seasonality could disturb the 
digestion process stability, mainly for fruit and vegetable waste. In this study, three seasonal waste mixtures generated in 
wholesale markets were reduced to 10, 6, and 4 mm to assess the influence of seasonality and particle size reduction on 
anaerobic biodegradability. The methane yield ranged between 298 and 465 mL  CH4 g  VS−1 (volatile solids). Waste mix-
tures produced in spring at 10-mm particle size presented higher methane production than in autumn/winter and summer, 
i.e., 32% and 61%, respectively. Methane production decreased with reducing particle size for waste produced in spring 
from 482 ± 12 to 310 ± 1 mL  CH4 g  VS−1. In contrast, waste produced in autumn/winter and summer did not show high 
differences among different sizes. Despite these differences, mixtures with the smallest particle size presented the highest 
methane production rate.
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1 Introduction

According to the Food and Agriculture Organisation of the 
United Nations, at least one-third of the food produced for 
human consumption is globally lost or wasted annually. 

Horticultural waste is the main produced waste, reaching up 
to 60% of the total food waste [1]. The high quantity of horti-
cultural waste results from various stages, such as harvesting, 
transport, storage, marketing, and processing. A high percent-
age of fruit and vegetable waste (FVW) occurs in wholesale 
fresh food markets [2]. For instance, according to the study 
carried out by Zia et al. [3], the fruit and vegetable wholesale 
markets of New Delhi and Mumbai in India had an annual 
arrival of 3,120,000 and 2,920,000 tons, respectively, of fruit 
and vegetables in the year 2018. Of these, 181,000 and 170,000 
tons of fruit and vegetables, respectively, were wasted, i.e., 
around 6% of the total volume. Overall, 18–30% is discarded 
worldwide as FVW in fruit and vegetable markets [4].

The production and composition of FVW generated in 
these markets vary considerably depending on the season. 
The storage during certain times of the products prior to 
their selling on the market can also influence the FVW 
production. Fruits and vegetables are rapidly degraded due 
to the high moisture and readily biodegradable organic 
matter they contain, i.e., mainly sugar and hemicellu-
lose, and, to a lesser extent, cellulose, lignin, and other 
nutrients [3, 5]. The putrefaction of the FVW can even 
be accelerated when they show signs of mechanical dam-
age or overripeness [6]. Another influential factor would 
be the climate of the area, as depending on the ambient 
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temperature, the putrefaction of the product might be 
accelerated [7]. Despite the FVW management challenge, 
FVW waste could also be an opportunity for wholesale 
markets. Considerable and well-localized quantities of 
FVWs are generated in these markets, which would favor 
the ease of separate collection. Therefore, it would provide 
an excellent opportunity to develop more efficient manage-
ment technologies [8].

In recent years, technologies such as composting, incin-
eration, pyrolysis, anaerobic digestion, and enzymatic treat-
ments, among others, have been proposed to treat fruit and 
vegetable waste generated in wholesale markets widely used 
for other organic waste such as agro-industrial waste or food 
waste [9, 10]. Among all these techniques, composting and 
anaerobic digestion (AD) would be the most environmen-
tally safe [10]. Although composting is a widely used, sim-
ple, and effective technology, its implementation requires a 
large land area, whereas the end product, i.e., compost, has 
a low economic interest [11]. Conversely, AD is a promis-
ing technology for segregated organic fractions treatment 
of food waste and fruit and vegetable market waste [12–15]. 
AD allows the conversion of organic substrates into biogas, 
which can be used as a renewable energy source while allow-
ing the recovery of nutrients and other materials used as 
organic soil amendments [6, 16].

Some studies have already investigated applying the AD pro-
cess to FVWs generated in wholesale markets [4, 15, 17–20]. In 
these studies, constraints associated with the AD process appli-
cation to FVW have been reported, such as the variability in 
composition due to the high dependence on seasonality, the need 
for pre-treatment to reduce the size of the constituent products 
for a homogeneous feeding particle size, or the accumulation of 
a high concentration of soluble organic matter because of fast 
hydrolysis of fruit, among others.

In recent years, some authors have assessed the variability 
of the composition of FVW generated in wholesale markets 
throughout the year and its influence on methane produc-
tion by anaerobic digestion. For instance, Edwiges et al., 
Arhoun et al., Mozhiarasi et al., and Zia et al. have shown 
that the generation of FVW strongly depends on seasonality 
in terms of quantity and composition [2, 3, 8, 19], whereas, 
about methane production, Edwiges et al. [2] reported vari-
ation in methane production for different seasons of up to 
40%. At the same time, Arhoun et al. [8] concluded that 
the differences in methane production found between the 
FVWs generated in each season were relatively small. In 
all these experiments, the authors have assessed the influ-
ence of seasonality by reducing the particle size to a unique 
particle size. However, Jain et al. [21] and Rocamora et al. 
[22] have reported particle size reduction might positively or 
negatively affect methane production depending on the waste 
or waste mixture composition. Some studies have shown that 
particle size reduction could release compounds considered 

inhibitory to the anaerobic digestion process [23–25]. There-
fore, the influence of particle size reduction for such variable 
substrate compositions could be crucial.

The main novelty of this research is to assess whether 
seasonal changes in composition would influence methane 
production over a range of particle sizes. For that, this study 
will evaluate the FVW generated in wholesale markets as 
substrate. Thus, this research would help to provide a sus-
tainable management method for the huge volume of waste 
generated in these markets, whose variable characteristics 
make its treatment a challenge.

2  Materials and methods

2.1  Definition and composition of fruit 
and vegetable waste

A total of three mixtures as model substrates of FVW, 
i.e., autumn and winter mixture (AWM), spring mixture 
(SpM), and summer mixture (SM) were used, according 
to the seasonal variation in the waste generated by the 
wholesale markets. Autumn and winter mixtures were 
considered one since no significant difference were 
observed in the waste generated during these seasons 
[26]. These mixtures represented the generation of FVW 
in the wholesale markets of Sfax (Tunisia) and Amman 
(Jordan) and were previously defined by Papirio et al. 
[26]. The compositions of the different mixtures are 
shown in Table 1. The products were purchased in local 
markets in Seville city (Spain) for mixture preparation 
and mixed in an adequate proportion.

2.2  Particle size reduction of fruit and vegetable 
wastes

Three different particle sizes have been studied, i.e., 4, 6, and 
10 mm, due to the previously reported relation between the par-
ticle size and the variation of the anaerobic digestion behavior 
[27]. For that, the FVW mixtures were chopped to the desired 
particle size in the laboratory. For larger particle sizes (10 and 
6 mm), a multi-functional slicer (Seehoom, model: B436-09) 
with several blades was used to cut it into cubes. For smaller par-
ticle sizes (4 mm), a 0.5-L capacity mincer equipped with three 
stainless steel blades was used. Each FVW was chopped for 
3 min using the turbo speed function (Moulinex, Multi mouli-
nette AT714G32). Then, the obtained substrates were stored in 
plastic bags in the freezer at − 20 °C until their use.

2.3  Anaerobic digestion experimental procedure

The anaerobic biodegradability of nine conditions, i.e., three 
seasonal FVW mixtures (AWM, SpM, and SM) with three 
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different particle sizes each (10, 6, and 4 mm), were evaluated. 
Biochemical methane potential (BMP) tests were conducted in 
the anaerobic biodegradability study under mesophilic condi-
tions (35 ± 2 °C), according to the methodology described by 
Raposo et al. [28]. The BMP tests were performed in Erlen-
meyer flasks (total volume of 250 mL). The FVW mixtures 
were added to the reactors in a ratio of 2:1 (inoculum:substrate) 
in grams of volatile solids (VS), and enough distilled water 
was added to reach a working volume of 240 mL. Blanks con-
taining only inoculum were included in triplicate to take into 
consideration the endogenous methane production. The reactors 
were immersed in a water bath with a circulation thermostat 
(JULABO) to maintain the operating temperature and hermeti-
cally sealed with a rubber stopper after nitrogen flashing to 
ensure the anaerobic conditions. The methane production was 
measured using 1-L gasometers submerged in 2 N NaOH solu-
tions. Due to NaOH property of chemically absorbing the  CO2 
present in the biogas, a correct methane volume measurement 
can be obtained by liquid displacement. Based on methane 
production, the biodegradability was calculated against the 
theoretical maximum methane production that would be stoi-
chiometrically produced, i.e., 1 g COD = 382 mL  CH4 at 25 °C 
and 1 atm [27].

A fresh sludge from an industrial anaerobic reac-
tor from “COPERO” (Seville, Spain) wastewater treat-
ment plant was used as an inoculum source. The main 
anaerobic inoculum characteristics were pH = 7.8 ± 0.1; 
alkalinity = 8220 ± 260  mg  CaCO3  L−1; total solids 
(TS) = 35 ± 0 g  kg−1; and volatile solids (VS) = 19 ± 0 g  kg−1.

2.4  Kinetic study

The mathematical adjustment and the kinetic parameters for the 
anaerobic processes from the experimental data obtained were 
determined through a non-linear regression using the software 
SigmaPlot (version 14.5). The BMP tests of the nine FVW mix-
tures were simultaneously performed to ensure that the initial 
activity of the inoculum was similar in all the cases. A first-order 
kinetic model for the different substrates was used, according to 
the following expressions (Eqs. (1) and (2)) [29, 30]:

where G (mL  CH4 g  VS−1) is the cumulative specific meth-
ane production, Gmax (mL  CH4 g  VS−1) is the ultimate spe-
cific methane production, k  (day−1) is the specific rate con-
stant or apparent kinetic constant, t (day) is the time, and 
Rm (mL  CH4 g  VS−1  day−1) is the methane production rate.

2.5  Chemical analyses

The following chemical analyses were applied for the nine 
FVW mixtures characterization and inoculum, just as for the 
final effluents from each BMP test. The determination of pH, 
alkalinity, the concentration of total solids (TS), mineral solids 
(MS) and volatile solids (VS), total chemical oxygen demand 
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∙
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Table 1  Composition in mass 
percentage (% w/w) of three 
FVW mixtures (based on [26])

a AWM autumn and winter mixture, bSpM spring mixture, cSM summer mixture.

Fruit % w/w Vegetable % w/w

AWMa SpMb SMc AWMa SpMb SMc

Apple 5.0 5.0 5.0 Broccoli 4.0 3.0 –
Apricot – 7.0 – Carrot leaves 8.0 5.0 2.0
Cherry – – 6.0 Cauliflower leaves 5.0 4.0 2.0
Grape – – 6.0 Celery 3.0 2.0 1.0
Grapefruit 5.0 – – Coriander 2.0 2.0 1.0
Kiwi – – 5.0 Courgette/zucchini 3.0 3.0 3.0
Lemon 2.0 3.0 4.0 Cucumber 2.0 3.0 5.0
Loquat – 7.0 – Eggplant 2.0 2.0 4.0
Melon – – 6.0 Fennel leaves 6.0 3.0 1.5
Mandarin 6.0 – – Green beans 2.5 – –
Orange 12.0 – – Green cabbage leaves 4.0 3.0 2.0
Peach – 4.0 7.0 Lettuce leaves – 3.0 2.0
Pear 4.0 6.0 6.0 Onion leaves 8.0 5.0 2.0
Pomegranate 1.5 – – Parsley 4.0 3.0 1.5
Strawberry – 7.0 – Pea (with green cover) – 4.0 –
Tomato 7.0 8.0 14.0 Pepper 2.0 2.0 4.0
Watermelon – 4.0 8.0 Potato 2.0 2.0 2.0
Fruit (%) 42.5 51.0 67.0 Vegetable (%) 57.5 49.0 33.0
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(tCOD), and soluble chemical oxygen demand (sCOD) fol-
lowing the recommendations of the APHA were carried out 
[31]. Anthrone colorimetric method was used to determine total 
water-soluble carbohydrates using a spectrophotometer [32]. 
Results were expressed as a gram of glucose equivalents per 
kilogram of FVW mixture. A previous water extraction widely 
used for soluble compounds analysis in composted materials 
was applied to analyze soluble COD and total water-soluble car-
bohydrates [33]. Elemental C and N were determined through a 
combustion carbon and nitrogen determinator (LECO CN828) 
by Dumas’s method and following the recommendations of the 
APHA [31]. Prior to the determination, the samples were dried. 
The biogas composition of reactors  (CH4,  CO2,  O2,  N2, and  H2) 
was analyzed using a gas chromatograph Shimadzu GC-2014. 
The gas chromatograph was equipped with a packed column 
ShinCarbon ST 100/120 (RESTEK) of 2 m × 1 mm of 1/16″ OD 
Silco and a thermal conductivity detector (TCD) at 200 °C. The 
oven temperature gradually increased from 50 to 110 °C at a rate 
of 14º C  min−1 and from 110 to 156 °C at 6.8 ºC  min−1, being 
11.05 min, the total time of the method applied. Helium was 
used as carrier gas with a 10 mL  min−1 flow. Each biogas sample 
was taken from the BMP flask using 1-mL plastic syringes fitted 
with a special Mininert valve for Luer-Lock (Supelco) for gases.

3  Results and discussion

3.1  Influence of seasonality and particle size 
on substrate composition

The physicochemical characterizations of the FVW mix-
tures, i.e., AWM, SpM, and SM, are shown in Table 2. The 

pH values of the FVW mixtures ranged between 3.5 and 
4.5, with no marked differences. These acid pH values were 
a consequence of the composition of the FVW mixtures, 
where the low pH of the fruits, some of their citrus, are the 
main contributors to such acid pH (Table 1). Due to high 
water content, the moisture values of the FVW mixtures 
ranged between 86 and 92%. The VS/TS ratio values of the 
FVW mixtures ranged between 90 and 92% (Table 2). Val-
ues in the same pH range and VS/TS ratio were reported 
for other fruit and vegetable waste mixtures. For instance, 
samples collected from Malaga’s fruit and vegetable whole-
sale market (Spain) at four different seasons showed average 
values of 4.1 ± 0.5 and 93.8 ± 2.0% of pH and VS/TS ratio, 
respectively [8]. Similarly, samples collected monthly from 
Municipal Central Supply of Foz do Iguaçu (Brazil) showed 
average values of 4.2 ± 0.2 and 92.0 ± 1.3% of pH and VS/
TS ratio, respectively [2].

C/N ratios were similar for AWM and SpM mixtures, with 
values around 23 (Table 2). The lowest nitrogen concentration 
in SM resulted in a C/N ratio slightly higher than the other two 
mixtures, ranging from 27 to 30 (Table 2). The C/N ratio val-
ues of the FVW mixtures were within the optimal range for the 
anaerobic digestion process, i.e., 17–32 [34]. It advocates mix-
ing of the different fruit and vegetable waste generated in each 
season, since some of them alone present C/N ratio values out 
of the desirable range. For instance, carrot leaves, lettuce, onion 
leaves, cabbage, and pepper usually present low C/N ratio val-
ues, i.e., 7, 10, 11, 12, and 15, respectively, whereas potato tops, 
whole carrots, potatoes, cucumber, and tomato present high C/N 
ratio values, i.e., 25, 27, 35, 68, and 152, respectively [35–38]. 
In general, vegetable waste from leaves and stems seems to have 
higher N percentages than fruit wastes.

Table 2  Physicochemical characterization of the fruit and vegetable waste mixtures

a AWM autumn and winter mixture, bSpM spring mixture, cSM summer mixture, dtCOD total chemical oxygen demand, esCOD soluble chemical 
oxygen demand.

Season AWMa SpMb SMc

Particle size (mm)  ≤ 4 ≈ 6  ≥ 10  ≤ 4 ≈ 6  ≥ 10  ≤ 4 ≈ 6  ≥ 10

pH 4.5 ± 0.1 3.7 ± 0.1 4.1 ± 0.1 4.1 ± 0.1 3.6 ± 0.1 3.7 ± 0.1 4.2 ± 0.1 3.9 ± 0.1 4.2 ± 0.1
Moisture (%) 88.4 ± 0.3 89.8 ± 0.1 86.7 ± 0.6 88.9 ± 0.3 90.9 ± 0.1 89.5 ± 0.1 89.6 ± 0.4 90.5 ± 0.6 91.4 ± 0.3
Total solid (g  kg−1) 116 ± 3 102 ± 1 133 ± 6 111 ± 3 91 ± 1 105 ± 1 104 ± 4 92 ± 1 86 ± 3
Total mineral solid (g  kg−1) 11 ± 0 9 ± 1 11 ± 1 9 ± 0 7 ± 0 9 ± 1 6 ± 0 7 ± 0 7 ± 0
Total volatile solid (g  kg−1) 105 ± 3 94 ± 1 121 ± 5 102 ± 4 83 ± 1 97 ± 2 98 ± 4 85 ± 0 80 ± 3
tCODd (g  O2  kg−1) 151 ± 1 159 ± 2 176 ± 4 127 ± 1 107 ± 2 136 ± 3 115 ± 1 166 ± 5 123 ± 3
sCODe (g  O2  kg−1) 63 ± 1 54 ± 1 56 ± 0 62 ± 1 57 ± 0 63 ± 1 75 ± 1 74 ± 1 73 ± 1
sCODe/tCODd ratio 0.4 0.3 0.3 0.5 0.5 0.5 0.6 0.4 0.6
Carbohydrates (g glucose eq. 

 kg−1)
44 ± 1 16 ± 0 29 ± 0 40 ± 1 21 ± 0 35 ± 1 55 ± 0 36 ± 1 48 ± 1

C (%) 44.8 ± 0.3 46.9 ± 0.2 46.5 ± 0.3 46.0 ± 0.3 47.0 ± 0.1 47.3 ± 0.3 46.9 ± 0.4 48.9 ± 0 49.3 ± 0.5
N (%) 2.34 ± 0.05 2.02 ± 0.0 1.85 ± 0.1 1.98 ± 0.03 2.14 ± 0.0 2.38 ± 0.1 1.72 ± 0.04 1.77 ± 0.0 1.65 ± 0.0
C/N ratio 19 23 25 23 22 20 27 28 30
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Higher soluble organic matter concentrations, measured 
as sCOD and water-soluble carbohydrates, were observed 
for SM compared to SpM and AWM (Table 2). SM had 
an sCOD mean value of 74 ± 1 g  O2  L−1, while AWM and 
SpM had average values of 58 ± 1 g  O2  L−1 and 61 ± 1 g  O2 
 L−1, respectively. The differences observed in the soluble 
organic matter concentration of the FVW mixtures could 
be due to the higher percentage of fruit in the waste mixture 
of SM compared to the SpM and AWM, i.e., 67.0%, 51.0%, 
and 42.5%, respectively (Table 1). Fruits contain higher 
concentrations of soluble organic matter, such as simple 
and highly biodegradable carbohydrates, than vegetables 
[6]. The particle size reduction process solubilized 15% of 
the organic matter, measured as sCOD, in the AWM mix-
ture. This behavior was not observed for the other two mix-
tures (Table 2). Similarly, Izumi et al. [24] reported a 40% 
improvement in the solubilization of sCOD after particle 
size reduction through a beads mill for food waste.

3.2  Influence of seasonality and particle size 
on the anaerobic digestion process

3.2.1  Methane production

The accumulated methane production (mL  CH4 g  VS−1) dur-
ing the experimental time for each FVW mixture is shown 
in Fig. 1A, B, and C. These figures show no lag phase for 
neither the mixtures nor any particle sizes studied. All FVW 
mixtures had enough readily biodegradable soluble material 
to start methane production instantly. Although vegetables 
(including leaves and stems) have a high lignin content [36], 
fruits have a greater quantity of readily biodegradable com-
pounds such as carbohydrates, i.e., 75% of its composition 
[3]. The initial degradation of fruits, present in all cases, 
causes a negligible lag phase.

According to Fig. 1, the seasonality of the substrates and 
particle size reduction resulted in differences in methane 
production. For the 10-mm particle size (Fig. 1A), a marked 
difference was observed in the methane production of the 
seasonality mixtures, reaching the highest value for SpM, 
i.e., 482 ± 12 mL  CH4 g  VS−1. This methane production 
was 32% and 61% higher than the values obtained for SM 
and AWM, respectively (Fig. 1A). This methane produc-
tion difference was not observed for 6- and 4-mm particle 
sizes (Fig. 1B, C), with less than 15% differences among the 
mixtures. Similar studies have reported contradictory results 
on the influence of seasonality on methane production [2, 8].

The influence of particle size on methane production was 
mainly observed for SpM. Reducing the particle size of SpM 
from 10 to 6 and 4 mm, methane production decreased by 
18% and 56%, respectively (Fig. 1). This decrease might 
be attributed to the release of undesirable compounds at 
reducing the particle size of the mixture. Some authors 

have reported that a high reduction in particle size leads to 
the release of inhibitory compounds, resulting in a decrease 
in methane production [22]. SpM mixture had a balanced 
composition of fruits and vegetables, i.e., 51.0 and 49.0% 
(Table 1). However, some fruits in SpM as apricot, loquat, 

Fig. 1  Methane production (mL  CH4 g  VS−.1) of the three FVW mix-
tures (AWM, SpM, and SM) according to the particle size A 10 mm, 
B 6  mm, and C 4  mm (AWM, autumn and winter mixture; SpM, 
spring mixture; and SM, summer mixture)
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or strawberry were not present in AWM and SM. These fruit 
wastes contain a high amount of bioactive compounds such 
as carotenoids (e.g., lycopene), polyphenols (e.g., phenolic 
acids and flavonoids), and volatile compounds (e.g., linalool, 
limonene, α-terpineol, or menthone), which are responsible 
for the typical aroma of these fruits [39–42]. Many of these 
bioactive compounds exhibit potent antibacterial, antimi-
crobial, and antioxidant activities [40, 41, 43], among which 
some have been identified as potential inhibitors of anaero-
bic digestion [23, 44, 45]. Besides, particle reduction can 
accelerate the hydrolysis and acidogenesis steps, resulting in 
excessively high organic loading in the anaerobic digestion 
reactor [46]. Izumi et al. [24] reported that excess particle 
size reduction to smaller than 0.7 mm caused an accumula-
tion of volatile fatty acids in biogas production from food 
waste. A similar problem was also described by Ruiz and 
Flotats [25] with orange peel waste. Grinding the citrus peel 
released limonene, a terpene compound, into the medium 
and increased its inhibitory effect.

Based on these results, it could be deduced that the 
observed difference in methane production for SpM with 
decreasing particle size would be due to the release of com-
pounds that could act as inhibitors of the process. In con-
trast, methane production for SM and AWM did not show 
high differences due to the variation of the particle size, 
i.e., the average methane production value for the three par-
ticle sizes was 353 ± 18 mL  CH4 g  VS−1 and 342 ± 38 mL 
 CH4 g  VS−1, respectively (Fig. 1). For AWM, even though 
the difference in methane production was minor than SpM, 
an improvement in methane production of about 24% was 
observed when reducing the particle size from 10 to 4 mm. 

It was supposed that AWM had a higher content of ligno-
cellulosic matter, which would be provided by the higher 
vegetable and citrus fruit waste (Table 1). Methane produc-
tion improved for AWM, as it did for sCOD, reducing the 
particle size from 10 to 4 mm. According to Atelge et al. 
[47], the negative effect on anaerobic digestion of lignocel-
lulosic material can be enhanced by applying a decrease in 
particle size. Using a particle size reduction process would 
increase the availability of microorganisms and provide a 
higher specific surface area of the substrates, thus enhanc-
ing methane production [27]. As previously reported by Jain 
et al. [21] and Rocamora et al. [22], and corroborated in the 
present research, particle size can positively or negatively 
affect methane production depending on the composition of 
the waste or waste mixture.

The biogas composition, for all conditions, was similar, 
with around 50:50  CH4 and  CO2 ratio (Table 3). According 
to Schnürer and Jarvis [48], the biogas composition depends 
on the digested material and the operation of the process. 
Still, biogas typically has a  CH4 content between 45–85% 
and 15–45%  CO2, indicating that the substrate degradation 
process was carried out under stable conditions.

3.2.2  Stability and substrate biodegradability

Table 3 shows the results obtained in the characterization 
of the final effluents of the BMP test for the FVW mix-
tures. After the anaerobic digestion process, the pH values 
ranged between 7.2 and 7.7 for all the tested conditions. 
These values were optimal for the anaerobic digestion pro-
cess, according to Mozhiarasi et al. [10], in particular for 

Table 3  Characterization of the final effluents of the BMP tests

a AWM autumn and winter mixture, bSpM spring mixture, cSM summer mixture, dsCOD soluble chemical oxygen demand.

Season AWMa SpMb SMc

Particle size (mm)  ≤ 4 ≈ 6  ≥ 10  ≤ 4 ≈ 6  ≥ 10  ≤ 4 ≈ 6  ≥ 10

pH 7.3 ± 0.1 7.5 ± 0.0 7.7 ± 0.4 7.3 ± 0.1 7.6 ± 0.0 7.4 ± 0.1 7.2 ± 0.0 7.6 ± 0.0 7.7 ± 0.1
Alkalinity  

(mg  CaCO3  L−1)
6 610 ± 150 6 885 ± 210 7 065 ± 50 5 855 ± 155 7 160 ± 375 7 015 ± 225 6 260 ± 55 6 775 ± 160 6 990 ± 120

Total solid (TS) (g  kg−1) 21 ± 1 22 ± 1 21 ± 0 21 ± 2 22 ± 1 21 ± 1 20 ± 1 21 ± 1 22 ± 1
Volatile solid  

(VS) (g  kg−1)
12 ± 0 12 ± 0 11 ± 1 12 ± 1 12 ± 1 11 ± 0 11 ± 0 11 ± 0 12 ± 1

sCODd (mg  O2  kg−1) 525 ± 20 580 ± 40 565 ± 20 470 ± 40 555 ± 20 710 ± 65 490 ± 35 650 ± 60 565 ± 5
Exp. production  

(ml  CH4 g  VS−1)
354 ± 13 372 ± 19 299 ± 15 310 ± 1 408 ± 27 482 ± 12 332 ± 16 362 ± 17 365 ± 43

Teo. production  
(ml  CH4 g  VS−1; 
based on COD)

551 645 552 475 492 536 451 745 587

Biodegradability  
(%; based on COD)

64 58 54 65 83 90 74 49 62

Biogas composition  
(%;  CH4:CO2)

52:48 51:49 63:37 50:50 53:47 53:47 53:47 53:47 56:44
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the methanogenic activity, which requires a pH between 
6.5 and 8.0 to optimize their function [4]. The alkalinity 
values of the reactors were between 5800 and 7100 mg 
 CaCO3  L−1 (Table 3). This concentration is high compared 
to the concentration recommended in the literature, which 
would be between 2000 and 4000 mg  CaCO3  L−1 for plant-
based waste [49]. The initial alkalinity provided by the 
inoculum, i.e., 8000 mg  CaCO3 ·  L−1, was the reason for 
the high alkalinity concentration in the final BMP test. 
The pH and alkalinity values provided by inoculum and 
substrates ensured that the reactor conditions remained 
stable even though the system was not doped with a buffer 
solution at the beginning of the test.

The low concentration of sCOD at the end of the BMP 
test would also corroborate that the hydrolyzed compounds 
were effectively converted into methane instead of accu-
mulated in the effluents (Table 3). The average sCOD 
value concentrations at the end of the BMP test for AWM, 
SM, and SpM were 557 ± 28, 568 ± 80, and 578 ± 122 mg 
 O2  L−1, respectively (Table 3). The substrates’ seasonal-
ity and particle size reduction resulted in differences in 
the biodegradability values. The anaerobic biodegrada-
bility of the substrates strongly varied between 49 and 
90% (Table 3). For the 10-mm particle size, a marked 
difference can be observed in the seasonality mixtures’ 
biodegradability (Table 3). The highest values of biodeg-
radability corresponded with SpM, reaching up to 45 and 
67% higher than the obtained for SM and AWM, respec-
tively. For 4-mm particle size, the difference of the FVW 
mixtures was less marked, the biodegradability variation 
range being less than 16% (Table 3). Similar biodegra-
dability results by Edwiges et al. [2] for FWV substrates 
generated in a Brazilian wholesale market were reported, 
which showed minimum and maximum values of 63 and 
98%, respectively, with a mean value of 79 ± 12%. The 
lowest biodegradability values corresponded to samples 
with the highest lignocellulosic content. The influence of 
particle size on anaerobic biodegradability was observed 
mainly for SpM, as it was observed for methane produc-
tion (Table 3, Fig. 1). Reducing the particle size of SpM 
from 10 to 4 mm decreased anaerobic biodegradability by 
39%. By contrast, biodegradability increased by reducing 
particle size from 10 to 4 mm by around 20% for SM and 
AWM.

3.2.3  Kinetics of methane production

Figure 2 shows the values of methane production rate (Rm, 
mL  CH4 g  VS−1  day−1) for each FVW mixture. The results 
in Fig. 2 indicate an increase in Rm values with decreasing 
particle size for AWM and SM. However, for SpM, this 
tendency did not occur. Furthermore, Rm in the FVW mix-
tures with smaller particle sizes, i.e., 4 mm, had a higher 

methane production rate (Fig. 2). This behavior could be 
due to the hydrolysis stage being often accelerated by pro-
viding a pre-treatment to the substrates [13]. The increase 
in specific surface area due to a reduction in particle size 
improved the accessibility of the microorganisms to the 
substrate and, thus, facilitated microbial activity [27]. 
Similar results were also obtained with other organic solid 
wastes; i.e., the methane production rate improved with 
decreasing particle size. For instance, De la Rubia et al. 
[50] studied the effects of mechanical pre-treatment of 
organic fraction of municipal solid waste (OFMSW) after 
grinding and screening on anaerobic digestion using BMP 
tests. They reported that the maximum methane production 
rate, Rm, was 2.4 times higher for ground plus screened 
OFMSW than the value for the untreated OFMSW.

The condition that did not follow the described trends 
was SpM at 10 mm, as it had a value of 132 ± 6 mL  CH4 g 
 VS−1  day−1, which was higher than SpM at 6 mm. As pre-
viously described for methane production, this fact could 
be due to the release of compounds that could inhibit the 
AD process [22].

4  Conclusions

The influence of seasonality and particle size reduction on 
substrate composition and the anaerobic digestion process 
of Mediterranean fruit and vegetable markets waste was 
evaluated. The evaluation of the seasonal mixtures showed 
that waste mixtures produced in spring had higher meth-
ane production than AWM and SM, i.e., 32% and 61%, 
respectively, at larger particle sizes. Methane production 
decreased with reducing particle size for waste mixtures 
produced in spring from 482 ± 12 to 310 ± 1 mL  CH4 g 

Fig. 2  Methane production rate (mL  CH4 g  VS−1  day−.1) of the three 
FVW mixtures according to the particle size (AWM, autumn and 
winter mixture; SpM, spring mixture; and SM, summer mixture)
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 VS−1, whereas waste mixtures produced in autumn/winter 
and summer did not show high differences.
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