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The complexity of a numerical semigroup
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Abstract

Let S and ∆ be numerical semigroups. A numerical semigroup S is an
I(∆)-semigroup if S\{0} is an ideal of ∆. We will denote by J (∆) = {S |
S is an I(∆)-semigroup}. We will say that ∆ is an ideal extension of S if
S ∈ J (∆). In this work, we present an algorithm that allows to build all
the ideal extensions of a numerical semigroup. We can recursively denote
by J 0(N) = N, J 1(N) = J (N) and J k+1(N) = J (J k(N)) for all k ∈ N.
The complexity of a numerical semigroup S is the minimun of the set
{k ∈ N | S ∈ J k(N)}. In addition, we will give an algorithm that allows
us to compute all the numerical semigroups with fixed multiplicity and
complexity.

Keywords: numerical semigroup, ideal, extension, complexity, i-chain, i-pertinent
map.
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Introduction

Let Z = {0, 1,−1, 2,−2, . . .} be the set of integer numbers and N = {x ∈ Z |
x ≥ 0}. A numerical semigroup is a subset S of N containing the zero element,
closed by the sum and such that N\S = {x ∈ N | x /∈ S} is finite.

If A is a subset nonempty of N, we denote by 〈A〉 the submonoid of (N,+)
generated by A, the set 〈A〉 = {λ1a1 + · · ·+ λnan | n ∈ N \ {0}, {a1, . . . , an} ⊆
A, {λ1, . . . , λn} ⊆ N}. By [11, Lemma 2.1], we know that 〈A〉 is a numerical
semigroup if and only if gcd(A) = 1. If S is a numerical semigroup and S = 〈A〉,
we say that A is a system of generators of S. Moreover, if S 6= 〈B〉 for all
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†Departamento de Matemáticas, Universidad de Cádiz, E-11510 Puerto Real (Cádiz,
Spain). Partially supported by MTM2017-84890-P and by Junta de Andalućıa group FQM-
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B  A, then A is called a minimal system of generators of S. In [11, Corollary
2.8] is shown that every numerical semigroup has a unique minimal system of
generator which is always finite. We denote by msg(S) the minimal system of
generators of S. The cardinality of msg(S) is called the embedding dimension
of S and will be denoted by e(S).

If S is a numerical semigroup, then F(S) = max(Z\S), g(S) = ♯(N\S),
where ♯A denote the cardinality of a set A, and m(S) = min(S \ {0}). They are
three important invariants of S which we are known as the Frobenius number,
the genus and the multiplicity of S, respectively.

The study of numerical semigroups is a clasical topic and it has been moti-
vated by the named Frobenius problem (see [8]). It consists on finding formulas
that calculate the Frobenius number and the genus of a numerical semigroup
from its minimal system of generators. This problem was solved by Sylvester
(see [12]) for numerical semigroups with embedding dimension two. Nowadays,
the problem remains unsolved for numerical semigroups with embedding dimen-
sion equal to or greater than or three.

Let ∆ be a numerical semigroup. An ideal of ∆ is a nonempty subset I of ∆
such that I +∆ = {a+ b | a ∈ I and b ∈ ∆} ⊆ I. For every ideal I of ∆, the set
I ∪ {0} is also a numerical semigroup. This fact leads us to give the following
definition: a numerical semigroup S is an I(∆)-semigroup if and only if S\{0} is
an ideal of ∆. We denote by J (∆) the set {S | S is an I(∆)-semigroup}, and if
F is a family of numerical semigroups, then J (F ) denotes the set

⋃

∆∈F
J (∆).

The main motivation of this work is that ordinary numerical and elementary
numerical semigroups are those with a simpler structure, in that order. In that
line we will prove that J (N) is the set of ordinary numerical semigroup and
that J 2(N) = J (J (N)) is equal to the set of elementary numerical semigroup.

Following the idea of the previous paragraph we give the definition of com-
plexity of a numerical semigroup as follows: the complexity of a numerical
semigroup S, denoted by C(S), is the number min{k ∈ N | S ∈ J k(N)}.

Let S and ∆ be numerical semigroups. We say that ∆ is an ideal extension
of S whenever S ∈ J (∆). An i-chain of length n connecting the numerical
semigroups S and T is a chain of numerical semigroups S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sn

such that S0 = S, Sn = T and Si ∈ J (Si+1) for every i ∈ {0, . . . , n− 1}.
The content of this work is organized as follows. In the first section, we give

some definitions and recall some results. In Section 2, we present an algorithm
that allows to build all the ideal extensions of a numerical semigroup S. Section
3 is devoted to prove that C(S) is the minimun of the lenghts of the i-chain
connecting S and N. In Section 4, we show how we can build one of these chains

with minimun lenght. As a consequence, we obtain that C(S) =
⌊

F(S)
m(S)

⌋

+ 1

(where ⌊q⌋ is defined as max{z ∈ Z | z ≤ q} for every q ∈ Q). In Section
5, we give an algorithm to compute all the numerical semigroups with fixed
multiplicity and complexity. Finally, we prove that the cardinal of the set of
numerical semigroups with multiplicity m and complexity c is less than or equal
to the cardinality of the set of numerical semigroups with multiplicity m and
complexity equal to c+ 1.
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1 Ideal extensions of a numerical semigroup

Let S and T be numerical semigroups. We will say that T is an ideal extension of
S if S\{0} is an ideal of T . The ideal extensions of semigroups were introduced
in [5] and thenceforth they have been extensively studied (see, for instant [7]).

Following the notation introduced in [9], we say that an integer x is a pseudo-
Frobenius number of a numerical semigroup S, if x /∈ S and x + s ∈ S for all
s ∈ S\{0}. We denote by PF(S) the set of pseudo-Frobenius numbers of S. The
cardinality of PF(S) is an important invariant of S (see, for instance [2]) that
is called the type of S and is denoted by t(S).

The following result is found in [11, Corollary 2.23].

Proposition 1. If S is a numerical semigroup such that S 6= N, then t(S) ≤
m(S)− 1.

Observe that if S is a numerical semigroup such that S 6= N and {x, y} ⊆
PF(S), then x+ y ∈ S or x+ y ∈ PF(S). Therefore, we can state the following
result.

Proposition 2. If S is a numerical semigroup and S 6= N, then S ∪ PF(S) is
also a numerical semigroup.

The following result indicates how the ideal extensions of a numerical semi-
group are.

Theorem 3. Let S and ∆ be numerical semigroups. Then ∆ is an ideal exten-
sion of S if and only if S ⊆ ∆ ⊆ S ∪ PF(S).

Proof. Necessity. If ∆ is an ideal extension of S, then S ⊆ ∆ and (S\{0})+∆ ⊆
S\{0}. Therefore, if x ∈ ∆\S, then {x} + (S\{0}) ⊆ S. Hence, x ∈ PF(S).
Consequently, ∆ ⊆ S ∪ PF(S).

Sufficiency. If S ⊆ ∆ ⊆ S∪PF(S), then (S\{0})+∆ ⊆ S\{0}. Thus, S\{0}
is an ideal of ∆ and so ∆ is an ideal extension of S.

As an immediate consequence of the previous theorem, we have the following
result.

Corollary 4. Let S be a numerical semigroup. Then the cardinality of the set
{∆ | ∆ is an ideal extension of S} is less than or equal to 2t(S).

Our purpose now is to present an algorithm to compute all the ideal ex-
tensions of a numerical semigroup S. In order to do that, we introduce the
following concepts and results.

Let S be a numerical semigroup and n ∈ S\{0}. We define, in honour of [1],
the Apéry set of n in S, as Ap(S, n) = {s ∈ S | s− n /∈ S}.

The following result is in [11, Lemma 2.4].

Proposition 5. Let S be a numerical semigroup and n ∈ S\{0}. Then Ap(S, n)
has cardinality n. Moreover, Ap(S, n) = {0 = w(0), w(1), . . . , w(n − 1)}, where
w(i) is the least element of S congruent with i modulo n, for all i ∈ {0, . . . , n−1}.

Let S be a numerical semigroup. We define over Z the following binary
relation: a ≤S b if b − a ∈ S. In [11] it is proved that ≤S is an order relation
(reflexive, antisymmetric and transitive).

The following result is found in [11, Proposition 2.20].
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Proposition 6. If S is a numerical semigroup and n ∈ S \ {0}, then

PF(S) = {w − n | w ∈ Maximals≤S
Ap(S, n)}.

We illustrate the content of the previous proposition with an example.

Example 7. If S = {0, 5, 6, 8,→} (the symbol→means that every integer greater
than 8 belongs to the set), then Ap(S, 5) = {0, 6, 8, 9, 12} andMaximals≤S

{0, 6, 8,
9, 12} = {8, 9, 12}. By applying Proposition 6, we have PF(S) = {3, 4, 7}.

By Theorem 3, we know that a numerical semigroup ∆ is an ideal extension
of a numerical semigroup S if and only if there isA ⊆ PF(S) such that ∆ = S∪A.
The following result is easy to prove and shows the property that a subset A of
PF(S) must verify so that the set S ∪ A is a numerical semigroup.

Proposition 8. Let S be a numerical semigroup such that S 6= N and A ⊆
PF(S). Then the following conditions are equivalents:

1) S ∪ A is a numerical semigroup.

2) If {a, b} ⊆ A and a+ b ∈ PF(S), then a+ b ∈ A.

Proof. 1) implies 2). If {a, b} ⊆ A, then a+ b ∈ S ∪A. As a+ b ∈ PF(S), then
a+ b /∈ S and so a+ b ∈ A.

2) implies 1). The sum of two elements of S belongs again to S. As A ⊆
PF(S), then the sum of an element of A and a nonzero element of S, belongs
also to S. Therefore, to prove that S ∪ A is a numerical semigroup, it will be
enough to see that the sum of two elements belonging to A is in S ∪A. Indeed,
if {a, b} ⊆ A and a+ b /∈ S, then by the previous comment to Proposition 2, we
know that a+ b ∈ PF(S). Thus, a+ b ∈ A.

The above proposition leads to the following definition.
Let S be a numerical semigroup. We say that a set A is an i(S)-pertinent

set if it verifies the following conditions:

1) A ⊆ PF(S) and

2) if {a, b} ⊆ A and a+ b ∈ PF(S), then a+ b ∈ A.

As an immediate consequence of Theorem 3 and Proposition 8, we have the
following result.

Corollary 9. Let S be a numerical semigroup such that S 6= N. Then the set
formed by the ideal extensions of S is {S ∪ A | A is an i(S)-pertinent set}.

We are already able to provide the previously announced algorithm.

Algorithm 1: Computation of the set of ideal extensions of a numerical
semigroup.

Data: A numerical semigroup S 6= N.
Result: {∆ | ∆ is an ideal extension of S}.

1 Compute PF(S);
2 Compute B = {A | A ⊆ PF(S) and A is an i(S)-pertinent set};
3 return {S ∪ A | A ∈ B};

We finish this section illustrating how the previous algorithm works.
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Example 10. If S = {0, 5, 6, 8,→}, then by Example 7 we know that PF(S) =
{3, 4, 7}. We calculate P({3, 4, 7}) = {∅, {3}, {4}, {7}, {3, 4}, {3, 7}, {4, 7},
{3, 4, 7}}. A simple check shows that {3, 4} is the only element of P({3, 4, 7})
which is not i(S)-pertinent. Algorithm 10 asserts that all the ideal extensions
of S are: S ∪∅, S ∪{3}, S ∪{4}, S ∪{7}, S ∪{3, 7}, S ∪{4, 7} and S ∪{3, 4, 7}.

The code below have is found in complexityOfNS.ipynb, is part of [6] and
uses the library [4].

gap> S:=NumericalSemigroup(5,6,8,9,10,11,12);;

gap> lDeltas:=idealExtensionsOfNS(S);;

gap> List(lDeltas,x->MinimalGeneratingSystemOfNumericalSemigroup(x));

The output obtained is

[ [ 3, 5 ], [ 4, 5, 6 ], [ 5, 6, 7, 8, 9 ], [ 3, 4, 5 ],

[ 3, 5, 7 ], [ 4, 5, 6, 7 ] ]

which is the list of system of generators of the proper ideal extensions of S.

2 The complexity and the i-chains

Our first objetive in this section is to prove that if S is a numerical semigroup,
there is k ∈ N such that S ∈ J k(N). Recall that J 0(N) = N, J 1(N) = J (N)
and J k+1(N) = J (J k(N)) for all k ∈ N.

Proposition 11. Let S be a numerical semigroup and k ∈ N. Then S ∈ J k(N)
if and only if there exists an i-chain of lenght k connecting S with N.

Proof. We proceed by induction on k. For k = 0 the result is trivial. Assume
the result is true for k − 1 and obtain the result for k.

Necessity. If S ∈ J k(N), then S ∈ J (J k−1(N)) and so there exists S1 ∈
J k−1(N) such that S ⊆ S1 is an i-chain. By the induction hypothesis, there is
an i-chain S1 ⊆ S2 ⊆ · · · ⊆ Sk = N of lenght k − 1 connecting S1 with N. It is
clear that S ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sk = N is an i-chain of length k connecting S
and N.

Sufficiency. If S = S0 ⊆ S1 ⊆ · · · ⊆ Sk = N is an i-chain of lenght k, then
S1 ⊆ · · · ⊆ Sk = N is an i-chain of length k − 1. By the induction hypothesis
S1 ∈ J k−1(N). Since S ∈ J (S1), then S ∈ J (J k−1(N)) = J k(N).

Let L = {S | S is a numerical semigroup}.We will say the map θ : L\{N} →
P(N) is an i-pertinent map if θ(S) is a nonempty i(S)-pertinent set for all
S ∈ L\{N}.

The following result shows us the large number of i-pertinent functions that
exist.

Proposition 12. The map θ : L\{N} → P(N) defined by

1. θ(S) = PF(S) is an i-pertinent map.

2. θ(S) = {F(S)} is an i-pertinent map.

3. θ(S) = {x ∈ PF(S) | x ≥ F(S)
2 } is an i-pertinent map.

4. θ(S) = {x ∈ PF(S) | x > F(S)−m(S)} is an i-pertinent map.
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5. θ(S) = {x ∈ PF(S) | x > F(S)− g(S)} is an i-pertinent map.

6. θ(S) = {min{x ∈ PF(S) | x > F(S)
2 }} is an i-pertinent map.

If θ is an i-pertinent map and S is a numerical semigroup, then we can build
a sequence of numerical semigroups as follows:

• S0 = S,

• Sn+1 =

{

Sn ∪ θ(Sn) if Sn 6= N
N otherwise.

Theorem 13. Let S be a numerical semigroup, θ be an i-pertinent map and
{Sn}n∈N be the sequence defined above. Then, there exists µ(θ, S) ∈ N such that
S = S0 ( S1 ( · · · ( Sµ(θ,S) = N. Moreover, this chain is an i-chain.

Proof. If Si 6= N, then θ(Si) 6= ∅ and θ(Si) ⊆ N\Si. Therefore, g(Si+1) < g(Si).
Thus there is µ(θ, S) ∈ N such that S = S0 ( S1 ( · · · ( Sµ(θ,S) = N.
Moreover, as a consequence of Corollary 9, we have that Si ∈ J (Si+1) for
all i ∈ {0, . . . , µ(θ, S) − 1}. Hence, S = S0 ( S1 ( · · · ( Sµ(θ,S) = N is an
i-chain.

As a consequence of Proposition 11 and Theorem 13 we have the following
result.

Corollary 14. If S is a numerical semigroup, then there exists k ∈ N such that
S ∈ J k(N).

The previous corollary allows us to give the following definition: the com-
plexity of a numerical semigroup S, denoted by C(S), is the minimun of the
set {k ∈ N | S ∈ J k(N)}. Note that N is the unique numerical semigroup with
complexity zero.

As an immediate consequence of Proposition 11, we have the following result.

Proposition 15. Let S be a numerical semigroup. Then C(S) is the minimum
of the lenghts of the i-chains connecting S with N.

The following result is an immediate consequence from previous proposition.

Corollary 16. If S is a numerical semigroup and θ is an i-pertinent map, then
C(S) ≤ µ(θ, S).

We complete this section by showing the numerical semigroups with com-
plexities one and two. For this purpose, we need to recall the definition of
ordinary numerical semigroups: a numerical semigroup S is ordinary when S is
equal to {0,m(S),→}.

Proposition 17. Let S be a numerical semigroup. Then C(S) = 1 if and only
if S is an ordinary numerical semigroup and S 6= N.

Proof. Necessity. If C(S) = 1, then S ( N is an i-chain and S ∈ J (N). By
Theorem 3, PF(S) = N \ S, and thus S = {0,m(S),→}.

Sufficienty. If S is an ordinary semigroup and S 6= N, then there is m ∈
N\{0, 1} such that S = {0,m,→}. It is clear that {0,m,→} ( N is an i-chain.
By applying now Proposition 15, we have C(S) = 1.

6



Following the notation introduced in [3], a numerical semigroup S is ele-
mentary if F(S) < 2m(S). The following result is deduced from Lemma 2.1 of
[10].

Lemma 18. A numerical semigroup S is elementary and not ordinary if and
only if S = {0,m} ∪ A ∪ {2m,→} where m ∈ N\{0, 1} and A ( {m + 1,m +
2, . . . , 2m− 1}.

Proposition 19. Let S be a numerical semigroup. Then C(S) = 2 if and only
if S is an elementary and not ordinary semigroup.

Proof. Necessity. If C(S) = 2, then S is not an ordinary semigroup since these
semigroups have complexity 0 or 1. Moreover, by Proposition 15, we know that
there is an i-chain S = S0 ( S1 ( S2 = N. Then we deduce that C(S1) = 1
and by Proposition 17 we have S1 = {0,m,→} for some m ∈ N\{0, 1}. As
S ∈ J (S1), then m ≤ m(S) and {m(S)+m,→} ⊆ S. Thus, F(S) < m(S)+m ≤
2m(S). Hence S is an elementary and not ordinary semigroup.

Sufficienty. If S is an elementary and not ordinary semigroup, then by
Lemma 18, we know that S = {0,m} ∪ A ∪ {2m,→} with m ∈ N\{0, 1} and
A ( {m+ 1, . . . , 2m− 1}. It is clear that S ( {0,m,→} ( N is an i-chain. By
Proposition 15, C(S) = 2.

3 A formula for the complexity

Let S be a numerical semigroup. By Proposition 17, we know that C(S) = 1 if
and only if 0 ·m(S) < F(S) < 1 ·m(S). Also observe that from Proposition 19,
we deduce C(S) = 2 if and only if 1 · m(S) < F(S) < 2 · m(S). The following
result generalizes these two properties.

Theorem 20. Let S be a numerical semigroup such that S 6= N. Then, C(S) =
k if and only if (k − 1)m(S) < F(S) < km(S).

Proof. We make this proof by induction on k. For k ∈ {1, 2} the result is true,
so we assume k ≥ 3.

Necessity. If C(S) = k, then, by the induction hypothesis, we have that
(k−1)m(S) < F(S). We also know that S\{0} is ideal of a numerical semigroup
∆ such that C(∆) = k − 1. Using the induction hypothesis, we have (k −
2)m(∆) < F(∆) < (k − 1)m(∆). Since S\{0} is an ideal of ∆, we have that
{m(S)+ (k− 1)m(∆),→} ⊆ S and m(∆) ≤ m(S). Hence {km(S),→} ⊆ S, and
thus F(S) < km(S).

Sufficienty. If (k − 1)m(S) < F(S), then, by the induction hypothesis,
C(S) ≥ k. Clearly T = S ∪ {(k − 1)m(S),→} is a numerical semigroup. By
the induction hypothesis, it fulfills that C(T ) ≤ k − 1. It is straightforward to
prove that S\{0} is an ideal of T . Therefore C(S) ≤ C(T ) + 1 = k and thus
C(S) = k.

As an immediate consequence of previous theorem we have the following
result.

Corollary 21. If S is a numerical semigroup, then C(S) =
⌊

F(S)
m(S)

⌋

+ 1.
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Example 22. Let S = 〈5, 7〉 = {0, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, 24, 25,→}.
Then m(S) = 5 and F(S) = 23. By applying Corollary 21, we have that C(S) =
⌊

23
5

⌋

+ 1 = 5.

By Proposition 15, we know that if S is a numerical semigroup then there
is an i-chain of length C(S) connecting S and N. Our next aim in this section
is to present an i-chain with these conditions.

If S is a numerical semigroup such that S 6= N, then we denote by γ(S) =

{x ∈ N\S such that
⌊

F(S)
m(S)

⌋

m(S) ≤ x ≤ F(S)}. It is clear that the map γ :

L\{N} → P(N) is an i-pertinent map.

Proposition 23. Let S be a numerical semigroup such that S 6= {0,m(S),→}
and T = S ∪ γ(S). The following properties are satisfied.

(1) T is a numerical semigroup.

(2) S\{0} is an ideal of T.

(3) m(T ) = m(S).

(4) C(T ) = C(S)− 1.

Proof. (1) and (2). Since γ is an i-pertinent map, γ(S) is a noempty i-pertinent
set. Therefore, T = S ∪ γ(S) is a numerical semigroup and S\{0} is an ideal of
T.

(3). Since S 6= {0,m(S),→}, then F(S) > m(S) and so γ(S) ⊆ {m(S),→}.
Hence m(T ) = m(S).

(4). It is clear that
(⌊

F(S)
m(S)

⌋

− 1
)

m(S) < F(T ) <
⌊

F(S)
m(S)

⌋

m(S). By applying

that m(T ) = m(S), Corollary 21 and Theorem 20, we have C(T ) = C(S)− 1.

Corollary 24. If S is a numerical semigroup, then C(S) = µ(γ, S).

We illustrate the content of previous corollary with an example.

Example 25. Let S = 〈5, 7〉 = {0, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, 24, 25,→}.
By Example 22, we know that C(S) = 5. Associated to the numerical semigroup
S and to the i-pertinent map (see Theorem 13) we have the i-chain S = S0 (

S1 ( · · · ( Sµ(γ,S) = N, where Sn+1 = Sn∪γ(Sn) for all n ∈ {0, . . . , µ(γ, S)−1}.
Specifically, we have the chain

S = S0 ( S1 = S ∪ {23} ( S2 = S1 ∪ {16, 18} ( S3 =

S2 ∪ {11, 13} ( S4 = S3 ∪ {6, 8, 9} ( S5 = N.

Corollary 24 tells us that this i-chain connects S and N and it has mini-
mum length. This chain is also obtained with the function chainOfGamma

of complexityOfNS.ipynb:

gap> lGamma:=chainGamma(NumericalSemigroup(5,7));;

gap> List(lGamma,x->MinimalGeneratingSystemOfNumericalSemigroup(x));

The output is the following list of minimal system of generators:

[ [ 5, 7, 23 ], [ 5, 7, 16, 18 ], [ 5, 7, 11, 13 ],

[ 5, 6, 7, 8, 9 ], [ 1 ] ]

8

https://github.com/D-marina/CommutativeMonoids/blob/master/ComplexityOfNS/complexityOfNS.ipynb


We end this section with some questions concerning the set of pseudo-
Frobenius numbers.

Remark 26. By Proposition 12, the map θ : L\{N} → P(N) defined by θ(S) =
PF(S) is an i-pertinent map. Since θ(S) is always the largest set among all the
possible ones, we wonder if it is true that C(S) = µ(θ, S). Surprisingly, the
answer is not. The numerical semigroup with the smallest Frobenius number
not satisfying that property is S = 〈4, 6, 9, 11〉 and the i-chain obtained is

S = S0 ( S1 = 〈2, 5〉 = S ∪ {2, 5, 7} ( S2 = 〈2, 3〉 = S1 ∪ {3} ( S3 = N.

Note that C(S) = ⌊ 7
4⌋+ 1 = 2, but the length of the i-chain is 3. The next one

is 〈5, 7, 9, 11, 13〉 which has Frobenius number 8. As we increase the Frobenius
number, we obtain more examples. In addition to the obtained examples we
can obtain new ones like for example 〈4, 6, 9〉 from our first example and 〈5, 7〉
from our second example.

If we examine the numerical semigroups verifying that C(S) = µ(θ, S), we
see that the vast majority verify this property. Since apparently their proportion
is smaller, an interesting question is to give a characterization of the family of
numerical semigroups for which this property is not verified.

An example of a family that satisfies that adding PF(S) yields a chain that
achieves complexity is that formed by the numerical semigroups of the form

Sk = {0,m, 2m, . . . , km} ∪ {km+ 1,→}

with k,m ∈ N\{0}. For this it is sufficient to take into account that PF(Sk) =
{(k− 1)m+1, . . . , km− 1} and that ⌊km−1

m
⌋+1 = (k− 1)+ 1 = k. The i-chain

obtained is Sk ( Sk−1 ( · · · ( S1 = {0,m,→} ( N.
Consider now the numerical semigroups of the form {0, 4, 6, 2 · 4, 3 · 4, . . . , k ·

4} ∪ {4k + 1,→} with k ≥ 2. In the i-chain obtained with θ(S) = PF(S),
we find the semigroup 〈4, 6, 9, 11〉 = {0, 4, 6, 8,→}. Hence, the length of this
chain is larger than their complexity. This can be generalized as follows.
Let S = S0 be the numerical semigroup equal to {0, 2k, 3k, 4k,→}. The set
PF(S) is {k, 2k + 1, . . . , 4k − 1} and therefore S1 = S ∪ PF(S) = {0, k, 2k,→}.
The set of pseudo-Frobenius numbers of S1 is {k + 1, . . . , 2k − 1} and so S2 =
S1 ∪ PF(S1) = {0, 5,→} which is an ordinary semigroup and the length of the

i-chain obtained is 3, but the complexity of S is ⌊ F(S)
m(S)⌋+ 1 = ⌊ 4k−1

2k ⌋+ 1 = 2.

4 Numerical semigroups with a fixed multiplic-

ity and complexity

If m ∈ N\{0, 1}, then we denote by

Lm = {S | S is a numerical semigroup and m(S) = m}.

For S ∈ Lm define the following sequence:

• S0 = S,

• Sn+1 =

{

Sn ∪ γ(Sn), if Sn 6= {0,m,→}
{0,m,→}, otherwise.

9



The following result is obtained from Proposition 23 and Corollary 24.

Corollary 27. Let m ∈ N\{0, 1}, S ∈ Lm and let {Sn}n∈N be the sequence
defined above. Then, S = S0 ( S1 ( · · · ( SC(S)−1 = {0,m,→}. In addition,
we have the following:

1. Si ∈ Lm for all i ∈ {0, 1, . . . ,C(S)− 1}.

2. Si\{0} is an ideal of Si+1 for all i ∈ {0, 1, . . . ,C(S)− 2}.

3. C(Si) = C(S)− i for all i ∈ {0, 1, . . . ,C(S)− 1}.

A graph G is a pair (V,E), where V is a nonempty set and E is a subset of
{(u, v) ∈ V ×V | u 6= v}. The elements of V and E are called vertices and edges
of G, respectively. A path, of length n, connecting the vertices u and v of G is a
sequence of different edges of the form (v0, v1), (v1, v2), . . . , (vn−1, vn) such that
v0 = u and vn = v.

We say that a graph G is a tree if there exists a vertex r (known as the root
of G) such that for any other vertex v of G there exists a unique path connecting
v and r. If (u, v) is an edge of the tree G, then we say that u is a child of v.

If m ∈ {0, 1}, then we define the graph G(m) as follows: Lm is its set of
vertices and (S, T ) ∈ Lm × Lm is an edge if T = S ∪ γ(S).

As a consequence of Corollary 27, we have the following result.

Corollary 28. If m ∈ N\{0, 1}, then G(m) is a tree with root {0,m,→}.
Moreover, {S ∈ Lm | C(S) = k} = {S ∈ Lm | S is connected with {0,m,→
}through a path of length k − 1}.

It is evident that a tree can be constructed recursively by starting from the
root and connecting with an edge the vertices already constructed with their
children. We are interested in characterizing how are the children of an arbitrary
vertex of G(m).

Proposition 29. Let m ∈ N\{0, 1} and T ∈ Lm. Then, the set formed by all
the children of T in the tree G(m) is

{

T \A | ∅ 6= A ⊆

{

x ∈ msg(T ) | x >

(⌊

F(T )

m(T )

⌋

+ 1

)

m

}}

.

Proof. If S is a child of T in the tree G(m), then T = S ∪ γ(S) and so S =
T \γ(S). It is clear that S is a numerical semigroup with complexity C(T ) + 1.

Hence ∅ 6= γ(S) ⊆
{

x ∈ msg(T ) | x >
(⌊

F(T )
m(T )

⌋

+ 1
)

m
}

.

Conversely, if ∅ 6= A ⊆ {x ∈ msg(T ) | x >
(⌊

F(T )
m(T )

⌋

+ 1
)

m}, then A ⊆
{(⌊

F(T )
m(T )

⌋

+ 1
)

m+ 1, . . . ,
(⌊

F(T )
m(T )

⌋

+ 2
)

m− 1
}

, since if x ∈ msg(T ) then x ≤

F(T ) + m <
(⌊

F(T )
m(T )

⌋

+ 1
)

m + m =
(⌊

F(T )
m

⌋

+ 2
)

m. Thus, S = T \A is a

numerical semigroup and γ(S) = A. Consequently, S ∈ Lm and S ∪ γ(S) = T.
Therefore, S is a child of T.

Example 30. Next we can see the tree G(2).

10



〈2, 3〉 [2]

〈2, 5〉

{3}

OO

[4]

〈2, 7〉

{5}

OO

[6]

〈2, 9〉

{7}

OO

[8]

The number [k] indicates
(⌊

F(T )
2

⌋

+ 1
)

2 and

P
x




{x}

Q

means that Q = P\{x}.

We see that the vertices of G(2) are of the form 〈2, 2k + 1〉 where k is the
complexity of the semigroup.

Example 31. We now use Proposition 29 to obtain the tree G(3).

〈3, 4, 5〉 [3]

〈3, 5, 7〉

{4}
99ssssssssss

〈3, 4〉

{5}

OO

〈3, 7, 8〉

{4,5}
dd❍❍❍❍❍❍❍❍❍

[6]

〈3, 5〉

{7}

@@

✁
✁✁✁✁✁✁

〈3, 8, 10〉

{7}
::✈✈✈✈✈✈✈✈✈

〈3, 7, 11〉

{8}

OO

〈3, 10, 11〉

{7,8}
dd■■■■■■■■■

[9]

〈3, 8, 13〉

{10}

99ssssssssss

〈3, 7〉

{11}

::✈✈✈✈✈✈✈✈✈

〈3, 11, 13〉

{10}

::✉✉✉✉✉✉✉✉✉

〈3, 10, 14〉

{11}

OO

〈3, 13, 14〉

{10,11}
dd■■■■■■■■■

[12]

Our next aim is to present an algorithm to compute all the numerical semi-
groups with a given multiplicity and complexity. For this reason we introduce
some concepts and results.

If G = (V,E) is a tree and v is a vertex of G, then the depth of v, denoted by
d(v), is the length of the only path connecting v with the root. The following
result is an immediate consequence of Corollary 28.

Proposition 32. If m ∈ N\{0, 1} and S is a vertex of G(m), then G(S) =
d(S) + 1.

11



If G = (V,E) is a tree, then we denote by N(G,n) = {x ∈ V | d(x) = n}.

Example 33. From Example 31, we easily deduce N(G(3), 2) = {〈3, 5〉, 〈3, 8, 10〉,
〈3, 7, 11〉, 〈3, 10, 11〉}. Therefore, by applying Proposition 32, we have {S ∈ L3 |
C(S) = 3} = {〈3, 5〉, 〈3, 8, 10〉, 〈3, 7, 11〉, 〈3, 10, 11〉}.

The proof of the following result is straightforward.

Proposition 34. If G = (V,E) is a tree and r is its root, then N(G, 0) = {r}
and N(G,n+1) = {v ∈ V | v is a child of a vertex from N(G,n)} for all n ∈ N.

The algorithm for the calculation of the above sets is as follows.

Algorithm 2: Computation of the set of numerical semigroups with
multiplicity m and complexity c.

Data: An positive integer c and m ∈ N\{0, 1}.
Result: {S ∈ Lm | C(S) = c}.

1 A := {{0,m,→}};
2 i := 1;
3 if i = c then

4 return A;

5 Compute B := {S ∈ Lm | S is a child of an element of A};
6 A := B;
7 i := i+ 1;
8 Goto line 3;

We proceed to illustrate how the previous algorithm works with an example.

Example 35. We proceed now to compute the set {S ∈ L3 | C(S) = 4} using
the previous algorithm.

• A = {{0, 3,→}}, i = 1.

• A = {〈3, 5, 7〉, 〈3, 4〉, 〈3, 7, 8〉}, i = 2.

• A = {〈3, 5〉, 〈3, 8, 10〉, 〈3, 7, 11〉, 〈3, 10, 11〉}, i = 3.

• A = {〈3, 8, 13〉, 〈3, 7〉, 〈3, 11, 13〉, 〈3, 10, 14〉, 〈3, 13, 14〉}, i = 4.

Thus, {S ∈ L3 | C(S) = 4} = {〈3, 8, 13〉, 〈3, 7〉, 〈3, 11, 13〉, 〈3, 10, 14〉, 〈3, 13, 14〉}.
This list is obtained with the function NSWithMultiplicityAndComplexity

of complexityOfNS.ipynb:

gap> l34:=NSWithMultiplicityAndComplexity(3,4);;

gap> List(l34,x->MinimalGeneratingSystemOfNumericalSemigroup(x));

The result obtained is:

[ [ 3, 8, 13 ], [ 3, 7 ], [ 3, 11, 13 ], [ 3, 10, 14 ],

[ 3, 13, 14 ] ]

The following result easily follows.
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Lemma 36. If S is a numerical semigroup, then T = ({m(S)} + S) ∪ {0} is
again a numerical semigroup. In addition, m(T ) = m(S), F(T ) = F(S) +m(S)
and C(T ) = C(S) + 1.

The following proposition can be deduced from previous lemma.

Proposition 37. The map f : {S ∈ Lm | C(S) = c} → {S ∈ Lm | C(S) = c+1}
defined by f(S) = ({m(S)}+ S) ∪ {0}, is injective.

As an immediate consequence from above proposition, we have the following
result.

Corollary 38. If c ∈ N and m ∈ N\{0}, then the cardinality of {S ∈ Lm |
C(S) = c} is less than or equal to the cardinality of {S ∈ Lm | C(S) = c+ 1}.
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Acad. Sci. Paris 222 (1946), 1198–2000.

[2] V. Barucci, D. E. Dobbs and M. Fontana, Maximality Properties in
Numerical Semigroups and Applications to One-Dimensional Analitycally
Irreducible Local Domains, Memoirs Amer. Math. Soc. 598 (1997).

[3] V. Blanco and J. C. Rosales, The set of numerical semigroups of a
given genus, Forum Math. 85 (2012), 255–267.

[4] M. Delgado, P. A. Garcia-Sanchez and J. Morais, Nu-
mericalSgps, a package for numerical semigroups, Version 1.2.0.
https://gap-packages.github.io/numericalsgps, Apr 2019. Refereed GAP
package.

[5] A. H. Clifford, Extensions of semigroups, Trans. Amer. Math. Soc. 68
(1950), 165–173.
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