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ABSTRACT 

In the last decades, a new robotics paradigm has been introduced due to physical 
human-robot interaction (HRI) and the use of collaborative robots (cobots) equipped 
with low-power actuators and elastic components. This scenario requires the use of 
cobot controllers able to operate in unstructured environments and that do not depend 
on the accurate mathematical modeling of the nonlinear dynamics introduced by elastic 
elements. Robot behavior in this context is required to emulate the adaptability and 
flexibility of human behavior as much as possible.  

The cerebellum, pivotal for human motor control, has long been proposed as an 
adaptive controller, and its regular neural structure has allowed the development of 
computational models which replicate, to some extent, its structural and functional 
properties. Here, we propose a cerebellar-based adaptive controller able to provide 
torque control of a cobot with nonlinear dynamics. Using spiking neural networks we 
replicate the cerebellum neural topology and synaptic plasticity mechanisms. We then 
embed the biologically plausible cerebellar network at the core of a cobot control loop.  

The spike-processing computational cost of biologically plausible cerebellar models has 
prevented their real-world applicability, thus relegating them to mere theoretical or 
simulated models. Within this dissertation, we prove the applicability of our 
biologically plausible cerebellar controller in real-world control problems. We present a 
cerebellar spiking neural network which is large enough to provide the required 
resolution for torque control of six degrees of freedom in real-time, and hence can 
operate real cobots. The cerebellar controller provides fine accuracy in the execution of 
different motor tasks thanks to the deployed cerebellar learning mechanisms. Besides, 
the controller is also able to adapt the cobot behavior to unstructured changes directly 
affecting the cobot dynamics. Furthermore, the aforementioned cerebellar control 
learning mechanisms can also cope with sensorimotor delays affecting the robot-
controller communication, a well-known source of control loop instability. 
Sensorimotor latency is unavoidable in the central nervous system (CNS), however, it 
does not jeopardize the stability of motor control thanks to, among others, cerebellar 
predictive behavior. We prove the cerebellar controller robust against sensorimotor 
delays of different nature, thus applying to robotics another intrinsic feature of the 
cerebellum. 

In addition to cerebellar control, we expand the biologically inspired approach with 
other key elements of the CNS and musculoskeletal system. We present some first 
results of adding spinal cord circuits to the cerebellar controller. The spinal cord, using 
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direct muscle feedback to allow fast-stretch reflexes and muscle activity regulation, is 
found to improve cerebellar learning and robustness against perturbations. As next step 
we will integrate the spinal cord circuits and the cerebellar controller operating the 
cobot, for which muscle dynamics will need to be added to the control loop. Here we 
present a preliminary approach for the integration of muscle dynamics within the cobot 
control loop, which is shown capable of modifying the motion stiffness of the cobot by 
changing the cocontraction degree of antagonistic muscle pairs. Different stiffness 
profiles would allow the robot behavior to cover different degrees of admittance and 
impedance control, of interest to physical HRI as those control modes directly impact 
how the robot reacts to external interactions (admittance control performs better in soft 
environments, while impedance control favors stiff environments).  

For collaborative robotics to succeed, robot performance must emulate the adaptability 
and flexibility of human behavior. Hence, the biological substrate behind human 
conduct could be used as inspiration to bring robot behavior closer to our inherent 
motor capabilities. Human behavior is sustained by both hardware and software: the 
biomechanics of the musculoskeletal system together with the control provided by the 
CNS allow us to interact with others and the environment. On the hardware side, robot 
design is increasingly mimicking the dynamics of living beings. On the software side, 
the study and understanding of the different CNS areas and their computational 
replication can expand the family of controllers able to provide adaptive, compliant 
robot control. Here, we benefit from decades of neuroscience studies about the 
cerebellum structure and functioning, and apply those findings to current robotic 
challenges.  
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1. INTRODUCTION 

Humanity has used technology as an answer to diverse questions and needs. From the 
wheel to airplanes or computers, we can give form to ideas that did not exist before and 
develop solutions for a wide variety of challenges. Robots first appeared in the last 
century as tools for physical labor, and their use has extended since then from 
automated factories to every-day tasks and new application domains. Technological 
development in the robotics field is driven by an increasing demand for robots provided 
with ever more human-like behavior.  

Human behavior is mediated by the brain and rest of the nervous system; the most 
magnificent tool ever built. This wonder of nature and evolution provides us with the 
cognitive, emotional, and motor skills required to successfully interact with others and 
the environment. Robotics faces the challenge of developing machines with high-level 
cognitive and motor skills. On the cognitive side, the increase in computation capacity 
has already allowed developing machines that outperform human beings in certain 
tasks; the already classic example of computers beating chess grandmasters. But on the 
motor side, there is no robot yet able to move and adapt to the environment with the 
same levels of complexity and accuracy as humans and animals can. There are different 
engineering approaches trying to solve what evolution already did; hence, another 
logical approach would be to take inspiration from evolution itself and biological 
systems. Any researcher would dream about having the millions of years and resources 
used by evolution to find the most suitable solutions to its challenges. Here, we propose 
a robot controller developed by taking inspiration from how humans and animals can 
move and adapt to different contexts. Specifically, a spiking neural network that 
replicates, in a biologically plausible way, the main neural layers and synaptic plasticity 
forms of the cerebellum, a nervous region that is pivotal for motor learning and 
coordination.  

The embodiment of biologically plausible neural networks can inspire the development 
of more advanced robots. Besides, these robots equipped with replicas of our nervous 
system also appear as a tool for neuroscience to study the behavior of those neural 
circuits under different contexts and tasks. Thus, a promising symbiosis can be 
established between neuroscience and robotics: next generations of robots can be 
inspired by neuroscience, which can in turn use those robots to gain a better 
understanding about the functioning of the brain and the rest of the nervous system.  
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1.1 New robotics paradigm: collaborative robots 

The word robot was originally coined in 1920 at the theatre play R.U.R. (Rossum’s 
Universal Robots), by Czech playwright Karel Čapek [1], after a suggestion from his 
brother Josef Čapek [2]. The word described the artificial workers conceived to be 
employed in factories.  

Since their first, fictional appearance, robots have been long used in industry to lighten 
human labor by performing demanding physical jobs, such as manipulating heavy 
payloads or toxic substances, or executing monotonous tasks. For the sake of 
performance accuracy and efficiency, industrial robots are rigid-bodied equipped with 
high-power actuators and high-ratio gearboxes, allowing the implementation of 
traditional position control solutions based on kinematic model availability. These 
conditions, both hardware and software, prevent any physical human-robot interaction 
(HRI), forcing the use of safety fences to define the robot workspace. Thus, in these 
traditional, well-structured, industrial scenarios, any physical interaction between robot 
and human is avoided as safety cannot be guaranteed. 

Nevertheless, new robotic application domains (e.g., search and rescue missions [3], 
medical assistance and rehabilitation therapies [4], social interaction [5], education [6]) 
demand safe physical HRI [7]. Even in the industrial domain there is a drive towards 
safe physical HRI to harness the strengths of both human (e.g., adaptability, creativity) 
and robot (e.g., precise manipulation, lifting heavier payloads) [8]. Hence, the family of 
robots solely conformed by traditional, industrial robots, needs to be enlarged with a 
new member: compliant robots able to provide for safe physical HRI, i.e., collaborative 
robots (cobots). For the development of cobots, both hardware and software solutions 
are to be considered.  

On the hardware side, emulating the kinematics and dynamics of animals is pushing 
toward the development of more versatile robots able to provide robust operation in a 
wider range of environments [9], [10], [11]. Apart from robotic applications, these 
robots are also platforms for the study and further understanding of the biomechanics of 
living beings [12], [13], and even extinct ones [14]. Regarding the requirement for 
compliance and safety in cobots, low-power actuators and elastic components are used 
to ease the consequences of possible impacts. This approach, taking inspiration from 
biological soft tissues (e.g., muscles, tendons and ligaments), offers passive intrinsic 
compliance in contrast to classic rigid-bodied robots. Besides compliance, deformable 
bodies can potentially provide more adaptation, sensitivity and agility [15], [16]. But the 
use of these hardware components comes at a cost: they hinder the applicability of 
traditional torque control methods, as the nonlinearity introduced makes the dynamic 
model mathematically intractable [17]. Hence, on the software side, new control 
strategies are demanded [15], [18]; adaptive torque controllers that do not depend on 
dynamic model availability and that are able to cope with physical nonlinearities. In 
addition to the impositions made by the hardware approach, these new controllers are 
also expected to operate in unstructured scenarios, derived from the unpredictable 
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nature of human interaction, and to cope with environmental changes across time and 
tasks, as a result of operating in the real world [19]. 

Another element differentiating classic robotics scenarios and the new application 
domains is the physical link and communication technologies connecting robot and 
controller. The traditional point-to-point wired connections now coexist with wireless 
communications [20], cloud-robotics networks [21], and teleoperation architectures 
[22], which benefits come at the cost of inducing stochastic transmission delays in the 
control loop. The presence of nondeterministic transmission delays contributes to the 
unstructured nature of these new robot scenarios, and needs to be taken into account 
when designing torque control solutions. 

From the traditional, well-structured, industrial applications, robotics has evolved 
towards a new paradigm. The distinctive characteristics of this new collaborative 
scenario can be summarized as: low-power actuators, elastic components, and adaptive 
torque control able to cope with both nonlinear dynamics and unstructured scenarios. 
Robotics research is devoting efforts toward achieving these features, which are all 
innate in human and animal motor control. Therefore, the new torque control strategies 
to be developed could directly benefit and take inspiration from a better understanding 
of biological motor control.  

1.2 Neurorobotics 

Physical HRI and the integration of robots in society require robots to express complex 
behaviors similar to those exhibited by living creatures. To develop the engineering 
solutions that shall allow robots to interact with others and the environment, we should 
harness the experience gained by nature in its search for the most suitable solutions to 
the very same challenge. Millions of years of evolution have developed nervous systems 
that allow us, and animals, to efficiently plan our actions as a response to sensory 
inputs, to predict their consequences, and to adapt them to an unstructured world. 
Perception, information processing, and the generation and execution of motor 
commands, constitute a well-orchestrated process involving different areas of the 
nervous system. The study and understanding of the different parts of the nervous 
system can inspire the development of new solutions for compliant robot behavior, 
which involves the whole perception-cognition-action loop.  

The human visual system, driven by events, has inspired computer vision technologies 
using event-driven sensors [23]; the biological afferent nerves, i.e., interface between 
sensorial information and the central nervous system (CNS), have been mirrored by in 
silico spiking afferent nerves with energetic efficiency and computation capacity 
suitable for processing sensory signals from robot sensors [24]; head direction cells, 
found in the limbic system, have been computationally modeled and applied for robot 
navigation tasks [25]; spinal cord circuits and central pattern generators have been 
replicated to equip robots with robust locomotion capabilities [26], [27], [28]. These are 
just some examples of how neuroscience knowledge translated into computational 
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models is already providing solutions for the development of more advanced robots. 
Besides, the embodiment of computational neuroscience models can be a powerful 
mechanism to test the fidelity of the simulated neural networks [29], providing a 
framework to study neurological behavior, pathologies, and treatments. This symbiosis 
established between neuroscience and robotics is what we call neurorobotics (Fig. 1.1). 

 
Figure 1.1. Neurorobotics. Biological neural networks can be replicated using artificial neural 
networks, which can be used as robot controllers taking inspiration from biological motor 
control. The embodiment of these artificial neural networks provides a framework for testing the 
fidelity of the simulated neural networks, which can also be used to gain a better understanding 
of the biological substrate.  

Regarding motor control of the musculoskeletal system, several areas of the CNS are 
involved: the premotor cortex plays a role in movement selection and organization [30], 
the primary motor cortex is directly involved in control of voluntary movements, 
segregated in neural sub-regions for different body parts [31], the basal ganglia and 
brainstem are associated with control of muscle tone and locomotion [32], the 
cerebellum is known for its crucial role in supervised sensorimotor learning [33], the 
spinal cord integrates descending signals from higher brain areas and controls motor 
neurons activation, as well as spinal circuits being able to generate rhythmic locomotor 
movements and provide fast-reflex responses [34]. These examples provide just a 
glimpse of the complex interaction of different CNS regions, with overlapping functions 
yet to be further clarified, shaping the widely distributed neurobiological control 
process. 

Among all the CNS regions involved in motor control, the cerebellum appears as 
especially suitable for robot control thanks to its structure and function. The regular 
neural structure of the cerebellum favors its computational replication, while its 
recognized crucial role in motor learning makes it appealing for adaptive robot control 
solutions [35]. 
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1.3 Cerebellar motor control theory 

The human brain is estimated to have ~86 billion neurons, ~69 billion contained by the 
cerebellum; representing only 10% of the human brain mass, the cerebellum holds 80% 
of the neurons [36]. Cerebellar anatomy, characterized by a high neural density, has 
historically aroused a large body of research, from Aristotle already distinguishing it 
from the rest of the brain anatomy [37], to Ramón y Cajal masterful description of the 
cerebellar cortex layered structure [38]. The cerebellar regular structure has allowed 
detailed experimental research for centuries [39], leading to certain consensus on the 
anatomy of the cerebellum [40].  

The cerebellar topology is structured in two well differentiated areas: the cerebellar 
cortex and the deep cerebellar nuclei. The cerebellar cortex is divided in three layers: 
granular layer, Purkinje layer, and molecular layer (Fig. 1.2). Granule cells densely 
populate the granular layer, where also Golgi and Lugaro cells are found. Purkinje cells 
give name and populate the Purkinje layer, and are the sole output of the cerebellar 
cortex projecting inhibitory connections to neurons in the deep cerebellar nuclei. At the 
molecular layer, basket and stellate cells are found, together with the axons of granule 
cells, the parallel fibers. Two major sensorimotor afferents reach the cerebellum, mossy 
fibers and climbing fibers, both forming excitatory synapses. Mossy fibers form 
connections with granule and Golgi cells in the cerebellar cortex, and also with neurons 
in the deep cerebellar nuclei. Mossy fibers convey sensorimotor signals from different 
sites of the CNS (cerebral cortex, vestibular nuclei, spinal cord, etc.). Climbing fibers 
arise from the inferior olive and form excitatory connections with Purkinje cells, 
interneurons at the molecular layer, and the deep cerebellar nuclei. 

 
Figure 1.2. Details from the cerebellar structure. (A) Cerebellar cortex layered structure. (B) 
Purkinje cells. (C) Axons innervating Purkinje cells. Cat cerebellum histological slides from 
Prof. F. Abadía-Fenoll’s archive, provided by Prof. F. Abadía-Molina. 

On the functional side, the connection between cerebellum and motor control has been 
long established. In the first decades of the nineteenth century, Luigi Rolando linked 
cerebellar lesions to voluntary movement and posture impairment, Marie Jean-Pierre 
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Flourens associated it to muscle coordination, and François Magendie proposed it as the 
equilibrium center [39]. Further studies contributed to settle the cerebellar involvement 
in the integration, regulation and coordination of motor processes; but it was in the late 
1960s and early 1970s that a major step was achieved in cerebellar motor control 
theory: the Marr-Albus-Ito theory on cerebellar motor learning, based on David Marr’s 
theory (1969) [41], extended and further supported by the work of Masao Ito (1970) 
[42], and followed by the independent work of James Albus (1971) [43]. Although 
some differences can be found among the three proposals, they shared the basis for 
motor learning in the cerebellum: i) parallel fibers to Purkinje cells synapses exhibit 
plasticity; ii) synaptic plasticity is regulated by the climbing fibers activity reaching 
Purkinje cells; iii) granule cells conduct an expansion recoding of mossy fibers sensory 
inputs. Besides a milestone in the study of cerebellar function, the Marr-Albus-Ito 
theory was also an example of the powerful contribution that computational 
neuroscience can make to brain studies [44]. The main sticking point between the 
models was later addressed by Masao Ito’s experimental discovery of long-term 
depression (LTD) at parallel fibers – Purkinje cells induced by climbing fibers [45]; i.e., 
the climbing fibers activity does not facilitate parallel fibers – Purkinje cells synapses 
(Marr’s suggestion), but rather depresses them (Albus’ postulate). Thus, the Marr-
Albus-Ito model was established and funded the computational principles of supervised 
learning in the cerebellum [33]. 

In supervised learning, the response of a system to a given stimuli is compared to the 
desired outcome, resulting in a teaching signal used as feedback to readjust some of the 
system’s internal parameters. This iterative process tends to minimize the distance 
between the system’s performance and the desired behavior. The cerebellar machinery 
allows supervised learning by adapting internal parameters (i.e., synaptic plasticity) as a 
function of the sensorimotor inputs (i.e., mossy fibers input activity, recoded at granule 
cells) and the evaluation of the corresponding motor response outcome through a 
teaching signal (i.e., climbing fibers convey the instructive signal generated at the 
inferior olive) [33]. Thus, the cerebellum enables the modification of our actions so 
their consequences match our expectations [46].  

Nonetheless, accurate control of our body cannot solely rely on feedback availability, 
which is affected by biological sensorimotor delays. The physiological transport of 
sensory inputs and motor commands inevitably involves sensing delays, nerve 
conduction delays, synaptic delays, neuromuscular junction delays, electromechanical 
delays, and force generation delays [47]. The development of fine motor control 
requires mastering the sensorimotor delays inherent to the CNS perception-cognition-
action loop. Delay compensation is achieved by state and sensory prediction, i.e., an 
estimation of the motor commands outcome before feedback is available [48], a 
prediction mechanism in which the cerebellum, equipped with motor learning ability, 
plays a pivotal role [49], [50]. This predictive behavior is synthesized in the idea of the 
cerebellum storing internal models of the body and external tools [51], i.e., a 
representation of the input-output properties defining the motor apparatus. There are 
two types of internal models, forward and inverse models. Forward models predict the 
next state based on the current state and the motor command. Inverse models provide 
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the motor command required to achieve a desired change in state. Both types of internal 
models have been hypothesized to be contained and combined in the cerebellum [51], 
[52]. 

The Marr-Albus-Ito model constitutes a well-accepted common ground for cerebellar 
research. Nonetheless, since it was first established, the model has evolved facing new 
arguments and findings [53]. Regarding motor control theory, it is noteworthy that 
synaptic plasticity, initially described at parallel fibers – Purkinje cells, has been 
experimentally found to be distributed across several connections in the cerebellar 
cortex and deep cerebellar nuclei; cerebellar learning appears as the integration of 
plasticity at several sites and in different forms [54]. These findings have allowed to 
deepen the classical view of the cerebellum as a supervised learning machine [33], and 
also to propose new theories suggesting the cerebellar cortex as a reinforcement 
learning machine [46], [55], allowing the cerebellum not only to learn how to perform 
an action but also to select the most rewarding action in a given situation. 

Cerebellar research will keep evolving with further experimental studies together with 
more complex cerebellar computational models. These efforts will help to draw an 
increasingly refined cerebellar theory for motor control, together with uncovering the 
cerebellar role in cognitive functions [56] and how it is integrated in the whole brain 
network. 

1.4 Spiking neural networks 

From an engineering perspective, a definition of intelligence could be the efficient 
generation of goal-oriented outputs as a response to information inputs. For it to be 
applicable to a constantly changing world, intelligence must allow the adaptation of its 
responses to the surrounding changes; thus, learning ability is a basic tenet for 
intelligent behavior. This feature, naturally present in living creatures, can now be given 
to machines thanks to the technological development of the ever more ubiquitous field 
of Artificial intelligence (AI), in which artificial neural networks (ANNs) learn how to 
solve different tasks. 

ANNs have been applied to a wide range of challenges: from speech recognition [57], to 
cancer detection [58], or autonomous driving [59]. In these networks, an artificial 
neuron, called unit, receives inputs from other units or external sources, processes the 
weighted sum of the inputs and transmits the output through the neuron connections, 
adjusting the connections as learning proceeds [60] in a continuous manner. ANNs are 
designed to address challenges by means of well-structured data and typically using 
standard analog representations for neural activity. On the one hand, as ANNS are not 
constrained to mimic biologically observable learning processes, the possible 
technological developments are endless. But on the other hand, as these networks are 
vaguely representative of their biological counterparts, drawing any analogies between 
them is hampered. Hence, another approach is needed when one intends to: i) harness 
the experience of millions of years gained by evolution in its search for the most 
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suitable solution to its challenges, ii) develop computational models that contribute to 
the understanding of biological networks. Spiking neural networks (SNNs) naturally 
cope with these requirements, as they constitute the most biologically plausible 
approach of neural networks [61].  

SNNs inherit the properties of biological neural networks by replicating their dynamics 
at a neuron level. These artificial networks transfer and process information as occurs in 
biological neurons, via the precise timing of spikes, i.e., membrane action potentials at 
discrete points in time. The spikes of a given neuron look all alike, hence, it is the 
precise timing of the spike, or sequence of spikes, rather than the form of the event 
which carries the information [61], [62]. The temporal dimension is hence intrinsically 
added for information encoding using SNNs, turning them a suitable solution for 
capturing the temporal evolution of analog signals, a pivotal feature in motor control 
and movement coordination [63]. Besides, neuromorphic computing based on SNNs has 
also been recognized for its energetic efficiency and computational power [24], [64], 
[65]. Therefore, the value of SNNs not only relies on their biological plausibility but 
also on their temporal nature, energy consumption and processing capacity.  

SNNs enable the deployment of cellular-level cerebellar models, which offer an insight 
into the cerebellar function at a neuron level. However, this more biologically plausible 
approach comes at the cost of a greater computational cost when compared to functional 
models [35]; the application of cellular-level models to robot control has been usually 
limited. To perform accurate torque control of a nonlinear cobot, the SNN sizing must 
be large enough to capture the complex dynamics of the robot and provide high-
resolution output signals, but at the same time it is also required to operate in real time 
(RT). In this thesis, we have fulfilled these requirements using the SNN simulator 
EDLUT [66], [67], [68], specially designed for RT operation.  

1.5 Motivation 

Robotics has evolved from isolated robots in structured, industrial scenarios, to robots 
and humans interacting in unstructured environments. Collaborative robots are the 
answer of the robotics field to allow HRI to be safe for both human and robot. Cobots 
are distinguished from traditional robots due to the use of low-power actuators and 
elastic components; on the hardware side, cobots are designed to provide passive 
compliance. But these hardware solutions hamper the implementation on the software 
side; traditional controllers relying on accurate analytical models are no longer 
applicable due to the nonlinearities and mathematical intractability introduced. 
Therefore, there is a demand for adaptive controllers that do not depend on prior 
analytical knowledge of the cobot dynamics. 

HRI demands the robot to perform with accuracy but also to have control of how the 
movement is executed, i.e., the torque/force profiles causing the movement [69]. 
Therefore, in contrast to classic position controllers, torque control is presented as a 
more suitable solution for HRI. This control strategy is closer to human-like behavior, 
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as we do not command our joints to positions in space, but rather control the activation 
of our muscles to perform certain movements.  

Hence, the roadmap is clear. There is a need for adaptive torque controllers able to 
operate cobots without dependence on analytical solutions. The development of the 
engineering solutions to this challenge can inspire from how biological motor control 
addresses the very same problem.  

Different areas of the CNS collaborate to provide us with accurate and adaptive control 
of our body. From these nervous regions, the cerebellum stands out among them thanks 
to its regular neural structure and its recognized contribution to the integration and 
coordination of motor processes, but most importantly, motor learning. The 
computational replication of the cerebellum is favored by its structure, while its key role 
in motor learning proposes it as a promising candidate for robot control.  

The computational replication of the cerebellar structure and functioning in the most 
biologically plausible way comes from the use of spiking neural networks. This kind of 
ANN replicates, at a neuron level, the dynamics of biological neural networks. Hence, 
SNNs can directly benefit from the knowledge provided by neuroscience on how the 
cerebellum learns motor commands and adapts to changes in the environment. Besides, 
the temporal dimension intrinsically present in SNNs makes them appealing for 
capturing the evolution through time of a physical system, the core of motor control.  
However, to successfully apply biologically plausible SNNs to robot control, the SNN 
is required to operate in RT while replicating the complex neural behavior encountered 
in biology. This condition has traditionally constrained SNNs to simple, reduced 
networks or simulation frameworks, or turned SNNs fully dependable on specific 
neuromorphic hardware. This scenario has hampered the deployment of biologically 
realistic SNNs applied to real-world cobot control.  

In this dissertation, we present a biologically plausible SNN that replicates the main 
cerebellar structure and motor learning mechanisms, running in a conventional 
computer with RT operation guaranteed thanks to the EDLUT simulator [68], and 
performing torque control of  6 degrees-of-freedom (DOF) of a nonlinear cobot (Baxter 
robot [70]). The benefits of the presented biologically inspired approach are discussed 
in the following chapters.  

1.6 Objectives 

The main aim of this thesis is to develop a biologically plausible, cerebellar-like, torque 
controller for a cobot equipped with low-power actuators and elastic components (i.e., 
nonlinear dynamics). The controller is required to provide adaptive torque control, 
nondependent of prior analytical knowledge of the robot; and the performance is 
required to be accurate and compliant so it facilitates safe HRI.  

To study the feasibility of the aforementioned, a cerebellar SNN was embedded in the 
control loop of a Baxter robot [70], performing torque control of 6 DOF in RT. Once 
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the control loop was established, the cerebellar SNN controller was tested doing 
different tasks and in different contexts, assessing the implications and benefits of this 
bio-inspired approach.  

Besides, this dissertation also explores expanding the biologically inspired, cerebellum-
based approach, by adding to the cerebellar control loop other key elements of 
biological motor control: spinal cord circuits and muscle dynamics. Integration of the 
cerebellar SNN model and spinal cord circuits will provide a framework to study the 
complementary roles of these two nervous regions, while exploring the possible benefits 
of adding spinal cord circuits to cobot control. Muscle dynamics are proposed as a way 
to provide a control layer over the degree of motion stiffness, allowing different cobot 
behaviors depending on the HRI requirements. A low stiffness profile would benefit 
soft interactions, while high stiffness profiles would perform better in stiff 
environments. 

To achieve the main goal, this thesis can be divided in the following specific objectives:  

- Development of the cerebellar SNN adapted for 6 DOF using EDLUT simulator. 

- Integration of the cerebellar SNN in the control loop of a Baxter robot, in RT.  

- Validation of the motor learning capability of the cerebellar SNN torque 
controller. Learning torque commands to perform different trajectories involving 
6 nonlinear DOF of one arm of the Baxter robot.   

- Validation of the performance accuracy of the cerebellar SNN torque controller. 
The achieved motor learning must provide fine accuracy in the execution of the 
motor tasks.  

- Validation of the adaptability of the cerebellar SNN torque controller to 
unstructured scenarios. The SNN must be able to adapt to dynamic changes 
induced by context variations 

- Validation of the compliant behavior of the cerebellar SNN torque controller. 
The SNN must allow safe HRI.  

- Validation of the robustness of the cerebellar SNN torque controller against 
nondeterministic time delays. The SNN must be able to control the cobot in 
scenarios affected by nondeterministic transmission delays between the robot 
and controller (e.g., wireless communications, remote control, and cloud-
robotics). 

- Integration of the cerebellar SNN and spinal cord circuits. 

- Validation of the performance of the cerebellum – spinal cord integration 
controlling a musculoskeletal upper limb model.  
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- Validation of the contribution of spinal cord circuits in handling motor 
perturbations.  

- Integration of muscle dynamics in Baxter control loop. 

- Validation of the performance of different muscle cocontraction profiles and 
their response against perturbations. 

1.7 Project framework  

The work included in this thesis has been developed in the context of the Human Brain 
Project (HBP). The HBP is a European Commission Future and Emerging Technology 
Flagship project, a ten-year initiative started in 2013. This research project puts together 
scientists and engineers from more than 140 universities, hospitals, and research 
centers, to address the fascinating challenge of unraveling the human brain. The HBP 
constitutes a multidisciplinary framework with contributions from a wide range of 
research groups, including experimental wet lab studies or computational models and 
theories on the mechanisms involved in cognition, learning, or information processing 
at neuron level and large-scale networks. The project intends to translate the acquired 
knowledge to make an impact in health and technological innovation.  

To address such a demanding challenge, the HBP is organized in different cross-
disciplinary work packages (WP). The work covered in this thesis is integrated in WP3: 
“Adaptive networks for cognitive architectures: from advanced learning to 
neurorobotics and neuromorphic applications”. WP3 focuses on understanding how 
biological neural networks enable human visuo-motor and cognitive functions, with a 
special emphasis on embodiment on real-world systems. Within WP3, our work forms 
part of Task 3.4 Closed-loop dynamic task performance: cognitive neurorobotics. 

The work presented in this thesis has been developed during two phases of the HBP: 
Specific Grant Agreement 2 and 3 (SGA2 and SGA3). SGA2 ran from April 2018 to 
March 2020, while SGA3 covers from April 2020 to September 2023, constituting the 
last phase of the HBP. Our research group contributed to SGA2 with the application of 
a cerebellar SNN model to the closed-loop control of a cobot, while at SGA3 the focus 
is at the integration of the cerebellar model with a spinal cord model to perform motor 
control of an upper limb musculoskeletal model. The cerebellum and spinal cord 
integration intends to study how these two nervous areas collaborate in motor control 
tasks, and it also carries possible applications to robot control by further expanding the 
aforementioned cerebellar cobot controller with the addition of spinal circuits and 
muscle dynamics. 

The integration of the cerebellar SNN with the spinal cord model has been possible in 
the cooperation framework provided by the HBP, which has allowed an international 
collaboration with the Biorobotics Laboratory, led by Professor Auke Ijspeert, at École 
Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The Biorobotics Laboratory 
research interests cover the computational aspects of locomotion control, sensorimotor 
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coordination, and learning, with recognized expertise in spinal circuits. Their work takes 
inspiration from animals to design new robots and control methods, as well as using 
robots to study the neural mechanisms involved in animal movement control and 
learning. This collaboration allowed the doctoral candidate to do a research stay at the 
Biorobotics Laboratory, from September to December 2021.  
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2. CEREBELLAR ADAPTIVE MOTOR CONTROL 

The work presented through this chapter can be found in:  

Abadía, I., Naveros, F., Garrido, J. A., Ros, E., & Luque, N. R. (2019). On robot 
compliance: a cerebellar control approach. IEEE Transactions on Cybernetics, 51(5), 
2476-2489. 

DOI: 10.1109/TCYB.2019.2945498  

2.1 Introduction 

Physical HRI implies robots operating in complex unstructured environments in which 
human actions cannot be modeled, demanding robots to adapt their behavior to 
unpredicted situations in a safe and autonomous manner, i.e., compliant human-like 
behavior [71]. Compliance demands control over the torque values put in place to 
achieve a given movement, but traditional torque control methods based on dynamics 
modeling cannot be efficiently applied to HRI involving cobots, as the nonlinearities of 
elastic components make detailed modeling extremely complex [17]. New torque 
control strategies are required.  

Controlling biologically inspired robots (i.e., elastic components and low-power 
actuators emulate biological actuation carried by muscles, tendons and ligaments) shall 
directly benefit from understanding biological motor control itself. The control 
mechanisms encountered in biology are involved in a continuous learning process to 
cope with the complexity and variations in body structure and dynamics. AI can be used 
to replicate this learning process. In particular, widely used ANNs have been proposed 
and tested as a solution for the control of these compliant robots without requiring prior 
knowledge of the robot dynamics [17], [72]. ANNs are vaguely inspired in the 
functioning of biological neural networks. Their lack of ability for carrying neural 
information via well-timed sequences of spikes prevents them from serving as the 
linkage between biological neural coding and movement coordination, thus sidelining 
any attempt to draw biological analogies. SNNs, on the other hand, offer a more 
biologically plausible approach [61], and their intrinsic temporal characteristics [64] 
make them a suitable solution for dealing with robot inner dynamics in torque control. 
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Among the several areas of the CNS contributing to motor control of the 
musculoskeletal system, the cerebellum stands out among them by its role in the 
integration, regulation, and coordination of motor processes, and more importantly, 
motor learning [40], [43], [73], [74]. Diverse computational models of the cerebellum 
have been proposed in robot control: CMAC [75], APG [76], MPFIM [77], or the 
Schweighofer-Arbib model [78] are some examples. Among these models, the so-called 
cellular-level models [35] (SNN based), account for the most detailed approach as they 
capture the biophysical features of cerebellar neuronal processing. These models enable 
a realistic implementation of the biological understanding of the cerebellum. The 
cerebellar controller presented in this thesis belongs to this cellular-level family and its 
very nature allows taking advantage of previous neurocomputational and in vivo studies, 
which deepen in diverse aspects of cerebellar structure and functionality:  

- Spike-timing-dependent plasticity (STDP) mechanisms can correlate the actual 
and desired motor states toward the generation of accurate corrective commands, 
even in the presence of sensorimotor delays [79]. 

- Synaptic adaptation at the cerebellar cortex: granular [80], [81], and molecular 
layer [82]. 

- Suitability of cerebellar control under dynamic and kinematic perturbations [52], 
[83], [84]. 

- Existence of structural and functional cerebellar microcomplexes [85]. 

- Effective representation of neural input states for a supervised-learning 
cerebellar network [86]. 

- Granular layer timing mechanisms [87], information processing [88], and 
multimodal sensory inputs [89]. 

Here, we conjugate the following elements to address the need for adaptive torque 
control in cobots: i) a hardware compliant robot (i.e., Baxter); ii) an SNN modeling the 
highly regular neural structure and learning mechanisms of the cerebellum. Addressing 
this problem implies facing the state-of-the-art challenges described below.  

First, to control a real cobot (i.e., not a simulated one), the cerebellar-like SNN is 
required to operate in RT. Spiking neural processing in RT is a highly demanding 
computational task. Considering that our computational resources are limited, there 
must be a trade-off between network size, neuron complexity, network topology, and 
temporal output resolution, which will determine the RT capability and also, to some 
extent, the motor control accuracy. We used EDLUT simulator to accommodate, for the 
first time, a RT cerebellar SNN consisting of ~62K leaky integrate and fire (LIF) 
neurons with ~36.4M synapses, 36M of which endowed with plasticity.  

Second, we need to implement an effective RT dialogue between the cerebellar spike 
domain and the analog sensorimotor domain [29], [90], [91]. In closed-loop, the 
cerebellar SNN must generate the adequate output motor commands to control the robot 
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movement as a response to the input stimuli. The spike and analog domains are brought 
together using a set of analog to spike, and spike to analog translations (see 2.2.6 and 
2.2.7), operating in RT without compromising motor accuracy.  

Third, the cerebellar SNN torque controller must cope with hardware compliance 
impositions. We used the Baxter robot, equipped with passive compliance, and 
performed direct torque control to address compliant interactions with an unstructured 
environment [69]. The cerebellar controller must be able to compensate for Baxter’s 
loss in precision and lower capacity to exert a force due to its hardware passive 
compliance. The SNN must be able to continuously learn the minimal torque values 
needed to execute several motor tasks in RT under changing operational and 
environmental conditions, i.e., perturbation forces that continuously modify their 
module and direction, human collisions, and interactions.  

Finally, we need to validate the performance of the implemented solution. We have 
provided a cerebellar SNN able to learn the adequate torque values in a safe manner, 
outperforming the control accuracy provided by the factory-default position controller.  

2.2 Methods 

2.2.1 Compliant robot – Baxter 

Baxter robot, manufactured by Rethink Robotics [70], is a two-armed collaborative 
robot, each arm counting with seven DOFs. Baxter is inherently compliant thanks to its 
series elastic actuators (SEAs) [92]. SEAs interpose a passive mechanical spring 
between the actuator and the load, low-pass filtering possible impacts, hence increasing 
shock tolerance [92], and providing force sensing capabilities. SEAs constitute a built-in 
mechanism that inherently allows for safe physical HRI. Besides the elasticity provided 
by SEAs, Baxter is also equipped with two external passive springs located at joint J2 
(see Fig. 2.1). 

 
Figure 2.1. Baxter robot. Full body of the Baxter robot, the tags indicate the six joints of the 
left arm used within this dissertation. The right column shows the elastic components of Baxter: 
passive springs and a schematic representation of Series Elastic Actuators (SEAs), reproduced 
from [92]. 
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Baxter implements a factory-default position controller, as well as allowing for torque 
control of the different joints. The factory-default position controller was used as 
reference for motor accuracy to evaluate the performance of the cerebellar SNN torque 
controller. The nonlinearities introduced by elastic components and the torque control 
capability make Baxter perfectly suitable for the research questions addressed within 
this dissertation.  

Prior to Baxter’s hands-on testing, we used the simulated version of Baxter available in 
Gazebo [93] as a safe environment to develop and test the robot-cerebellum 
communication interface, which allowed sending motor commands to the robot (a 
torque value per joint) and receiving sensorimotor information (position and velocity 
per joint). This interface was developed using Robot Operating System (ROS) [94] and 
effectively allowed for control of both the simulated and real robot. Gazebo was only 
used to test the communication setup, as the dynamics of the simulated and the real 
robot are significantly different (Fig. 2.2). The implemented ROS frameworks used in 
the different chapters of this thesis were made available after publication (see each 
chapter’s corresponding paper). 

 
Figure 2.2. Dynamics of the real robot vs. simulated robot. The figure depicts the torque 
commands to perform a circular trajectory generated by the same PD controller for both the real 
robot (A), and the Gazebo simulator version (B). Besides series elastic actuators present at every 
joint, Baxter also holds a couple of passive springs at joint j2; i.e., nonlinear elements which the 
model fails to accurately represent. The larger mismatch in j2 is extended to other joints via 
inertial forces.  

2.2.2 Cerebellar control loop 

The implemented ROS framework allowed establishing an effective dialog between 
Baxter and the cerebellar network, exchanging sensorimotor information. This dialog 
was framed within a closed control loop with negative feedback, with a working 
frequency of 500 Hz (Fig. 2.3). The cerebellar SNN acted as the controller and 
computed a torque command at each time step (2 ms) to achieve the goal behavior, 
which was defined as desired position and velocity per joint at each time step.  
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Figure 2.3. Schematic of the cerebellar closed control loop. The cerebellar controller 
received the following input signals: desired trajectory (position and velocity per joint, Qd and 
Q̇d); actual state of the joints (position and velocity, Qa, and Q̇a), and a teaching/error signal per 
joint (ε). The cerebellar controller consisted of five different neural populations: mossy fibers 
(MFs), granule cells (GCs), Purkinje cells (PCs), climbing fibers (CFs), and deep cerebellar 
nuclei cells (DCN). The activity of the DCN cells (output cerebellar layer) was translated into a 
torque command per joint (τ) sent to the robot. The control loop operated at 500 Hz. 

The SNN torque controller computed the neural activity using the following input 
information: desired robot state (desired trajectory position, Qd, and velocity, Q̇d, per 
joint), actual robot state (actual position, Qa, and velocity, Q̇a, per joint), and a 
teaching/error signal. The desired trajectory input signals were provided by a trajectory 
generator module representing the role of the motor cortex and other motor areas [95], 
[96], [97]. The desired trajectories were first designed in Cartesian space defining 3D 
position and orientation for the end-effector, and then translated into joint space using 
Moveit! software [98]. This inverse kinematics process was conducted offline, allowing 
the pre-computation of joint space trajectories later on used by the trajectory generator 
module, which provided the online controller input signals. The actual robot 
sensorimotor state was provided by Baxter’s sensors and then mapped into actual robot 
state input signals for the controller. The teaching/error signal (ε per joint) was obtained 
by comparison of the desired trajectory and the actual robot state. A single 
teaching/error signal per joint comprised the weighted sum of the corresponding 
position and velocity joint errors, as follows:  

pos d a vel d a( t ) k [ Q ( t ) Q ( t )] k [ Q ( t ) Q ( t )]
. .

ε = − + −  (2.1) 

 

where kpos and kvel correspond to the position and velocity error gains, with the 
following values from joint 1 to 6: kpos = (1.5, 2.0, 3.0, 2.0, 3.0, 3.0), kvel = (1.5, 1.0, 3.0, 
1.0, 3.0, 0.5). Once the cerebellar network computed a torque command (τ) it was sent 
to the robot, inducing movement to the arm. Consequently, the cerebellar network input 
sensory information was modified, thus, closing the loop. Cerebellar input and output 
signals were updated every 2 ms (500 Hz), guaranteeing low latency and continuous 
communication, a mandatory requirement for RT robot control.  

The cerebellar model ran in the SNN simulator EDLUT [66], [67], [68], specially 
designed to perform embodiment experimentation thanks to its ability to slow down or 
speed up neural computation to cope with RT requirements. 
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2.2.3 Cerebellar controller – The neural network 

The cerebellar network consisted of five neural layers: i) mossy fibers (MFs), ii) granule 
cells (GCs), iii) climbing fibers (CFs), iv) Purkinje cells (PCs), and v) deep cerebellar 
nuclei (DCN), see Fig. 2.4. The cerebellar network was divided into six 
microcomplexes [85], each one focusing on controlling one of the six DOF.  

 
Figure 2.4. Cerebellar network scheme. Schematic representation of the main neural layers, 
cells, connections, and plasticity site considered in the cerebellar model. The mossy fibers 
(MFs) convey the sensory signals while the climbing fibers (CFs) convey the teaching/error 
signals, providing inputs to the cerebellar network. MFs project sensorimotor information onto 
granule cells (GCs) and deep cerebellar nuclei cells (DCN). GCs, in turn, project onto Purkinje 
cells (PCs) through parallel fibers (PFs). PCs also receive excitatory inputs from the CFs. 
Finally, DCN cells receive excitatory inputs from MFs and CFs, and inhibitory inputs from PCs. 
DCN cells drive the cerebellar output torque commands. 

The MFs constituted the input layer through which the input sensorimotor information 
was conveyed toward the inner cerebellar network layers: actual and desired robot state 
(position and velocity per joint) translated into spiking patterns (see 2.2.6 for analog to 
spike translation). The MFs activity was projected through excitatory afferents to GCs, 
which recoded this sensorimotor information into somatosensory neural activity that 
was later propagated to the PCs through the parallel fibers (PFs), i.e., excitatory axons 
of the GCs. The PC layer also received, via CFs (i.e., excitatory axons of the inferior 
olive, IO), the teaching/error signal: mismatch between the desired and actual robot 
state translated into spikes. Last, the DCN layer received inhibitory synapses from PCs 
and excitatory synapses from MFs and CFs. The DCN neural activity was translated 
into analog motor commands sent to the robot (see 2.2.7 for spike to analog translation), 
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thus closing the loop. The cerebellar input-output response was adjusted at the PF-PC 
connection, where the synaptic weight distribution was adapted through an STDP 
mechanism correlating both the sensorimotor information (conveyed through MFs and 
recoded at GCs) and the teaching/error signal (conveyed through CFs). Synaptic 
plasticity allowed for error reduction through iterative trial-and-error executions of each 
motor task. The regulation of PCs activity shaped the DCNs activity through the PC-
DCN inhibitory synapses, thus shaping the cerebellar output activity to minimize the 
error in the execution of the motor task.  

The cerebellar neural network distribution was the following (topology summarized in 
Table 2.1): 

- MFs were modeled as 240 input fibers able to propagate the sensorimotor 
information toward GCs and DCN at each time step (2 ms). These MFs 
conveyed in spike form the input analog signals (desired and actual joint 
position and velocity, Qd, Q̇d, Qa, Q̇a). The 240 MFs were divided into six 
groups of 40 fibers each, i.e., one group per DOF. Each MF group was in turn 
subdivided into four equal subgroups (10 MFs), each one directed to mapping 
one of the four input signals (Qd, Q̇d, Qa, Q̇a). At each time step, only four non-
overlapped MFs per group were active, representing the input neural state.  

- GCs were modeled as 60000 LIF neurons emulating a state generator [82], [87], 
[88]. These 60000 GCs were organized in six groups of 10000 neurons each, i.e., 
one group per DOF. Each GC received four input synapses [89] coming from the 
MF group dedicated to the very same DOF. The connectivity pattern between 
MFs and GCs was designed in a way that non-overlapped GC neural activation 
could univocally represent all possible MF neural input combinations. The 
granular and molecular layers operating as a state generator transform into non-
overlapped spatiotemporal patterns of neural activations the sensorimotor neural 
information received by each GC from both external sources (MFs) and other 
interneurons (Golgi cells, Lugaro cells, unipolar brush cells, etc.). The granular 
layer, then, acts as a reservoir of interacting spiking neurons within a recurrent 
topology, whereas the subsequent PC neuron acts as a readout layer. This state 
generator assumption allowed us to merge granular and molecular layers into 
one “granular layer” (see [99] for further details). The MF-GC connectivity 
pattern facilitated the generation of these spatiotemporal neural states and their 
readout layer. 

- CFs were modeled as 600 input fibers able to propagate the teaching/error signal 
(mismatch between desired and actual robot state) toward PCs and DCN. These 
600 fibers were organized in six microcomplexes of 100 CFs each, i.e., one 
microcomplex per DOF. Each microcomplex was also divided into two 
symmetric subgroups, each one dedicated to controlling the clock or 
anticlockwise movement of the robot joint actuator (emulating the agonist-
antagonist interplay of human muscles). A probabilistic Poisson process 
transformed the analog error (obtained when comparing the actual and desired 
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trajectories of each joint) into CF spiking neural activations. Each CF spike 
encoded well-timed information regarding the instantaneous error. The 
probabilistic spike sampling of the error ensured a proper representation of the 
entire error region over trials, while maintaining the CF activity between 1 and 
10 Hz per fiber (similar to electrophysiological data [100]). The error evolution 
could be sampled accurately even at such a low frequency [79], [101].  

- PCs were modeled as 600 LIF neurons. These 600 PCs were organized in six 
microcomplexes of 100 neurons each, i.e., one microcomplex per DOF. Each 
microcomplex was also divided into two symmetric subgroups, each one 
dedicated to controlling the clock or anticlockwise movement of the robot joint 
actuator. Each PC was connected to all PFs (excitatory axons of GCs), thus 
receiving the sensorimotor information concerning all joints at once. CFs and 
PCs were one-to-one connected, maintaining the six microcomplex architecture. 
Thus, each PC microcomplex received the same sensorimotor information via 
PFs, but a different teaching/error signal through its corresponding CFs 
microcomplex. Correlating these two different sources of neural information 
allows each PC microcomplex to adapt the cerebellar input-output response of 
each DOF via a plasticity mechanism that modified the overall PF synaptic 
weight distribution (see 2.2.5 for synaptic plasticity). 

- DCN cells were modeled as 600 LIF neurons. These 600 neurons were 
organized in six microcomplexes of 100 neurons each, i.e., one per DOF. Each 
microcomplex was also divided into two symmetric subgroups, each one 
dedicated to controlling the clock or anticlockwise movement of the robot joint 
actuator. Each DCN neuron was innervated by an inhibitory afferent from a PC, 
and an excitatory afferent from the CF which simultaneously innervated the 
same PC, preserving the six microcomplex architecture. Each DCN neuron also 
received excitatory connections from all MFs, which provided the baseline DCN 
activity.  

Table 2.1. Cerebellar neural network topology. Dash entries indicate not applicable. 

Neurons Synapses 
Pre-synaptic 

cells 
Post-synaptic 

cells Number Type Initial weight 
(nS) 

Weight range 
(nS) 

240 MFs 60K GCs 240K AMPA 0.18 - 

240 MFs 600 DCN 144K AMPA 0.1 - 

60K GCs 600 PCs 36M AMPA 1.6 [0, 5] 

600 PCs 600 DCN 600 GABA 1.0 - 

600 CFs 600 PCs 600 AMPA 0.0 - 

600 CFs 600 DCN 600 AMPA 0.5 - 

600 CFs 600 DCN 600 NMDA 0.25 - 
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Neuron and synapse numbers were limited by the computing resources available, 
following a trade-off between RT capability and input-output control signals resolution. 
The connectivity ratios (divergence and convergence ratios) between cerebellar layers 
were preserved according to MF-GC, GC-PC [102], MF-DCN, PC-DCN, CF-PC, and 
CF-DCN [103], [104], [105]. The PC-DCN smaller convergence ratio was compensated 
by using higher synaptic weight values, thus maintaining the input drive. 

2.2.4 Spiking neuron models 

The cerebellar neural network consisted of LIF neurons [62] due to their minimal 
computational cost in spike generation and processing, a key factor in RT computation. 
Our LIF neurons elicited a spike once the corresponding membrane potential reached a 
certain threshold and, immediately after, the membrane potential was reset. The LIF 
neural dynamics was defined by the membrane potential and the excitatory (AMPA and 
NMDA) and inhibitory (GABA) chemical conductance as follows:  
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where Cm denotes the membrane capacitance; V is the membrane potential; Iinternal is the 
internal current; and Iexternal is the external current. EL is the resting potential and gL the 
conductance responsible for the passive decay term toward the resting potential. 
Conductances gAMPA, gNMDA, and gGABA integrate all the contributions received by each 
receptor type (AMPA, NMDA, and GABA) through individual synapses, being 
gNMDA_INF the NDMA activation channel. These conductance terms were defined as 
decaying exponential functions [66], [62], with their values directly incremented 
proportionally to the synaptic weights (wi) upon each presynaptic spike arrival (Dirac 
delta functions). When the membrane potential reached a threshold (Vthr), it was then 

39 
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reset to EL during the refractory period (Tref). The configuration parameters for the 
neuron models are shown in Table 2.2. 

Table 2.2. Neuron models parameters. Dash entries indicate not applicable. 

Parameters GC PC DCN 

Cm (pF) 2.0 100 2.0 

GL (nS) 1.0 6.0 0.2 

EL (mV) -65.0 -70 -70.0 

EAMPA (mV) 0.0 0.0 0.0 

EGABA (mV) - - -80.0 

𝜏𝜏AMPA (ms) 1.0 1.2 0.5 

𝜏𝜏NMDA (ms) - - 14.0 

𝜏𝜏GABA (ms) - - 10.0 

Vthr (mV) -50.0 -52.0 -40.0 

Tref (ms) 1.0 2.0 1.0 

2.2.5 Synaptic plasticity 

The adaptive motor process of the cerebellar network was implemented through an 
STDP mechanism located at PF-PC synapses. This STDP mechanism balanced long-
term potentiation (LTP) and long-term depression (LTD) as follows:  

( ) ( )
j iPF PC PFspikeLTP w t t dt∆ α δ− = ⋅ ⋅  (2.9) 

( ) ( ) ( )
CFspike

j i

t

PF PC CFspike PFspikeLTD w t k t t t dt∆ β δ−
−∞

= ⋅ − ⋅ ⋅∫  (2.10) 

where ∆WPFj–PCi(t) denotes the synaptic weight change between the jth PF and the target 
ith PC; α = 0.002 nS is the synaptic efficacy increment; δPF is the Dirac delta function 
corresponding to an afferent spike from a PF; β = -0.001 nS is the synaptic efficacy 
decrement; and the kernel function k(x) is defined as: 
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where τLTD = 100 ms is the time constant that is aligned with the biological sensorimotor 
pathway delay (~100 ms), i.e., the time period elapsed from the sensory information 
reception to information transmission along nerve fibers, neural processing time 
responses, and the final motor output response [106]. dk = 0.07 s allows for the 
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adjustment of the kernel width. The kernel maximum value, k(x) = 1, is obtained when  
x = -τLTD, and zero or close to zero when x > -dk or x < -τLTD – 10 • (τLTD - dk).  

The STDP rule defined by Eq. 2.9 – 2.11, caused a fixed synaptic efficacy increment 
(LTP) each time a spike arrived through the PFs to the target PC and a variable synaptic 
efficacy decrement (LTD) each time a spike arrived through a CF to the target PC. The 
amount of synaptic decrement depended on the activity that arrived through the PFs 
prior to the CF spike. Both activities were convolved using the integrative kernel 
defined in Eq. 2.11 and were multiplied by the synaptic decrement β. The effect on the 
presynaptic spikes arriving through PFs was maximal during the 100 ms time window 
(τLTD = 100 ms) before the postsynaptic CF spike arrival, thus accounting for the 
sensorimotor pathway delay [52], [79], [107]. 

The STDP mechanism correlated the neural activity patterns coming through the PFs 
toward PCs with the instructive signals coming from CFs toward PCs. This correlation 
process at PC level identified certain PF activity patterns codifying certain sensorimotor 
information and, consequently, diminished the PC output activity by a PF-PC synaptic 
weight reduction. A reduction on the PC activation caused a subsequent reduction on 
the PC inhibitory action over the target DCN. Conversely, in the absence of any 
correlation, the STDP mechanism increased the PC output activity by a PF-PC synaptic 
weight potentiation. Since the DCN were driven by a near constant baseline MF 
activation, a lack of PC inhibitory action would cause an increasing DCN activity 
whereas an incremental PC inhibitory action would do otherwise. Well-timed sequences 
of increasing/decreasing levels of DCN activation during the learning acquisition 
process ultimately shaped the cerebellar output activity and diminished the overall error. 

2.2.6 Analog to spike translation 

The SNN sensorial input information, originated as analog signals at Baxter’s sensors 
(Qa, Q̇a) and the trajectory generator module (Qd, Q̇d), had to be translated into spiking 
neural activity (MFs activity) that the cerebellar network could process. Each DOF 
sensorial state was mapped by 40 MFs (i.e., a total of 240 MFs for all six DOF), which 
were again divided into four subgroups of 10 MFs each coding Qd, Q̇d, Qa and Q̇a, 
respectively. Each of the 10 neurons of the subgroup acted as a sensory receptor for a 
specific interval within the analog range of the joint; i.e., a neuron fired a spike, δMFspike, 
when the analog value (Q) was within its receptor interval (Rn), described as follows: 

 ( ) ( )MFspike nt Q t Rδ ↔ ∈  (2.12) 

n n nR c w= ±  (2.13) 

max min
min 1n

r rc r n
S
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where δMFspike defines the Dirac delta function of an afferent spike from one MF, n = [0, 
9] stands for the neuron index within the subgroup, cn and wn define the center and 
width of the interval, [rmin, rmax] denotes the joint range in radians for each input analog 
signal, and S = 10 stands for the total number of neurons within the subgroup. Because 
the receptor intervals within the subgroup were non-overlapping, only four MFs per 
microcomplex were active at each time step. Thus, the current sensorial state was 
univocally coded into neural activity.  

The teaching/error signal, ε(t), obtained by comparing desired (Qd, Q̇d) and actual robot 
state (Qa, Q̇a), was also translated from analog to spike domain (CFs activity). Each 
DOF had 100 CFs to code the error signal, symmetrically divided into two subgroups of 
50 CFs devoted to the clock/anticlockwise sensed error, i.e., positive/negative joint 
error. The CFs chaotic and low firing rate, between 1 and 10 Hz per neuron [100], was 
replicated using a Poisson process: given the error signal ε(t) and a random number η(t) 
ϵ [0, 1], the given CF fired a spike δCFspike ↔ ε(t) > η(t), remaining silent otherwise [79], 
[108]. 

2.2.7 Spike to analog translation 

The DCN neural activity had to be translated into analog torque commands (τ) that 
could be applied by Baxter actuators. The activity of each of the six DCN 
microcomplexes, one per DOF, was transformed at every time step (2 ms) following the 
spike to analog translation described by:  
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where j ϵ [1, 6] stands for the joint index; i ϵ [1, 100] defines the DCN neuron index 
within the microcomplex related to joint j (the first 50 DCN cells encoding the agonist 
movement, the last 50 DCN cells encoding the antagonist movement); and δ stands for 
the Dirac delta function representing a spike event. The spike to analog conversion in 
Eq. 2.16 and 2.17 was then convolved with a 15-taps mean filter, Eq. 2.18, emulating 
the low-pass behavior of muscles. The final torque command per joint, τj, was 
modulated by a factor α to weight the DCN output according to the relative position, 
orientation, and mass of each joint, αj = (0.75, 1.0, 0.375, 0.5, 0.05, 0.05) Nm/spike. 

42 
 



 

2.2.8 ROS control loop implementation 

The control loop consisted of three main elements: i) trajectory generator, ii) cerebellar 
SNN torque controller, iii) Baxter robot. The implementation and communication 
among these three elements were achieved using ROS, allowing modularity. Fig. 2.5 
depicts the control loop diagram. Each block defines a ROS node and each black arrow 
represents a ROS topic used to communicate different ROS nodes using either analog 
signals or spike trains.  

The control loop was designed accounting for the sensorimotor pathway delay (~100 
ms) [109]. The 100 ms delay comprised the efferent and afferent delays (𝛿𝛿e = 𝛿𝛿a = 50 
ms), depicted as dashed red arrows in Fig. 2.5. A motor command originated at time t 
was applied by the robot actuators at time t + 𝛿𝛿e and its effect was sensed back at the 
cerebellar network at time t + 𝛿𝛿e + 𝛿𝛿a. The cerebellar plasticity mechanism described in 
2.2.5 compensated for this sensorimotor delay. 

 
Figure 2.5. Detailed cerebellar closed control loop scheme. The boxes represent ROS nodes, 
the gray boxes depicting the three main elements of the control loop. Each black arrow 
represents a ROS topic communicating different nodes. Red dashed arrows represent the 
sensorimotor pathway delay. 

The control loop assisted the cerebellar controller in the generation of the torque 
commands to minimize the mismatch between the reference signal and the robot state 
(desired vs. actual joint position and velocity). Different ROS nodes were implemented 
to that end:  

- The trajectory generator node generated the desired trajectory signals, while 
Baxter generated the actual robot state signals and executed the torque 
commands. 
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2. Cerebellar adaptive motor control  

- The RT cerebellum node accommodated the SNN cerebellar controller 
implemented in EDLUT (imported to ROS as a C++ library). This node 
received, computed, extracted, and propagated the neural activity.  

- Desired, actual, and instructive signals needed to be transformed into spike 
trains that the SNN could process. The MF and CF analog2spike nodes carried 
out this transformation. 

- The error estimator node provided the cerebellar controller with the 
teaching/error signal needed for neural adaptation. The error estimator node 
required comparing desired and actual trajectories.  

- The cerebellar output spiking signals needed to be transformed into analog 
commands that Baxter could process and apply. The DCN spike2analog node 
transformed the spike trains into torque commands, lately smoothed by a mean 
filter node.  

- The torque command node closed the loop sending to Baxter the torque 
commands obtained from the mean filter node. 

- The supervisor node was implemented as a safe mechanism mimicking 
mechanical brakes (watchdog). This supervisor maintained Baxter within a safe 
working range during the first stages of neural adaptation. Only at the event of 
any of the joints getting outside its working range, the supervisor node, 
implemented as a PD controller, added a corrective torque value to the cerebellar 
torque command to prevent damages.  

All nodes were synchronized thanks to a reference time signal extracted from Baxter’s 
internal clock running under the Network Time Protocol (NTP), providing RT time 
steps [110]. Each event, i.e., analogue signal or spike train, generated on a ROS node 
carried a time stamp indicating the event processing time to the subsequent node. Each 
target node incorporated an input buffer in which events were stored for later 
synchronous processing according to their time stamps. The RT cerebellum node, 
however, allowed asynchronous processing of the events stored at its input/output 
activity buffers thanks to the RT mechanism incorporated in EDLUT [29]. In the event 
of empty input buffers, the neural simulation was halted. In the event of an almost 
empty output buffer, the neural simulation was speeded-up (see [29] for an in-depth 
review on EDLUT RT neural simulation). Hence, the RT cerebellar node could deal 
with neural activity volleys encountered during the cerebellar simulation that could not 
be processed synchronously. 

2.2.9 Benchmarking the cerebellar controller – Behavioral tasks 

We drew inspiration from the cerebellar role in motor control and movement 
coordination to implement a novel control strategy for hardware compliant robots. It is 
thus appropriate to evaluate the performance of our cerebellar-like model in the field of 
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robot dynamics control under a set of different conditions. To this aim, we proposed the 
experimental evaluation through two trajectory families:  

- A set of fast movements in smooth trajectories consisting of sinusoidal-like 
profiles for both position and velocity per joint. The end-effector described both 
circular and eight-like Cartesian trajectories in the horizontal plane [84], [111]. 
These trajectories are well suited for revealing the complex dynamics of a 6 
DOF robot arm [112], including interaction forces to be compensated by the 
cerebellar controller [113]. 

- Reaching movements; that is, fast, ballistic arm movements with bell-shaped 
velocity profiles (s-curve), toward a target point [114]. Arm reaching 
movements are primarily used for characterizing cerebellar pathologies in 
human motor control by measuring the time to target and precision. Arm 
dynamics control is critical due to the constraint at stake when moving masses. 
A single-joint limb movement in fast de/acceleration causes motion in all other 
limb joints, thus arising interaction forces to be compensated by the cerebellum 
[113]. 

The circular trajectory in Cartesian space meets Eq. 2.19, while Eq. 2.20 describes the 
eight-like trajectory:  
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where R denotes a 12 cm radius which is halved for the x coordinate in Eq. 2.20 to keep 
the eight-like trajectory within the working space limits of the robot. The z = α 
coordinate and the end-effector vertical orientation were kept constant to maintain the 
horizontal plane through the trajectories. Each trajectory lasted 2 seconds. Once the 
translation from Cartesian (x, y, z) to joint space positions (Q1 – 6) was completed (see 
2.2.2), the joint velocity profiles (Q̇1 – 6) were obtained as the position derivative over 
time.  

Regarding the target reaching tasks, the center of the circle trajectory was the starting 
position. Eight different points along the circular trajectory perimeter constituted the 
reaching targets following an even distribution every π/4 radians. As aforementioned, 
this task tested the controller through point-to-point multijoint movements with s-curve 
velocity profiles that provided fast acceleration/deceleration changes, i.e., ballistic 
movements. The subsequent high jerk values entailed high inertial forces to be 
compensated by the cerebellar controller. Each target-reaching movement lasted 2 
seconds back and forth between the target and the central position, i.e., 1 second to 
reach the target and 1 second to go back to the central position. 
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2. Cerebellar adaptive motor control  

These three different behavioral tasks provided a varying context to test the cerebellar 
network. For every task, the cerebellar network acquired the motor commands needed to 
achieve the desired goal behavior through learning. The learning process was 
accomplished through the repetition over time of a specified trajectory. 

The performance evaluation was carried out comparing the goal and the actual behavior; 
i.e., desired and actual joint positions. The average difference constitutes the position 
mean absolute error (MAE), which is our performance evaluation metric following:  
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where K = 1000 denotes the number of samples of the 2 s trajectories; and N = 6 stands 
for the number of joints. The MAE provided a numerical performance indicator for the 
quality of the cerebellar controller, allowing us to compare it against the factory-default 
position controller.  

For reproducibility and comparative purposes, the experimental setup (benchmarking 
included), source code, and experimental results are available at: 
https://github.com/EduardoRosLab/EDLUT_BAXTER . 

2.3 Results 

We tested our cerebellar-like controller in different behavioral tasks, considering the 
factory-default position controller as a performance baseline to validate the results using 
the aforementioned set of trajectories as cerebellar benchmarking. We completed the 
validation with a set of interactions in an unstructured environment to test compliance.  

2.3.1 Circular trajectory 

The first behavioral task consisted of following a 12 cm radius circular path in the 
horizontal plane (xy) repeated over time to facilitate learning and adaptation, each trial 
with a duration of 2 s. The STDP mechanism governing the learning process modulated 
the cerebellar output (see 2.2) driving the robot behavior toward the goal. The 
behavioral evolution through time is illustrated in Fig. 2.6. Three snapshots were taken 
at different stages of the cerebellar learning process: initial, intermediate and final stage.  

- Initial learning stage. The cerebellar model started learning from scratch. At an 
initial stage (Fig. 2.6, left column) the synaptic adaptation mechanism at PF-PC 
synapses that correlated the somatosensory information with the instructive 
signal was not effectively deployed yet. Thus, the inhibitory action from PCs 
onto DCN was of marginal utility; making the DCN output activity saturated as 
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it solely responded to the excitation coming from MF and CF afferents (Fig. 2.6 
a, first row). Consequently, the corresponding initial torque commands (Fig. 2.6 
a, second row) were far from leading the robot toward the desired goal (Fig. 2.6 
a, third row; and d). As depicted in Fig. 2.6 d, the density function generated 
from 10 trials before t1 snapshot (Fig. 2.6, left column) reveals that the robot was 
still exploring the working area, performing low consistent, dispersed 
movements.  

- Intermediate learning stage. At an intermediate stage (Fig. 2.6 central column) 
the synaptic adaptation allowed the recognition of some somatosensory patterns 
at the PCs, reflected in an emerging differentiated DCN activity between agonist 
and antagonist subgroups at each microcomplex (Fig. 2.6 b, first row). 
Consequently, the robot behavior began getting closer to the desired goal (Fig. 
2.6 b, third row; and e).  

- Final learning stage. Once the learning process reached advanced stages (Fig. 
2.6 right column) the robot executed the desired trajectory with minimal error. 
The agonist/antagonist DCN activity was clearly differentiated at each 
microcomplex (Fig. 2.6 c, first row), and translated into the required torque 
commands via a spike to analogue translation (see 2.2.7). The synaptic 
adaptation process was reflected in a clear evolution of the torque values 
compared to previous stages, directly affecting the robot output behavior. All 
joints closely followed the desired trajectory at this stage (Fig. 2.6 c, third row) 
and, consequently, the end-effector barely missed at describing the desired 
circular path (Fig. 2.6 f), having a consistent behavior around the goal trajectory 
over trials. 

The overall performance through the learning process is depicted in Fig. 2.6 g; 
illustrating how the cerebellar controller performance was improved as adaptation and 
learning were fulfilled. MAE evolution indicates that the cerebellar controller needed 
about 300 trials (i.e., 600 seconds) to converge, outperforming the accuracy of the 
factory-default position controller baseline (0.019 ± 0.003 vs. 0.077 ± 0.0004 rad, Table 
2.3).  

Table 2.3. Circular and eight-like trajectories: position MAE (mean and std) at different 
learning stages. 

 
Cerebellar torque controller at [trials] Factory-default position 

controller at [trials] 

[0-100] [100-200] [400-500] [0-500] 

MAE 
(rad) 

○ 0.115 ± 0.055 0.036 ± 0.013 0.019 ± 0.003 0.077 ± 0.0004 

∞ 0.111 ± 0.034 0.046 ± 0.013 0.017 ± 0.003 0.063 ±     0.0003 
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Figure 2.6. 
Behavioral 
evolution through 
circle trajectory 
trials (2 s). (a) 
Initial learning 
stage (t1=18 – 20 s). 
(b) Intermediate 
learning stage 
(t2=318 – 320 s). 
(c) Final learning 
stage (t3=998 – 
1000 s). The first 
row depicts the 
cerebellar output 
activity (DCN 
layer), whereas the 
second row shows 
its analog 
conversion into 
torque commands. 
The third row 
illustrates the 
desired vs. actual 
trajectory per joint. 
(d), (e), and (f) 
reveal the desired 
vs. actual trajectory 
of the end-effector 
in Cartesian space 
at t1, t2, and t3 
respectively, along 
with the density 
functions 
corresponding to 
the performed 
trajectories of the 
prior 10 trials. (g) 
Represents the 
position Mean 
Absolute Error 
(MAE) per trial 
through the 
learning process. 
Comparison of the 
MAE of each joint 
and the mean of all 
joints with the 
factory-default 
position controller 
baseline 
performance. 
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2.3.2 Eight-like trajectory 

The eight-like trajectory was concentric to the previously discussed circle-shaped; it had 
a “radius” of 12 cm and each trial lasted 2 seconds. In terms of robot dynamics, the 
eight-like trajectory was more demanding than the circular trajectory, as faster and 
steeper changes in velocity module and direction were required for trajectory 
completion [112]. Benchmarking control capacities were further increased by allowing 
the linear and angular velocity of Baxter’s end-effector to vary within the trajectory 
[111], [115], [116], [117]. Nonetheless, the obtained results were equally satisfying (see 
Table 2.3). 

- Initial learning stage. At an early learning stage (Fig. 2.7, left column) the robot 
behavior was clearly far from the desired goal. DCN activity at this stage 
responded exclusively to the excitatory drive from MF-DCN and CF-DCN 
afferents, thus, it was saturated (Fig. 2.7 a, first row). The MAE value was high 
(0.165 rad) and the performed trajectory was far from the goal (Fig. 2.7 a, third 
row; d, and g). 

- As learning progressed, the PF-PC synaptic adaptation mechanism began 
shaping the DCN activity causing an incipient neural activity differentiation 
between agonist and antagonist microcomplexes (Fig. 2.7 b, first row). In 
consequence, the corresponding torque values significantly differed from those 
of early stages (Fig. 2.7 b, second row), and the robot behavior began getting 
closer to the desired one (Fig. 2.7 b, third row; and e).  

- Finally, once learning was fully deployed the robot behaved as desired (Fig. 2.7 
c, third row; and f). The DCN activity was clearly sculpted to produce the 
needed torque commands to perform the desired trajectory (Fig. 2.7 c), 
maintaining a stable behavior over trials (0.017 ± 0.003 rad). 

More demanding dynamics were introduced by the eight-like trajectory due to the 
velocity profile. Humans performing curved-profile hand motions show high linear 
velocities during segments of low curvature and low velocities during segments of high 
curvature [118]. The eight-like trajectory consisted of a combination of low/high 
curvature segments able to reveal the human performance in curved motions. We found 
that Baxter’s velocity profiles were biologically consistent, that is, the end-effector 
moved at high velocity when the trajectory curvature remained low and at low velocity 
when the trajectory curvature was high (see Fig. 2.8). 

The eight-like velocity profile is given, ideally, by deriving the Cartesian trajectory (Eq. 
2.20) as in: 
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Figure 2.7. 
Behavioral 
evolution through 
eight-like 
trajectory trials (2 
s). (a) Initial 
learning stage 
(t1=18 – 20 s). (b) 
Intermediate 
learning stage 
(t2=318 – 320 s). 
(c) Final learning 
stage (t3=998 – 
1000 s). The first 
row depicts the 
cerebellar output 
activity (DCN 
layer), whereas the 
second row shows 
its analog 
conversion into 
torque commands. 
The third row 
illustrates the 
desired vs. actual 
trajectory per joint. 
(d), (e), and (f) 
reveal the desired 
vs. actual trajectory 
of the end-effector 
in Cartesian space 
at t1, t2, and t3 
respectively. Also 
the density 
functions 
corresponding to 
the prior 10 trials 
are depicted. (g) 
Represents the 
position Mean 
Absolute Error 
(MAE) per trial 
through the 
learning process. 
The MAE of each 
joint is illustrated 
as well as the 
average MAE of all 
joints, completed 
with the factory-
default position 
controller baseline 
performance. 
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The linear velocity of Baxter’s end-effector is finally given by: 

( ) ( ) ( )2 2 2' ' z'v x y= + +  (2.24) 

The greater difficulty of the eight-like trajectory was noted in a lower convergence 
speed for the cerebellar controller to reach a stable behavior (Table 2.3 shows a slower 
MAE convergence speed compared to the circular trajectory). However, the final 
performance accuracy obtained also outperformed the factory-default position controller 
baseline (0.017 ± 0.003 vs. 0.063 ± 0.0003 rad). 

 
Figure 2.8. Baxter’s end-effector position and linear velocity when performing the eight-
like trajectory. (a, b) Desired vs. actual position and linear velocity of the end-effector. 
Trajectory points, P1 to P8, illustrate the relation high trajectory curvature – low velocity (P2, P4, 
P6, and P8) and low trajectory curvature – high velocity (P1, P3, P5, and P7) found in human hand 
curved motions [118]. Both graphs correspond to the end of the learning process (998 – 1000 s). 
Our adaptation process granted greater influence to position error when generating the 
instructive signal causing the velocity error to remain larger. 

2.3.3 Target reaching 

This task consisted of eight different reaching movements, sharing the same starting 
point. The challenge lies in the high speed of the movements and the randomness in the 
order of trials (transitions between the eight reaching movements were stochastic). The 
growth in complexity for the cerebellar controller was illustrated by a lower MAE 
convergence speed entailing higher standard deviation values inter trials and the need of 
more trials to reach stability compared to the two previous behavioral tasks (Table 2.4). 
Nevertheless, the cerebellar controller was able to perform these ballistic movements, 
improving its performance through learning and reaching again better accuracy than the 
factory-default position controller (Fig. 2.9) (0.019 ± 0.006 vs. 0.026 ± 0.006 rad). 
Therefore, not only the cerebellar controller was able to perform accurate smooth 
trajectories but also fast-ballistic movements. 

Table 2.4. Target reaching: position MAE (mean and std) at different learning stages. 

 
Cerebellar torque controller at [trials] Factory-default position 

controller at [trials] 

[0-100] [300-400] [900-1000] [0-1000] 

MAE (rad) 0.155 ± 0.050 0.043 ± 0.024 0.019 ± 0.006 0.026 ± 0.006 
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Figure 2.9. Behavioral evolution through target reaching trials (2 s). Each trial consisted of 
one of the eight possible tasks. (a) Initial learning stage (t1=158 – 160 s). (b) Intermediate 
learning stage (t2=598 – 600 s). (c) Final learning stage (t3=1998 – 2000 s). (a), (b), and (c) 
depict the last performed trajectory for each of the eight possibilities in Cartesian space prior to 
t1, t2, and t3 respectively. The density functions reveal the end-effector behavior over the last 80 
trials, grouping the eight possible tasks by trajectory direction. (d), (e), and (f) show the velocity 
profiles related to the target reaching trajectory marked with * in the Cartesian space. The 
illustrated trials correspond to the last * iteration prior to t1, t2, and t3 respectively. Note that the 
rising and lowering times achieved are consistent with human data (~ 250-500 vs. ~ 400-500 
ms) in 1 s target reaching movements [72]. (g) Represents the position Mean Absolute Error 
(MAE) per trial through the learning process. The MAE of each joint is illustrated as well as the 
mean MAE of all joints. High standard deviation values reflect how some reaching movements 
were more demanding than others. The position control baseline is the average MAE of the 
factory-default position controller under the same stochastic distribution over trials. 

2.3.1 Unstructured interactions 

Aiming at testing the compliance of the cerebellar controller, we tested its response in 
an unstructured environment. While performing the circular trajectory, some 
interactions were undertaken (Fig. 2.10). First, the dynamics of the robotic arm was 
modified in two different ways: i) adding a 0.5 kg payload to the end-effector attached 
to a rod, mimicking a pseudo “conical pendulum.” The tension force of the rod acting 
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on the robot varied with the alignment between the payload and the end-effector. ii) 
Attaching an elastic band to apply an elastic force that tried to return the band to its 
natural length. In both cases, the cerebellar-like controller successfully adapted to the 
new context after a learning period. 

Subsequently, human interactions were performed: i) a human was able to move the 
robotic arm by applying an extremely low force (i.e., one-finger push); ii) a human 
grabbed the robotic arm and moved it through the working space with no opposition 
from the robot; iii) a human got in the way of the robotic arm trajectory with no risk of 
injury. 

These results allow us to confirm that the cerebellar-like controller was able to 
accurately perform the desired trajectories, no matter the dynamics modifications; and 
guaranteed a safe human-robot interaction as no damages were suffered, at either human 
or robot side, when interrupting the robot task. 

 
Figure 2.10. Performance in an unstructured environment. While performing the already 
learnt circular trajectory a set of unstructured interactions were undertaken: i) A 0.5 kg payload 
was attached to the end-effector and later on detached. ii) An elastic band was attached to the 
end-effector and later on detached. iii) A series of physical Human-Robot interactions. The 
figure depicts the position MAE through trials as interactions are undertaken, illustrating the 
cerebellar adaptation to unknown scenarios. 

Within the supplementary material of the paper corresponding to this chapter, four 
movies are included to fully illustrate the cerebellar learning and adaptation process. 
The circular, eight-like, and target reaching trajectory movies show from up to down 
and left to right the following clips, all of them playing synchronized RT information: i) 
a frontal shot of the robot performing the trajectory; ii) the evolution of the position 
MAE per trial; iii) a nadir shot of the robot performing the trajectory; iv) the trajectory 
being performed by the end-effector in Cartesian space; v) the cerebellar output activity 
(DCN layer spikes); vi) the corresponding torque commands obtained from the spike to 
analog conversion of the DCN activity. Different cuts corresponding to an initial, 
intermediate, and final learning stage verify the behavioral evolution. Finally, the 
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unstructured environment movie shows the cerebellar adaptation and, therefore, robot 
adaptation, to unknown, unstructured scenarios; thus, proving compliance. These videos 
can be found at: https://ieeexplore.ieee.org/document/8880621/media#media . 

2.4 Discussion 

The role of the cerebellum in controlling human motor coordination has led and 
crystallized into different cerebellar modeling approaches in the robotics control field. 
According to their understanding of the cerebellar operation, these models can be 
categorized as follows [35]: 

- Functional models. A functional understanding of specific cerebellar operations 
suffices to build these non-biological models. By setting aside any attempt to 
compel biological accuracy, these models offer the most computational friendly 
approach to provide motor learning and control. The MPFIM model [77] follows 
this approximation. Functional models can be found in [119]. 

- State-encoder driven models. These models operate as an abstraction of the 
granular and molecular layer of the cerebellum. They split up the state space 
assuming granule cells as on/off entities performing a mapping of inputs onto 
binary outputs. The CMAC [75], cerebellar adaptive filter [120], LWPR [121], 
or APG [76] models fall into this non-biologically plausible category, used in 
[122], [123], [124], [125], [126], [127], [128]. 

- Cellular-level models. A set of differential equations models each cerebellar 
neuron, simulating its biological behavior. These biological plausible models 
offer an insight into the cerebellar function on cellular level. The Schweighofer-
Arbib model [78] is an example of this category. The computational cost of 
these models usually limits them to small-sized networks [29], non-RT 
simulated scenarios [99], [129], or low resolution output control signals [130]. 

Our SNN cerebellar torque controller fits in the cellular-level context. It stands out for 
its capacity to perform compliant robot control in RT, a feature that, to the best of our 
knowledge, was not accomplished before by means of a cerebellar SNN. The ~62 K 
neurons and 36 M synapses endowed with plasticity enable a detailed mapping of the 
sensorimotor space and the generation of precise output motor commands to achieve the 
goal behavior. Baxter’s factory-default position controller was set as the baseline 
reference with the sole function of validating our controller performance.  

2.5 Conclusion 

Physical HRI implies controlling nonlinearities at the robot end, thus demanding 
adaptive control. In this chapter, taking inspiration from biology, we expand the family 
of RT adaptive controllers beyond machine learning [131], fuzzy logic [132], [133],  
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and ANN solutions [72], [134]. The intrinsic characteristics of SNNs, i.e., timing 
codification of evolving sensorimotor states, make them an appealing approach for 
motor control architectures [63], [64]. Here, we present a novel biologically plausible 
motor control architecture with a cerebellar-like SNN controller at its core that is able to 
drive a 6 DOF robot via torque commands in RT.  

The implementation of a controller equipped with the main cerebellar plasticity 
mechanism (STDP) makes the availability of a detailed dynamic model of the robot 
dispensable. The cerebellar-like SNN is able to self-adapt and learn from scratch to 
control a given robot, making unnecessary any prior dynamics knowledge. Thus, the 
complexity of modeling nonlinear systems is tackled, and this SNN controller 
constitutes a plausible solution to control not only our Baxter robot, but any torque 
controlled robot. Previously achieved SNN position control [130], [135] does not 
provide compliance as physical perturbations or interactions are not supported; hence 
the importance of reliable torque control toward achieving safe physical HRI.  

The variety of demanding behavioral tasks in terms of control requirements here 
accomplished proves our SNN cerebellar-like controller a valid solution. Our SNN 
controller succeeded in terms of position accuracy, high-speed movements, and 
compliance since the baseline performance (i.e., factory-default position controller) was 
utterly improved in all the experimental behavioral tasks. 
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3. MOTOR CONTROL UNDER 

NONDETERMINISTIC TIME DELAYS  

The work presented through this chapter can be found in:  

Abadía, I., Naveros, F., Ros, E., Carrillo, R. R., & Luque, N. R. (2021). A cerebellar-
based solution to the nondeterministic time delay problem in robotic control. Science 
Robotics, 6(58), eabf2756. 

DOI: 10.1126/scirobotics.abf2756  

3.1 Introduction 

Physical HRI must be safe for both human and robot, thus requiring compliant adaptive 
controllers for cobot operation. As already discussed, HRI can be compromised by 
contextual variables such as unstructured scenarios, unknown dynamics [71], or 
sensorimotor delays [136]. In previous chapters we have presented cerebellar SNNs as 
an effective approach for robot control providing both accuracy and compliance, key 
elements in safe HRI. Yet, the nondeterministic time delay control challenge was 
sidestepped, constituting the focus of this chapter.  

Unintentional time delays in robot control have two main sources: computation and 
transmission delays. Computation latency represents the time spent in data processing to 
generate a motor control command [137]. Transmission latency depends on the 
communication technology and physical links used between controller and robot. For 
instance, in telerobotic architectures delays appear in the communication link between 
the human operator and the robot [22]; cloud-robotics, a growing field, relies robot 
control on remote cloud computing resources that lead to computation and transmission 
latencies within the control loop [21]; wireless communications carry additional time 
delays when compared to wired connections [20]. This variety of scenarios illustrates 
the importance of accounting for time delays when designing closed loop robot 
controllers.  

From a classic control perspective, time delays are a major cause of instability in control 
loops. Traditional controllers dealing with pure delays may cause a phase margin 
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decrease of the robotic system and a higher sensitivity as its static gain increases [136]. 
To stabilize time delayed systems, both adapted classic controllers and specifically 
designed controllers have been proposed [138]. Under the first category, different 
proposals try to mitigate the effects of time delays by adapting traditional proportional-
integral-derivative (PID) controllers: i) PID stabilization of linear time invariant (LTI) 
systems using the Hermite–Biehler theorem [139]; ii) parameter space method to tune 
the PID coefficients for an LTI system with time delays [140]; iii) using the Nyquist 
criterion to compute a set of PID controllers to stabilize a given n-order LTI system 
with time delay [141]. Unfortunately, these families of methods cannot be easily applied 
to HRI cobots whose dynamics are strongly nonlinear due to soft or elastic components 
[71]. Regarding the second category, it includes the dead-time compensators (DTC) 
[142], a family of controllers specifically designed for systems with time delays: i) 
Smith predictor based controllers [143], [144], only applicable when delays are constant 
[138]; ii) the finite spectrum assignment approach [145], [146]. However, DTC 
solutions strong dependence on the accuracy of the system model [138] makes them 
non-reliable for HRI control as the growing use of flexible-joints and elastic materials 
[15], [18] makes intractable the mathematical modeling of cobots nonlinear dynamics 
[17]. 

These solutions prove the effort devoted to compensate for time delays in control 
systems. Here, we enlarge the family of solutions by taking inspiration from millions of 
years of biological evolution by which nature has arrived at an adaptive solution to 
perform motor control under variable delays; i.e., predictive control to deal with the 
sensorimotor pathway delays inherent to the central nervous system (CNS), in charge of 
human body motor control [106], [147]. In the cerebellar sensorimotor pathway exists a 
variable delay accounting for the time spent since a motor command is generated and 
propagated to the muscles (efferent delay 𝛿𝛿e) until its effect is sensed back at the 
cerebellum (afferent delay 𝛿𝛿a). These sensorimotor delays range from 100 to 150 ms 
approximately, with inter and intra individual variations [109]. To compensate them, the 
cerebellum acquires internal representations of the sensorimotor transformations needed 
to generate the motor commands to achieve a desired movement [148], and generates 
predictive motor commands by means of an STDP mechanism that correlates present 
and past sensorimotor signals, thus allowing motor learning even in the presence of 
sensorimotor delays [79]. Our cerebellar SNN controller, thanks to its biological 
plausibility, benefits from these CNS inherent features: it adopts the biological delays 
and mimics the cerebellar STDP mechanism.   

In next sections, we present the evaluation of the performance of our SNN controller 
under time delays of different nature: steady and nondeterministic delays in both lab-
controlled and realistic scenarios (i.e., Wi-Fi and cloud-robotics connections). We 
demonstrate that, besides compliant cobot control, the biological plausibility of our 
controller provides robustness against variable time delays affecting the transmission of 
sensorial information and motor commands, thus, applying an inherent feature of the 
CNS to a robotic control challenge. 
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3.2 Methods 

3.2.1 The cerebellar control loop with induced transmission delays 

To validate the robustness against time delays of our cerebellar SNN torque controller, 
we placed it at the core of a robotic feedback control loop (Fig. 3.1), using Baxter robot 
[70] as the front-end body to be controlled. The SNN served as the torque controller 
able to operate six DOF of the robot arm acting on a trial-and-error basis. An STDP 
mechanism at the SNN mediated the trial-and-error torque control process facilitating 
acquisition of the robot arm dynamics when following a set of goal trajectories. During 
this learning process, the SNN torque controller received the input sensory information 
and generated the subsequent output motor commands at 500 Hz; see chapter 2 of this 
dissertation and [149] for an in-depth review of the learning process. The input sensory 
information consisted of the actual robot state supplied by the robot sensors (position, 
Qa, and velocity, Q̇a, per each of the six joints, J1 – J6), the desired trajectory to be 
performed by the robot arm (position, Qd, and velocity, Q̇d, per joint), and a 
teaching/error signal (ɛ) per joint obtained comparing the actual robot state to the 
desired trajectory. These analog input signals were later mapped into neuron activations 
(spikes) that the SNN torque controller computed to subsequently generate the 
corresponding neural responses. These spike-based neural responses were then mapped 
into analog motor commands (torque, τ, per joint) and sent to the robot.  

After SNN learning stabilization and thereby achievement of the desired trajectory, we 
induced different transmission delays (δT) in the sensorimotor pathway to test whether 
our SNN inherits the cerebellar natural ability to deal with nondeterministic time delays 
[109], [49]. We induced sensorial delays in the robot-to-controller (R2C) direction and 
motor delays in the controller-to-robot (C2R) direction, together with the intrinsic 
computation delays (δC) inherent to the SNN computation. The following scheme was 
used to artificially induce both R2C and C2R transmission delays: a point-to-point 
Ethernet communication connected both ends (robot and controller), each end 
accommodating a buffer to hold the sensorimotor messages before being sent to the 
other end. On the robot side, the buffer held the sensorial information for a time δR2C 
before being sent to the controller, whereas at the controller side the buffer held the 
motor commands for a time δC2R before being sent to the robot (Fig. 3.1 A). 

Besides the artificially induced transmission delays, the cerebellar SNN torque 
controller was also tested under real use-case scenarios with inherent transmission 
delays: i) wireless communications, i.e., Wi-Fi connection between robot and controller; 
ii) cloud-robotics, i.e., remote, long-distance (~ 400 km) connection over the Internet 
between robot and controller. See section 3.3.4 for further details. 
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Figure 3.1. Cerebellar control loop. (A) Experimental setup in which communication time 
delays were artificially induced within the cerebellar control loop. The computer allocating the 
cerebellar controller and the robot communicated through a point-to-point Ethernet connection, 
while time delays were induced at each end of the control loop (δC2R and δR2C). A second 
computer was added for monitoring purposes, connected to the controller through a point-to-
point Ethernet connection. (B) Schematic of the cerebellar feedback control loop. (C) Depiction 
of the cells, neural layers, connections, and plasticity site of our cerebellar SNN torque 
controller. The inputs to the cerebellar network arrive through the MFs (sensorial signals) and 
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CFs (teaching/error signal). MFs project the sensorial information onto GCs. GCs project, 
through the PFs, onto PCs, which also receive excitatory inputs from the CFs. Finally, DCN 
drives the cerebellar output torque commands receiving excitatory inputs from MFs and CFs 
and inhibitory inputs from PCs, which shape the cerebellar output. The cerebellar model also 
implements an STDP mechanism at PF-PC connections. 

3.2.2 The cerebellar neural network 

The cerebellar neural network consisted of 62040 Leaky Integrate and Fire (LIF) 
neurons and ~36.4M synapses (36M endowed with plasticity) mimicking the cerebellar 
structure. The network size was a trade-off between Baxter’s working space coverage 
and RT working capability. The neurons were distributed across five different neural 
population layers (see Fig. 3.1, B and C), each divided into six microcomplexes [85] to 
control each of the six DOF. The neural layer distribution was the following: mossy 
fibers (MFs, 240 neurons), granule cells (GCs, 60000 neurons), climbing fibers (CFs, 
600 neurons), Purkinje cells (PCs, 600 neurons), and deep cerebellar nuclei (DCN, 600 
neurons). The input sensorimotor information (actual and desired robot analog state 
translated into spiking patterns) was induced through the MF layer and transmitted 
through excitatory afferents toward the GC layer. The sensorimotor information was 
then recoded into somatosensory neural activity at the GC layer and then propagated 
toward the PC layer via the parallel fiber excitatory connections (PFs), i.e., GCs axons. 
The PC layer also received, via excitatory connections from the CF layer, the 
teaching/error signal, i.e., the mismatch between the actual and desired robot state 
translated into neural spikes. Finally, the DCN layer received inhibitory synapses from 
the PC and excitatory synapses from the CF and MF layers. The DCN neural activity 
was translated into an analog motor command which was sent to the robot, thus closing 
the loop. Note that each of the six microcomplexes comprising the CF-PC-DCN 
subcircuit was divided into two halves (agonist/antagonist), each half controlling the 
clock/anticlockwise movement of the robot joint actuator. This structure mimicked the 
physiological antagonistic muscle pairs located in opposite sides of each arm joint 
[150]; i.e., one half of the microcomplex contracts the agonist muscle, the other half 
contracts the antagonist muscle. 

The cerebellar input-output response was adjusted at the PF-PC connection, where the 
synaptic weight distribution was adapted through an STDP mechanism correlating both 
the sensorimotor information and the teaching/error signal. Thus, synaptic plasticity 
allowed error reduction through iterative trial and error motor task executions. The 
topology of the neural network is summarized in Table 3.1, and the overall depiction of 
the cerebellar neural network is shown in Fig. 3.1 C. 

LIF neurons [62] were used to build the cerebellar neural network due to their minimal 
computational cost, thus enabling our RT computation requirement. The neuron models 
used were the same as those described in 2.2.4 and Table 2.2. See chapter 2 and [149] 
for an in-depth review on the cerebellar neural layers, their connectivity, and neuron 
models.  
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Table 3.1. Cerebellar neural network topology. Dash entries indicate not applicable. 

Neurons Synapses 

Pre-synaptic  Post-synaptic  Number Type Initial weight (nS) Weight range (nS) 

240 MFs 60K GCs 240K AMPA 0.18 - 

240 MFs 600 DCN 144K AMPA 0.1 - 

60K GCs 600 PCs 36M AMPA 2.0 [0, 5] 

600 PCs 600 DCN 600 GABA 1.0 - 

600 CFs 600 PCs 600 AMPA 0.0 - 

600 CFs 600 DCN 600 AMPA 0.5 - 

600 CFs 600 DCN 600 NMDA 0.25 - 

3.2.3 The STDP mechanism - The “eligibility trace” and how it enters the 
learning rule equation 

The STDP mechanism conjugating LTD and LTP at PF-PC synapses was the same as 
the one described in 2.2.5. However, the value of some parameters was modified to 
maximize the cerebellar tolerance to time delays and to adapt to Baxter’s dynamics 
changes induced by prolonged use of the robot. Hence, the LTD process was still 
described by: 
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where ΔWPFi-PCj  is the synaptic weight change between the jth PF and the ith PC, β = -
0.0008 nS is the synaptic weight decrement, δPF is the Dirac delta function of an 
afferent spike from a PF, k(x) defines the integrative kernel, dk = 120 ms allowed the 
adjustment of the kernel width, and τLTD is the kernel “eligibility trace” peak. The kernel 
maximum value (k(x) = 1) is obtained when x = -τLTD, that is, the synaptic weight 
decrement is maximum for those PF spikes received τLTD ms before the CF spike arrival. 
For our SNN torque controller we established τLTD = 150 ms.  

The LTP process produced a fixed synaptic weight increment every time a spike arrived 
to a PC through the PFs as defined by: 

          ( ) ( )
j iPF PC PFspikeLTP w t t dt∆ α δ− = ⋅ ⋅  (3.3) 

where ΔWPFi-PCj  is the synaptic weight change between the jth PF and the ith PC, α = 
0.002 nS is the synaptic efficacy increment, and δPF is the Dirac delta function of an 
afferent spike from a PF. 
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The most widely accepted hypothesis on motor learning cerebellar adaptation assumes 
that CFs spike discharges on PCs work as motor-error related signals able to drive 
synaptic adaptation on PFs-PCs connections. The STDP mechanism operating at this 
cerebellar layer combines a supervised LTD mechanism driven by the motor-error 
related signal and an unsupervised LTP mechanism that occurs even in the absence of 
such error signal [151]. 

LTD produces a synaptic efficacy decrease in PFs each time a PC receives a CF 
discharge. The amount of PFs-PCs synaptic weight decrement depends on the timing of 
the activity arriving through the PFs before the CF spike discharge on the same PC. 
This PF activity is convolved with the integrative kernel defined in Eq. 3.2, which only 
considers those PF spikes within the time-window before the CF spike discharge. The 
past activity of the afferent PF is evaluated similarly to a time-logged “eligibility trace,” 
[152], [153], [154]. This trace aims at correlating the relative timing between CF 
discharges (motor-error related activity) and the spike activity driven by the PFs 
(sensorimotor related activity). The eligibility trace idea stems from experimental 
evidence indicating the likelihood of a CF discharge to depress a PF–PC synapse when 
the corresponding PF fires between 50 and 150 ms before the CF discharge arrives at 
the same PC [99], [152], [155].  

The amount of LTD produced is not constant (see the LTD kernel vs. time 
representation in Fig. 3.6), with a maximum depression occurring when the time 
difference between PFs and CFs spikes is aligned to the sensorimotor pathway delay 
(i.e., 150 ms). On the other hand, the inertia that results when operating a body (either a 
human or human-like robotic body) makes the body position and velocity at a specific 
moment dependent on a sequence of motor commands rather than on just the current 
motor command. The closer the temporal distance of a motor command in the sequence 
to the current time step, the greater its impact on the body state (bear in mind the 
propagation delay from the cerebellum to muscles is also accounted for). The LTD 
kernel shapes this behavior applying the maximum LTD action in the PFs aligned with 
the sensorimotor delay (the ones propagating the sensorimotor information most tightly 
related with the “current” body state, therefore the most important for generating the 
necessary motion sequence), but also applying smaller LTD actions (using both kernel 
tails) in the PFs propagating sensorimotor information with longer and shorter 
sensorimotor delays, allowing the generation of a smooth movement. 

Besides LTD, LTP produces a fixed increase in synaptic efficacy each time a spike 
arrives through a PF to the corresponding targeted PC. This mechanism aims to capture 
how the LTD process is reversed according to neurophysiologist studies [156]. In 
summary, focusing on the functionality behind these mechanisms, LTD allows 
specifically decreasing the weights of the PC connections that received sensorimotor 
activity sometime before an error occurred. On the other hand, the non-specific LTP 
facilitates PCs to slowly recover connections from fibers carrying sensorimotor signals. 
Both mechanisms jointly allow reducing the error during a task as shown in the results. 
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3.2.4 Translation from neural activity to torque commands 

The DCN neural activity, i.e., output cerebellar activity, was translated into analog 
torque commands (τj) before being sent to Baxter’s actuators. Slight changes were 
conducted on the spike to analog translation described in 2.2.7 to accommodate 
dynamics changes suffered by Baxter after prolonged operation and to account for the 
motor delays directly affecting transmission of torque commands. 

There were six DCN microcomplexes, one per DOF. The spike to analog translation of 
each microcomplex activity was performed at every time step (2 ms) as follows: 
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where j ϵ [1, 6] for each of the six DOF; i ϵ [1, 100] defines the DCN index within the 
microcomplex, the first/last 50 DCN cells were devoted to the agonist/antagonist joint 
movement; δ(t) is the Dirac delta function of a spike arrival; αj = (0.75, 1.1, 0.375, 0.63, 
0.078, 0.078) is a factor to weight the DCN output according to the relative position, 
orientation, and mass of each joint. 

At the robot side, the DCN output torque values entered a mean filter, whose size varied 
at each time step depending on the number of predicted torque samples available (x) to 
generate a torque command. A torque command sample generated at time t with a 
prediction of δe ms shall be applied by the robot actuators at time t + δe. When the time 
delay affecting that torque command sample was shorter than δe, the torque command 
sample was received at the robot side before its application time. In that event, that 
torque command sample would operate as a future torque command sample at the mean 
filter. Past torque command samples were also used to normalize the mean filter to the 
current time step (t), as follows: 
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where x ϵ [2, 10]. This filter mimicked the low-pass filter behavior of muscles before 
sending torque commands to Baxter’s actuators. When x was less than 2 (i.e., one or 
less than one available future torque command samples), we applied the previous time 
step torque command with 99.8% reduction. In the event of x being less than 2 for 
successive time steps, the applied torque command was gradually reduced to 0 Nm to 
provide a safe stopping. x equals 10 meant best case scenario, i.e., 10 predicted, 10 past 
and the current torque samples for a total of 42 ms temporal window. This was in 
agreement with the upper motor neuron maximal discharge rates during slow isometric 
ramp contractions [157]. Predicted, past and current torque samples were placed within 
the mean filter based on their application time. 
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For analog to spike translation the same scheme as the one described in 2.2.6 was used, 
see [149] and [158] for further details. 

3.2.5 Desired trajectories definition 

We designed three motor tasks to be performed by the SNN torque controller under 
different time delay conditions. The motor tasks were fast movements in smooth 
trajectories consisting of sinusoidal-like position and velocity profiles per joint; 
involving the complex dynamics of a 6 DOF robotic arm, including interaction forces 
between joints [111], [113], [112]. These motor tasks depicted three different desired 
trajectories to be followed by Baxter’s left arm end-effector: a horizontal (xy plane) 
circle trajectory, an inclined (xyz plane) circle trajectory, and a Lissajous trajectory (δ = 
π/2, a = 1, b = 2), i.e., eight-like Cartesian trajectory in the horizontal plane (xy plane) 
[84], [111]. 

The Cartesian space description of the horizontal circle trajectory is described by: 
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The inclined circle trajectory is described by:  
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The parametric equations of the Lissajous trajectory are: 
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where R = 12 cm denotes the circle radius, T = 2 s stands for the trajectory duration. The 
Cartesian space trajectories were then translated to joint space using Moveit! software 
[98], thus obtaining the desired position (Qd) for each of the six DOF. The desired joint 
velocity profiles (Q̇d) were obtained as the desired position derivative over time; thus 
completing the desired trajectory input signals (Qd, Q̇d). 
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3.2.6 The ANN cerebellar model 

In conducting a more in-depth assessment of our SNN, we also developed a 
conceptually closer analog artificial neural network (ANN) controller. We used the 
analog cerebellar solution from [83], [84] conveniently adapted for Baxter’s 6 DOF in a 
feedback loop. This ANN model equipped the main form of SNN synaptic plasticity but 
lacked its temporal correlation capability, i.e., PC long-term depression was 
heterosynaptically driven by CF, while PC long-term potentiation was related to PF 
activity. Thus, the cerebellar ANN helped to better contextualize the temporal nature of 
the SNN as key in dealing with time delays (see Fig. 3.2 for spike coding used by the 
cerebellar SNN, rather than rate coding). 

 
Figure 3.2. Spike coding at the input MF layer. (A) All joints desired position for the circle-
eight sequence, i.e., input analog signal. Corresponding spiking activity at the MFs implemented 
by the SNN model (B), and by a possible rate based model (C). (D), (E), and (F) depict a zoom 
in to the fourth joint (J4) information represented in (A), (B), and (C), respectively. (G) shows 
the population firing rate (MFs corresponding to J4) for time windows of 100 ms during the 
trajectory period (4 s: 2 s for circle + 2 s for eight-like trajectory), both for our spike-coding 
SNN model (solid line), and a rate-based model (dashed line). The firing rate depicts the 
average of 100 trajectory trials. 
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The ANN cerebellar model adopted a pure rate-based functional scheme. The focus was 
on maintaining the functional information processing features of the cerebellar micro-
circuitry using analog activity values instead of an explicit spiking representation [159]. 
We implemented four main layers:  

- Granular layer: implemented as a state-generator able to provide for different 
time stamps along the executed trajectory [88], [160] depending on the actual 
and desired joint positions and velocities. These time stamps emulate parallel 
fibers (PFs) activated in an unambiguous and sequential manner (producing an 
unambiguous state representation). 

- Purkinje-cell layer: the activity at PCs is defined by: 

( ) ( )( ) { }, 1, 2, ,i iPC t f PF t i number of motors= ∈   (3.10) 
where PCi(t) represents the average firing rate of the PCs associated with the ith 
motor. fi is the function that matches each granular layer state (active PF) with a 
particular output firing rate at each PC. This function was modified during the 
learning process. The output activity at different cell layers (PCs, MFs and CFs) 
was normalized between 0 (representing the absence of activity) and 1 
(representing the maximum firing rate of the cell). 

- Mossy fibers: the ANN cerebellar model assumes MFs transmitting a baseline 
neural activity during the trajectory execution according to studies of eyeblink 
conditioning experiments [87], [161], [162]. 

- DCN cells: the activity of these nuclei cells integrated the excitatory-activity 
coming from MFs and CFs and the inhibitory-activity from PCs. Due to the low 
number of MFs and CFs in comparison to granule cells, the capacity of these 
fibers for generating a sparse representation of different cerebellar states seems 
to be very limited (i.e., MFs act as baseline global activity/term provider). Eq. 
3.11 describes the DCN layer behavior:  

( ) ( ) ( )
{ }

, , ,( ) ,

1, 2, ,
i i MF DCN i i PC DCN i i CF DCN iDCN t MF t w PC t w CF t w

i Number of motors
− − −= ⋅ − ⋅ + ⋅

∈ 
 (3.11) 

DCNi(t) represents the average firing rate of the DCN cells associated with the 
ith motor, MFi(t) stands for the baseline activity of the MFs associated to the ith 
motor, and WMF-DCN,i the synaptic strength of the MF-DCN connection to the ith 
motor. WPC-DCNi represents the synaptic strength of the PC-DCN connection of 
the ith motor. Finally, CFi(t) represents the average firing rate of the CFs 
associated with the ith motor, being WCF-DCNi the synaptic strength of the CF-
DCN of the associated motor. CFi(t) carries the normalized current activity in 
the range [0, 1] that represents the actual motor error. 
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3.2.7 Performance accuracy and learning convergence measurement 

To evaluate the performance accuracy we compared the desired and actual trajectory; 
i.e., desired (Qd) compared to actual (Qa) joint position at each time step. The average 
difference of all joints provided the MAE, serving as the performance accuracy metric. 
See 2.2.9 for further details.  

To evaluate the learning convergence of the SNN and ANN torque controllers output 
response, we studied the average joint torque variability (Δτ). Since the SNN and ANN 
torque controllers provided a nondeterministic output, first we obtained the 100 
iterations average torque per joint as follows: 
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tτ τ

=

= ∑  (3.13) 

where i = [1,100] stands for the iteration number, each iteration having a duration of 2 s, 
i.e., t = [0, 2]. Then, we found the average joint torque variability as described by:  
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We also evaluated the performance of a proportional-derivative (PD) controller tuned to 
provide a performance accuracy similar to that of the factory-default position controller 
(see 3.3.1). Since the PD inner computation was deterministic, we did not need the 100 
iterations average torque, we used these last two equations applied to one iteration 
output torque to obtain the PD controller output torque variability. 

3.2.8 Modules implementation 

A ROS framework allowed the processing and transmission of information between the 
control loop modules, and the spike to analog and analog to spike translation. For 
reproducibility purposes, the source code for the PD, ANN and SNN controllers as well 
as the experimental setup are available at: 
https://github.com/EduardoRosLab/EDLUT_BAXTER_DELAYS. 
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3.3 Results  

3.3.1 Cerebellar torque control provides learning convergence in the presence 
of time delays 

A 12 cm radius circular trajectory performed in two different xyz planes along with a 
sequence of a circular plus a Lissajous trajectory performed in the xy plane were used to 
verify that the cerebellar control solution was not task-dependent (see 3.2.5 for 
trajectory description). Consecutive trials of the trajectories were executed (i.e., a trial 
started at the end point of the previous one), each trial having a duration of 2 s. Learning 
convergence is shown in Fig. 3.3.  

 
Figure 3.3. Trajectory learning convergence curves. (A) Circle trajectory in xy plane, 
trajectory duration of 2 s. Learning stabilization achieved after about 1000 s (500 trials). (B) 
Inclined circle trajectory in xyz plane, trajectory duration of 2 s. Learning stabilization achieved 
after about 1000 s (500 trials). (C) Concatenated circle and Lissajous trajectory in xy plane, 
trajectory duration of 4 s (2 s circle + 2 s Lissajous). Learning stabilization achieved after about 
2000 s (500 trials). 

Once the learning process was stabilized, transmission delays were artificially induced 
between the two ends of the robotic feedback control loop in R2C and C2R directions 
(Fig. 3.1 A and section 3.2.1). A total transmission delay of δT = δR2C + δC2R was 
induced (δR2C = δC2R = δT/2), which was progressively increased. Each induced delay δT 
was maintained for 100 trials, and then increased to the next value; that is, at least 200 s 
of experiment duration per δT value. The performance metric given by the MAE 
illustrated the learning convergence of the SNN torque controller across a wide range of 
induced delays δT (Fig. 3.4 A). Note that the SNN torque controller, regardless of the 
induced delay δT, improved the performance accuracy (MAE) of the factory-default 
position controller given under no-delay circumstances. 

Since the factory-default position controller could not be tested in a time delay 
framework, we tuned a PD controller for each of the motor tasks using the Ziegler-
Nichols method [163]. The resultant PD torque controller performance was similar to 
the factory-default position controller under no-delay circumstances (PD MAE = 0.076 
rad vs. factory-default MAE = 0.077 rad for the horizontal circle trajectory, PD MAE = 
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0.054 rad vs. factory-default MAE = 0.055 rad for the inclined circle trajectory, and 
MAE = 0.068 rad for both the PD and factory-default controller for the circle-Lissajous 
sequence), thus, serving as a performance reference (Fig. 3.4 A). The cerebellar ANN 
performance was similar to the SNN cerebellar solution and better than the default-
factory position controller under no-delay circumstances: ANN MAE = 0.021 ± 0.002 
rad vs. SNN MAE = 0.018 ± 0.004 rad for the horizontal circle trajectory, ANN MAE = 
0.017 ± 0.002 rad vs. SNN MAE = 0.017 ± 0.004 rad for the inclined circle trajectory 
and ANN MAE = 0.019 ± 0.001 rad vs. SNN MAE = 0.021 ± 0.004 rad for the circle-
Lissajous sequence (Fig. 3.4A). 

As the induced delay δT increased from 0 to 50 ms, the PD and ANN controllers 
performance degraded significantly (Fig. 3.4 A) due to the instability caused by the 
large variations/oscillations of the output torque response; i.e., torque variability 
increased from 0.019 to 0.036 Nm/ms (PD controller) and from 0.016 to 0.026 Nm/ms 
(ANN controller) per joint for the horizontal trajectory; from 0.026 to 0.051 Nm/ms 
(PD) and from 0.017 to 0.027 Nm/ms (ANN) per joint for the inclined circle trajectory; 
from 0.025 to 0.037 Nm/ms (PD) and from 0.026 to 0.028 Nm/ms (ANN) per joint for 
the circle-Lissajous sequence (Fig. 3.4 B, C, and D). PD control instability occurred 
from early stages: delays δT over 10 ms for the inclined circle trajectory and the circle-
Lissajous sequence, and over 20 ms for the horizontal circle trajectory. The lower 
capacity to cope with delays for the circle-Lissajous sequence and the inclined circle 
trajectory, indicated how increasing arm-movement complexity demanded higher PD 
static gains, followed by an incremental sensitivity [136], i.e., the relationship between 
the input and the output robot system indicating how easily the input initiates a change 
in the output when the robot is in a steady-state condition. A fine balance between 
obtaining high performance by increasing PD gains while maintaining sensitivity low is 
required. An in crescendo sensitivity may ultimately induce instability (oscillatory PD 
responses) and compromise compliance with lower delay δT values. Similarly to the PD, 
the ANN controller was driven to instability with delays δT above 10 ms for the 
horizontal circle trajectory, and above 20 ms for the inclined circle and circle-Lissajous 
sequence. We stopped the experiments at δT = 50 ms since safety/compliance could not 
be guaranteed to the robot itself nor to the personnel due to increasing torque 
oscillations. 

Conversely, the cerebellar predictive behavior of the SNN torque controller provided a 
stable compliant output regardless of time delays. As the delay δT increased from 0 to 
80 ms, the MAE of the SNN torque controller barely deviated from the ideal horizontal 
and inclined circle trajectories and the circle-Lissajous sequence: average MAE = 0.024 
± 0.011, 0.022 ± 0.008 and 0.027 ± 0.007 rad respectively (Fig. 3.4 A). For the PD and 
ANN controllers, 3 to 4 times larger MAE deviations were obtained: average MAE = 
0.099 ± 0.027 (PD controller) and 0.053 ± 0.026 rad (ANN controller) for the horizontal 
circle trajectory, 0.092 ± 0.036 (PD) and 0.061 ± 0.030 rad (ANN) for the inclined 
circle trajectory, 0.097 ± 0.032 (PD) and 0.047 ± 0.021 rad (ANN) for the circle-
Lissajous sequence. The compliance stability of the SNN controller was reflected in the 
evolution of the output torque commands as transmission delays were induced (Fig. 3.4 
B, C, and D), i.e., the SNN torque output remained at 0.012 Nm/ms per joint for the two 
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circle trajectories and 0.018 Nm/ms for the circle-Lissajous sequence regardless of the 
delay increment. The induced δT was limited to 80 ms according to the predictive time 
margin of the deployed learning mechanism (see 3.2.3 and 3.3.2). 

 
Figure 3.4. PD and cerebellar ANN vs cerebellar SNN control response to steady time 
delays. The induced transmission delays (δT) comprised symmetrical R2C and C2R steady time 
delays (δT = δR2C + δC2R; δR2C = δC2R). (A) As δT increased from 0 to 80 ms, mean MAE and 
standard deviation of 100 trials per δT value performed by the Ziegler-Nichols tuned PD, the 
ANN and the SNN torque controller solutions. After tuning its parameters, the PD performed 
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similar to the default factory position controller. ANN and SNN were both equipped with 
similar PF-PC synaptic mechanisms although ANN lacked the learning temporal capability. 
Two circular trajectories in different planes and a sequence of a horizontal circle plus a 
Lissajous trajectory were used as benchmarks for revealing the robot arm dynamics [111], 
[112]. SNN controller MAE plateaued for values under δT = 80 ms, whereas both PD and ANN 
should not operate above δT = 20 ms (for safety reasons, δT was kept below 50 ms for the PD 
and ANN controllers since the MAE was increasing dramatically). (B), (C), and (D) evolution 
of the output torque commands for the horizontal circle, inclined circle, and circle-Lissajous 
sequence respectively, for δT values from 0 to 50 ms (left and right column respectively).   

Outstanding levels of accuracy were achieved by the SNN torque controller in the 
execution of the trajectories (Fig. 3.5). Comparative ANN vs SNN results indicated the 
time-related capability of the SNN form of synaptic plasticity accountable for coping 
with the delay. 

 
Figure 3.5. Cartesian space representation of Baxter’s end-effector under PD, ANN and 
SNN torque control. PD vs SNN performance for the horizontal circle (A), inclined circle (B), 
and circle-Lissajous sequence (C). ANN vs SNN performance for the horizontal circle (D), 
inclined circle (E), and circle-Lissajous sequence (F). The induced transmission delay was δT = 
50 ms. The desired vs actual trajectory followed by the end-effector are displayed using the 
density function of 100 trials performed by each controller. The trajectory performed by the 
factory-default position controller with no delay is also displayed as a reference. 
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3.3.2 STDP at PF-PC copes with the delay. Overcoming the 150 ms delay 
biological limitation 

The presence of the biological sensorimotor delay causes a given sensorimotor state at 
time t to be received at the CNS at time t + δa (afferent delay), and the subsequent motor 
command to be applied at time t + δa + δe (efferent delay). The tolerance of the 
biological learning mechanism to this sensorimotor delay hinges on its ability to use 
previous synaptic activity to generate predictive motor commands within a predictive 
time margin of δa + δe. Again, we induced transmission delays in R2C and C2R 
directions while performing the horizontal circle trajectory. We first aligned the STDP 
learning mechanism to cope with the biological sensorimotor delay as well as the 
predictive temporal margin configured accordingly. We found that the predictive 
behavior of the SNN controller guaranteed a stable performance as long as time delays 
were kept within the established predictive time margin. Then, we faced the STDP 
learning mechanism to larger predictive temporal margins to test whether and to what 
extent the time delay tolerance of our SNN controller could be modified beyond the 
biological temporal imposition. 

The PF-PC STDP mechanism allowed for motor learning by correlating the 
sensorimotor information recoded at granular layer into spike patterns with the 
teaching/error signal provided by CFs to the PC [99], [82]. A PF-PC synaptic weight 
change (ΔW) occurred after an appropriate temporal sequence of PF-CF de/activations, 
involving two opposed processes of long-lasting modifications in synaptic strength: 
LTP and LTD. LTP produced a fixed synaptic weight increment every time a spike 
arrived to a PC through the PF. Conversely, LTD synaptic weight decrement was 
triggered by the spikes arriving through the CF to the corresponding PC and depended 
on the previous activity of the afferent PF. The implementation of this temporal 
correlation between the teaching/error signal (CF activity) and the previous 
sensorimotor information (PF activity) followed a convolution kernel with an 
“eligibility trace” [99], [152], similar to a convolved coincidence detection able to 
compensate for transmission delays [164]. This implementation required a kernel 
“eligibility trace” peak (τLTD), which established the PF spike arrival time before a CF 
spike arrival for which the synaptic weight decrement was maximal. By changing τLTD, 
the predictive time margin could be accordingly modified (Fig. 3.6 A and B). 
Consequently, τLTD established the amount of time delay (δT + δC, transmission plus 
computation delays) that the SNN controller could tolerate. We found that establishing a 
τLTD value involved a fine trade-off between time delay tolerance and the performance 
accuracy obtained. As the predictive time margin increased so did the time delay 
tolerance (Fig. 3.6 B), but the performance error also increased (Fig. 3.6 C). 

Electrophysiological recordings [108], [152] show an LTD contribution more acute for 
those PF spikes which occurred 50 to 150 ms before the CF activity, i.e., τLTD between 
50 and 150 ms. We chose τLTD = 150 ms to increase the time delay tolerance while 
maintaining the SNN biological plausibility. We found that a kernel “eligibility trace” 
peak of 150 ms provided robustness against transmission delays up to 80 ms, thus 
requiring 70 ms for computation delays comprising analog information processing, 
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neural activity computation, analog to spike and spike to analog conversion, and torque 
commands application by the robot actuators. Please, see 3.2.3 for a more in depth 
description of the temporal kernel operation. 

 
Figure 3.6. Modifying the cerebellar predictive time margin by variating the STDP kernel. 
(A) Set of CF-PF convolution kernels with different “eligibility trace” peaks (τLTD) [99] and how 
the CF spike arrival is correlated to previous PF spike for each convolution kernel. (B) 
Performance accuracy (MAE) obtained by the SNN controller for each of the convolution 
kernels (τLTD peak varying from 90 to 250 ms), and PD controller reference. The transmission 
delay tolerance increased with τLTD peak at the cost of decreasing performance accuracy. The 
horizontal circle trajectory benchmark was used. The SNN technological approach overcame the 
τLTD = [50 – 150 ms] biological constraint. (C) Modeling the degradation of the performance 
accuracy as time delay tolerance increases along with the kernel τLTD. The transmission delays 
were set to zero, thus oversizing τLTD. A linear regression analysis was conducted on the MAE 
data of 100 horizontal circle trajectory trials per each of the different convolution kernels. MAE 
degradation seemed to linearly evolve as the τLTD peak increased (y = 0.000106x + 0.0036). 
Instability may arise under two possible scenarios: a) “eligibility trace” peaks shorter than 
transmission delays, b) oversized “eligibility trace” peaks, i.e., beyond 300 ms. 
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3.3.3 Benchmarking the nondeterministic time delays 

The learning convergence of our SNN output against steady time delays was tested so 
far; performance under nondeterministic time delays was still to be analyzed. Here, we 
characterized the response of our SNN to nondeterministic delays in a lab-controlled 
scenario. The delay range (from 0 to 80 ms) was covered with a set of gamma 
distributions from which nondeterministic time delays δT were randomly sampled (δT = 
δR2C + δC2R; δR2C = δC2R = δT/2), providing the following mean delays: 15 ± 5 ms, 25 ± 5 
ms, 35 ± 5 ms, 45 ± 5ms, 55 ± 5ms, 65 ± 5ms, and 78 ± 4 ms (see Fig. 3.7 A and B for 
the probability density function, PDF, and cumulative distribution function, CDF, of the 
induced delays). Nondeterministic delays were induced using the setup described in Fig. 
3.1 A. For each delay distribution, 100 trials of the horizontal circle trajectory were 
performed, maintaining MAE values below the precision provided by the factory-
default controller (Fig. 3.7 C). Note that gamma distributions are proven to adequately 
model network delays [165], [166].  

Aiming at characterizing a more realistic scenario, we also tested asymmetrical (i.e., 
δR2C ≠ δC2R), nondeterministic delays. Two scenarios were tested: i) δR2C = 8 ± 3 ms and 
δC2R = 40 ± 3 ms (Fig. 3.7 D), ii) δR2C = 39 ± 2 ms and δC2R = 9 ± 4 ms (Fig. 3.7 E). We 
found that the SNN was able to cope with both symmetric and asymmetric 
nondeterministic delays. 

 
Figure 3.7. Symmetric and asymmetric nondeterministic delays scenario. (A) Set of gamma 
distributions used to induce symmetrical (δT = δR2C + δC2R; δR2C = δC2R = δT/2) nondeterministic 
delays, (B) corresponding δT CDF, and (C) SNN MAE performance. (D) and (E) asymmetrical 
nondeterministic delays scenarios. The depicted data accounts for 100 trials of the horizontal 
circle trajectory per delay distribution. 
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3.3.4 Nondeterministic Wi-Fi and cloud-robotics time delays; cerebellar control 
use cases 

We established a robot-controller Wi-Fi connection using a Raspberry Pi 3B+ (RPi) as 
gateway (Fig. 3.8 A and B) to circumvent Baxter’s lack of wireless support. We 
attached an RPi to the robot using an Ethernet connection with negligible delay (δEth ~ 0 
ms). The RPi, in turn, connected with the controller via a Wi-Fi connection which 
carried inherent nondeterministic time delays (δWi-Fi). Thus, the RPi operated as a robot-
controller gateway establishing an end-to-end Wi-Fi communication with 
nondeterministic time delays (δ = δEth + δWi-Fi ~ δWi-Fi) (Fig. 3.8 A and B). The Wi-Fi 
connection was established using a Tenda® AC15 AC1900 Smart Dual-band Gigabit 
Wi-Fi Router. 

The nondeterministic delays inherent to a Wi-Fi connection [167] affected 
asymmetrically to both R2C and C2R directions while our SNN controller performed 
the horizontal circular trajectory. The established dialog between the robot and the 
controller had a bandwidth consumption of 15 Mbps that was further increased to 
worsen both sensory and motor delays. The initial 15 Mbps bandwidth consumption 
was gradually increased up to 3.6 times simulating control of up to three robots over the 
same wireless network. We induced additional UDP traffic to the control loop end-to-
end communication using the tool Iperf [168]. We gradually increased the original 
bandwidth consumption from 15 to 54 Mbps in the R2C direction since the processing 
capacity of the RPi rapidly became saturated when additional traffic was induced in the 
C2R direction. The processing of additional incoming information jeopardized the RPi 
ability as robot-controller gateway. The controller PC processing capability, however, 
was not affected by the additional traffic. The asymmetrical hardware of the control 
loop forced us to induce the additional bandwidth in the R2C direction, which was 
reflected in asymmetrical Wi-Fi nondeterministic time delays. The cost of the RPi 
acting as a bottleneck could be prevented if access to Baxter’s onboard PC were granted 
or other more powerful nodes were used instead of the RPi. 

We found that the SNN torque controller performance accuracy was kept at the same 
level regardless of the asymmetrical and nondeterministic time delays (Fig. 3.8 C); i.e., 
from bandwidth consumption of 15 to 54 Mbps, we obtained an average MAE of 0.025 
± 0.007 rad, comparable to the 0.024 ± 0.011 rad obtained at the artificial delays 
scenario with δT from of 0 to 80 ms. The PD and ANN controllers could not be tested 
under these circumstances since 50% of the motor delay values were above 20 ms for 
all bandwidth consumptions (Fig. 3.8 D), which added to the associated sensorial delay 
would set the PD and ANN controller in the instability zone (Fig. 3.4 A), risking robot 
and personnel safety.  
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Figure 3.8. Cerebellar response to nondeterministic Wi-Fi delays. (A) Experimental setup in 
which the computer allocating the cerebellar controller and the robot communicated through 
Wi-Fi. The Controller and Monitoring PCs were connected to a router, which established a Wi-
Fi connection with the (B) RPi attached to the robot. (C) Performance accuracy, and (D) CDF 
of sensorial (R2C) and motor (C2R) time delays as the bandwidth consumption increased from 
15 up to 54 Mbps (equivalent to three robots simultaneously connected). 100 horizontal circle 
trajectory trials were performed for each bandwidth value. The asymmetry between sensorial 
and motor delays followed the asymmetrical nature of the control loop hardware; on one end, 
the RPi gateway holds limited computational capacity compared to the PC on the other end. We 
induced the additional bandwidth in the R2C direction as the processing capacity of the RPi 
became saturated when additional bandwidth was induced in the C2R direction. Regardless of 
the asymmetrical and nondeterministic time delays, the SNN torque controller provided for 
compliance and accuracy. 

Finally, we used our SNN torque controller in a cloud-robotics framework by 
establishing a long-distance controller-robot connection over the Internet. The controller 
was located in Madrid, whereas the robot was located 360 km south (i.e., 224 mi) in 
Granada (Spain). This remote connection involved 10 Internet hops (Fig. 3.9 A). Two 
scenarios were tested: i) the robot connected to the Internet through an Ethernet 
connection via a gateway computer (Fig. 3.9 B); ii) the robot connected to the Internet 
via Wi-Fi (Fig. 3.9 C). In the first scenario, the sensorimotor time delay accounted for 
cloud-robotics inherent latency [169], [170]. The CDF of the sensorimotor time delays 
(Fig. 3.9 D) confirmed the 50th, 90th, and 99th percentiles of the exchanged messages 
below 9, 10, and 12 ms respectively, for both sensorial (R2C direction) and motor (C2R 
direction) information; a total transmission delay below the 80 ms limit provided by the 
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predictive time margin (Fig. 3.6 B). The round-trip time (RTT) of the remote 
connection barely varied throughout the day (i.e., average RTT of 20.0 ± 1.3 ms, from 
8:00 to 24:00). In the second scenario, the connection was additionally hampered by the 
Wi-Fi nondeterministic time delays. The CDF confirmed the 50th, 90th, and 99th 

percentiles below 12, 14, and 20 ms for the sensorial messages; and below 29, 32, and 
36 ms for the motor messages (Fig. 3.9 E); values below the 80 ms limit (Fig. 3.6 B). 
The accuracy obtained in both cases (1st and 2nd scenario MAE = 0.020 ± 0.004 and 
0.024 ± 0.007 rad) was kept at the same levels as in previous setups. Thus, our SNN 
torque controller was proven capable of operating in a cloud-robotics framework. 

 
Figure 3.9. Cerebellar response to remote control. (A) Experimental setup involving long-
distance remote control. The robot was remotely operated over the Internet involving 10 
network hops and a controller-robot distance of ~360 km (i.e., 224 mi). Two approaches were 
used: (B) the robot connected to the Internet using an Ethernet connection via a gateway PC; 
(C) the robot connected to the Internet via Wi-Fi. (D), and (E) depict the CDF of the 
sensorimotor time delays associated to (B) and (C) respectively. 100 trials of the horizontal 
circle trajectory were performed for each approach. 

3.4 Discussion  

A well-timed response to stimuli is imperative for body-interaction with changing 
environments, thus causing human motor control to compensate for the significant time 
delay between the sensing of a stimulus and its response. In the CNS, these 
sensorimotor delays are caused by constraints in the neurophysiological substrate, 
which can be very efficient in computation due to massive parallel neural computing, 
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but inefficient to communicate signals through long axons and slow chemical synapses. 
Physiologically, the transduction and transport of sensory inputs and motor commands 
involves: sensing delays, nerve conduction delays, synaptic delays, neuromuscular 
junction delays, electromechanical delays, and force generation delays [47]. 
Consequently, the CNS needs to cope with the uncertainty aroused by these delays to 
provide accurate motor control. Besides these biologically inherent time delays, the 
CNS can self-adapt to additional external time delays [171], [172], [173]. The CNS 
sensorimotor time delay compensation relies on state and sensory prediction; i.e., an 
estimation of the actions outcome before sensory feedback is available [48]. The 
cerebellum plays a pivotal role in this prediction mechanism [49], [50], [74], [174] due 
to its ability to acquire internal models of the human body and external tools through 
motor learning [51], [107], [175], [176].  

Consequently, cerebellum-inspired solutions have been proposed to different control 
problems: gaze stabilization [29], [127], [177], adaptive control of linear [130], [178] 
and nonlinear [119], [149], [179] systems, acquisition of forward/inverse [79], [180] 
dynamic models, or computation of inverse kinematics [181]. Sensorimotor time delays 
were also considered by some analog-based cerebellum-inspired approaches recently 
suggested: i) An analog cerebellar-like functional model embedded with a Smith 
predictor was able to deal with the control loop inherent sensorimotor time delays, 
measured below 8 ms [180]. ii) A cerebellum-inspired adaptive filter model was used to 
control saccadic eye movements with a delayed error signal temporally aligned at the 
PF-CF connection [182]. In this analog solution, the temporal coding at granular layer 
was modeled as an echo-state network, thus simplifying the complex spatiotemporal 
processing of the cerebellar information to make the controller suitable for robotic 
application. iii) An adaptive filter based on the cerebellum and embedded with a 
reactive controller, implemented an eligibility trace that compensated for the 50 ms 
delay in the error feedback and the response lags intrinsic to the plant dynamics using 
different learning rules: a) forward model-based eligibility trace gradient descent (FM-
ET); b) Widrow-Hoff (WH) algorithm with a delta-eligibility trace tuned to the error 
feedback delay (WH+50 ms), and tuned to exceed that delay by 20 ms (WH+70 ms) 
[164]. iv) Control of fast limb movements (i.e., movements lasting less than the total 
duration of the sensorimotor pathway processing and transmission delays) was provided 
by a controller involving two fuzzy NNs representing each the cerebellar cortex and 
DCN [183]. These solutions, although not of direct application to the present setup as 
they are constrained to more simple scenarios (simulation studies, numerical 
experiments, LTI systems, fixed delays, simple dynamics, dynamic-model-dependent), 
prove the efforts devoted to address the sensorimotor delay challenge from analog 
approaches. However, these cerebellum-inspired solutions removed the intrinsic 
temporal aspect naturally present in the spike coding found in biological networks. 
Compensating the temporal delay was more of a problem for motor control than a 
cerebellar virtue. Understanding the temporal compensation of the sensorimotor 
pathway delay within the cerebellum requires a different perspective starting from a 
more realistic replication of the biologically inherent temporal cerebellar features. 
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3. Motor control under nondeterministic time delays  

Cellular-level cerebellar controllers offer an insight into cerebellar function at neuron 
level. Yet, the significant computational cost of these models [184] has traditionally 
prevented them from real robotic applications. Our SNN cerebellar model, which falls 
into this cellular-level category, was already tested in a real robotic application, see 
chapter 2 and [149]. We suggested and replicated the cerebellar acquisition of internal 
models as a solution to the nonlinear dynamic modeling of elastic cobots; providing 
real-time, adaptive, and compliant torque control of a 6 DOF robot arm. The cellular-
level nature of our cerebellar SNN controller enables the replication of the STDP 
mechanisms at neuron level. Consistently with the Marr-Albus-Ito cerebellar theory 
[55], we found that the LTD “eligibility trace” temporal margin at PF-PC cell synapses 
was key in estimating and shaping the cerebellar temporal output. LTD eligibility trace 
allowed for a temporal record of PF synapses past activity (i.e., the temporal 
sensorimotor patterns), so that the feedback error/teaching signal from CF arriving after 
that PF activity could make changes in the PF-PC synapses strength [185]. A continued 
exposure to sensorimotor patterns allowed PF-PC synapses to acquire a temporal 
representation of the relation between the error/teaching signal and previous 
sensorimotor information [186]. The precise time correlation between sensorimotor 
information at PF and the elicited error/teaching signal at CF of our SNN controller 
provided robustness to sensorimotor time delays. 

The fourth industrial revolution, Industry 4.0, is leading industrial processes to be 
connected using Internet technologies [187]. In robotics, this revolution is reflected in 
the growing field of cloud-robotics, which conjugates the benefits of big data, cloud 
computing and collective robot learning [169]. Nonetheless, cloud-robotics faces the 
technical challenge of dealing with communication latencies [169], [170] between the 
cloud and edge nodes. Motor control can be highly sensitive to time delays as they drive 
the system towards instability and unmanageability [136], ultimately forcing some sort 
of strategy to address cloud communications latency. Efforts have been devoted to 
tackle cloud-robotics time delays by minimizing the latency of the existing architecture 
[188], modifying the communications paradigm [189] and protocols [190], or 
implementing new communication technologies [191]. However, the application of 
these approaches is tied to specific communication architectures, technologies, or 
protocols. Conversely, a SNN controller able to provide robustness against time delays 
would solve the cloud-robotics latency challenge regardless of how the controller-robot 
connection is established. Not only cloud-robotics can benefit from our cerebellar SNN 
torque controller, but also other robot control schemes that carry inherent time delays 
such as teleoperation or wireless robot control; relevant to robotic applications such as 
remote control, factory automation, or HRI. HRI could especially benefit from the 
application of our SNN torque controller, as it meets the demand for adaptive, 
compliant robot behavior [149] even in the presence of sensorimotor delays. 

In this chapter, we presented a neuroscience approach to a real-world robotic 
application, providing both lab-controlled setups with synthetic communication delays 
and real-world setups that fall under higher technology readiness levels (TRL) [192] 
with potential use in cloud-robotics and remote control with long latencies. 
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3.4.1 PF-PC STDP modeling considerations 

Concerning the implemented STDP rule for PF-PC LTD, some considerations need to 
be noted. This STDP is pivotal in sorting out the PC output credit assignment problem 
[193], i.e., modeling how a change in the weight of PC synapses would impact the 
behavior of the final cerebellar output; however, it still remains open what occurs to PF-
PC adaptation to either a specific delay or to a range of delays at the cerebellar 
intermediate zone, responsible for controlling the distal extremity muscles. 
Interestingly, the PF-PC STDP in other cerebellar regions (vermis vs flocculus) adapts 
differently to the specific delay at which CF error signals shall arrive with respect to MF 
sensorimotor signals during motor learning [194]. The vermis receives proprioceptive 
information from the dorsal columns of the spinal cord and coordinates body posture 
and locomotion, whereas the flocculonodular lobe receives information from the 
vestibular nuclei and visual cortex and helps learning basic motor skills found within 
the vestibulo-ocular system (VOS). 

LTD is induced in the flocculus when PFs activate 120 ms before the CFs, assuming a 
PF-PC LTD monokernel presumably tuned to a unique pathway delay [194]. This 
plasticity at PF-to-PC synapses differs from plasticity found at PF-to-PC synapses in the 
vermis, in which LTD is induced by a range of PF-CF pairing interval (50 to 150 ms), 
assuming PF-PC LTD multikernels presumably tuned to a set of pathway delays [194]. 
It is speculated that the wide range of delays between PF-CF activation inducing LTD 
may reflect the wide range of pathway delays in the error signals carried by the different 
CF inputs to the vermis, i.e., from spinal afferent signals with latencies between 10–30 
ms [195] to cognitive signals with, a priori, longer latencies [196], [197], [198]. 
Conversely, the flocculus responses to the PF-CF temporal interval are consistent at 120 
ms in agreement with the specificity of the pathway delays in the CF error signals found 
in the VOS [194]. 

In looking for analogies between our robotic pathway delay and what occurs within 
either the vermis or flocculus pathway delays, we assumed PF-PC LTD monokernel 
configuration as in the latter. The robotic sensorimotor pathway was equally configured 
for each Baxter joint (motor and sensor), as it occurs in the VOS. Biology seems to have 
evolved a PF-PC LTD multikernel solution to meet the different sensory pathway 
delays converging in the vermis, however, industrial field buses/Ethernet in robotics 
avoid these problems by design. A PF-PC LTD multikernel approach would impose to 
configure a different robotic sensorimotor pathway per Baxter motor accordingly, e.g., 
sensory motor pathways configured with increasing levels of delay according to the 
corresponding Baxter joint distance to the central CPU, mimicking limbs distance to the 
cerebellum. However, Baxter motor and encoder data transmission are not meant to 
operate with these properties. These differences between the propagation of 
sensorimotor information in the human peripheral nervous system (PNS) and in its 
robotic counterpart (i.e., signals generated at robot joint sensors all propagated through 
the same pathway) drove us towards the monokernel solution.   

For a widely distributed robotic platform with several ms delay differences between the 
interconnected elements, i.e., segmented in different sensorimotor pathways, together 
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with RT capacity being granted despite the multikernel approach higher computational 
cost (see Fig. 3.10), a multikernel solution adapted to a multipaired cerebellar 
architecture [77] could be a good approach to avoid the trade-off between accuracy and 
delay tolerance encountered in the monokernel solution. 

 
Figure 3.10. Cerebellar SNN multikernel vs monokernel solution coping with time delays. 
(A) LTD eligibility traces of the multikernel solution. (B) Mean eligibility trace of the 
multikernel solution and eligibility trace of the monokernel solution. (C) Performance accuracy 
for the horizontal circle trajectory, both SNNs operated in the scenario depicted in Fig. 3.1 A, 
with induced delays δT from 0 to 80 ms, using a unique robotic sensorimotor pathway delay 
(150 ms). The multikernel solution required a larger cerebellar network (1800 PCs and 108M of 
plastic synapses) to maintain equivalent levels of output resolution when compared to the 
monokernel solution (600 PCs and 36M synapses), i.e., extra computational power hindering 
full capacity performance in RT. The EDLUT simulator ran at full capacity for 99.999% of the 
experiment time for the monokernel solution, reduced to 99.263% for the multikernel solution; 
i.e., since RT operation needs to be guaranteed in the control loop, EDLUT includes 
mechanisms to minimize the impact of higher computing intervals, such as temporarily 
disabling learning for the sake of RT operation [29]. The multikernel overall response was 
configured to provide a PC output drive equivalent to the monokernel PC solution but 
preserving the enhanced delay sensitivity to its corresponding kernel peaks, similar to what is 
found at the cerebellar vermis [194]. The larger number of the multikernel PC outputs coalesced 
into the same number of DCNs for the monokernel network [199]. Multikernel PC outputs 
hampered co-operation among themselves under time delays (range from 0 to 80 ms) thus 
decreasing instead of increasing the performance accuracy thanks to augmented delay 
sensitivity. A winner-take-all PC output behavior might take advantage of the increased delay 
sensitivity provided by the different kernel peaks of the multikernel solution but only if different 
robotic sensorimotor pathways were required to be conjointly used. 
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4. THE CENTRAL NERVOUS SYSTEM: A 

DISTRIBUTED NEURAL CONTROLLER – BEYOND 

CEREBELLAR CONTROL 

4.1 Introduction 

Motor behavior in mammals is governed by the hierarchical interaction of different 
neural areas of the CNS; a complex process in which different areas participate in 
several functions, making it hard to isolate them from one another [200]. Nonetheless, 
the implication of some areas of the CNS in this complex interaction can be highlighted: 
the motor cortex plays a key role in the volitional control of motor output, i.e., initiation 
and suppression of movements [201]; the basal ganglia are involved in selecting the 
most appropriate motor behavior [202]; the brainstem regulates autonomic functions 
such as cardiac and respiratory processes [203], [204]; the spinal cord receives 
descending control signals from higher brain areas, such as the cerebellum, and excites 
and regulates the activity of motor neurons, which ultimately drive muscle activation 
inducing movement [34]. There is a large body of research trying to understand the 
neural operation behind fine motor behavior, from movement planning to execution. As 
more light is shed on the different CNS areas involved in motor processes, the impact 
on health care and rehabilitation therapies will be a natural effect [205]. But, as already 
discussed, also robotics can benefit from our understanding of musculoskeletal motor 
control.  

From an engineering perspective, the diversity of areas of the CNS involved in motor 
control can be understood as a distributed controller. Rather than just one controller 
receiving all the sensory inputs and generating all motor outputs, there is a variety of 
control centers using different kinds of input stimuli, exchanging signals among them 
and complementing their functions. The previous chapters of this dissertation have 
presented the benefits and possible application domains of a cerebellar-like robot 
controller: compliant cobot control suitable for physical HRI and robust against 
sensorimotor delays. The cerebellar SNN was here presented as a stand-alone controller, 
but the cerebellum cannot be fully understood without its interaction with the rest of the 
CNS.  
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Input and output cerebellar information is carried by the cerebellar peduncles, three 
paired bundles of white matter concentrating fibers that carry afferent and efferent 
connections to and from the cerebellum [206], [207]. The inferior peduncle carries 
mainly afferent fibers from the inferior olivary nucleus, and the spinocerebellar and 
vestibular systems. The middle peduncle, the largest of the three, contains axons from 
the pontine nuclei, thus connecting the cerebellum with the pons, which receives inputs 
from the cerebral cortex. The superior peduncle consists of efferent fibers connecting 
the cerebellar nuclei to the red nucleus, which projects to the spinal cord, and the 
thalamus, which connects back to the cerebral cortex. Hence, the cerebellum, although it 
plays a key role in motor control, is just one of the interconnected pieces involved in a 
well-orchestrated process. 

In the present chapter, we go beyond cerebellar control and apply to robotics other key 
elements of the CNS and musculoskeletal system; we add spinal cord (SC) circuits and 
muscle dynamics to the control loop. Some preliminary results are here presented.  

4.2 Spinal cord and cerebellum integration 

The SC regulates motor behavior by transmitting control signals from higher brain areas 
to the muscles, and also by sending sensory signals generated at muscle receptors to 
those higher brain areas, which eventually modulate their motor output depending on 
the feedback. Besides, the SC also regulates fast reflex responses, allowed by direct 
muscle feedback; it can generate rhythmic movements such as locomotion; and it is also 
involved in motor learning [34], [208]. 

The role of the SC in regulating muscle activity is allowed by the sensory feedback 
coming directly from muscles. The primary afferent fibers (Ia) are the largest and most 
rapidly conducting peripheral nerves, and they originate at muscle spindles (stretch 
receptors sensitive to changes in muscle length and velocity) [209]. Ia afferents coming 
from a given muscle spindle connect to motor neurons of the same and synergistic 
muscles [34], i.e., muscles involved in a given movement (e.g., elbow flexion). The 
monosynaptic pathway (i.e., a direct connection involving just one synapse between the 
sensory and the motor neuron) received from Ia afferent fibers contributes to the stretch 
reflex: muscle stretching implies an increase in muscle length, encoded by the muscle 
spindle and transmitted through Ia afferent fibers, which activate the corresponding 
motor neuron, thus contracting the muscle and opposing the stretching. Another 
mechanism supported by Ia afferents is the reciprocal inhibition between antagonist 
motor neurons, i.e., those motor neurons involved in opposite movements (e.g., elbow 
flexion vs. extension). Reciprocal inhibition is carried through Ia inhibitory 
interneurons, which receive an excitatory input from the Ia afferent of a given motor 
neuron, and inhibit the corresponding antagonist motor neuron [210]. The connection 
between motor neurons and inhibitory Ia interneurons from the antagonistic muscle, 
serves to regulate reciprocal inhibition, which balances excitation-inhibition of agonist-
antagonist muscles in flexion-extension movements [211]. Both the stretch reflex and 
reciprocal inhibition can be bypassed and regulated by connections from higher brain 
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areas, and they are just a glimpse of the processes intervened by SC circuits (e.g., 
recurrent inhibition supported by Renshaw cells inhibitory connections to homonymous 
and synergistic motor neurons; Ib afferents originated at Golgi tendon organs, sensitive 
to muscle contraction; group II afferents originated at muscle spindles and involved in 
posture and gait control) [34]. 

Here, we complement the cerebellar model presented in previous chapters with SC 
circuits. Cerebellar motor adaptation allowed by the STDP mechanism at PF-PC 
synapses, is now assisted by SC circuits including stretch reflex and reciprocal 
inhibition between antagonist muscles. We study whether cerebellar motor adaptation 
can be improved by the presence of SC circuits, how these two neural structures 
complement their roles in performing upper limb motor control, and the possible role of 
SC circuits in handling perturbations, i.e., external forces opposing the desired motion.  

4.3 Methods 

4.3.1 Front-end body: musculoskeletal upper limb 

Muscles are at the core of SC operation, being the final actuators of motor behavior. 
Their activity is regulated by SC circuits which receive direct muscle feedback, thus 
allowing fast reflexes. Hence, prior to integrating the cerebellum-SC in a robot control 
loop, we used a simulated musculoskeletal upper limb as the front-end body to be 
controlled. The use of a musculoskeletal body allows direct muscle interaction and 
feedback, and also provides a more biologically relevant scenario to study the 
cerebellum and SC interaction.  

To simulate the musculoskeletal upper limb we used the OpenSim simulator [212], a 
widely used tool among the biomechanics community. We simplified an existing arm 
model based on Hill-type muscles [213]. Our simulated arm model consisted of two 
DOFs (shoulder and elbow) actuated by seven Hill-type muscles (deltoid, triceps long, 
triceps lateral, triceps medial, biceps long, biceps short, and brachialis) (Fig 4.1). 

 
Figure 4.1. Musculoskeletal upper limb model. The model consists of two DOF (shoulder and 
elbow), actuated by seven muscles (deltoid, triceps long, triceps lateral, triceps medial, biceps 
long, biceps short, and brachialis). The table represents the muscles actuating each DOF, 
differentiating between flexor (agonist) and extensor muscles (antagonist). 
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The shoulder was actuated by two flexor muscles (deltoid and biceps long), and one 
extensor (triceps long). The elbow had three flexors (biceps long, biceps short, and 
brachialis), and three extensors (triceps long, triceps lateral, and triceps medial). Biceps 
long and triceps long were bi-articular muscles, i.e., they actuated both shoulder and 
elbow. The flexion-extension movement of the joints was regulated by the agonist-
antagonist muscle interplay. 

4.3.2 Spinal cord circuits 

We implemented a simple SC model that includes stretch reflex and reciprocal 
inhibition between antagonistic muscles. For that, each muscle was activated by one 
motor neuron (MN), which received the input control signal from the cerebellum (Mag(t) 
or Mat(t) ϵ [0, 1], for agonist or antagonist muscles), an excitatory connection coming 
from the Ia afferent fiber and an inhibitory connection through an Ia interneuron (Ia IN). 
The Ia afferent fiber was originated at the same muscle activated by the MN, whereas 
the Ia IN was activated by the Ia afferent fiber originated at the corresponding 
antagonist muscle. See Fig. 4.2 for a schematic representation of the SC circuits and the 
agonist-antagonist relation between the seven muscles included in the musculoskeletal 
model.  

 
Figure 4.2. SC circuits and muscle pairs. (A) Schematic representation of SC circuits. Each 
motor neuron (MN) received an excitatory input from the cerebellum (control signal), an 
excitatory connection from the Ia afferent fiber of the corresponding muscle (stretch reflex), and 
an inhibitory connection from the Ia interneuron (Ia IN) of the corresponding antagonist muscle 
(reciprocal inhibition). Muscle excitation given by MN firing activity, rα(t), conducted to muscle 
activation which induced movement. (B) Agonist-antagonist relation between muscles. 

The dynamics of MN was described as a simple leaky neuron, with a firing rate (rα) 
given by:  

( ) ( ) ( )
N

m i ii

r t r t w r t
dt
α

ατ σ  = − + Σ ⋅ 
 

 (4.1) 
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where τm stands for the membrane time constant, set to 10 ms; sigmoid σ emulates the 
on-off behavior of neurons; wi is used to factor the weight of the input synapse, set to 1 
for excitatory and 0.5 for inhibitory synapses; and ri(t) ϵ [0, 1] stands for the N input 
signals, i.e., Mag(t) or Mat(t) control signals from the cerebellum; rIa(t) corresponding to 
stretch reflex, and rIa IN(t) corresponding to reciprocal inhibition through Ia IN. The 
dynamics of Ia IN neurons was also defined by Eq. 4.1 and 4.2, the only difference 
being the input signals (i.e., Ia IN neurons only input was from an excitatory Ia afferent 
fiber). The Ia afferent fibers firing rate is defined based on [214], as follows:  

0.6( ) 4.3 ( ) 2 ( ) 10Ia s sr t v t l tτ τ= − + − +  (4.3) 

where v(t) and l(t) are the muscle velocity and length, respectively; τs is the sensory 
feedback delay set to 30 ms. The output is normalized to [0, 1]. Finally, muscle 
activation a(t) is given by the first-order activation dynamics related to muscle 
excitation (i.e., firing of MN, rα(t)):  

( ) ( )( )
( ( ), ( ))
r t a ta t

dt a t r t
α

ατ
−

=  (4.4) 

 

(0.5 1.5 ( )) ; ( ) ( )
( ( ), ( ))

; ( ) ( )
(0.5 1.5 ( ))

act

deact

t a t r t a t
a t r t t r t a t

a t

α

α
α

τ

+ >
=  ≤ +

  (4.5) 

where τ(a(t), rα(t)) expresses the excitation-activation variable time constant, with tact 
and tdeact being the activation and deactivation time constants, assumed to be 10 and 40 
ms, respectively [215], [216]. Muscle activation continuously varies between 0 and 1 
(no activation – full activation), producing movement of the upper limb model.  

4.3.3 Connecting the cerebellum and the spinal cord  

The ROS framework presented in previous chapters was expanded with the new pieces. 
The SC circuits were placed between the cerebellum and the front-end body; the 
OpenSim upper limb model that substituted the robot. Both SC circuits and OpenSim 
model were loaded in two additional ROS nodes. Fig. 4.3 A depicts the cerebellum-SC 
control loop. To better contextualize the effects of adding SC to the control loop and to 
gain a better understanding of how the cerebellum and SC complement their roles, the 
control loop was also implemented lacking SC circuits (Fig. 4.3 B), i.e., direct 
cerebellar control of the musculoskeletal body. Hence, we could compare the 
performance of the control loop with and without SC. 
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Figure 4.3. Cerebellum-SC control loop. (A) Schematic representation of the cerebellum-SC 
control loop of a musculoskeletal upper limb model. SC circuits, with the dynamics described in 
4.3.2, generated the output activation signal a(t) for each muscle. Actual and desired joint 
position (Qa, Qd) and velocity (Q̇a, Q̇d) given in rad and rad/s, respectively, were used as 
cerebellar input; whereas SC circuits used muscle length (l) and muscle velocity (v) as input, 
given in mm and mm/s, respectively. (B) Cerebellar control loop of a musculoskeletal upper 
limb model. 

In the cerebellum-SC scenario, the SC circuits received from the cerebellum two control 
signals per joint (Mag,j(t) and Mat,j(t)): one for the flexor (agonist) and one for the 
extensor muscles (antagonist). This configuration allowed maintaining the agonist-
antagonist architecture of the cerebellar network discussed in previous chapters. In the 
case of bi-articular muscles (i.e., biceps long and triceps long), the control signal 
corresponded to the mean of the control signals received for both joints. The SC 
computed the muscle activation signals that were commanded to the upper limb model. 
In the scenario lacking the SC circuits, the agonist-antagonist control signals generated 
at the cerebellum were directly applied as muscle activation signals. 

4.3.4 Motor tasks 

Two different motor tasks were used to test the cerebellum and SC integration: planar 
flexion-extension movement (3 s), and a circular trajectory executed in the vertical 
plane with different speeds (3 s, 1.5 s). These trajectories had the bell-shaped velocity 
profile found in experimental upper limb reaching movements. Fig. 4.4 depicts the 
position and velocity profiles of the benchmarking trajectories. 
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Figure 4.4. Motor tasks. (A) Flexion-extension movement, 3.0 s. (B) Slow circle trajectory, 3.0 
s. (C) Fast circle trajectory, 1.5 s. The top row depicts the trajectory position for each joint; 
bottom row represents the trajectory velocity for each joint. 

4.4 Results 

We compared the performance with and without SC for the different trajectories, using  
the position and velocity MAE (i.e., mismatch between desired and actual trajectory, see 
2.2.9 for further details) achieved after motor adaptation (Fig. 4.5 A). The results 
showed a similar final performance in terms of position accuracy, although the SC 
circuits provided a more stable performance (cerebellum-SC position MAE, mean ± std 
= 0.038 ± 0.003, 0.027 ± 0.002, 0.020 ± 0.003 rad; vs. cerebellum position MAE, mean 
± std = 0.039 ± 0.006, 0.027 ± 0.007, 0.024 ± 0.009 rad; for the flexion-extension, slow 
and fast circle trajectories, respectively). In terms of velocity profiles the case with SC 
circuits provided a performance closer to the desired goal (cerebellum-SC velocity 
MAE, mean ± std = 0.24 ± 0.017, 0.09 ± 0.008, 0.104 ± 0.014 rad/s; vs. cerebellum 
velocity MAE, mean ± std = 0.29 ± 0.034, 0.193 ± 0.035, 0.173 ± 0.022 rad/s; for the 
flexion-extension, slow and fast circle trajectories, respectively).  

Besides the performance provided after learning convergence, we also compared the 
learning convergence speed by measuring the number of iterations required to reach a 
position MAE of 0.1 rad (Fig. 4.5 B). Results showed that addition of the SC circuits 
helped to speed up cerebellar motor adaptation. 

Finally, the SC role in handling motor perturbations was also tested. We induced motor 
perturbations in the form of external forces acting on the musculoskeletal model: 20 N 
during 50 ms applied in different directions while the model executed the circular 
trajectory (Fig. 4.5 C, D). Results showed that the control loop including SC circuits 
provided better response to motor perturbations, as the position MAE deviated less from 
the nominal behavior when the perturbation was applied. 
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Figure 4.5. Performance with and without SC circuits (SC-Cerebellum vs Cerebellum 
controller). (A) Performance accuracy given by the mean absolute error (MAE): difference 
between desired and actual joint position and velocity for each trajectory. (B) Motor adaptation 
convergence speed: number of iterations required to reach a position MAE of 0.1 rad. (C) 
Circular trajectory. (D) Position MAE deviation as force perturbations are applied to the hand in 
different directions (|F| = 20 N during 50 ms) while performing the fast circle trajectory using 
both controllers, with and without SC circuits. 

SC circuits were found to stabilize and fasten cerebellar motor learning and to handle 
perturbations through stretch reflexes. These features are of interest to robotics; hence, 
cerebellum-based cobot control could be further developed to include SC circuits, 
improving the benefits of cerebellar control discussed in previous chapters.  

 

The results presented on cerebellum-SC integration were published at:  

Abadía, I., Bruel, A., Ijspeert, A., Ros, E., & Luque, N. R. (2022). Spino-cerebellar 
control of a musculoskeletal upper limb model, in 9th World Congress of 
Biomechanics, 2022. 

4.5 Application to robotics – Adding muscles to cerebellar torque control 

The benefits of adding SC circuits to cerebellar motor control have been presented in a 
musculoskeletal scenario. In order to apply those features to robotics we first need to 
accommodate in the robot control loop the sensory feedback required by SC circuits, 
i.e., muscle feedback. In the following sections we add muscle dynamics to Baxter 
robot. We discuss the benefits of adding muscle dynamics to the control loop used in 
previous chapters, beyond being a requirement for the future step of integrating SC 
circuits in robot control. 

In robot control, one actuator controls the motion of one joint. In musculoskeletal 
control, joint actuation is rather more complex as several muscles control the joint 
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motion, with some muscles contributing to motion in one direction (flexor muscles) and 
others in the opposite direction (extensor muscles). Besides, muscles are not activated in 
an all-or-nothing fashion, i.e., both flexor and extensor muscles might be activated at 
the same time. Muscle synergies are pivotal for accurate motor control and motion 
stiffness, which is controlled by the modulation of the cocontraction of antagonistic 
muscles. The regulation of muscle cocontraction allows performing a given movement 
with different stiffness profiles, which can be modified depending on the motion 
requirements, e.g., in the presence of disturbances, cocontraction helps maintain 
position control [217]. 

In a physical HRI context, being able to control the robot motion stiffness appears as a 
promising approach. A low stiffness might be compared to an admittance controller, 
providing good performance in soft environments but contact instabilities and poor 
robustness in stiff environments [218]. Low stiffness motion would favor human 
intention during interactions between an operator and the robot. Conversely, a high 
stiffness motion might compare to an impedance controller, which provides good 
performance when the environment is stiff but poor accuracy when the environment is 
soft [218], thus the robot intention would prevail over possible disturbances. Switching 
between one scenario and the other (admittance vs. impedance) would be convenient in 
robotics depending on the requirements of the HRI use case put in place. Here we 
address this challenge by adding a muscle model to Baxter, and performing cerebellar 
control able to learn different stiffness profiles.  

4.6 Methods 

4.6.1 Muscle model  

We added one simulated muscle to each joint of Baxter. The muscle model was derived 
from Ekeberg’s antagonist muscle pair model [219], an approach applied to robotics 
before [28]. We added a cocontraction variable (c) to the muscle model, being the 
torque generated by each muscle defined by Eq. 4.6: 

, , , , ,

.
( ) [ ( ) ( )] [( ( ) ) ( ( ) ) ][ ( )] [ ( )]j j ag j at j j ag j at j j r j j jt M t M t M t c M t c Q Q t Q tτ α β γ δ= − + + + + + − +  (4.6) 

 

where τj stands for the muscle output torque for joint j; αj defines the muscle gain; 
Mag,j(t) and Mat,j(t), ϵ [0, 1], are the cerebellar agonist and antagonist control signals, 
respectively; βj defines the muscle stiffness gain; γj is the muscle tonic stiffness; δj is the 
muscle damping coefficient; Qr,j defines the joint resting position; and Qj(t) and Q̇j(t) 
are the joint position and velocity, respectively. We added the c component, common to 
all joints, which adds a cocontraction baseline to the cerebellar control signals. 
Changing c allows switching among different cocontraction profiles that modify the 
stiffness of motion. The values of the muscle parameters for each joint are defined in 
Table 4.1.  
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Table 4.1. Muscle model parameters. 

Joint α β γ δ 

J1 30.0 1.0 3.0 -1.0 

J2 40.0 1.0 3.0 -1.0 

J3 30.0 1.0 3.0 -1.0 

J4 30.0 1.0 3.0 -1.0 

J5 10.0 1.0 3.0 -1.0 

J6 10.0 1.0 3.0 -1.0 

 

The Ekeberg muscle model uses a mathematical abstraction to represent antagonist 
muscles together, hence, for each Baxter joint we added one Ekeberg muscle that 
already accounts for both flexor and extensor muscles. The muscle model, which 
behaves as linear springs and dampers, includes an active torque component, the one 
directly controlled by Mag,j(t) and Mat,j(t) control signals, and a passive torque element 
that depends on the joint position and velocity relative to the resting state. The resting 
position for joints J1 to J6 was Qr,j = [0.0, 0.22, 0.0, 1.34, 0.0, 0.0] rad. 

4.6.2 Baxter cerebellar control loop with muscles 

We maintained the ROS framework used in previous chapters with the addition of the 
muscle model between the cerebellum and the robot actuators. The agonist-antagonist 
architecture used in the cerebellar layers was maintained, allowing the generation of the 
Mag,j(t) and Mat,j(t) control signals. For the spike-to-analog conversion, the equations 
used in 3.2.4 were used, but instead of subtracting the agonist and antagonist 
components (Eq. 3.5), they were kept as two separate output signals normalized to [0, 
1], providing the final Mag,j(t) and Mat,j(t) values commanded to muscles. The resulting 
torque from Eq. 4.6 was commanded to the robot. 

4.7 Results 

We tested the cerebellar control loop with simulated muscles and different 
cocontraction profiles performing the eight-like trajectory used in previous chapters (see 
2.2.9). We established a baseline (c = x1) cocontraction value of cj = [1.5, 1.5, 1.5, 1.5, 
0.5, 0.5] for joints J1 to J6. We then modified cj and tested the following range of 
cocontraction profiles: cj = x0, cj = x1, cj = x5, cj = x9, cj = x10, cj = x12. 

We found that the cerebellar network performed accurate control for a wide range of 
cocontraction profiles (Fig. 4.6 A); for cj = x10 the MAE performance started to 
degrade, as the cerebellar output was close to saturation and the active torque 
component of muscles could not compensate for the passive component; and for cj = 
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x12 the performance was degraded significantly: position MAE = 0.0189  ± 0.0042, 
0.0191 ± 0.0034, 0.0179 ± 0.0051, 0.0189 ± 0.0052, 0.0240 ± 0.0052, 0.0508 ± 0.0075 
rad, for c = x0, x1, x5, x9, x10, x12, respectively. If higher cocontraction values were to 
be used, the muscle gain could be increased (note that for the different cocontraction 
profiles that were tested, the muscle parameters remained the same and only c was 
modified). 

 
Figure 4.6. Performance of the different cocontraction profiles. (A) Performance accuracy, 
given by the position MAE, of the cerebellar SNN controller with muscles in the loop. The 
cocontraction c of the muscle model is modified. The cerebellar SNN learns to operate the robot 
for each c value, and then the position MAE is obtained for 100 trials of the eight-like 
trajectory. (B) Deviation of the end-effector in the vertical z plane as a 2.0 kg payload is 
attached. The distance from the resting position is measured for different c values, without any 
active component of the muscle being at play.   

To test the response against perturbations we added a 2.0 kg payload to the end-effector 
in resting position, without any active component from the muscles, to see how the 
different cocontraction profiles handled the disturbance. We measured the deviation of 
the end-effector from its resting position in the vertical z axis. Results showed how the 
effect of the perturbation was reduced as higher cocontraction values were used: Δz = 
9.9, 9.6, 5.8, 4.7, 4.4, and 3.9 cm, for c = x0, x1, x5, x9, x10, x12, respectively (Fig. 4.6 
B).  

4.8 Discussion and future work 

The CNS can be an endless source of inspiration for the robotics community. In 
previous chapters we addressed the benefits of cerebellar-based control for cobots, 
which allows for adaptive, compliant control and robust to sensorimotor delays thanks 
to the deployed STDP mechanism. These benefits can be further developed by adding 
other CNS areas. Here we have discussed how SC circuits can complement the 
cerebellar network. SC circuits can help in handling perturbations thanks to fast-reflex 
responses using direct muscle feedback. Besides, direct muscle feedback allows the SC 
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to regulate muscle activation which has been shown to improve cerebellar motor 
adaptation.  

The cerebellum-SC integration is currently under further development. We are 
conducting experimental studies with healthy subjects, who are asked to perform 
several upper limb movements involving 2 DOF (shoulder and elbow joints). We then 
extract kinematics and electromyography (EMG) data to be used in our simulated 
environment (i.e., from the lab to simulation). Our goal is to cross-validate our model 
using the EMG muscle profiles from the lab as reference against the performance of the 
musculoskeletal arm model in OpenSim being controlled by the integrated cerebellum 
and SC models. Validation of the model will help to further study the working 
hypothesis of the complementary roles of the cerebellum and SC circuits.  

Integration of SC circuits in the Baxter control loop is currently also under further 
development. Here we have presented preliminary results on the addition of a muscle 
model to the robot. We are currently conducting a more in-depth analysis about the 
muscle model and cocontraction profiles, evaluating the possibility of the cerebellar 
network allowing switching between cocontraction profiles by making use of an input 
reward signal through the mossy fibers [220]. The different cocontraction profiles that 
were presented here were each controlled by a dedicated cerebellar network. If one 
single cerebellar network could learn several cocontraction profiles, then it could be 
used as one single controller able to modulate the degree of admittance/impedance 
control, a long-addressed challenge in the robotics community [218], [221]. Hardware 
efforts have succeeded in modifying the stiffness of motion [222], providing different 
compliance when interacting with the environment [223]; here we propose a 
biologically inspired, software approach. 

Once the benefits of adding muscles to Baxter have been addressed, we plan to also 
include in the robot control loop the SC circuits studied using the OpenSim control 
loop. Hence, the cerebellar-SC integration could be applied to cobot control, further 
expanding the benefits of cerebellar control: adaptive, compliant cobot control robust to 
sensorimotor delays, now complemented by an increased robustness to perturbations 
and the ability to switch between different cocontraction profiles (admittance vs. 
impedance). 

The work presented in this chapter and the current development have been made 
possible thanks to the participation in the European Project HBP (see 1.7), which has 
brought our research group together with the BioRobotics Laboratory, led by Prof. 
Auke Ijspeert, with long experience in SC circuits and musculoskeletal systems, and 
their application to robotics.  
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5. DISCUSSION 

In this dissertation we have presented a cerebellar SNN robot controller. The cerebellar 
SNN, accounting with the main neural populations of the cerebellar cortex (MF, GC, 
PC, CF, and DCN) and the primary form of cerebellar synaptic plasticity (STDP), has 
been validated as an adaptive, compliant controller of a nonlinear robot, and also proven 
robust against sensorimotor time delays. Integrating into the cerebellar controller other 
parts of the CNS and musculoskeletal system (SC circuits and muscle dynamics) has 
also been addressed. 

Physical HRI is driving robotics toward the use of elastic components, which provide 
passive compliance at the cost of increasing the dynamic complexity, i.e., elasticity 
brings a highly nonlinear component which hinders the mathematical modeling of the 
robot. Hence, new control approaches which do not rely on analytical solutions are 
required. This challenge can be addressed using different perspectives involving ANNs 
[17], [72]; here, we have proposed a cerebellar SNN controller; i.e., a biologically 
inspired approach as motor control of the musculoskeletal system inherently deals with 
nonlinearity induced by the viscoelastic dynamics of muscles, tendons, ligaments and 
tissues.  

The cerebellum has long been proposed as an adaptive controller, with different 
modeling approaches being used (state-encoder-driven models, cellular-level models, 
functional models [35]). Cellular-level models can fully benefit from the features of 
cerebellar control and the findings provided by neuroscience studies. However, their 
high computational cost has usually relegated them to non-RT and simulated scenarios 
[99], [129], small-sized networks [29] and low resolution control signals [130]. In the 
work presented here, we addressed the challenge of applying a cellular-level cerebellar 
model to a real-world robot control loop. First, we overcame the challenge of operating 
in RT a large-enough cerebellar SNN (~62 k LIF neurons, ~36 M synapses). The size of 
the network had to be large-enough as to provide the required resolution to perform 
direct torque control of 6 DOF (Baxter robot), which brings the second challenge here 
addressed: accurate and adaptive torque control of 6 nonlinear DOF. The cerebellar 
network was proven able to provide fine motor control of Baxter, a robot with nonlinear 
dynamics due to the use of series elastic actuators and passive springs. Besides, the 
cerebellar SNN was tested dealing with motor perturbations and HRI, providing 
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satisfactory results for both scenarios. Hence, the cerebellar SNN was validated as an 
adaptive, compliant controller (chapter 2).  

Special mention must be made of EDLUT simulator [68], at the core of the work 
presented here. Some of the known features of biological cerebellar motor control 
(motor learning, adaptive and predictive control) could be successfully applied to a 
cobot control scenario thanks to EDLUT being specially designed to operate in RT 
allowing cellular-level models with enough resolution for input-output control signals. 
Efficient SNN simulators are a requirement to address the embodiment of biologically 
plausible neural systems, pivotal for neurorobotics development. EDLUT has been 
proven qualified for the task, without using any specific hardware (i.e., just using 
regular CPU and GPU computation). 

Once the performance of the cerebellar SNN was validated in terms of accuracy and 
compliance, we tested its applicability in the presence of sensorimotor delays. The 
cerebellar predictive behavior allows dealing with the natural sensorimotor delays 
affecting the CNS. This robustness against communication latencies would be beneficial 
for robot control scenarios affected by such delays, a current challenge due to the 
increased use of wireless setups [20], cloud-robotics [21], remote connections or 
teleoperation architectures [22]. We introduced sensorimotor delays in the Baxter 
control loop using different approaches: constant and stochastic delays induced in a lab-
controlled setup; and real-world use cases such as Wi-Fi communication and remote, 
long-distance connection over the Internet. The results proved the cerebellar SNN 
controller able to provide stable behavior despite the presence of different kinds of 
latency (chapter 3). 

The symbiosis between neuroscience and robotics does not end with the cerebellum. 
Neurorobotics shall benefit from the understanding of the different CNS areas involved 
in motor control, from decision making, to motor planning and execution. In chapter 4 
we presented a first approach for the integration of the cerebellar controller and SC 
circuits including stretch reflex and reciprocal inhibition, which improved cerebellar 
learning and contributed to handling motor perturbations. The cerebellum-SC 
integration was studied in a simulated environment involving motor control of a 
musculoskeletal upper limb model; future work will focus on the application to robotics 
of the cerebellum-SC integrated model. Also in chapter 4 we introduced muscle 
dynamics into Baxter, a line of research oriented to provide different stiffness profiles 
by modification of muscle cocontracion, while maintaining movement accuracy. 
Preliminary results presented here point toward a promising approach to allow for 
switching between admittance or impedance robot behavior. Selecting between 
admittance or impedance profiles will depend on the HRI requirements; i.e., admittance 
control favors performance in soft environments, while impedance control provides 
better results in stiff environments [218]. Future work will address the cerebellar 
capabilities for learning different stiffness profiles by using cerebellar reward signals 
[220]. Furthermore, to select which profile to use in a given case, a basal ganglia model 
could be added to the control loop [224], a CNS area involved in action selection 
processes. The basal ganglia model would provide a context-switching signal to 
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differentiate between admittance or impedance control; that signal would reach the 
cerebellar model through the mossy fibers, and the cerebellar network would learn how 
to adapt its behavior to provide for accurate motor commands for the different stiffness 
profiles. Cerebellar output motor commands would then be sent to SC circuits, which 
would induce muscle activation translated into output torque commands to be applied 
by the robot actuators. Therefore, future work will focus on further expanding the 
biologically inspired, neurorobotics approach here presented. 

5.1.1 Summary of accomplished objectives 

Within this dissertation, we have accomplished the following specific objectives:  

- Development of the cerebellar SNN adapted for 6 DOF using EDLUT simulator 
(chapter 2). 

- Integration of the cerebellar SNN in the control loop of a Baxter robot, in RT 
(chapter 2).  

- Validation of the motor learning capability of the cerebellar SNN torque 
controller. The cerebellar SNN learnt torque commands to perform different 
trajectories involving 6 nonlinear DOF of one arm of the Baxter robot (chapter 
2).   

- Validation of the performance accuracy of the cerebellar SNN torque controller. 
The achieved motor learning provided fine accuracy in the execution of the 
motor tasks, outperforming the factory-default position controller (chapters 2 
and 3).   

- Validation of the adaptability of the cerebellar SNN torque controller to 
unstructured scenarios. The SNN was able to adapt to dynamic changes induced 
by context variations; i.e., additional 0.5 kg payload and external elastic-forces 
(chapter 2).  

- Validation of the compliant behavior of the cerebellar SNN torque controller. 
The cerebellar SNN allowed safe HRI (chapter 2).  

- Validation of the robustness of the cerebellar SNN torque controller against 
nondeterministic time delays. The SNN was able to control the cobot in 
scenarios affected by nondeterministic transmission delays between the robot 
and controller. The provided torque control was stable in the presence of both 
constant and stochastic time delays in lab-controlled and real-world use cases. 
The cerebellar tolerance against sensorimotor delays could be modified followed 
by variation of the performance accuracy; i.e., trade-off between robustness 
against time delays and performance accuracy (chapter 3). 

- Integration of the cerebellar SNN and SC circuits (chapter 4). 
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- Validation of the performance of the cerebellum-SC integration controlling a 
musculoskeletal upper limb model. The cerebellum-SC controller improved 
learning convergence and performance accuracy of the cerebellar controller 
(chapter 4). 

- Validation of the contribution of SC circuits in handling motor perturbations. 
The cerebellum-SC controller was proven more robust against perturbations than 
the cerebellar controller (chapter 4). 

- Integration of muscle dynamics in Baxter control loop (chapter 4). 

- Validation of the performance of different muscle cocontraction profiles and 
their response against perturbations. The cerebellar controller successfully learnt 
different cocontraction profiles with similar performance accuracy. Higher 
cocontraction profiles were proven more robust against motor perturbations 
(chapter 4). 
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6. CONCLUSION 

Robots are tools which have been around humans for decades; from their original 
application in factory automation, to more recent application domains such as health 
care or education. However, robot behavior is still far from the flexibility and 
adaptiveness provided by humans; the closer to human behavior, the more complex 
applications robotics will have. Thus, robotics development shall directly benefit from 
the study of human behavior itself, where many questions are still to be addressed.  

In future years, neuroscience will expand the answers to decode and further understand 
human cognition, emotion, and motion. The application to robotics of such 
neuroscience findings will require bridging the gap between biology and technology, 
which can be done using computational neuroscience to artificially replicate the 
biological substrate. Artificial replicas of the CNS can be embedded in robots, which 
equipped with copies of the machinery behind human behavior would then be more 
suitable for application in complex contexts. But the duty of these robots does not end 
with physical jobs. The embodiment of biologically plausible neural networks allows 
these robots to repay the favor to neuroscience and be used as guinea pigs to study 
neurological function, disorders and possible treatments; closing the loop of 
neurorobotics. Robots can help us as mere hardware tools, but they can also play a key 
role in understanding our own nature and behavior.  
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RESUMEN 

En esta tesis presentamos una solución biológicamente inspirada para un problema de 
control robótico: un modelo computacional que emula la estructura y funcionalidad del 
cerebelo, capaz de controlar por par de fuerzas, de manera adaptativa y segura, un brazo 
robótico de dinámica no lineal. El modelo de cerebelo se demuestra también robusto 
ante retardos de transmisión entre robot y controlador. Por último, ampliamos el 
enfoque bioinspirado añadiendo un modelo de médula espinal y dinámicas musculares 
al controlador basado en cerebelo.  

 

Introducción 

En las últimas décadas, la robótica ha evolucionado hacia un nuevo paradigma 
caracterizado por la interacción física entre humanos y robots (HRI, human-robot 
interaction) [7]. Este nuevo escenario contrasta con los escenarios clásicos de robótica 
industrial, en los que se evita cualquier contacto entre el operario y el robot al no poder 
garantizar una interacción segura; la robótica ha ampliado sus aplicaciones hacia nuevos 
contextos que exigen que la interacción humano-robot sea segura (tareas de rescate, 
terapias de rehabilitación o asistentes educativos, entre otros). Para atender esta 
demanda, una nueva familia de robots ha entrado en juego: los robots colaborativos 
(cobots).  

En el desarrollo de cobots, tanto el hardware como el software se han de tener en 
cuenta. En cuanto al hardware, los cobots cuentan con actuadores de baja potencia y 
componentes elásticos que ofrecen seguridad pasiva; esto es, en caso de impacto, el 
propio hardware del robot minimiza los posibles daños. Estos componentes elásticos y 
de baja potencia, que emulan en cierto modo las propiedades de músculos, tendones y 
ligamentos, contrastan con los robots rígidos y de alta potencia utilizados en entornos 
industriales. Ahora bien, el uso de este tipo de hardware introduce componentes no 
lineales en la dinámica del robot, dificultando así su modelado matemático e 
impidiendo, por tanto, la aplicación de esquemas de control clásico por par de fuerzas 
[17]. Así pues, en la parte del software, se necesitan nuevos controladores adaptativos 
que no dependan de un modelado previo de la dinámica del robot y capaces de tolerar 
las no linealidades. Además de los condicionantes impuestos por el hardware, los cobots 
tienen que desenvolverse en escenarios no estructurados debido a la naturaleza 
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imprevisible de la interacción humana, contrastando, una vez más, con los escenarios 
industriales clásicos de entornos estructurados y bien acotados.  

Otra diferencia entre los escenarios robóticos clásicos y las nuevas aplicaciones es el 
enlace de comunicación entre el robot y el controlador. Tradicionalmente, un cable 
dedicado, punto a punto, establece la comunicación robot-controlador. Actualmente, 
nuevos tipos de conexión son cada vez más comunes: comunicación inalámbrica, 
enlaces en la nube (cloud robotics), teleoperación o control remoto. Estos nuevos 
esquemas de comunicación, que implican ventajas como el ahorro de cableado o una 
mayor flexibilidad de la infraestructura, conllevan retardos temporales que afectan a la 
transmisión de información en el ciclo de control [20], [21], [22]. La naturaleza no 
estructurada de los nuevos escenarios robóticos queda acentuada por esta latencia 
estocástica presente en el ciclo de control, a tener en cuenta en el diseño de 
controladores.  

Así pues, la robótica colaborativa se caracteriza por el uso de actuadores de baja 
potencia y componentes elásticos, y por la necesidad de controladores adaptativos 
capaces de lidiar con las no linealidades de la dinámica del robot y escenarios no 
estructurados. Características, todas ellas, presentes de manera natural en el control 
motor que animales y humanos ejercemos sobre nuestro cuerpo. Controlamos elementos 
altamente no lineales como son los músculos y el resto de tejidos blandos, 
interactuamos con un entorno en constante cambio que exige nuestra adaptación 
continua, nuestras acciones son de naturaleza no estructurada, y los retardos temporales 
son fisiológicamente inevitables en la trasmisión de información en el sistema nervioso. 
Por tanto, una línea de trabajo hacia el éxito de los robots colaborativos será hacer su 
comportamiento lo más parecido posible al nuestro. El estudio del control motor 
biológico puede servir como fuente de inspiración para el desarrollo de controladores 
adaptativos para cobots.  

 

Neurorobótica 

La percepción de estímulos, procesamiento de información, y la planificación y 
ejecución de respuestas motoras constituyen un complejo proceso regulado por 
diferentes áreas del sistema nervioso (e.g., la corteza motora está implicada en el control 
de movimientos voluntarios [31], los ganglios basales juegan un papel en la toma de 
decisiones [32], la médula espinal regula la actividad muscular y genera respuestas 
reflejas [34], etc.). El conocimiento aportado por la neurociencia sobre las diferentes 
áreas nerviosas puede ser replicado utilizando modelos computacionales, inspirando así 
el desarrollo de soluciones tecnológicas que doten a los robots de capacidades que para 
nosotros son innatas. A su vez, la integración de estos modelos computacionales en 
ciclos de control robótico proporciona un entorno experimental con el que validar los 
modelos y poder estudiar el funcionamiento nervioso [29]. Esta simbiosis entre 
neurociencia y robótica es lo que llamamos neurorobótica.  
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Cerebelo y modelado computacional 

De todas las áreas del sistema nervioso involucradas en el control motor, una de ellas es 
especialmente aplicable a la robótica: el cerebelo. Por un lado tiene una estructura 
neuronal muy regular que facilita su modelado computacional, y por otro lado su papel 
reconocido en el aprendizaje motor lo hace apropiado para control robótico adaptativo 
[35]. La teoría Marr-Albus-Ito sobre el cerebelo y su capacidad de adaptación motora 
[41], [42], [43], ampliamente aceptada en la comunidad científica, funda las bases sobre 
los mecanismos de aprendizaje supervisado en el cerebelo [33]. En el aprendizaje 
supervisado la respuesta del sistema a un estímulo se compara con el resultado deseado, 
generando una señal de aprendizaje que regula los parámetros internos del propio 
sistema. Este proceso iterativo permite que el sistema se ajuste hasta minimizar la 
diferencia entre la respuesta real y la deseada. En el cerebelo la plasticidad sináptica 
permite regular las conexiones neuronales en función de los estímulos sensorimotores 
de entrada y la evaluación de la correspondiente respuesta motora. El cerebelo nos 
permite modificar nuestras acciones para que sus consecuencias coincidan con nuestras 
expectativas [46].   

Diferentes tipos de modelos computacionales del cerebelo han sido propuestos como 
controladores adaptativos con anterioridad [35]. De entre las diferentes propuestas, son 
los modelos de nivel celular los que ofrecen una visión más completa sobre el cerebelo, 
así como los que mejor aprovechan el conocimiento neurológico previo ya que modelan 
el comportamiento biológico a nivel de neurona. Las redes neuronales de impulsos 
(SNN, spiking neural network) son las redes neuronales artificiales más biológicamente 
plausibles ya que modelan la transmisión y procesado de información al igual que lo 
hacen las neuronas biológicas: mediante la temporización precisa de impulsos 
(potenciales de acción en la membrana celular) [61]. Las SNNs heredan las propiedades 
de las redes neuronales biológicas al replicar sus dinámicas a nivel celular, pero 
suponen un alto coste computacional en comparación con otros enfoques limitados a 
replicar la funcionalidad. En cuanto a la robótica, el coste computacional de las SNN ha 
limitado sus aplicaciones a escenarios simulados [99] o de baja resolución [130]. En 
esta tesis, solventamos esa limitación y presentamos un modelo de cerebelo 
biológicamente plausible, basado en SNN, aplicado a un problema de control robótico 
real: control adaptativo por par de fuerzas de seis grados de libertad, aplicado a un robot 
de dinámica no lineal, operando en tiempo real y robusto a retardos temporales 
estocásticos que afectan a la comunicación robot-controlador.  

 

Controlador SNN basado en cerebelo. Control adaptativo y seguro 

En un primer momento, integramos un modelo de cerebelo SNN (~62k neuronas LIF, 
leaky integrate and fire, y ~36M de sinapsis) en el ciclo de control de un robot Baxter, 
funcionando en tiempo real. El modelo de cerebelo SNN cuenta con las principales 
poblaciones neuronales de la corteza del cerebelo (mossy fibers, MF; granule cells, GC; 
Purkinje cells, PC, climbing fibers, CF; deep cerebellar nuclei, DCN) y su principal 
mecanismo de aprendizaje (spike-timing-dependent plasticity, STDP). La red SNN se 
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implementa utilizando el simulador de redes neuronales de impulsos EDLUT [68]. Una 
vez integrado en el ciclo de control, probamos la capacidad del modelo SNN de 
controlar por par de fuerzas los seis grados de libertad del brazo de Baxter, ejecutando 
con precisión diferentes tareas motoras. El brazo de Baxter es de dinámica no lineal 
debido al uso de actuadores elásticos en serie en cada articulación, y muelles pasivos en 
una de sus articulaciones; por tanto, el modelo de cerebelo SNN se demuestra capaz de 
controlar no linealidades, de interés para la robótica colaborativa. Después de 
comprobar su precisión, enfrentamos el controlador ante diferentes escenarios no 
estructurados: interacción directa humano-robot y cambios en la dinámica de la planta 
(un peso extra añadido al extremo del brazo robótico, una fuerza elástica que se opone 
al movimiento). En ambos casos, el controlador SNN es capaz de adaptar su 
funcionamiento y ofrecer una interacción segura. Estos resultados, presentados en el 
capítulo 2, demuestran la aplicabilidad del modelo de cerebelo SNN como controlador 
adaptativo por par de fuerzas, capaz de operar con precisión seis grados de libertad de 
dinámica no lineal, y de adaptar su comportamiento a cambios de contexto e interactuar 
de manera segura con humanos.  

 

Controlador SNN basado en cerebelo. Control robusto ante retardos temporales 

Los retardos temporales presentes en el sistema nervioso implican que el cerebelo recibe 
información sensorimotora pasada y genera órdenes motoras que serán ejecutadas en el 
futuro [106]. Este retardo de ida y vuelta (~50 – 150 ms) obliga el comportamiento 
predictivo del cerebelo: es capaz de correlacionar información pasada con comandos 
futuros y mantener un control motor preciso [79]. En el capítulo 3 comprobamos la 
capacidad del modelo de cerebelo SNN de tolerar retardos temporales en la 
comunicación robot-controlador. Al mantener los mecanismos de aprendizaje y 
adaptación e incluir el retardo sensorimotor del cerebelo biológico, el controlador SNN 
es capaz de operar de manera precisa incluso en presencia de retardos temporales. 
Introducimos diferentes latencias en el ciclo de control (retardos constantes simétricos y 
asimétricos, retardos estocásticos debidos a conexión inalámbrica y enlace remoto) y  
comprobamos cómo el controlador SNN mantiene los niveles de precisión obtenidos en 
condiciones ideales sin latencia.   

 

Más allá del cerebelo: médula espinal y músculos 

Finalmente, en el capítulo 4 ampliamos el enfoque bioinspirado basado en cerebelo 
añadiendo al controlador SNN otros componentes del control motor biológico. En 
primer lugar, integramos un modelo de médula espinal junto con el modelo de cerebelo. 
La médula espinal utiliza información sobre el estado de los músculos para regular la 
actividad de estos, y este ciclo de retroalimentación rápida permite también la 
generación de respuestas reflejas [34]. Para incluir la información muscular, sustituimos 
el robot como planta del ciclo de control por un modelo de brazo musculoesquelético, 
dotado de dos grados de libertad controlados por la actividad de siete músculos. Utilizar 
un modelo musculoesquelético también nos ofrece un entorno biomecánico más 
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representativo en el que estudiar la complementariedad del cerebelo y la médula. 
Comprobamos cómo la médula espinal mejora la adaptación motora del cerebelo y su 
capacidad de generar reflejos rápidos ofrece una mejor respuesta ante perturbaciones 
(fuerzas externas que se oponen al movimiento deseado). Así pues, la integración 
cerebelo-médula amplía los beneficios del controlador SNN basado en cerebelo 
presentados en capítulos anteriores.  

Para poder integrar la médula en el ciclo de control robótico, presentamos también la  
inclusión de dinámicas musculares en cada articulación de Baxter. Estos músculos 
simulados permiten modificar el grado de rigidez del movimiento del brazo al contraer 
simultáneamente el músculo agonista (flexor) y antagonista (extensor). De este modo, 
variando el grado de cocontracción se consigue realizar un mismo movimiento con 
distinta rigidez [217]. Resultados preliminares muestran cómo el cerebelo SNN es capaz 
de aprender a controlar el brazo de Baxter utilizando diferentes perfiles de 
cocontracción, y cómo estos perfiles ofrecen diferentes respuestas ante interacciones 
externas. Proponemos las dinámicas musculares y el control adaptativo del modelo de 
cerebelo SNN como un controlador capaz de modificar el grado de rigidez del 
movimiento según convenga; una cocontracción baja puede equipararse a control por 
admitancia, mientras que una cocontracción alta es comparable a control por 
impedancia. 

 

Discusión 

En esta tesis presentamos una red SNN basada cerebelo aplicada como controlador 
robótico. El modelo de cerebelo SNN se ha demostrado válido como controlador 
adaptativo por par de fuerzas de un robot de dinámica no lineal, ofreciendo además un 
rendimiento seguro para la interacción con humanos y robusto ante retardos 
sensorimotores. Además, también presentamos resultados preliminares de añadir al 
controlador basado en cerebelo otras partes del sistema nervioso central y el sistema 
musculoesquelético: médula espinal y dinámicas musculares.   

La interacción física humano-robot está impulsando el uso de componentes elásticos 
que añaden seguridad pasiva a costa de hacer más compleja la dinámica del robot; la 
elasticidad introduce no linealidades que dificultan el modelado matemático de la 
dinámica. Por tanto, se necesitan nuevos controladores que no dependan de soluciones 
analíticas. Esta exigencia puede ser atendida utilizando redes neuronales clásicas 
(ANNs) [17], [72]; en esta tesis presentamos un controlador SNN basado en cerebelo. 
Proponemos un enfoque biológicamente inspirado que se beneficia de cómo el control 
motor biológico consigue, de manera natural, controlar las no linealidades introducidas 
por las dinámicas viscoelásticas de músculos, tendones, ligamentos, y resto de tejidos 
blandos.  

El cerebelo ha sido propuesto con anterioridad como controlador adaptativo utilizando 
diferentes enfoques (modelos basados en codificación de estados, modelos funcionales, 
modelos de nivel celular [35]). Los modelos de nivel celular ofrecen una visión más 
profunda del substrato biológico, y por tanto pueden beneficiarse en mayor medida de 
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las características del cerebelo y del conocimiento ofrecido por la neurociencia. Sin 
embargo, el alto coste computacional de estos modelos los ha relegado a escenarios 
simulados [99], [129], redes de tamaño reducido [29], y señales de control de baja 
resolución [130]. En el trabajo aquí presentado, abordamos el desafío de aplicar a un 
problema real de robótica un modelo de cerebelo de nivel celular. En primer lugar, 
superamos el reto de ejecutar en tiempo real una red SNN de tamaño suficientemente 
grande (~62k neuronas LIF y ~36M de sinapsis), permitiendo operar con señales de 
control de alta resolución adecuadas para el control por par de fuerzas de seis grados de 
libertad. Esto conlleva al segundo reto superado en esta tesis: control adaptativo y 
preciso por par de fuerzas de seis grados de libertad de un robot no lineal (Baxter). 
Además, se comprueba la capacidad del controlador SNN de lidiar con perturbaciones 
motoras e interacción física humano-robot, demostrando resultados satisfactorios en 
ambos casos. De este modo, el controlador SNN basado en cerebelo queda validado 
como controlador adaptativo y seguro (capítulo 2). 

En este punto cabe realizar una mención especial al simulador de redes neuronales de 
impulsos EDLUT [68], pieza clave del trabajo aquí presentado. Propiedades del 
cerebelo biológico relacionadas con el control motor (aprendizaje, adaptación, control 
predictivo) han podido ser aplicadas a un escenario de control robótico gracias a la 
capacidad de EDLUT de operar en tiempo real. El diseño específico de EDLUT para 
cumplir con este requisito permite la ejecución de redes SNN operando con señales de 
control de entrada y salida de alta resolución. Se necesitan simuladores SNN eficientes 
para incorporar a ciclos de control redes neuronales biológicamente plausibles, 
fundamental para el avance de la neurobótica. EDLUT se ha demostrado capaz de 
resolver este problema sin necesidad de utilizar hardware específico, haciendo uso 
únicamente de computación convencional por CPU y GPU. 

Una vez validado el rendimiento del controlador SNN en términos de precisión y 
seguridad, pasamos a comprobar su capacidad de operar bajo retardos temporales. El 
comportamiento predictivo del cerebelo permite tolerar los retardos sensorimotores 
presentes en el sistema nervioso de manera natural. Esta solidez ante latencias en la 
comunicación sería beneficiosa para escenarios de control robótico afectados por 
retardos, un desafío de la robótica actual debido al creciente uso de comunicaciones 
inalámbricas [20], en la nube (cloud-robotics) [21], conexiones remotas o teleoperación 
[22]. Introducimos retardos sensorimotores en el ciclo de control de Baxter y 
comprobamos la respuesta del controlador SNN. Los retardos introducidos obedecían a 
diferentes escenarios: latencia constante y variable bajo control en el laboratorio, y 
retardos no deterministas debidos a casos de uso reales como conexión Wi-Fi y 
conexión de larga distancia a través de Internet. Los resultados demuestran que el 
controlador SNN basado en cerebelo ofrece un comportamiento estable a pesar de la 
presencia de latencias de diferente naturaleza (capítulo 3). 

La simbiosis entre neurociencia y robótica no se limita al cerebelo. La neurorobótica 
puede beneficiarse del conocimiento adquirido sobre las distintas partes del sistema 
nervioso involucradas en el control motor, desde la toma de decisiones, a la 
planificación y ejecución de movimientos. En el capítulo 4 presentamos resultados 
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preliminares de la integración del modelo SNN de cerebelo junto con un modelo de 
médula espinal que implementa inhibición recíproca entre músculos antagonistas y 
reflejo miotático (i.e., respuesta refleja que se produce ante el estiramiento de un 
músculo). La integración del modelo de médula facilita el aprendizaje y adaptación del 
modelo de cerebelo y mejora la respuesta ante perturbaciones motoras. La integración 
de los dos modelos se ha llevado a cabo en un entorno simulado en el que el control 
motor se ejercía sobre un modelo musculoesquelético de brazo (dos grados de libertad y 
siete músculos). El trabajo futuro se centrará en incorporar el modelo de médula espinal 
al ciclo de control robótico. También en el capítulo 4 añadimos dinámicas musculares a 
cada articulación de Baxter; una línea de trabajo orientada a modificar la rigidez del 
movimiento variando el grado de cocontracción muscular. Los resultados preliminares 
incluidos en esta tesis dibujan un camino prometedor hacia un controlador capaz de 
cubrir una gama de control por admitancia y por impedancia. Cambiar entre admitancia 
o impedancia dependerá de las exigencias del entorno de interacción física humano-
robot: el control por admitancia implica un movimiento suave del robot, favoreciendo 
así la intención de movimiento del humano; el control por impedancia ofrece una 
respuesta rígida ante interacciones, favoreciendo la intención de movimiento del robot 
[218]. El trabajo futuro irá orientado a utilizar señales de recompensa en el cerebelo 
[220] para aprender diferentes perfiles de rigidez de movimiento, permitiendo así que 
un mismo controlador ofrezca diferentes comportamientos. Para elegir qué grado de 
rigidez utilizar en cada momento se puede incorporar al ciclo de control un modelo de 
ganglios basales [224]; un área del sistema nervioso involucrada en la toma de 
decisiones. El modelo de ganglios basales produciría una señal de contexto capaz de 
diferenciar entre distintos grados de control por admitancia o impedancia; esa señal 
serviría como señal de entrada al cerebelo por vía de las fibras musgosas, y el cerebelo 
aprendería a generar comandos motores precisos para los distintos grados de rigidez. 
Estos comandos motores se enviarían al modelo de médula espinal, que regularía la 
activación de la dinámica muscular, traducida finalmente en comandos de par de fuerzas 
enviados a los actuadores del robot. Así pues, el trabajo futuro está orientado a ampliar 
el enfoque bioinspirado utilizado en la tesis.  

 

Resumen de los objetivos alcanzados  

En esta tesis se han alcanzado los siguientes objetivos específicos:  

- Desarrollo mediante SNN de un modelo de cerebelo adaptado a seis grados de 
libertad. Desarrollado utilizando el simulador EDLUT (capítulo 2).  

- Integración en tiempo real del modelo SNN de cerebelo en el ciclo de control del 
robot Baxter (capítulo 2).  

- Validación de la capacidad de aprendizaje del modelo SNN de cerebelo como 
controlador por par de fuerzas. El controlador SNN aprende los comandos de par 
de fuerzas necesarios para ejecutar diferentes movimientos que implican a los 
seis grados de libertad del brazo de Baxter (capítulos 2 y 3).  
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- Validación de la precisión del controlador SNN. El aprendizaje motor  
proporciona un alto grado de precisión en los movimientos (capítulos 2 y 3).  

- Validación de la capacidad de adaptación del controlador SNN ante escenarios 
no estructurados. El controlador SNN adapta su comportamiento a cambios 
dinámicos debidos a modificaciones del contexto: una carga adicional de 0.5 kg, 
fuerzas elásticas externas que se oponen al movimiento (capítulo 2).  

- Validación del comportamiento seguro del controlador SNN. El modelo de 
cerebelo SNN permite la interacción física humano-robot de manera segura 
(capítulo 2).  

- Validación de la solidez del controlador SNN ante retardos temporales. El 
controlador SNN es capaz de controlar el robot a pesar de la presencia de 
retardos temporales que afectan a la comunicación robot-controlador. El control 
por par de fuerzas del modelo de cerebelo es estable en presencia de retardos 
temporales, tanto constantes como estocásticos, en entornos controlados de 
laboratorio y casos de usos reales (comunicación Wi-Fi, conexión remota vía 
Internet). La tolerancia del cerebelo a los retardos temporales puede modificarse 
a costa de cambios en la precisión del movimiento: una mayor tolerancia 
conlleva una reducción en la precisión (capítulo 3).   

- Integración del modelo de cerbelo SNN y un modelo de médula espinal 
(capítulo 4). 

- Validación de la integración cerebelo – médula espinal como controlador de un 
modelo de brazo musculoesquelético. El modelo de médula espinal facilita la 
adaptación y aprendizaje del cerebelo (capítulo 4). 

- Validación de la mejora en la respuesta ante perturbaciones motoras del modelo 
integrado de cerebelo y médula espinal. La integración de la médula espinal 
ofrece una respuesta más sólida ante perturbaciones externas (capítulo 4). 

- Integración de dinámicas musculares en el ciclo de control de Baxter (capítulo 
4). 

- Validación del control motor utilizando diferentes perfiles de cocontracción 
muscular. El modelo de cerebelo es capaz de aprender a controlar con precisión 
el brazo robótico utilizando diferentes grados de cocontracción. Los diferentes 
grados de cocontracción modifican la rigidez del brazo, permitiendo modificar la 
solidez de la respuesta del brazo ante perturbaciones externas (capítulo 4). 

 

Conclusión 

Los robots son herramientas que han servido a la actividad humana desde hace décadas; 
de su aplicación original en entornos industriales a aplicaciones más recientes como 
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servicios de asistencia sanitaria, social o educativa. La complejidad de las aplicaciones 
de los robots crecerá conforme su comportamiento sea más cercano al comportamiento 
humano, de naturaleza adaptativa y flexible como aún no se ha visto en robótica. El 
estudio del comportamiento humano puede inspirar el desarrollo de robots más 
avanzados.  

La neurociencia irá ampliando las respuestas detrás de la cognición, emoción y acción. 
Este conocimiento sobre el substrato biológico responsable de nuestro comportamiento 
puede ser replicado utilizando herramientas computacionales. De este modo, la biología 
puede inspirar soluciones tecnológicas: réplicas artificiales de partes del sistema 
nervioso integradas en ciclos de control robótico. La robótica puede beneficiarse de los 
millones de años de evolución que nos han permitido ser lo que somos. A su vez, el uso 
de redes neuronales artificiales biológicamente plausibles hace de estos robots 
plataformas experimentales con las que estudiar el funcionamiento del sistema nervioso, 
disfunción neurológica y tratamientos. Se cierra así el círculo de la neurobótica; los 
robots son herramientas que nos pueden asistir en tareas físicas, pero también pueden 
ayudarnos a entender nuestra propia naturaleza.  
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